
Pattern Recognition and Neural Networks

Ludmila Kuncheva

2

© 2019 Ludmila Kuncheva. All rights reserved.

ISBN 978-0-244-23252-8

3

Preface

I have tried everything – serious textbooks, not-so-serious textbooks,

Powerpoint slides that sing and dance, live coding in front of the

class, timed exercises, non-timed exercises, quizzes, even singing

“Gaudeamus igitur” on the last lecture. I did!

Alas, lecture attendance dwindles exponentially every year. And

when I mark the exam, I close my eyes and pretend that you call the

‘spade’ a ‘spade’ and not a ‘screwdriver’. I squint at your scribbles,

tilt my head to one side, and – look! – it’s rather ‘spadiver’,...

‘spader’,...‘spade’, really! Hey, and the module evaluation forms

filled by you at the end of the semester are supposed to sing me

praises! Ha-ha-ha, she says wryly.

So, here goes my next attempt. I expect some knowledge of

maths and MATLAB. The language is deliberately colloquial, trying

to get closer to you. This is not how you write scientific papers and

books! Work your way through the text and exercises, and you will

pass the module!

Ludmila Kuncheva

Bangor, November 3, 2019

4

Contents

1 Introduction to Pattern Recognition 11

1.1 A little history . 11

1.2 Classes, labels, and features 16

1.2.1 Classes and labels 16

1.2.2 Features . 18

1.3 Data set . 20

1.3.1 Definition and notations 20

1.3.2 The famous iris data set 22

1.3.3 Data set types 23

1.4 The pattern recognition cycle 25

2 Basics 27

2.1 Classifiers, Discriminant Functions, and Classification

Regions . 27

2.1.1 Classifier and discriminant functions 27

2.1.2 Classification regions 28

2.1.3 One-dimensional data 29

2.1.4 Binary classification 32

2.1.5 Plotting classification regions (MATLAB) . . 34

2.2 Evaluation of a classifier 36

2.2.1 The danger of overtraining 36

5

6 CONTENTS

2.2.2 Training and testing protocols 37

2.2.3 The confusion matrix 41

2.3 ROC curves . 47

2.3.1 A bit of history 47

2.3.2 False positives, false negatives and the two er-

ror types . 47

2.3.3 The ROC curve 49

2.4 Imbalanced classes 54

2.4.1 What is class imbalance? 54

2.4.2 Classifier performance measures for imbalanced

classes . 55

2.5 A probabilistic view 59

3 Classifiers 63

3.1 The Nearest Mean Classifier (NMC) 64

3.1.1 How it works 64

3.1.2 Classification boundary of a 2-class NMC in 2D 65

3.1.3 Programming the NMC 68

3.1.4 Voronoi diagrams 71

3.2 The Linear Discriminant Classifier (LDC) 72

3.2.1 NMC is actually an LDC! 73

3.2.2 Linear boundaries 75

3.2.3 LDC in different dimensions 79

3.3 Rule-based classifiers 82

3.3.1 If-then classifiers 82

3.3.2 The ZeroR classifier 84

3.3.3 The OneR classifier 85

3.4 The Nearest Neighbour classifier (1-nn and k-nn) . . 90

3.4.1 Distances . 91

3.4.2 1-nn and k-nn 92

3.4.3 k-nn in MATLAB 93

3.5 Decision tree classifiers 96

CONTENTS 7

3.5.1 What is a decision tree classifier? 96

3.5.2 Why are decision trees good? 97

3.5.3 Training of a decision tree classifier 98

3.6 The Support Vector Machine (SVM) classifier 101

3.7 Classifier ensembles 104

3.7.1 Why will classifier ensembles work? 104

3.7.2 Bagging . 105

3.7.3 Boosting . 107

3.7.4 Random Subspace 108

3.7.5 Random Forest 110

4 Feature Selection 113

4.1 Redundant, irrelevant and useful features 113

4.2 A taxonomy of approaches 115

4.3 Feature extraction 116

4.4 Feature selection . 117

4.4.1 Univariate feature selection 117

4.4.2 Multivariate feature selection 118

4.4.3 What criterion do we use to evaluate a given

feature set? 122

5 Clustering 125

5.1 Introduction to clustering 125

5.2 Hierarchical clustering and the single linkage method 128

5.2.1 The generic agglomerative clustering algorithm 128

5.2.2 Single linkage 128

5.2.3 Determining the number of clusters for ag-

glomerative clustering 131

5.2.4 Dendrograms 134

5.2.5 The chain effect of single linkage 136

5.2.6 Mean (centroid) linkage 136

5.2.7 MATLAB code and a caveat 139

8 CONTENTS

5.3 Non-hierarchical clustering: k-means 142

5.3.1 Preliminaries 142

5.3.2 The famous k-means algorithm 143

5.3.3 The criterion function Je 145

6 Neural Networks 155

6.1 A brief history of neural networks 155

6.1.1 The early ages 155

6.1.2 The second wave 156

6.1.3 The blossom of deep learning 157

6.2 Structure and elements of a NN 158

6.2.1 Neurons: real and artificial 158

6.2.2 The Threshold Logic Unit (TLU) 163

6.3 The Perceptron . 165

6.3.1 A bit of history 165

6.3.2 The famous perceptron training algorithm . . 165

6.3.3 The perceptron convergence theorem 168

7 MLP, RBF, and SOM 171

7.1 Multi-Layer Perceptron (MLP) 171

7.1.1 Two perceptrons together 171

7.1.2 Structure of MLP 172

7.1.3 The error backpropagation algorithm 175

7.2 Radial basis functions networks (RBF) 179

7.2.1 The activation function 179

7.2.2 Structure and operation of RBF 181

7.2.3 Training of RBF 183

7.3 Self Organising Maps (SOM) 187

7.3.1 Definition and examples 187

7.3.2 Training of SOMs 190

CONTENTS 9

8 Deep Learning NNs 201

8.1 Some definitions . 201

8.2 Applications of DL 202

8.3 Structure and operation of DLs 209

8.4 Which CNN is the best? 215

Appendix A Maths you should know 223

Index xxx

10 CONTENTS

Chapter 1

Introduction to Pattern

Recognition

Pattern recognition is about assigning labels to objects. If the object

is an image taken with a phone camera, the class label can be ‘cat’

or ‘not a cat’. Given enough training data, we can get a machine to

assign labels to the objects by learning patterns which we - humans

- can not break into steps, verbalise or explain completely. We rely

on the machine to learn from the given examples and generalise on

unseen objects. Magic!

1.1 A little history

Once upon a time, before there were pianos or fire extinguishers,

a humble wizard lived in an archetypal Middle-England town. He

made his living as a chapel minister. His name was Thomas Bayes.

Little did he know that one of his two published works will become

the most powerful spell of the Probability Kingdom, known as the

11

12 Introduction to Pattern Recognition

Bayes Theorem. Little did he know that, three centuries later, he

will be proclaimed “more important than Marx and Einstein put

together”.1

Or that there will be a street

named after him...a

aPhoto courtesy of Tom Dabner,

CS graduate 2015.

Take the story of Mike Lynch, the Bayesian millionaire.

In 1991 Mike Lynch

founded a company

called “Autonomy”,

originally to help Essex

police force.

Quake in your boots, Essex criminals! Autonomy will read the

number plate on your getaway car, and will promptly identify you

by your fingerprint. Lo and behold, in 2001 Autonomy was esti-

mated at £4.7 billion! And only a relative nanosecond later (in the

grand scheme of things), in 2011, Autonomy was bought by Hewlett-

Packard for $11 billion.

Recall the NETFLIX contest on user preference prediction.2 The

first competitor whose prediction of user movie preferences reaches

accuracy that is 10% or more higher than Netflix’s own algorithm

will receive a prize of one million dollars. BellKor’s Pragmatic Chaos

team received the prize in 2009 achieving improvement of 10.06%.

1Telegraph Magazine, 3 February, 2001.
2http://www.netflixprize.com/

A little history 13

These days competitions and challenges abound. KAGGLE hosts

one such site3. Some of the challenges carry monetary rewards, other

only kudos, and there are some which are mere playground contests.

Historically, machine learning was mostly developed in the USA

while pattern recognition was more of an European enterprise. At

the times when there was no Internet, machine learning focused on

the theory of inference while pattern recognition advanced in the

area of image processing. As a result, even though we are solving

(nearly) the same problem, we speak slightly different dialects of the

same language (see Figure 1.1).

Take a look at Table 1.1 to see that the continents are somewhat

geographically-protective of their respective ‘babies’. The leading

conference on machine learning ICML (International Conference on

Machine Learning)4 has been held 67% times in North America

while the corresponding leading conference on pattern recognition

ICPR (International Conference on Pattern Recognition)5 exhibits

more ‘internationalism’. The majority of the editions of the confer-

ence were held in Europe (42%) but with more generous outreach

to North America (33%) and elsewhere.

Another very high-calibre conference on machine learning which

is even more territorially restricted to North America is the famous

3https://www.kaggle.com/competitions
4https://en.wikipedia.org/wiki/International_Conference_on_

Machine_Learning
5https://www.iapr.org/conferences/schedule.php

14 Introduction to Pattern Recognition

Machine Learning Pattern Recognition

classifierlearner, hypothesis

attribute feature

objectexample, instance

Figure 1.1: Language discrepancies between Pattern Recognition

and Machine Learning.

NIPS conference (Neural Information Processing Systems).6 Of its

32 editions, NIPS has left North America twice, both times choosing

Spain for its home-from-home.

Table 1.1: Locations of the major conferences ICML (machine learn-

ing) and ICPR (pattern recognition) over the years.

Year ICML ICPR

1973 – 1 Washington D.C., USA

1974 – 2 Copenhagen, Denmark

1976 – 3 Coronado, USA

1978 – 4 Kyoto, Japan

1980 1 Pittsburgh, USA 5 Miami, USA

6https://en.wikipedia.org/wiki/Conference_on_Neural_Information_

Processing_Systems

A little history 15

1982 – 6 Munich, Germany

1983 2 Monticello, USA –

1984 – 7 Montreal, Canada

1985 3 Skytop, USA –

1986 – 8 Paris, France

1987 4 Irvine, USA –

1988 5 Ann Arbor, USA 9 Rome, Italy

1989 6 New York, USA –

1990 7 Austin, USA 10 Atlantic City, USA

1991 8 Illinois, USA –

1992 9 Aberdeen, UK 11 Hague, Netherlands

1993 10 Massachusetts, USA –

1994 11 New Jersey, USA 12 Jerusalem, Israel

1995 12 California, USA –

1996 13 Bari, Italy 13 Vienna, Austria

1997 14 Tennessee, USA –

1998 15 Wisconsin, USA 14 Brisbane, Australia

1999 16 Bled, Slovenia –

2000 17 Stanford, USA 15 Barcelona, Spain

2001 18 Massachusetts, USA –

2002 19 Sydney, Australia 16 Quebec City Canada

2003 20 Washington DC, USA –

2004 21 Banff, Canada 17 Cambridge, UK

2005 22 Bonn, Germany –

2006 23 Pittsburgh, USA 18 Hong Kong

2007 24 Corvallis, USA –

2008 25 Helsinki, Finland 19 Tampa, USA

2009 26 Montreal, Canada –

2010 27 Haifa, Israel 20 Istanbul, Turkey

2011 28 Bellevue, USA –

2012 29 Edinburgh, UK 21 Tsukuba, Japan

2013 30 Atlanta, USA –

2014 31 Beijing, China 22 Stockholm, Sweden

2015 32 Lille, France –

2016 33 New York, USA 23 Cancun, Mexico

2017 34 Sydney, Australia –

16 Introduction to Pattern Recognition

2018 35 Stockholm, Sweden 24 Beijing, China

2019 36 California, USA –

Europe 8/36 22% 10/24 42%

NA24/36 67% 8/24 33%

Other 4/36 11% 6/24 25%

But, all in all, in this era of intense communication and travel,

science no longer observes geographic boundaries. The terminology

dialects blend into a unified jargon, software is universally available,

and researchers happily share ideas and resources. Systems for car

number plate recognition might have been a revolution 40 years ago,

but nowadays pattern recognition and machine learning are aiming

much higher, demonstrating a remarkable level of human-like intel-

ligence7.

What is pattern recognition used for nowadays?

So many things! Iris recognition,

driverless cars (controversial!), facial

emotion detection, mail sorting,

network security, cancer diagnostics,

and many more.

Pattern recognition is a close relative to at least the following

disciplines: Machine Learning, Artificial Intelligence, Neuroscience,

Data Mining, and Statistics.

1.2 Classes, labels, and features

1.2.1 Classes and labels

‘Classes’ in pattern recognition are the groups/types/categories of

objects we wish to recognise. For example, a mobile photo may be

7https://www.theatlantic.com/technology/archive/2016/03/

the-invisible-opponent/475611/

Classes, labels, and features 17

assigned to a class ‘cat’ or a class ‘no cat’. In this case we have a

binary classification problem and the set of class labels is {cat, no

cat}. Then multi-class classification is when we have more than two

classes. For example, consider a photo with a single animal in it.

We use the following set of possible labels: {cat, dog, rabbit, other},
where class ‘other’ contains every animal that is not cat, dog or

rabbit.

Throughout this book we will assume that the classes are mutu-

ally exclusive. This means that one object can belong to one of the

classes only. This is true for both the binary example above (cat,

no cat) and the multi-class example. But there could be other sit-

uations where the classes are not mutually exclusive. For example,

consider a single photo that contains more than one of the animals.

If there are both a cat and a dog, the photo (the object) should be

labelled in both classes. Pattern recognition problems in which the

classes are not mutually exclusive are more complicated. They are

termed multi-label problems. Note the subtle difference in terminol-

ogy: multi-class versus multi-label.

The multi-class problems which we will be solving here will be

not be multi-labelled; the classes will be mutually exclusive. For

example consider recognition of handwritten digits. Each object is

an image of size 28-by-28 pixels containing one digit. The class will

be what the writer intended. Thus we can’t have an image that is

both in class, say, 1 and 7. There may be significant doubt about

the true class of the object as it may look very different from the

intended digit. Nonetheless, there is only one ‘ground truth’. An

example of 16 objects from the handwritten digit dataset MNIST is

shown in Figure 1.2.8

Each object available to us within the given data set will have

a label. The set of possible class labels will be denoted by capital

8http://yann.lecun.com/exdb/mnist/

18 Introduction to Pattern Recognition

Figure 1.2: An example of two of the classes of handwritten digits

from the MNIST dataset (top row 1, bottom row 7).

omega, and the labels within, by little omegas:

Ω = {ω1, . . . , ωc}. (1.1)

We will denote the number of classes by c.

Each object in the data set will be associated with a true label,

an element of Ω.9

1.2.2 Features

Each object is described by features (also called attributes). The

features may be measured in different ways; they may be continuous-

valued, discrete, ordinal, nominal, etc. The set of features describing

an object may contain a mixture of types of features. Take for

example the arrhythmia data set from the UCI Machine Learning

Repository10. [1] The task is to recognise one of 14 types of heart

arrhythmia. Features include gender (nominal variable with two

categories: male and female11) as well as measurements from the

electrocardiogram of the person (quantitative variables).

9‘Object’, ‘example’ and ‘instance’ are synonyms in the context of pattern

recognition.
10https://archive.ics.uci.edu/ml/index.php
11Yes, I know. But, come on, we are talking here about the biological gender,

not the self identity.

Classes, labels, and features 19

The feature values for an object are stored as a vector-row

x = [x1, x2, . . . xn]. (1.2)

We say that this is an n-dimensional problem as each object is a

point in an n-dimensional space, which we will call the feature space.

In the simplest case, this is the real space Rn, and, conveniently, we

can measure Euclidean distance in this space. We use the notation

x ∈ Rn.

Features could be any characteristics or measurements related

to the problem. How do we get the features? See for yourself in

Figure 1.3. Suppose that we are preparing a data set for the hy-

pothetical problem of predicting which little skier will grow into an

Olympic champion.

Sometimes the creator of the data set includes features which,

at a first glance, may not have anything to do with the task. Rest

assured this is not the case. Sometimes such features behave quite re-

markably when combined with other features that may look equally

unimportant. But this is the challenge and the curse of pattern

recognition!

In the handwritten digit example,

the features could be just the

concatenated grey-level intensities

of the pixels. The 10-by-10 image

on the right will generate a vector

x ∈ R100. The image represents a

handwritten digit 6 from the

MNIST data set.

20 Introduction to Pattern Recognition

How do we get the features?

i. Objective measurements

Pose accuracy

Speed

Precision

ii. Historical data

Pulse rate

iii. Coach’s opinion

• Style
• Agility
• Enthusiasm
• Discipline
• Control of skis
• Fear of speed
• ...

• Family sport culture
• General health
• Other sports

• Age
• Weight
• Height

iv. Parent’s opinion

• ...
• ...

v. Child’s opinion

• ...
• ...

Figure 1.3: Thinking about the various possible types of features in

the task of predicting whether a given young athlete will grow into

an Olympic champion.

1.3 Data set

1.3.1 Definition and notations

A data set Z is a set of objects represented by their features, i.e.,

Z = {z1, z2, . . . , zN} ⊂ Rn. (1.3)

We shall assume that the data set is arranged so that each row

contains the feature values for a single object. If Z is a labelled data

set, each object has a class label from the set Ω. The generic form

Data set 21

of a labelled data set is shown below

Z =



z1,1 z1,2 · · · zi,n
...

... · · ·
...

zj,1 zj,2 · · · zj,n
...

... · · ·
...

zN,1 zN,2 · · · zN,n


︸ ︷︷ ︸

data



y1
...

yj
...

yN


︸ ︷︷ ︸
labels

(1.4)

Here zj,k is the value of feature k for object zj , and yj ∈ Ω is

the label of the object. An example of a two-dimensional data set

is shown in Figure 1.4.

Data (Z) Label

x1 x2 y

4 7 2

1 1 1

6 2 1

8 8 3

5 10 2

3 4 1

5 2 3

6 4 3

Figure 1.4: A labelled data set with N = 8 objects, c = 3 classes

and n = 2 features.

The notations which will be used throughout this book for the

number of classes, number of features and number of objects are:

c classes n features N objects.

22 Introduction to Pattern Recognition

1.3.2 The famous iris data set

Data sets coming from different domains can be of different sizes.

But all is relative! In the 1970s, a data set with N = 150 objects

was considered decently large, and dimensionality of n = 150 or

so features was once termed “embarrassingly large”. [14] Today we

laugh in the face of these numbers! The number of data points in

modern data sets is in order of millions, and the number of features,

in order of thousands. But we still like to be able to train and test

our algorithms on toy or benchmark data sets.

The UCI Machine Learning repository contains toy data sets such

as the famous iris data set [9, 3]. The iris data set was collected by

the American botanist Edgar Anderson and subsequently analysed

by the English geneticist and statistician Sir Ronald Aylmer Fisher

in 1936 [9]. The iris data set has become one of the iconic hallmarks

of pattern recognition and has been used in thousands of publications

over the years.

The iris data still serves as a prime example of a ‘well behaved’

data set. There are three balanced classes, c = 3, each represented

with a sample of 50 objects, hence N = 150. The classes are species

of the iris flower: setosa, versicolor and virginica.

The four features describing an iris

flower (n = 4) are sepal length, sepal

width, petal length and petal width.

The classes form neat elliptical clusters

in the four-dimensional space. Class

setosa is clearly distinguishable from the

other two classes.

Data set 23

1.3.3 Data set types

Data sets are very different for different problems. In bioimformat-

ics, for example, tens of thousands features are measured.

This is the case with gene expression data.

In such data sets the number of objects (patients suffering from

some disease) is relatively small. This type of data sets are called

wide data sets.

Compare this with big data sets. Big Data arise in areas such as

computer vision, document classification, speech recognition, inter-

net searches, and more. Big Data came into fashion recently, owing

to the technological advances of the past few decades. Nowadays

we have the means to source, store and process such data sets. An

example is the famous ImageNet data set.12[6] ImageNet contains

over 14 million images containing various objects. Using a clever

crowdsourcing game developed by Luis von Ahn of Carnegie Mellon

University, USA, each image has been labelled with the dominant ob-

jects within, and over a million of images have been hand-annotated

with the corresponding bounding boxes. A sample of images from

ImageNet is shown in Figure 1.5.

The number of classes c in ImageNet is over 20 thousand! A

typical class contains several hundred images. Such a massive clas-

sification task is not in the realm of classical pattern recognition

because the challenges are vastly different from those of the 20th

century pattern recognition. Some of today’s big data computer

vision challenges are

� There is a colossal number of classes with intricate relation-

ships between them.

12https://en.wikipedia.org/wiki/ImageNet

24 Introduction to Pattern Recognition

Figure 1.5: A sample from the ImageNet data set.

� The problems are computationally-hungry in terms of storage,

processing power, and time.

� Understanding the relationship between the visual presenta-

tion of the image (pixels) and its semantic content is still

missing and relegated to deep learning neural networks to fig-

ure out. Thus the classification models have to be complex,

versatile, and trainable.

The pattern recognition cycle 25

In the past, much effort has been devoted to finding ingenious

ways to re-use the (small) data set so that the classifier is trained

without overfitting. All those clever ways of error estimation, density

modelling, feature selection... Whoosh! All goes out of the window.

Enter parallel computing, GPUs, giant neural network architectures

with beautiful and exotic processing elements!

1.4 The pattern recognition cycle

The ‘pattern recognition cycle’ starts with Real World and ends with

Real World as shown in Figure 1.6.

The two major strands are Unsupervised Learning (Unsupervised

Pattern Recognition) and Supervised Learning (Supervised Pattern

Recognition). The task of unsupervised pattern recognition is to

identify structure in the data. Usually this is done through apply-

ing a clustering method. The output is a partition of the data into

groups, and this is what we return to the user. In supervised pat-

tern recognition we use the data and the labels to build a classifier

which can predict a class label for any previously unseen object. The

classifier is the product which we return to the user.

Let’s see how it is done!

26 Introduction to Pattern Recognition

Real World (where the user comes with the problem)

Collect data

Labels Available

Supervised Learning

Labels NOT Available

Unupervised Learning

Clustering Feature Selection

Classifier

training/testing

Partition of the data Classifier

Real World (where the solution is returned to the user)

Figure 1.6: The Pattern Recognition Cycle: from real world to real

world.

Chapter 2

Basics

2.1 Classifiers, Discriminant Functions,

and Classification Regions

2.1.1 Classifier and discriminant functions

A classifier is any function, method or algorithm that assigns a class

label to any given object. Formally, if x ∈ Rn is an object, and

Ω = {ω1, . . . , ωc} is the set of class labels, a classifier is a mapping:

D : Rn → Ω. (2.1)

In other words, D assigns an element of Ω to a given object x.

A classifier can be specified equivalently with a set of discrimi-

nant functions. Think of these functions as ‘support’ for the classes.

Each object x will receive a collection of c values, one for each class.

The class label assigned to x should be the one with the largest

support. These c values come from the discriminant functions:

gi : Rn → R, i = 1, . . . , c.

27

28 Basics

⊕⊕⊕ Example 2.1.1

Consider a 2-dimensional space and c = 3 classes. Let the three

discriminant functions be:

g1(x) = 4,

g2(x) = 3x21 − x2 + 5, and

g3(x) = x1 x2 + 7.

What class label will this classifier assign to x = [−1, 2]T ?

Solution: Calculate the three discriminant functions for the given x

g1(x) = 4.

g2(x) = 3× (−1)2 − 2 + 5 = 6.

g3(x) = (−1)× 2 + 7 = 5.

Since the largest discriminant function is g2, the class label assigned

to x will be ω2.

			

2.1.2 Classification regions

The discriminant functions determine uniquely the classification re-

gions of the classifier. The points within a region should be labelled

in the corresponding class. These regions may have any shape and

also may consist of disjoint parts of the space.

Figure 2.1 shows the classification regions for the classifier de-

fined by the three discriminant functions in Example 2.1.1.

Classifiers, Discriminant Functions, and Classification Regions 29

Figure 2.1: Classification regions for Example 2.1.1. The point x =

[−1, 2]T is marked with a target symbol.

The classification regions are defined in the space where the data

lives, Rn. For one-dimensional data, the classification regions are

intervals on the real line R.

2.1.3 One-dimensional data

When the data is one-dimensional, we can actually see the discrimi-

nant functions. They will be some functions of the feature y = g(x).

Then if there are c classes, we can determine the classification re-

gions by comparing the c values g1(x), . . . , gc(x). And we have one

whole dimension to plot the functions! Take a look at Figure 2.2

and the example below.

⊕⊕⊕ Example 2.1.2

Consider a one-dimensional problem where the data come from

30 Basics

three classes. We have a classifier defined with the following dis-

criminant functions:

g1(x) = 3x− 2, g2(x) = 4, g3(x) = −2x2 − 2x+ 6.

Plot the discriminant functions for x ∈ [−2, 4] and identify the

classification regions.

Solution: Plot the functions against the values of x spanning the

interval [−2, 4]. Observe which discriminant function is the largest

(highest curve) for each value of x. To find the boundaries of the

intervals which will be the classification regions, we must solve si-

multaneously the equations of the respective discriminant functions.

For example, all points to the right of A′ must be labelled as class 1

because g1 will be the largest discriminant function for all those xs.

Point A′ is obtained by projecting the intersection point A onto x.

(If you are wondering, this amounts to dropping the y-coordinate of

A.) To find A′ we must solve g1(x) = g2(x):

3x− 2 = 4, hence x = 2.

Next, solve g2(x) = g3(x):

−2x2 − 2x+ 6 = 4, −2x2 − 2x+ 2 = 0, x2 + x− 1 = 0.

The discriminant of this quadratic equation is D = 12 − 4(−1) = 5,

and the solutions are

s1 =
−1 +

√
5

2
= 0.6180 and s2 =

−1−
√

5

2
= −1.6180.

Denote the respective points by B′ and C ′, respectively, and the

boundaries of the classification regions by B and C (see the figure).

Solving the quadratic equation g1(x) = g3(x) we obtain intersec-

tion points P ′ and Q′

3x− 2 = −2x2 − 2x+ 6, −2x2 − 5x+ 8 = 0.

Classifiers, Discriminant Functions, and Classification Regions 31

Figure 2.2: Classification regions for 1D data. The regions are ob-

tained from the discriminant functions for the three classes as ex-

plained in Example 2.1.2.

The two solutions are

s1 =
5 +
√

25 + 4× 2× 8

−4
= −3.6085, s2 =

5−
√

89

−4
= 1.1085.

Then the intersection points are P ′(−3.6085,−12.8255) (duly fallen

off the graph) and Q′(1.1085, 1.3255). Spot Q′! The regions are

marked on the x-axis because this is where the data for this problem

lives, on the real line R. And Q′ is beneath g2(x) which means that

it will NOT define a classification boundary; it is simply not needed.

32 Basics

The thing is that, in the 1D example, through the magic of sight

we can determine which intersection points are legitimate region

boundaries and which are not. In higher dimensions, this will not

be possible. 			

But this is not too bad because the classifier is specified com-

pletely by the discriminant functions, and we don’t need to know

or plot the classification regions. Any point that comes for classifi-

cation will get its class label just by comparing the c discriminant

functions.

2.1.4 Binary classification

When there are only two classes (c = 2, binary classification), things

are even simpler! Instead of calculating and comparing two discrimi-

nant functions, we can get away with just one calculation. Let g1(x)

and g2(x) be the two discriminant functions.1 Form

g(x) = g1(x)− g2(x).

All objects for which the classifier should assign class 1 will have

g1(x) ≥ g2(x), therefore g(x) ≥ 0. And vice versa, all objects which

the classifier puts in class 2 will have g(x) < 0. So, just one discrim-

inant function will suffice in this case. In theory, when g(x) = 0,

any of the two classes can be assigned. We have assumed here that

in case of a tie, we will assign class 1.

Also, for such binary classification, there is no ambiguity as to

which pair of discriminant functions determine the boundary of clas-

sification regions. Indeed, the boundary between the two classes is

defined by the equation g(x) = 0.

1Note the boldface x. This means that the object is represented by a vector

with more than one dimension. That is, the number of features is n > 1. In the

1D example we used just x.

Classifiers, Discriminant Functions, and Classification Regions 33

For a 2-dimensional binary classification problem we can calcu-

late the equation of a linear discriminant function by choosing two

suitable points in the 2D space.

⊕⊕⊕ Example 2.1.3

Figure 2.3 (a) shows a scatterplot of two classes in 2D. Propose a

linear classification boundary which separates the two classes. (Well

well, look, it is already there!) Explain how you will use this equation

as a discriminant function. Plot the classification regions as in sub-

plot (b).

(a) (b)

Figure 2.3: Classification boundary and classification regions for

Example 2.1.3

Solution. Pick two points that define a line which separates (by

eye) the two classes. Take, for example, A(0,−9) and B(5, 3). This

is the segment plotted in sub-plot (a). Calculate the equation of the

line:
x1 − 0

5− 0
=
x2 − (−9)

3− (−9)

12x1 = 5x2 + 45, hence 12x1 − 5x2 − 45 = 0.

34 Basics

The discriminant function will be

g(x) = 12x1 − 5x2 − 45. (2.2)

To determine which class corresponds to the ‘positive’ side of the

line, pick any point in the space, for example O(0, 0). Substitute the

coordinates in the discriminant function (2.2). The sum is −45 < 0.

Therefore, our classifier should assign class label 1 (red) to any point

whose discriminant score is negative, and class 2 (blue) for a positive

score. Any class label can be assigned for g(x) = 0.

Now, for plotting the classification regions – see below! 			

2.1.5 Plotting classification regions (MATLAB)

⊕⊕⊕ Example 2.1.4

Here comes the fun! Let’s plot classification regions in R2 using

MATLAB. Consider a classifier given by the following discriminant

functions:

g1(x) = x21 − x22 − 6.

g2(x) = 3 sin(0.5x1) x2

g3(x) = 4x1 − 2x2 + 9.

Plot the classification regions for this classifier for x1 ∈ [−30, 30] and

x2 ∈ [−30, 30].

Solution.

1 % Generate the grid points
2 span x = linspace(−30,30,500);

Classifiers, Discriminant Functions, and Classification Regions 35

3 [x1,x2] = meshgrid(span x,span x);
4

5 % Apply the three discriminant functions to each point
6 g1 = x1.ˆ2 − x2.ˆ2 − 6;
7 g2 = 3*sin(x1/2).*x2;
8 g3 = 4 * x1 − 2 * x2 + 9;
9

10 % Prepare the figure
11 figure, hold on, grid on, axis equal tight
12 set(gca,'Layer','Top') % make the grid visible
13

14 % Plot the regions, class by class
15 region1 = g1 > g2 & g1 > g3; % logical variable for class 1
16 region2 = g2 > g1 & g2 > g3; % logical variable for class 2
17 region3 = g3 > g1 & g3 > g2; % logical variable for class 3
18

19 plot(x1(region1),x2(region1),'r.')
20 plot(x1(region2),x2(region2),'g.')
21 plot(x1(region3),x2(region3),'b.')

The output is shown on the

left. These are the clas-

sification regions for the

classifier in Example 2.1.4.

Class 1 is plotted with red,

class 2 with green and class

3, with blue. Weird and

pretty, isn’t it?

			

36 Basics

2.2 Evaluation of a classifier

How do we know whether our classifier is

good? We need to train the classifier by

many labelled examples and test it on

unseen examples for which we (sneakily)

know the labels.

2.2.1 The danger of overtraining

We must make sure that the testing data is not seen during training.

Otherwise, we may encourage the classifier to learn all the noise

and outliers in the data, and keep making mistakes on unseen data.

This is termed overtraining or overfitting the data. Such overfitting

is particularly likely when we have a small data set and a powerful

classifier. An example is shown in Figure 2.4. Here the simple

linear classification boundary is optimal in the sense that no other

boundary will lead to more accurate labelling of unseen data from

the distribution of this problem.

Over-fitting may come as a consequence of over-training. If the

classifier has a parameter to tune, like a dial, we may over-tune it

by getting the classifier to fit the training data better and better

and better. Counter-intuitive as this may sound, sometimes it will

be wise to stop the tuning early on. How early exactly? We should

be looking for indications to tell us. An example of this strategy in

operation is training decision trees. As we will see later, if we let the

tree grow without a limit, it will classify perfectly all the training

data. It is often better to prune the tree in order to ensure that the

noise in the data will not affect its performance on unseen data.

Evaluation of a classifier 37

(a) Data (b) D1: Overfit

(c) D2: Correct regions (d) D2 with additional data

Figure 2.4: An example of a data set and two classifiers, D1 and D2,

shown by their classification regions.

2.2.2 Training and testing protocols

According to our pattern recognition cycle, we get the data, train a

classifier, test it, and return it to the user along with the ‘accuracy

certificate’. Only if it was that simple!...

A summary of training and testing protocols is shown in Fig-

ure 2.5 and detailed further on in this section.

38 Basics

Figure 2.5: A visual summary of the most used training-testing pro-

tocols.

Evaluation of a classifier 39

Resubstitution

What a long word! And the spell-checker will underline it relent-

lessly until you add it to the dictionary. But a very needed concept.

Resubstitution training-testing protocol, or the R-method, means

training and testing the classifier using the same data. Indeed, this

hardly makes sense for small data sets. We can train the classi-

fier to recognise perfectly every data point but then our ‘accuracy

certificate’ will be a delusion of perfection or a speculation at best.

Hold-out

Logically, the more data we have, the better the classifier will be.

With a large data set we may choose a complex classifier model

and apply the most sophisticated training algorithm. Then we can

test the classifier on previously unseen data, and obtain a faithful

estimate of its accuracy. The assumption here is that we have so

much labelled data that we can comfortably split it into training and

testing parts. Adding more instances to the training part will not

impact significantly the classifier. So, increasing the computational

load will be just pointless. This method of splitting the data is called

hold-out, or H-method.

Data shuffle

This method repeats the hold-out with different random splits into

training and testing parts. Say, we carry out 100 runs (the com-

monly used default number of repetitions). For each run, the data is

split randomly into a training part (90%) and a testing part (the re-

maining 10%). A classifier is trained on the training part and tested

on the testing part. Remember to store the testing accuracy - this

is why we are doing all these machinations! After the 100th run, we

will have 100 estimates of accuracy, say A1, . . . , A100 (those stored

40 Basics

values). Then the value which we return to the user as the ‘accuracy

certificate’ will be the average of the As.

Cross-validation

In the Data shuffle approach above, the testing sets for the different

runs will likely have some overlap. Ideally, we would like to test

our classifier on non-intersecting (unseen) testing data. Enter cross-

validation!

In this method we first decide on the number of folds, K. Then

we split the data randomly into K folds of approximately equal

size. One fold is left aside (say, fold i) as the testing part, and

the remaining K − 1 folds are pooled to make the training part. A

classifier is trained and tested using this partition, and the accuracy

Ai is stored in our little piggy bank. This is repeated K times to

guarantee that each of the K folds is used for testing once. Thus our

testing set is exactly Z – the labelled data set we started off with!

Typically, K is set to 10 or 5.

Leave-one-out (LOO)

And now comes one of the most famous cross-validation variants:

the Leave-One-Out (LOO) method. For this method K = N , where

N is the number of objects in the data (rows of Z). In other words,

we train N classifiers by leaving aside ONE object for testing in each

run. This one object is our testing data. The accuracy Ai can only

be 0 (wrong label) or 1 (correct label) for the testing guy. At the

end, after the Nth run, we will have a collection of binary values

A1, . . . , AN . The average will give us the estimate of the accuracy

of the classifier.

LOO is a popular classifier evaluation method, especially useful

for small data sets. Why for small data sets? Because in this case

Evaluation of a classifier 41

we cannot afford to cut a sizeable testing part from the precious

little data we have. If we do so, we may lose information about

the structure of the data and possible ways to classify it. LOO is

unbiased (or ever so slightly pessimistically biased), which is good!

This means that, if we apply LOO to many many different samples

Z from the big wide world, our ‘accuracy certificate’ will match the

truth. But what good is that? We have only one data set Z, and we

have no choice but trust the calculated value of the accuracy from

the LOO for this Z. We can also return a measure of confidence, and

it will not be very high for a small data set. Not ideal, ha? If your

user wants a better classifier and stronger guarantees, they should

collect more data. ‘Data’ is the magic word...

Notice that the classifier which we return to the user should be

trained eventually on the entire data set Z. The methods described

here serve to determine how accurate this classifier would be on

unseen data, which is known as the generalisation ability of the

classifier.

2.2.3 The confusion matrix

Cohorts of students believed that I have coined this term just to

confuse them! I haven’t, honestly! This is a standard, well known

term in pattern recognition and machine learning.

Table 2.2.3 shows a confusion matrix for a classifier D tested on a

data set Z with N objects. The rows of the matrix correspond to the

true labels while the columns, to the labels assigned by D. Entry aij
in the confusion matrix is the number of objects from Z with true

label ωi, labelled by the classifier as ωj . The confusion matrix can

tell us which classes have been particularly difficult for the classifier,

and where most of the mistakes occurred. The diagonal elements

show the correctly labelled counts for each class. The off-diagonal

elements show the number mislabelled objects.

42 Basics

Table 2.1: The confusion matrix for a data set Z of size N , labelled

into c classes.

T
ru

e
cl

a
ss

la
b

el
s

Assigned labels

ω1 ω2 ωj . . . ωc

ω1 a11 a12 a1j . . . a1c

ω2 a21 a22 a2j . . . a2c
...

ωi ai1 ai2 . . . aii aij . . . aic
...
...

ωc ac1 ac2 acj . . . acc

Notes:

� aij is the number of objects from the data set with true label ωi

labelled by the classifier as ωj .

� aii is the number of correctly labelled objects from ωi, i = 1, ..., c.

(in the boxes)

�

∑
i,j aij = N .

Evaluation of a classifier 43

Thus, the accuracy of the classifier can be estimated as

Pa =
1

N

c∑
i=1

aii,

where c is the number of classes. The error rate is, respectively

Pe = 1− Pa = 1− 1

N

c∑
i=1

aii.

⊕⊕⊕ Example 2.2.1

Calculate and show the confusion matrix of the classifier represented

with its classification regions in Figure 2.6. The four classes are

represented with different markers and different colours. Each class

region is shaded with a lighter version of the colour of the marker (for

example, pink region corresponds to the red class (class 1), plotted

with a red cross marker). Answer the following questions:

1. What is the total number of objects in the data set?

2. What is the total number of objects from class 3 in the data

set?

3. What is the accuracy of the classifier for this data set?

4. Estimate the error of the classifier if it predicts class 2?

Solution: There are 4 classes, therefore the confusion matrix will be

of size 4-by-4. The first row will represent class 1 (the red crosses).

Four of the five red crosses are in the pink region, which means that

the classifier has diligently labelled them in class 1. Success! None

are in class 2, one poor thing is in the grey region labelled as class

3, and none of the reds is in the green region. Thus, the first row

44 Basics

Figure 2.6: Classification region for classifier D and the data for

preparing the confusion matrix.

of the table is [4, 0, 1, 0]. And so it goes next in constructing the

second row of the table responsible for class 2 (blue circle): [0, 2, 0,

0]. Both circles are neatly in the blue region. Got it? Here is the

confusion matrix itself:

T
ru

e
la

b
el

s

Assigned labels

class 1 class 2 class 3 class 4

class 1 4 0 1 0

class 2 0 2 0 0

class 3 2 0 4 0

class 4 2 1 0 2

Evaluation of a classifier 45

And now for the other questions:

1. What is the total number of objects in the data set? Each

object falls in one cell of the table to contribute to the count

there. Therefore N = 4 + 1 + 2 + 2 + 4 + 2 + 1 + 2 = 18.

2. What is the total number of objects from class 3 in the data

set? All objects from class 3 are accounted for in row 3. There-

fore N3 = 2 + 4 = 6.

3. What is the accuracy of the classifier for this data set? This is

the proportion of the objects in the cells on the main diagonal:

Pa =
1

18
(4 + 2 + 4 + 2) =

12

18
= 0.6667.

4. Estimate the error of the classifier if it predicts class 2? This

time we look at column 2 responsible for the class 2 predic-

tions. Out of the 3 predictions for this class, 2 were correct.

Therefore, the error can be estimated as

Pe(Prediction is class 2) =
1

3
= 0.3333.

Not so confusing, eh?

			

The confusion matrix is specific for the given classifier D and the

data set Z.

And here is our little MATLAB function which calculates a con-

fusion matrix for a set of true labels and a set of assigned labels.

(See how we make it universal, so that the labels don’t have to be

consecutive integers like 1, 2, 3, and so on, but can be integers like

135, 21, 67, and so on.)

46 Basics

1 function [cm,u] = confusion matrix(true labels, ...
assigned labels)

2 u = unique(true labels); % returns a sorted column of
3 % unique labels
4 c = numel(u); % number of classes
5 cm = zeros(c); % c−by−c confusion matrix
6 for i = 1:c
7 for j = 1:c
8 cm(i,j) = sum(true labels == u(i) & ...
9 assigned labels == u(j));

10 end
11 end

And here is a little script to check that the function works:

1 clear, clc, close all
2 l1 = randi(4,100,1)*3+5; % generate 100 labels from the
3 % set {8, 11, 14, 17}
4 l2 = randi(4,100,1)*3+5; % generate 100 labels as the
5 % assigned labels
6 [cm, cl] = confusion matrix(l1,l2)

The MATLAB output in the command window will be something

like this:

1 cm =
2 4 8 5 4
3 5 10 7 7
4 7 5 12 9
5 7 4 3 3
6

7 cl =
8 8
9 11

10 14
11 17

The label list will be the same if you run this script again, but

ROC curves 47

cm will change depending on the random labels generated for l1 and

l2.

2.3 ROC curves

No, unfortunately it is not Rock’n’Roll all the way through ,.

ROC curves are another way to see how our classifier performs.

2.3.1 A bit of history

Let’s decipher the acronym first: ROC stands for ‘Receiver Oper-

ating Characteristic’. Huh? These curves were first devised during

World War II following the attack on Pearl Harbor in 1941. They

were applied to measure the ability of a radar receiver operator (hu-

man) to distinguish between Japanese aircraft and other objects

from their radar signals. The name ‘ROC curves’ stuck since then.

2.3.2 False positives, false negatives and the two

error types

In two-class (binary) classification problems, we may designate one

of the classes as ‘positive’ and the other as ‘negative’. The positive

class is usually the class of special interest. Look at the curious

reincarnation of the confusion matrix for this case in Table 2.2.

48 Basics

Table 2.2: Confusion matrix for two classes: positive and negative.

Types of errors. False positives, false negatives, true positives and

true negatives.

Assigned labels

positive negative

T
ru

e
la

b
el

s positive
True positive (TP)

Convict the guilty

False negative (FN)

Free the guilty!

Type I Error

negative

False positive (FP)

Convict the innocent!

Type II Error

True negative (TN)

Free the innocent

A confusion matrix defines only a single point on the ROC curve.

To calculate this point, we need two terribly important quantities,

widely used in many areas, and mostly in medical data analysis:

Sensitivity of a test measures the proportion of correctly identi-

fied positive cases out of all positive cases, that is:

Sensitivity =
TP

TP + FN
.

Specificity of the test (a bit of tongue-twister, isn’t it?) is the

proportion of correctly identified negative cases out of all negative

cases, that is:

Specificity =
TN

TN + FP
.

Ideally, both sensitivity and specificity should be 1. In this case,

we have the ideal classifier with accuracy 100%.

ROC curves 49

2.3.3 The ROC curve

The ROC curve gives us the chance to pick a compromise between

FP and FN for the classifier at hand. The general layout of a ROC

curve is shown in Figure 2.7.
S

e
n

si
ti

vi
ty

1 - Specificity0

0

1

1

the ideal point

T
h

e
h

ig
h

er
 t

h
e

b
et

te
r

The lower the better

Perfect
specificity

Perfect sensitivity

Figure 2.7: A general layout of a ROC curve.

On the x-axis, we plot 1 − Specificity (proportion of false pos-

itives out of all negatives) and on the y-axis we plot Sensitivity.

Therefore, the ideal point is at (0,1), corresponding to perfect sensi-

tivity and specificity - top left corner on the graph. Only if we were

able to reach it...

The y axis is the place of perfect specificity (whatever the sen-

sitivity), and the horizontal line at y = 1 is the place of perfect

50 Basics

sensitivity (whatever the specificity). The bottom left corner is the

point where we label everything as negative. Sensitivity is 0 but the

specificity is perfect. Top right is the classifier which labels every-

thing as positive, ensuring sensitivity of 1 and 0 specificity. Neither

of these extreme points is desirable. We’d rather have the ideal

point, please. But not every classifier can reach even close to it.

Interestingly, if we are guessing the labels, the ROC curve will span

the diagonal from (0, 0) to (1, 1), denoted ‘The CHANCE classifier’

in the graph. Any classifier better than chance will have a ‘belly’

towards the ideal point. Let’s see how this happens.

A trained classifier is associated with a single confusion matrix,

and therefore defines only one point on the ROC curve, called the

operational point. An example is shown in Figure 2.8.

The operational point is calculated from the confusion matrix

and plotted on the graph. But where will the other points come

from (apart from the (0,0) and (1,1))? We assume that there is a

parameter, something like a dial, which we can tweak in order to

get different versions of the classifier and their corresponding points

on the ROC curve. For example, suppose that the classifier outputs

a value v between 0 and 1, and we threshold this value with some

threshold θ to get the class label. Let’s say that for v ≥ θ we assign

class positive, and for v < θ, class negative. By sliding θ from 0 to

1, we will drive the operational point from point (1, 1) (everything is

labelled as the positive class) down to (0, 0) (everything is labelled

as the negative class).

⊕⊕⊕ Example 2.3.1

Given is the one-dimensional, 2-class data set depicted in Figure 2.9.

Consider a classifier which uses a threshold θ. All data points to the

left of θ are labelled as negative, and all points at θ and to the right

are labelled as positive.

Build the ROC curve for this threshold classifier.

ROC curves 51

S
e

n
si

ti
vi

ty

1 - Specificity0

0

1

1

the ideal point

Disease + Healthy -

Disease + 10 4

Healthy - 8 13

Sensitivity = 10/14 = 71.4%

Specificity = 13/21 = 61.9%
1-Specificity = 38.1%

operational point

Figure 2.8: An example of calculating the operational point on the

ROC curve from the confusion matrix.

Solution: Slide θ from 0 to 16 and calculate the confusion matrix

for each threshold. Subsequently, calculate the operational point on

the ROC curve for the current value of θ. Notice that the confu-

sion matrix will change only when the threshold bypasses a point

from the data set. Then we can choose threshold values between

each consecutive pair of data points. Table 2.3 shows the calculated

values.

Figure 2.10 shows the ROC curve for this threshold classifier

estimated from the given data set.

52 Basics

Figure 2.9: 1D dataset. Class positive is plotted with red crosses.

Table 2.3: Threshold values and the respective operational points

on the ROC curves (in boldface) for the dataset in Figure 2.9.

θ TP FN FP TN Sens Spec 1− Spec
1.0 3 3 0 0 1.0000 0.0000 1.0000

2.5 3 2 0 1 1.0000 0.3333 0.6667

4.5 2 2 1 1 0.6667 0.3333 0.6667

7.5 2 1 1 2 0.6667 0.6667 0.3333

9.5 2 0 1 3 0.6667 1.0000 0.0000

12.5 1 0 2 3 0.3333 1.0000 0.0000

15.5 0 0 3 3 0.0000 1.0000 0.0000

The ROC curve does not look very smooth, does it? But if we

had 1000 points instead of 6, the picture would be different. 			

The MATLAB code for this example is shown below. Note that

it uses the function confusion_matrix which we so-very-wisely pre-

pared before.

1 clear, clc, close all
2 labels = [2 1 2 2 1 1]; % 1−class positive, 2−class negative
3 data = [2 3 6 9 10 15]; % 1D data
4 augmented data = [0 data 16];

ROC curves 53

Figure 2.10: ROC curve for the data in Figure 2.9

5 thresholds = augmented data + [diff(augmented data)/2 0];
6

7 % Calculate the operational points for the ROC curve
8 for i = 1:numel(thresholds)−1
9 assigned labels = (data < thresholds(i)) + 1;

10 % 1 for class +, 2 for class −
11 C = confusion matrix(labels(:),assigned labels(:));
12 x(i) = 1 − C(2,2)/(C(2,1)+C(2,2)); % 1− Specificity
13 y(i) = C(1,1)/(C(1,1) + C(1,2)); % Sensitivity
14 end
15

16 figure, hold on, grid on, axis([0 1 0 1]), axis square
17 plot(x,y,'k.−','markersize',12,'linewidth',1)
18 xlabel('1 − Specificity'), ylabel('Sensitivity')

A measure of performance of the classifier model is the area un-

der the ROC curve. Area close to 1 will mean that the curve is

‘stretching’ to reach the ideal point (0,1), and the classifier is good.

54 Basics

Conversely, if the area is close to 0.5, the classifier is no different to

random labelling. And if we should find that AUC is smaller than

0.5, Oh, Dear! We can reverse the labels! Call the black white,

and the white black, and then the classifier will regain some dignity

beyond random guessing. AUC has been an object of dispute in the

past as a classifier performance measure [10] but it is still among the

most popular metrics.

2.4 Imbalanced classes

2.4.1 What is class imbalance?

Classification accuracy is not always the best measure of the per-

formance of a classifier. Imagine the case where we build a test to

screen the population for a very rare disease. If 0.001% of people are

affected by the disease, a classifier which predicts that everybody is

unaffected will be almost perfect! It will have accuracy of 99.999%.

Isn’t this splendid? But this classifier will be of no use in recognising

the rare disease of interest. Usually, it is not that easy to develop

an accurate test. This means that in order to detect most cases

of interest we ‘pay’ with a number of healthy people being picked

out as affected. Further tests (more expensive and accurate) will

filter those people out. But our initial screening test may have a lot

smaller accuracy than the useless “all-healthy” classifier. (We shall

call this classifier by several names: ‘The Largest Prior’ classifier,

‘The Majority’ classifier, and the ‘trivial’ classifier. All these amount

to the same thing – always assign the predominant class label.)

Usually, in two-class problems, the class of interest is a lot smaller

than the other class (rare disease versus healthy). This type of data

is known as ‘imbalanced’ or ‘unbalanced’. Classification accuracy is

clearly not very useful for this type of problems. Instead, there are

Imbalanced classes 55

other measures which give more weight to the minority class.

⊕⊕⊕ Example 2.4.1

An example of an imbalanced classification problem is identifying

the square(s) containing a face in an image (Figure 2.11). Suppose

that we slide a square with the correct dimension starting from the

top left corner of the image, one pixel at a time, all the way across

to the last possible position. Each of the squares we go through is

an object in the data set. Then we return the square back to the

left edge, move it a pixel down and repeat the sliding action. Out of

many many squares, only a handful will contain a recognisable face

image. There are 6 such squares in the image in Figure 2.11.

The image size is 79 × 118 pixels and the square size is 25 × 25

pixels. If there are 6 positive objects in the data set obtained through

sliding the square over the whole image (as described above), how

many negative objects will there be in the dataset?

Solution: In each row, we have only 118 − 25 + 1 = 94 places to

position the square. Also, the lowest vertical position will be at row

number 79 − 25 + 1 = 55. Therefore the total number of possible

squares in the image is 94×55 = 5170. Out of these, Cutie-Patootie

is in 6. Therefore the number of negatives is 5170−6 = 5164. 			

2.4.2 Classifier performance measures for imbal-

anced classes

The most intuitive measure for imbalanced classes is the Risk or

the Loss. Classification errors have naturally different costs. For

example, in the justice system, the error of ‘freeing the guilty’ is not

as heavy as ‘convicting the innocent’. Thus, we can assign numerical

costs and measure the success of a classifier by the sum of the costs

56 Basics

Figure 2.11: An example of an imbalanced classification problem.

Identify the squares containing a face in an image.

incurred by the misclassifications. This brings the idea of a loss

matrix. Remember the confusion matrix? Now let’s populate it

with costs, which we decide on. These costs will weigh the errors

against one another. There is no rule as to how these costs should

be assigned. It is up to use whether we should use integer values or

fractions, whether they will sum up to a constant, and so on. The

loss matrix is not associated with a classifier or a dataset. It is only

meant to quantify our perception of how the misclassification errors

are related to one another.

So, here are three measures of classifier performance that are

useful for imbalanced classes:

• Cost. Denote by λij the cost of labelling an object from true class

ωi into class ωj . Correct classification incurs 0 penalty, so λii =

0, i = 1, . . . , c. Thus, the cost of labelling dataset Z by classifier D

can be obtained from the confusion matrix C (of Z and D) and the

Imbalanced classes 57

loss matrix for the problem:

Cost =

c∑
i=1

c∑
j=1

aij × λij .

The cost measure can only serve to compare two classifiers on

the same data set.

• GM measure. To mitigate the effect of the imbalance in a two-class

problem, we can take the geometric mean of the sensitivity and the

specificity. This is known as the GM measure:

GM =
√

Sensitivity× Specificity

Notice the the GM measure will give the same result even if we

swap the positive and the negative labels. In other words, it does not

matter which class we nominated as positive (the class of interest).

• F-measure. Finally, the F measure (or also F1 measure) is all

about predicting correctly the positive class. This measure is based

on Recall and Precision. Recall is the same as sensitivity!

Recall = Sensitivity =
TP

TP + FN
.

Precision, on the other hand, tells us what proportion of the objects

labelled as positive by our classifier are indeed positive:

Precision =
TP

TP + FP
.

Then

F =
2× Recall× Precision

Recall + Precision

F-measure is widely used in text recognition and retrieval systems.

F varies between 0 and 1, with 0 meaning failure to recognise the

58 Basics

(a) Data (b) Classifier 1 (c) Classifier 2

[
30 0

112 888

] [
23 7

33 967

]
Figure 2.12: Imbalanced data and two classifiers. The respective

confusion matrices are shown underneath the classifier scatterplots.

class of interest at all to 1 meaning perfect classification (all positives

have been identified with no false positives).

⊕⊕⊕ Example 2.4.2

Well, there is no sensible way to compare measures. They measure

classifier performance in different ways! They measure whatever

they are designed to measure, and their values are not commensu-

rable. Apples and oranges. But we can still illustrate the calcula-

tions.

Consider the imbalanced data set depicted in Figure 2.12 (a).

The negative class (green) contains 1000 points (97%), and the pos-

itive class (black) contains 30 points (3%). Two classifiers are shown

by their classification regions in Figure 2.12 (b) and (c). Which one

is better?

The confusion matrices for the two classifiers are shown under-

neath the respective scatterplots. Classifier 1 labels all positive cases

correctly at the expense of 112 false positives. Classifier 2, on the

other hand, reduces the false positives to 33 but misses 7 of the pos-

A probabilistic view 59

itive cases. Table 2.4 shows the accuracy, GM and F for the two

classifiers.

Table 2.4: Performance measures for the two classifiers for the im-

balanced data.

Sensitivity Specificity Precision Accuracy GM F

=Recall

C1 1.000 0.8880 0.2113 0.8913 0.9423 0.3488

C2 0.7667 0.9670 0.4107 0.9612 0.8610 0.5349

Clearly neither classifier dominates its rival on all measures. This

means that we can choose based on how much we are inclined to tol-

erate errors of type I and type II. For example, if it is paramount to

catch ALL positive cases, Classifier 1 is better. If, however, the cost

for false positives is too great, we may prefer Classifier 2. Decisions,

decisions... 			

2.5 A probabilistic view

Now this is a bit further from the easy-going maths-free exposition

thus far. But the good news is that we will only sporadically refer

to the probabilistic framework and only if you are striving to learn

the ‘stratosphere’ of machine learning.

Think of the problem as some magical generator of data which

spouts out an infinite stream of data, one data point at a time. The

data point comes with a fixed but unknown label, which our classifier

must predict.

60 Basics

The distribution of the classes before we

measure anything about the data point

at hand is called the prior distribution.

The class label ω ∈ Ω = {ω1, . . . , ωc}
is a random variable, and its probabil-

ity mass function is described by the

prior probabilities for the classes (or the

a priori probabilities) P (ω1), . . . , P (ωc),∑
i P (ωi) = 1.

All data points coming from the magical generator live in the

n-dimensional space, x ∈ Rn. Each class is distributed according

to the probability mass function p(x|ωi) (class-conditional distribu-

tion), i = 1, . . . , c. Using the Bayes theorem, we can calculate the

posterior probabilities for each x

P (ωi|x) =
P (ωi) p(x|ωi)

p(x)
,

where p(x) is the unconditional distribution of x

p(x) =

c∑
i=1

P (ωi) p(x|ωi).

If all probability distributions were known, we will be able to

build the ‘perfect’ classifier, called the Bayes classifier. We will incur

the lowest error rate if we always assign x to the most probable class,

that is:

Assigned Label (x) =
c

max
i=1
{P (ωi|x)} .

Well, wouldn’t life be so much easier if we knew the probability

distributions? Unfortunately, we never do! We have only Z to build

the classifier. We may choose to approximate the probabilities but

in most cases this is impractical. That is why we have the wonderful,

A probabilistic view 61

abundant, and ever-growing armoury of classifier methods which we

will delve into next.

62 Basics

Chapter 3

Classifiers

Classifiers. There are so many classifiers! What do

they do? How are they different from one another?

How do we choose among them?

We will just lift the curtain a little bit in this chapter.

There is a lot more out there but at least you will

have a toy compass by the end of the chapter.

Here you will learn about:

� The Nearest Mean Classifier (NMC)

� The Linear discriminant classifier (LDC)

� Rule-based classifiers

� The k-Nearest Neighbour classifier (k-nn)

� The Decision Tree classifier

� The Support Vector Machine classifier (SVM)

� Classifier Ensembles

Some of the models are easy to program (like NMC) – great!

You will have to program them for yourself. Others are a bit trickier

63

64 Classifiers

(SVM). But the good news is that they are all well-known classifier

models and widely available in many programming languages.

3.1 The Nearest Mean Classifier (NMC)

3.1.1 How it works

Recall the definition of a classifier from Section 2.1.1: A classifier is

any function, method or algorithm that assigns a class label to any

given object. The nearest mean classifier does exactly what it says

on the tin! Simple as this – find the means of all c classes in the

n-dimensional space Rn. For any x ∈ Rn, find the distances to the

c means and assign to x the label of the nearest class mean.

Figure 3.1 shows an example with 2 classes in 2D.

The data contains 40 points from each class. The point to be

classified is shown at (3,−1) as x.

To apply NMC, we calculate the means of the classes (average

the x1 coordinates for all objects from the class, and then do the

same for the x2 coordinates). The means of the two classes are

marked on the plot with a target marker: m1 = [−0.5, 1.0]T and

m2 = [2.2, 2.1]T . Next we calculate the distance between x and the

two centres1

d(x,m1) =
√

(3− (−0.5))2 + (−1− 1)2 =
√

12.25 + 4 ≈ 4.03.

d(x,m2) =
√

(3− 2.2)2 + (−1− 2.1)2 =
√

0.64 + 9.61 ≈ 3.20.

As d(x,m2) < d(x,m1), NMC assigns label ω2 to object x.

In summary, NMC operates like this: To train the classifier find

and store the means of all classes. To run the classifier for a given

data point, calculate the distance between the point and all class

1Here we use Euclidean distance. See Appendix A.

The Nearest Mean Classifier (NMC) 65

Figure 3.1: Illustration of the nearest mean classifier (NMC).

means. Assign to the point the label of the class with the closest

mean.

3.1.2 Classification boundary of a 2-class NMC

in 2D

For two classes, the classification boundary of NMC is determined

by all points which are equidistant from the two class means. In an

n-dimensional space, this boundary is a hyperplane. In a 2D space

(lucky us!) it is a line. And we can calculated the equation of the

66 Classifiers

line using simple geometry.2

The line with equidistant points from the two means passes

through the middle of the segment between the two means and is

orthogonal to the segment. Figure 3.2 continues the example in

Figure 3.1.

Figure 3.2: Illustration of the derivation of the classification bound-

ary for NMC for a 2D, 2-class problem.

The two means are labelled on the plot and joined by a dashed

line. The middle point of the segment is marked by M and is cal-

culated as (m1 + m2)/2. Let’s detail the coordinates a bit more.

Since both means (vectors) are in R2 they have two components

2See Appendix A

The Nearest Mean Classifier (NMC) 67

each: m1 = [m11,m12]T and m2 = [m21,m22]T . Then M can be

expressed as the vector

M = [M1, M2]T =

[
m11 +m21

2
,
m12 +m22

2

]T
.

Form vector v = m1 −m2 which will be a normal vector for the

boundary

v = [v1, v2]T = [m11 −m21, m12 −m22]
T
.

Use the components of v as the coefficients in front of the un-

knowns in the equation of the boundary line:

v1x1 + v2x2 + c = 0.

Since M must lie on the line, substitute the coordinates of M in the

equation and solve for c:

c = −v1M1 − v2M2,

to arrive at

v1x1 + v2x2 − v1M1 − v2M2 = 0.

For the grown-ups, we can rewrite the equation of the line in a

vector form using only m1 and m2:

(m1 −m2)Tx− 1

2
(m1 −m2)T (m1 + m2) = 0,

and shorten it further to

(m1 −m2)T
(

x− 1

2
(m1 + m2)

)
= 0.

This representation of the boundary demonstrates that NMC

is, in fact, a linear classifier because the boundary is linear on the

vector of unknowns x. The boundaries are also linear for multiple

dimensions and multiple classes.

68 Classifiers

3.1.3 Programming the NMC

Sweet, sweet MATLAB! Programming the NMC is easy! We will

write one function for training and one for testing. The input to the

training function is the labelled data set Z: data (numerical array of

size N ×n) and labels (numerical array of size N ×1). The output

is the set of class means (numerical array of size c × n, where c is

the number of classes) and the corresponding class labels (numerical

array of size c× 1). Then the testing function takes the means, the

labels, and the data to be labelled, and assigns to each point in the

data the label of the nearest mean. Here we go:

1 function [class means, mean labels] = ...
nmc training(data,labels)

2 mean labels = unique(labels); % the labels in ascending order
3 for i = 1:numel(mean labels) % for each label
4 class means(i,:) = mean(data(labels == ...

mean labels(i),:),1);
5 end

1 function assigned labels = nmc test(ref data,ref labels, ...
test data)

2 c = numel(ref labels); % number of classes
3 for i = 1:size(test data,1) % for each object to be labelled
4 x = test data(i,:); % take the object
5 % Calculate the (squared) Euclidean distance to
6 % all reference points and find the index of the
7 % smallest distance:
8 [∼, min index(i)] = min(sum((ref data − ...

repmat(x,c,1)).ˆ2,2));
9 end

10 % Recover the labels and transpose to return a column:
11 assigned labels = ref labels(min index)';

The Nearest Mean Classifier (NMC) 69

⊕⊕⊕ Example 3.1.1

Remember how we plot classification regions? (Section 2.1.4) Let’s

try this on an example where we generate randomly data from 4

classes. The classes will be positioned in the unit square: class 1

– top left, class 2 – top right, class 3 – bottom left, and class 4

– bottom right. This is why we call the problem the ‘4-tile class

problem’. We will use both functions from the listings above. It will

be interesting to find out whether the size of the data (N) plays any

significant role in determining the classification regions. (What do

you think?)

Here is the code:

1 clear, clc, close all
2

3 cN = 200; % number of objects per class
4 class1 = [rand(cN,1)*0.5 rand(cN,1)*0.5+0.5];
5 class2 = [rand(cN,1)*0.5+0.5 rand(cN,1)*0.5+0.5];
6 class3 = [rand(cN,1)*0.5 rand(cN,1)*0.5];
7 class4 = [rand(cN,1)*0.5+0.5 rand(cN,1)*0.5];
8

9 % Create the dataset
10 D = [class1; class2; class3; class4];
11 L = [ones(cN,1); ones(cN,1)*2; ones(cN,1)*3; ones(cN,1)*4];
12

13 % Train the NMC
14 [M, ML] = nmc training(D,L); % means and labels
15

16 % Create the meshgrid
17 [x,y] = meshgrid(0:0.005:1,0:0.005:1);
18 GD = [x(:) y(:)]; % format the grid into a dataset
19

20 % Label the grid points through NMC
21 GL = nmc test(M, ML, GD);
22

70 Classifiers

23 % Plot the regions (labelled grid points)
24 figure, hold on, axis square off
25 plot(GD(GL == 1,1),GD(GL == 1,2),'k.','color',[1 1 1]*0.75)
26 plot(GD(GL == 2,1),GD(GL == 2,2),'k.','color',[1 0.8 0.8])
27 plot(GD(GL == 3,1),GD(GL == 3,2),'k.','color',[0.8 0.8 1])
28 plot(GD(GL == 4,1),GD(GL == 4,2),'k.','color',[0.8 1 0.8])
29

30 % Overlay the data
31 h(1) = plot(D(L == 1,1),D(L == 1,2),'k.','markersize',20);
32 h(2) = plot(D(L == 2,1),D(L == 2,2),'r.','markersize',20);
33 h(3) = plot(D(L == 3,1),D(L == 3,2),'b.','markersize',20);
34 h(4) = plot(D(L == 4,1),D(L == 4,2),'g.','markersize',20);
35 legend(h,'Class 1','Class 2','Class 3','Class 4')

Figure 3.3 shows the classification regions plotted by the code

above for two sample sizes: N = 20 and N = 800.

(a) N = 20 (b) N = 800

Figure 3.3: Classification regions for the NMC classifier for the 4-tile

class problem in the unit square for two sample sizes N .

We observe from the figure that larger sample size leads to a lot

more accurate classification regions (the 4 tiles). Notice also that

the regions are bounded by piece-wise linear boundaries.

			

The Nearest Mean Classifier (NMC) 71

3.1.4 Voronoi diagrams

This is Georgy Feodosevich Voronoy (1868 —

1908 according to the almighty Wikipedia), a

Russian mathematician credited with the

invention of the so-called Voronoi diagram

(notice the difference in the spelling).

Suppose that we have a data set Z ⊂ Rn. A Voronoi cell of

a point x ∈ Z is the region of Rn where all points are closest to x

than to any other point in Z. Thus the space can be partitioned into

Voronoi cells, called a Voronoi diagram. Some cells will be bounded

and some may expand to infinity.

Now, consider a 2D space, and in particular the unit square. We

can use our NMC testing code to plot beautiful Voronoi diagrams

with random colours. Because, what is the Voronoi cell of x? Noth-

ing else but the classification region for the class with mean x! All we

need to do is generate the (pretend) means and plot the classification

regions with lovely random colours as shown in Figure 3.4.

Figure 3.4: Examples of Voronoi diagrams in 2D.

If you are interested in the MATLAB code, here it is:

1 clear, clc, close all
2 N = 100; d = rand(N,2);

72 Classifiers

3 [M, ML] = nmc training(d,(1:size(d,1))');
4 [x,y] = meshgrid(0:0.001:1,0:0.001:1);
5 GD = [x(:) y(:)];
6 GL = nmc test(M, ML, GD);
7 figure, axes('Pos',[0 0 1 1]), hold on, axis square off
8 for i = 1:N
9 plot(GD(GL==i,1),GD(GL==i,2),'k.','color',rand(1,3))

10 plot(d(i,1),d(i,2),'k.','markersize',25)
11 end

Now, here are some questions to you: How will NMC work on

the data plotted in Figure 3.5? Answer the following questions:

1. Where are the means of the two classes? Give a rough guess

using the plot.

2. Where will the NMC classification boundary be? Draw it.

3. Can you give a rough estimate of the classification error rate?

4. Can you propose a better linear boundary between the classes?

3.2 The Linear Discriminant Classifier

(LDC)

“Linear” means that each discriminant

function is a linear combination of the

features. Like this:

gi(x) = ai,1x1 + ai,2x2 + · · ·+ ai,nxn + bi,

where i means that this is the discriminant function for class ωi,

x = [x1, x2, . . . , xn]T is the object that we want to classify described

with its n features, ai,j are coefficients, and bi are free terms. The

first index of ai,j refers to the class, and the second, to the features.

The Linear Discriminant Classifier (LDC) 73

Figure 3.5: Scatterplot of two classes in 2D. How will NMC do for

this data?

The coefficients can be any real numbers. (This includes 0, by the

way, which means that some of the features may not participate in

the discriminant function at all. Zilch input!)

3.2.1 NMC is actually an LDC!

But we have seen already a linear classifier! This was the NMC. It

separates the classes with linear boundaries, right? True! NMC is

a linear classifier indeed. This means that we can wring the equa-

tions that we had for the NMC so that they fit in the shape of the

discriminant functions above.

And here is how the magic happens. Suppose we have some data

point x ∈ Rn, and the c class means m1, . . . ,mc, all points in Rn.

Calculate the c squared distances between x and the means:

74 Classifiers

di(x,mi)
2 = (x−mi)

T (x−mi) = xTx− 2 mix + mT
i mi.

We don’t need the square root, do we? Because if ξ1 > ξ2, then√
ξ1 >

√
ξ2 (taking the positive answer only as this is a distance

after all). So, we will be comparing di with one another and taking

the smallest one to give us the class label of x. But look, in all of

these we will have the same thing added to each sum: xTx. Exactly

the same quantity. If we remove it from all sums their ordering will

stay the same. In other words, I can now compare some d′i (not

exactly the distances) which will identify for me the same class label

as a properly calculated distance:

d′i(x,mi) = −2 mix + mT
i mi.

As we defined discriminant functions to be “the higher, the better”,

and we want the opposite when we compare distances, we may as

well maximise −d′i. Agreed? Then we have our coveted discriminant

functions:

gi(x) = −d′i(x,mi) = 2 mix−mT
i mi.

The index of the maximal gi(x) will give us the class label. Take

a look at gi. The second term is a scalar product of two numerical

vectors (both m), and is therefore a numerical constant. This is our

disguised bi. Writing out the first term, we come to:

gi(x) = 2×mi,1︸ ︷︷ ︸
ai,1

x1 + 2×mi,2︸ ︷︷ ︸
ai,2

x2 + . . . 2×mi,n︸ ︷︷ ︸
ai,n

xn + (−mT
i mi)︸ ︷︷ ︸
bi

.

There we go! Our exact LDC discriminant function! So, NMC is an

LDC. But not a very good one. Check Figure 3.6 to see the differ-

ence. LDC gives a lot more accurate classification regions compared

to NMC in the example in the figure.

The Linear Discriminant Classifier (LDC) 75

Nearest mean classifier Linear discriminant

(NMC) classifier (LDC)

Figure 3.6: A data set and two sets of classification regions.

3.2.2 Linear boundaries

How do we train an LDC? Good question! There are many ways.

Many. In the past, people focused a lot of effort on this [7]. But

not anymore. Linear boundaries are not very interesting these days.

Even the perfect linear boundary is limited. It cannot solve the

“XOR” problem. The XOR problem is like this: Class 1 contains

2 objects described by 2 features [0, 0] and [1, 1]. Class 2 contains

two objects: [0, 1] and [1, 0]. Picture them in your head – these are

the 4 corners of the unit square; two opposite corners in each class.

No line in the world can separate these two classes without an error.

Luckily, we have a lot more versatile classifiers which can do that.

But don’t dismiss yet the good old linear classifier. Chances are that

most real-life problems can be solved very successfully with LDC! If

nothing else, keep LDC in your toolbox as a baseline model.

OK but how do we train the LDC? That is, how do we find the

coefficients and the free terms for the discriminant functions.

One possible way is given in Figure 3.7. Unfortunately, this

76 Classifiers

method does not always work. The problem is that the sometimes

the pooled covariance matrix Σ̂ is singular or very close to singular,

and when we try to invert it in step 5, bad things will happen.

Misbehaving Sigma! But we are not going to trouble ourselves with

mischievous covariance matrices. Not in your assignments and the

exam anyway ,.

Now, this is what you should be able to do. Given a data with

two classes in 2D, you should be able to plot the data and design

by hand a linear boundary between the classes. Then, based on this

boundary, you should be able to propose a classification rule and

come up with two discriminant functions on top of this.

⊕⊕⊕ Example 3.2.1

Take the data in Figure 3.5. Propose a linear boundary, a classifi-

cation rule and two discriminant functions.

Solution. Call the classes Black and Red instead 1 and 2. Pick two

points A and B so that the line through them separates the classes

as well as possible as shown in Figure 3.8. Yeees, all is done by eye

here. But we will beat the nearest mean classifier, hands down!

Suppose we picked A at (8,−6) and B at (−6, 8). Let’s calculate

the equation of the line through A and B. Remember your school

maths? (If not, look in Appendix A.)

x− 8

−6− 8
=
y + 6

8 + 6

14(x− 8) = −14(y + 6)

x+ y − 2 = 0.

The classification rule can be very simple. For any x ∈ R2, substitute

the coordinates in the left-hand-side and classify according to the

sign of the sum. Positives versus negatives. The question now is

The Linear Discriminant Classifier (LDC) 77

Training of LDC

1. Estimate the prior probabilities for the classes. Let Ni be the num-

ber of objects in the data set Z from class ωi, i = 1, . . . c, and yj ∈ Ω

be the class label of zj ∈ Z. Then

P̂ (ωi) =
1

Ni
, i = 1, . . . c. (3.1)

2. Calculate estimates of the class means from the data

µ̂i =
1

Ni

∑
yj=ωi

zj . (3.2)

3. Calculate the estimates of the covariance matrices for the classes,

by

Σ̂i =
1

Ni

∑
yj=ωi

(zj − µ̂i)(zj − µ̂i)
T . (3.3)

4. Calculate the common covariance matrix for LDC as the weighted

average of the class-conditional covariance matrices

Σ̂ =
1

N

c∑
i=1

NiΣ̂i. (3.4)

5. Calculate the coefficients and the free terms of the c discriminant

functions

wi = Σ̂−1µ̂i, wi0 = log(P̂ (ωi))−
1

2
µ̂T

i Σ̂−1µ̂i, (3.5)

6. The discriminant functions are

gi(x) = wix + wi0, i = 1, . . . , c. (3.6)

Figure 3.7: Training of LDC (for wizards).

78 Classifiers

Figure 3.8: Constructing an LDC by hand

which ones are the positives? The blacks or the reds? Pick a point

on the plane. Any point (like a card trick ,). And... we pick

C(−4,−2), just because it is far enough to see on the graph in

Figure 3.8.3 Substitute:

−4− 2− 2 = −8 < 0,

therefore the blacks are on the negative side of the line. The clas-

sification rule is: ‘assign class Black to [x, y]T if x + y − 2 < 0 and

class Red, otherwise’.

We can stop here as the classifier is trained. All done. However,

I still want you to be able to represent this linear classifier in the

3By the way, it is a lot simpler if we pick C(0, 0) – fewer calculations.

The Linear Discriminant Classifier (LDC) 79

form of two discriminant functions, however trivial. Here is one way:

gBlack(x) = 0,

gRed(x) = x+ y − 2.

Check it! First, both functions are linear functions of x and

y. Observe that gBlack does not actually include any of the two

variables, so we have aBlack,1 = 0 and aBlack,2 = 0. The free term

also happens to be 0, that is, bBlack = 0. For any point (x, y), we

calculate the two discriminant functions. If gRed(x) is positive, given

that gBlack(x) = 0, we will always assign class Red. If gRed(x) is

negative, given that gBlack(x) = 0, we will always assign class Black.

Works, doesn’t it?

Well, there is one small question left. What if gRed(x) = 0? Then

the two functions have the same value. This means that the point

has been unfortunate enough to sit exactly on the border. Then any

of the two classes may be assigned. No right or wrong decision. The

best kind. 			

3.2.3 LDC in different dimensions

In R1, a linear classifier is a threshold on x ∈ R1. Here is an example.

⊕⊕⊕ Example 3.2.2

The training data set is a class of 40 students. The only feature

x is a test score; a number between 0 and 100. Some good students

80 Classifiers

may have scored low on the test and some not so good ones may

have fluked a high score. Based on their overall performance thus

far in the course, the students in the class are labelled into three

classes: (1) mediocre, (2) good, and (3) excellent. Figure 3.9 shows

the labelled data.

Figure 3.9: The 1D student score data.

Let’s build an LDC which predicts the student class label based

on the their test score x. Following the algorithm in Figure 3.7, we

obtain the following discriminant functions:

g1(x) = 0.0216 x− 1.5426

g2(x) = 0.0773 x− 2.6440

g3(x) = 0.1071 x− 5.3370

Figure 3.10 plots the three discriminant functions of x. The

largest of the three functions will determine the label of the respec-

tive x. The intersection points will be candidates for the threshold

values or, equivalently, the class boundaries. These are found by

setting g1(x) = g2(x), g1(x) = g3(x), and g2(x) = g3(x), and solving

for x.

The Linear Discriminant Classifier (LDC) 81

g1(x) = g2(x) → x = 19.79

g1(x) = g3(x) → x = 44.36

g2(x) = g3(x) → x = 90.13

Figure 3.10: Discriminant functions and classification regions for the

1D student score data.

Inspecting the discriminant functions in Figure 3.10, we observe

that the intersection between g1 (Mediocre) and g3 (Excellent) is

under g2. This means that this point will not qualify as boundary

as the dominant function is above it. Hence, the boundaries are

x = 19.79 and x = 90.13. The classification regions are marked on

the figure. Notice that these regions are only on the x-axis because

this is our feature space. This is where all the points live.

82 Classifiers

The classification boundaries and the discriminant functions above

determine one and the same classifier. 			

In 1D, the classification regions are intervals on the x-axis, one

for each class. In 2D, the regions are convex, bounded or unbounded,

separated by line segments (Voronoi cells), one per class. In 3D, the

regions are convex volumes separated by planes. And in Rn, we

have hypervolumes, one per class, separated by hyperplanes (fancy

that!). Thankfully, we don’t need to draw classification regions in

spaces beyond R2. Fair enough, we don’t need to draw them in R2

either, but I have to examine you on something!

3.3 Rule-based classifiers

Generally speaking, any classifier is based on at least one rule. An

example is the maximum membership rule: ‘Select the class with

the highest value of the discriminant function’. Here we talk about

other rules such as ‘if feature x1 is less than 6 and feature x2 is more

than 9, assign class ω3.

3.3.1 If-then classifiers

The so-called if-then classifiers were in high fashion in the 1980s.

They were the heart and the soul of the Expert Systems ‘movement’,

hugely popular during that time. Expert Systems were the face

of Artificial Intelligence at the time, and everybody was building

them. In such a system, you draw a conclusion about a class label by

traversing a large number of interlinked if-then rules and aggregating

“the evidence”. A mighty example of such a system was MYCINE.

This was a famous expert system developed during the 1970 by the

Stanford University, USA [18]. Its task was to identify bacteria

Rule-based classifiers 83

causing severe infections and to recommend antibiotics.

An expert systems can be developed using just knowledge from

textbooks. For example, a diagnosis of a certain condition is done

through a series of questions and tests. This knowledge is usually

accumulated over many years and formulated as a set of rules. In

this approach, there is no machine learning as such because raw data

are not involved. All the steps from entering x to receiving the class

label for it are interpretable. A human can make sense of them.

This was the biggest advantage of expert systems over the black-

box approach where the classifier was built from data. There main

drawback of such expert systems was their brittleness. Brittleness

means that a complex system (many features and many rules) may

not be able to handle all possible cases. Some parts of the feature

space would not be covered by the rules, and the decision in those

parts would be arbitrary.

In our definition, a classifier should be able to produce a class

label for any x coming as the input. Consider the data in Figure 3.11.

For this 2D example, we can devise a rule-based classifier by eye.

The rules for the green and the blue classes are marked with red

windows. Then the rule-based classifier operates according to the

following rules:

(1) If x ≥ 0.25 and x < 0.5 and y ≥ 0.2 then class green

(2) else if x ≥ 0.55 and y < 0.35 then class blue

(3) otherwise class grey.

Such a classifier is not that difficult to build when the dimen-

sionality of the problem is small. There are possibly over hundred

methods for rule induction from data. Most such methods are well

equipped to accommodate the uncertainty (probabilistic or not) as-

sociated with if-then rules.

84 Classifiers

Figure 3.11: Data labelled in three classes and two windows defining

classification if-then rules.

3.3.2 The ZeroR classifier

This classifier always assigns the label of the prevalent class. Simple

as that! Regardless of what you measure and submit as the input

x. Everybody is in the same class. And how useless is this? ZeroR

is also called the Majority Classifier or the Largest-Prior Classifier.

In the example in Figure 3.11, there are 831 grey points (42%),

480 green points (24%), and 689 blue points (34%). Answer this

question: what would be the classification error of the ZeroR classi-

fier for this data set?

Did you get it? If everything is classified as the largest class

(grey), then all the green points (24%) and all the blue points (34%)

will be mislabelled as grey. The total error will be 24+34 = 58%. We

Rule-based classifiers 85

can reach the same conclusion by calculating the error as 100−42% =

58%.

3.3.3 The OneR classifier

The OneR classifier has one rule. This rule involves only one feature,

and is typically a threshold-based rule. This means that you are

allowed to assign only two class labels: one label if the feature value

is lower than the threshold and the other label otherwise. What if

we have three classes? Well, just two “privileged” classes will be

given at the output of our OneR classifier.

How do we train OneR? Here are the steps:

1. For reach feature xi (i = 1, . . . , n):

(a) Create a set number of increasing thresholds between

min(xi) and max(xi) as identified from data.

(b) For each threshold tk, identify the largest class among all

objects for which xi < tk. Store this class label (yLk) and

the number of misclassified objects (Lk) assuming that

all objects in this group are assigned to the largest class

(ZeroR classifier on this part of the data set).

(c) Apply the previous step to all objects such that xi ≥ tk.

Record the class label (yRk) and the number of objects

misclassified by ZeroR (Rk).

(d) Store the threshold value, the two class labels, and the to-

tal number of misclassifications: 〈tk, yLk, yRk, Tk〉, where

Tk = Lk +Rk.

Note that at this step you have an instance of the OneR

classifier that uses feature xi, threshold tk, and outputs:

class yLk if xi < tk and class yRk otherwise.

86 Classifiers

(e) Find the index of the best threshold for feature xi, that

is

i∗ = arg
K

min
k=1
{Tk}.

Denote the winning combination by 〈t∗i , y∗Li, y
∗
Ri, T

∗
i 〉 and

save it.

At this point you have the optimal OneR classifier, should

feature xi be selected as the final single rule. Along with

the knowledge of which feature it is, we have stored the

optimal threshold, class labels for the left and the right re-

gions, as well as the total misclassifications for this choice.

2. Identify the feature with the smallest total number of errors:

j = arg
n

min
i=1
{T ∗i }.

3. Return the trained OneR classifier:

� Feature: xj

� Threshold: t∗j

� Class labels: All objects (points) for which xj < t∗j should

be labelled as y∗Lj , and all objects (points) for which xj ≥
t∗j should be labelled as y∗Rj .

� Errors: The value of T ∗j

The sequence of steps only looks complicated. It is pretty simple,

really. Check all features one-by-one and all possible thresholds for

each feature by applying ZeroR for the data on each side of the

threshold for that feature. Eventually, select the feature and its

threshold that gave you the lowest number of misclassifications.

Here is my wonderful example, which will help you understand

the OneR classifier (fingers crossed!).

Rule-based classifiers 87

⊕⊕⊕ Example 3.3.1

The data set is shown in Figure 3.12. There are Humans and

Martians.

Figure 3.12: The “Martians” data set for Example 3.3.1. (The Mar-

tians are fondly depicted as cats, blatantly disregarding the issue of

political correctness ,.)

We all know that Martians are little green men. Hm, yeah, I

couldn’t find a decent silhouette icon for a Martian, so my Martians

in the data set suspiciously resemble cats. Like everything else in

the world, not all people are equal. So I have a big Martian (left)

and a green Human (the lady in the middle).

You are an OHIGA (oh-so-important governmental agent) and

your task is to build an OneR classifier to recognise Martians from

Humans. You can only measure two features: colour and height.

But remember, you are only allowed to use one of your features in

the OneR classifier. Luckily, your features have only two values each:

colour ∈ {green, black}, and height ∈ {short, tall}, so the classifier

will be easy to train. Here goes:

(1) Take feature x1 = ‘colour’ first. As there are two values, there is

only one dividing point (playing the role of the threshold). Let’s say

left is ‘green’. Take only the green individuals. There are 3 Martians

and 1 Human. ZeroR will say that they are all Martians. So we store

label yL = ‘Martian’ and L = 1 (one error, the poor green lady).

Notice that there is no index k because we have only one threshold.

88 Classifiers

For the right value, ‘black’, ZeroR will correctly label all 8 humans

as humans. Then we store yR = ‘Human’ and R = 0. For the single

possible threshold of feature x1, we have the following rule: Label

all greens as Martians and all blacks as Humans. This classification

will result in 1 error for the given data (Figure 3.13 (a)).

(a) By colour (x1) (b) By height (x2)

Figure 3.13: The two instances of OneR classifier for the Martians

data set.

(2) Take now feature x2 = ‘height’. As there are two values, there

is only one dividing point again. Let’s say left is ‘short’. Take only

the short individuals. There are 2 Martians and 1 Human. ZeroR

will say that they are all Martians. So we store label yL = ‘Martian’

and L = 1 (one error, the child). For the right value, ‘tall’, ZeroR

will correctly label the 8 humans as humans but will mislabel the

tall Martian as Human. Then we store yR = ‘Human’ and R = 1.

For the single possible threshold of feature x2, we have the following

rule: Label all shorties as Martians and all tall ones as Humans.

This classification will result in 2 errors for the given data.

(3) It is time to choose the one feature to take forward. As x1
(colour) gives fewer errors, we return the respective OneR classifier:

Label all greens as Martians and all blacks as Humans. Job done!

Of course there are other features which we could have used. For

example, “if it has a tail, it is most definitely a Martian”. However,

ib real life, when feature representation is being decided upon, it

is not clear what variables, parameters, tests, questions, etc., are

Rule-based classifiers 89

important. The domain expert usually has a good idea about what

to measure. Sometimes this is a very difficult problem, and many

features are included in the data just in case. 			

Remember the data in Figure 3.11? Recall that there are 831

grey points (42%), 480 green points (24%), and 689 blue points

(34%). Answer this question: what is the minimum possible error

rate for the OneR classifier for this data set? And no, I am not

giving you the answer yet.

Figure 3.14 shows the trained OneR classifier for this data set.

The best feature is y and the best threshold for y is t∗y = 0.2626.

The OneR classifier works as follows:

Assign label ‘blue’ if y < 0.2626 and label ‘grey’ if y ≥ 0.2626.

The error rate for this data set is 0.3385 as shown in the figure.

Figure 3.14: The trained OneR classifier for the data set in Fig-

ure 3.11.

90 Classifiers

Are you ready to answer that question yet? About the minimum

possible error rate. Alright. Look at the example. The trained

OneR does not give a damn about the poor green class. All those

green point will be labelled as either grey or blue. But this is the

least of evils because any other choice of feature/threshold will lead

to higher error. OneR’s fault. The model is too simple. So back to

the question, if we have more than two classes, all classes but two

will be misclassified. So, to minimise the error, OneR should choose

the two most populous classes. Suppose there is a feature which

discriminates perfectly between these two classes, regardless of the

distribution of the points from the other c− 2 classes. Then this is

the best that OneR can offer. The smallest possible error will be

therefore the sum of the proportions of all smaller classes. In the

3-class example in Figure 3.11, the minimum possible error will be

0.24 (the proportion of the green class).

I am sure you can program OneR in a flash! But it may not be

worth the effort. Well, unless I ask you to do so for your assign-

ment ,.

3.4 The Nearest Neighbour classifier

(1-nn and k-nn)

The nearest neighbour classifier is just wonderful. It is intuitive,

elegant, and, quite often, amazingly accurate. Its philosophy is like

this. Assign the new object to the class of the object most similar to

it. Thus, if we have an object x to classify, and a set of labelled past

examples, we look through them for the closest match to x (called

the ‘nearest neighbour’) and label x in the same class.

The Nearest Neighbour classifier (1-nn and k-nn) 91

3.4.1 Distances

‘Closest match’ requires a measurable concept of similarity or dis-

tance between a pair of objects. The most popular choices for a

distance in Rn are the Euclidean distance and the Hamming dis-

tance. Given x,y ∈ Rn, the Euclidean distance is calculated as

follows (see Appendix A)

dE(x,y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2 =

n∑
i=1

(xi − yi)2,

where xi and yi are the individual features of objects x and y, re-

spectively.

The Hamming distance has several different guises. You may

come across it as ‘Manhattan distance’, ‘city block distance’, ‘Minkowski

distance’, or ‘L1 norm’. Wha-ha! All the same. The Hamming dis-

tance is calculated as

dH(x,y) = |x1 − y1|+ · · ·+ |xn − yn| =
n∑

i=1

|xi − yi|.

Curiously, the names ‘Man-

hattan’ and ‘city block’

come from the cosmopoli-

tan New York district!

Imagine that the streets are

orthogonal to the avenues

and all blocks are perfect

squares.

To make things simple, suppose that the avenues (x-axis) go

from left to right (not exactly true) and the streets (y-axis) go from

bottom to top. If you want to go from the corner of 5th Avenue

and 34th Street (point A(5, 34)) to the corner 8th Avenue and 36th

92 Classifiers

Street (point B(8, 36)) you have to walk 3 blocks right and 2 blocks

up (well, unless you have a superpower to go though walls). So, you

will have to walk 3 + 2 = 5 blocks at least. Even if you pick another

(shortest) way, say, 1 right, 1 up, 1 right, 1 up, 1 right, you still have

to walk 5 blocks. Indeed, the Manhattan (Hamming) distance is

dH(A,B) = |5− 8|+ |34− 36| = 3 + 2 = 5.

3.4.2 1-nn and k-nn

The k-nearest neighbour algorithm (k-nn) is described formally in

Figure 3.15. For k = 1, this becomes just the nearest neighbour

algorithm, 1-nn.

The k-nn Algorithm

Input: A labelled data set Z, a distance, the desired number of

neighbours k, and a query point x (to be labelled).

Training: Store the labelled data set Z (the reference set).

Operation:

1. Ignoring the class labels, identify the k points from Z closest

to x in terms of the chosen distance.

2. Retrieve the labels of the k points found at Step 1.

3. Identify the majoritya class among the retrieved labels and

return it as the label of x.

a‘plurality’ is a more accurate word here

Figure 3.15: Training and operation of the k-nn algorithm.

The Nearest Neighbour classifier (1-nn and k-nn) 93

The training of k-nn is minimal. Just store the data. Training

done! The operation is also pretty simple. Identify the k nearest

points to the query point x and take the most represented label

amongst the k labels to be the label of x.

The following example illustrates 1-nn and k-nn in R2.

⊕⊕⊕ Example 3.4.1

We have three classes shown with green, black and blue markers

in Figure 3.16, and an alien, the yellow triangle, which desperately

yearns to belong somewhere. Which class label shall we give him?

According to the single nearest neighbour (Figure 3.16 (a)) the alien

should be in the green class.

But if our yellow alien looks a bit further afield, and checks its

five nearest neighbours (Figure 3.16 (b)), he should rather think he

belongs to class black.

So, where does the truth lie? Should we colour our alien green

or black? The truth is that k is a parameter of the k-nn classifier

and should be tuned using some cross-validation protocol.

			

3.4.3 k-nn in MATLAB

How do we code k-nn? If you are a proud owner of the Statistics

Toolbox of MATLAB, you can just use:

1 knn classifier = fitcknn(training data,training labels,...
2 'NumNeighbors',3);
3 assigned labels = predict(knn classifier,training data);

But we want to be able to program k-nn ourselves! Or at least

1-nn. Let’s follow the Algorithm in Figure 3.15. Assume Euclidean

94 Classifiers

(a) 1-nn (b) 5-nn

(a) Regions 1-nn (b) Regions 5-nn

Figure 3.16: An example of 1-nn and 5-nn on a small random 2D

dataset.

distance and a set of points to label rather than a single query point

x. One possible MATLAB implementation is given below:

1 function assigned labels = knn classifier(training data,...
2 training labels, k, testing data)

The Nearest Neighbour classifier (1-nn and k-nn) 95

3 % Returns a column of class labels for the testing points.
4

5 N = size(training data,1); % number of training points
6 M = size(testing data,1); % number of testing points
7

8 for i = 1:M % for every testing point
9

10 x = testing data(i,:); % construct x
11

12 d E = sqrt(sum((training data − repmat(x,N,1)).ˆ2,2));
13 % d E is a column with the Euclidean distances ...

between x
14 % and the points in the training data
15

16 [∼,index] = sort(d E);
17 % index contains the neighbours (all of the ...

training data)
18 % arranged from nearest (top) to farthest (bottom)
19

20 assigned labels(i,1) = mode(training labels(index(1:k)));
21 % assign the label most represented (hence "mode") among
22 % the top k neighbours
23

24 end

Sooo, easy! ,

k-nn is a lovely and accurate classifier but would require a lot of

memory resources for a big reference set Z. And, of course, it will

need a lot of computing power to calculate the distances. Hence,

much effort has been devoted over the years to developing ingenious

ways for quickly finding the nearest neighbours, either exactly or

approximately.

Here is my little k-nn challenge for you. Answer the following

questions: If your data contains N points, Ni from class i, i =

1, . . . , c,

1. What is the resubstitution error of 1nn?

96 Classifiers

2. What is the resubstitution error of N -nn?

3. What is the resubstitution error of (N − 1)-nn? (assuming

that the largest class contains at least two more points than

the second largest class)

3.5 Decision tree classifiers

3.5.1 What is a decision tree classifier?

The decision tree classifier takes x at the root and passes it through a

series of nodes until it reaches a leaf. At the leaf, x gets its class label.

The nodes between the root and the leaf are called ‘intermediate

nodes’, and the decision there is which branch to follow next. An

example is shown in Figure 3.17. Shown in the figure is a decision

tree for distinguishing between three types of adult bears.4 The

three classes are

Ursus maritimus Ursus americanus Ursus arctos

(Polar Bear) (American Black Bear) (Grizzly Bear)

The features are coloration, size and attack on humans. (Cu-

riously, almost white individuals of American Black Bear could be

found in the north-western region of North America).

A special case of the decision tree classifier is the one-node tree,

aptly called a ‘decision stump’.

In the standard version of a binary decision tree classifier, each

non-leaf node has two children nodes – left and right. At the parent

node, one feature, say xk is compared with a threshold, say θ. If xk ≤
4Based upon information found at http://www.bears-bears.org/

Decision tree classifiers 97

Coloration

White/

creamy

��

Brown/ grey

��

Black

root

intermediate
nodes

Size
Small

(< 300 kg)

}}

Large

(≥ 300 kg)��

Attack on
humans

Likely
��

Unlikely

leaves

Figure 3.17: An illustration of a decision tree and related terminol-

ogy.

θ, go left, otherwise, go right. Training of the decision tree amounts

to identifying the tree structure (very automatically!), which feature

should be used at each node (also determined through the training

process), and what label should be assigned at each leaf.

3.5.2 Why are decision trees good?

What is so good about decision tree classifiers?

98 Classifiers

1. They can handle irrelevant and redundant features. Each split

uses a single best feature, hence irrelevant features may never

be picked during training.

2. Continuous-valued, discrete and categorical features can be

handled together; there is no need to convert one type into

another.

3. Scaling of the features does not matter. Since each feature is

handled separately to find a bespoke threshold, there is no need

to normalise or re-scale the data to fit into a given interval.

because of this, decision trees are called non-metric methods

for classification [7].

4. If all the objects are distinguishable, that is, there are no iden-

tical elements of Z with different class labels, then we can build

a tree classifier with zero resubstitution error.

5. Tree classifiers are intuitive because the decision process can

be traced as a sequence of simple choices. Tree structures

can capture a knowledge base in a hierarchical arrangement,

most pronounced examples of which are botany, zoology, and

medical diagnosis.

6. Training is reasonably fast while operation can be extremely

fast.

3.5.3 Training of a decision tree classifier

The training of the decision tree classifier is similar to the training of

the OneR classifier. However, it is applied recursively. A recursive

algorithm is shown in Figure 3.18.

Decision tree classifiers 99

Training of the decision tee classifier

Input: A labelled data set Z, a split criterion and a stopping criterion.

Data ← Z.

Recursive function T = TREE(Data)

1. Check the stopping criterion for Data. If satisfied, create a leaf in

T. Determine and store in T the class label for this leaf.

2. Otherwise,

(a) Using Data, evaluate each feature separately and pick the fea-

ture which gives the best split according to the chosen crite-

rion. Store the feature and the respective threshold. (This is

the part similar to the OneR training.)

(b) Divide Data into ‘LeftData’ and ‘RightData’ according to the

threshold.

(c) Call TreeLeft = TREE(LeftData)

(d) Call TreeRight = TREE(RightData)

(e) Create a node in T.

(f) Combine TreeLeft and TreeRight, and append to T.

Output: Trained tree T.

Figure 3.18: A recursive algorithm for training a decision tree clas-

sifier. And, no, I don’t want you to program it yourself.

⊕⊕⊕ Example 3.5.1

A small 2-class 2D data sets is shown in Figure 3.19.

The tree for this data set is shown in Figure 3.20. Assume that

the stopping criterion is achieving ‘pure nodes’, that is the labels of

all data points coming to the node is the same (all points are red or

100 Classifiers

Figure 3.19: Stages of training the decision tree classifier.

all points are blue).

(1) x2 ≤ 2.3

(2) blue

Yes

(3) x1 ≤ 3.2

(4) x1 ≤ 2.2

(5) red

Yes

(6) blue

No

Yes

(7) red

No

No

Figure 3.20: Decision tree for the 2D data. The construction steps

are depicted in Figure 3.19.

			
The training algorithm starts at node (1) and splits the data on x2.

It will create a leaf with label ‘blue’ for the left child node of the

root for x2 ≤ 2.3 (node (2)). It will next pass the top part of the

data to the right child node (node (3)). The best split for this part

of the data is shown in the middle plot of Figure 3.19. The data

The Support Vector Machine (SVM) classifier 101

is split again into left and right parts according to x1 ≤ 3.2. The

left part will contain both red and blue labels (node (4)), hence the

algorithm is called again and the data is split into two pure nodes

(leaves, (5) and (6)). The right data from the split x1 ≤ 3.2 have

only red labels, hence leaf (7) is created with label “red”.

Notice something interesting! Since only one feature is used at

each node, the classification regions will always be separated from

one another with sets of lines parallel to the coordinate axes.

3.6 The Support Vector Machine (SVM)

classifier

Ever since its conception in the 1990s, the Support Vector Machine

classifier (SVM) has been a prominent landmark in statistical learn-

ing theory. The success of SVM can be attributed to two ideas

(Figure 3.21): (1) a transformation of the original space into a very

high-dimensional new space and (2) identifying a ‘large margin’ lin-

ear boundary in the new space.

Original space
High-dimensional

space

Non-linear

classifier

Large-margin

linear classifier (2)

The “kernel trick”

(1)

Figure 3.21: Illustration of the idea of the SVM classifier. The

desired classifier is in the original space (shown in the box).

To explain why the first idea works, consider the one-dimensional

102 Classifiers

two-class data set shown with two types of markers, both classes in

grey, on the x-axis in Figure 3.22.

Figure 3.22: One-dimensional data set, which becomes linearly sep-

arable in the space (x, x2).

The two classes are not linearly separable in the one-dimensional

space x. However, by adding a second dimension, calculated as

x2, the classes become linearly separable. The linear classification

boundary in R2 is shown in the figure with a dashed line.

The second idea, also a hallmark of SVM, is the large-margin

classifier. Figure 3.23 illustrates the margin concept.

Shown in the figure are two identical data sets and two linear

classifiers separating perfectly the two classes. In the left plot, the

distances between the points closest to the boundary (from both

classes) are smaller than the respective distances in the right plot.

If we choose the classifier with the smaller distances (left), a small

fluctuation of a coordinate may shift the point to the other side of

the border, and therefore place it in the wrong class. A much larger

The Support Vector Machine (SVM) classifier 103

Figure 3.23: Margins of two SVM classifiers for the same data set.

fluctuation will be needed for the same effect for the classifier in the

plot to the right. This is why the classifier with large margins is

deemed to be more robust and therefore should be preferred. SVM

has a cute algorithm for identifying the boundary that is farthest

away from the nearest points from both classes. The points closest to

the boundary (circled in both plots) are called the “support vectors”,

hence the name Support Vector Machines.

Now, the example in Figure 3.23 is in 2D, but this is our ultra-

simplified illustration. All this happens in the VERY-high-dimen-

sional feature space and the line that separates the classes is, in fact

a hyperplane. Not to worry! The SVM algorithm knows exactly

how to calculate it.

The presumption here is that after the transformation to the new

very-high-dimensional space, the classes will be linearly separable

there. This is not always the case. Therefore SVM has a regulari-

sation parameter, often denoted by C which, in a way, softens the

separability restriction.

SVM is tricky to program but there are plenty of software pack-

ages for machine learning and pattern recognition which can be used.

SVM is included in the MATLAB Statistics Toolbox. Originally

SVM was developed for two classes. Most modern packages will

104 Classifiers

have multi-class extensions.

SVM was the reigning champion for a long time before being un-

ceremoniously dethroned by Deep Learning Neural Networks, whom

we will meet later.

3.7 Classifier ensembles

Classifier ensembles are all

about teamwork! Why use

one classifier if we can con-

sult several of them and

make a more informed de-

cision about the class label

of the point of interest?

This is my forte! I can talk about classifier ensembles until your

ears fall off. But here we will only have a tiny slice of the pizza.

3.7.1 Why will classifier ensembles work?

This is something like the wisdom of the crowd. There is an old

story about gauging the weight of an ox in a country fair in the early

1900. A lot of participants entered their guesses. Some participants

underestimated the weight while other overestimated it, maybe by

little or maybe by much. It turned out that the average of all the

guesses was extremely close to the true weight of the ox. This is

the idea behind classifier ensembles too. If we train each individual

classifier to learn a slightly different perspective of the data, when

we combine their class label predictions, we may rectify individual

mistakes, and achieve a more accurate overall decision.

Classifier ensembles 105

Any classifier model can be used in the ensemble. The individual

classifiers are called base classifiers. The key to the success of clas-

sifier ensembles is to create individually accurate and diverse base

classifiers.

The base classifiers can be of the same type, for example decision

trees, which makes the ensemble homogenous. If the base classifiers

are of different types, for example, some are decision trees while

others are 1-nn, the ensemble is called heterogeneous.

To enforce diversity, the base classifier model has to be unstable.

This means that the classifier should be sensitive to the training

data. Small changes in the training data should lead to significant

changes in the classifier. The decision tree classifier is an example

of this type. If we make a small alteration of the training data, the

splits may be different, and so will be the classification regions. This

does not mean that the classifier will be less accurate! It will just

follow a different training path.

Figure 3.24 illustrates the ensemble idea with an artificial exam-

ple. The two classes are pink (background) and blue (a 2D torus

shape) and the features are the x and y coordinates of the points.

The figure demonstrates that the ensemble regions are more accurate

than those of the individual classifiers.

3.7.2 Bagging

Bagging is the most intuitive classifier ensemble method. It is rather

an approach which can be perfected further. In bagging, each clas-

sifier is trained on a bootstrap sample of the training data. A boot-

strap sample is obtained by sampling with replacement. Therefore,

we may have more than one copy of an object from the training data

in the sample.

In MATLAB, we can create a bootstrap sample by generating

random numbers between 1 and N (number of objects in the data),

106 Classifiers

(a) Individual classifiers (b) Ensemble

Average error 7.2% Error 5.2%

Figure 3.24: Illustration of the classification regions of individual

classifiers (subplot (a)) and the regions of the ensemble (subplot

(b)).

without guarding against repeated numbers. We can then use these

numbers as indices, and pull out the respective rows of the data set

as our new training data. This new training data will be used for

one of the classifiers in the ensemble.

Denote the training data set by Z and the respective vector-

column with labels by Y (see Section 1.3). Z will have N rows

(objects) and n columns (features). Denote by ZZ the new data set

and by Y Y the corresponding labels. Here is the code for obtaining

a bootstrap sample (ZZ, Y Y) from (Z,Y):

1 N = size(Z,1); % number of objects
2 index = randi(N,1,N); % indices
3 ZZ = Z(index,:); % bootstrap sample (objects)
4 YY = Y(index); % bootstrap sample (labels)

We need to decide how many classifiers we want in the ensemble

(say, L). Depending on the task, we may choose L = 3, 100, 2000,

and so on. Then we sample a different bootstrap sample for each

Classifier ensembles 107

classifier. The ensemble is ready for operation after all classifiers are

trained on their respective training data. In the operation phase,

x is submitted to all classifiers, and each classifier predicts a class

label. Take majority (plurality) vote to assign one final label to x.

We will use a simple mnemonic notation to remind us about

what each ensemble method does. For bagging, we take independent

bootstrap samples. This is illustrated in Figure 3.25.

Figure 3.25: An illustration of Bagging.

The Bagging algorithm is shown more formally in Figure 3.26.

3.7.3 Boosting

In boosting, the training datasets for the base classifiers are not sam-

pled independently. The rationale is as follows. The objects which

are more difficult to classify correctly should be picked more often

in the training data. The first classifier picks a standard bootstrap

sample to train on. When sampling for the next base classifier, how-

ever, we increase the chances of objects misclassified by the first

classifier to be picked. Now we have an ensemble of two classifiers.

The training sample for the third classifier will contain more copies

of objects which were misclassified by the ensemble so far, and so

108 Classifiers

The Bagging Algorithm

Input: A labelled data set Z and the ensemble size L.

Training:

1. Take L independent bootstrap samples of the data set Z (including

the labels).

2. Train a classifier on each sample.

Operation:

1. For a given object x, calculate the class labels from the L classifiers.

2. Apply majority vote to combine the ensemble votes and assign a

single class label to x.

Figure 3.26: Training and operation of the Bagging classifier ensem-

ble algorithm.

on. If this sounds too complicated, just remember that the samples

are dependent. This is illustrated in Figure 3.27.

The most notable example of a boosting classifier ensemble method

is AdaBoost [20]. And the most famous application of AdaBoost is

in the Viola-Jones method for detecting faces in images. You have

AdaBoost working tirelessly in your phone – that little yellow rect-

angle around the face in an image when you point the camera at one

or more people is the Viola-Jones’s AdaBoost in operation.

3.7.4 Random Subspace

This time we sample from the features. Each classifier gets a random

subsample of k columns of Z and all of its rows (all objects). This

Classifier ensembles 109

Figure 3.27: An illustration of Boosting. Different colours indicate

that the samples for the different classifiers in the ensemble are de-

pendent.

is why the samples are rotated at 90 degrees in Figure 3.28, which

illustrates the Random Subspace ensemble method. The subsamples

are taken independently of one another.

Figure 3.28: An illustration of Random Subspace.

Like Bagging and unlike AdaBoost, Random Subspace is easy to

implement. The algorithm is very similar to Bagging in Figure 3.26.

The only difference is in training step 1. Instead of a bootstrap

110 Classifiers

sample from the data, we take a subsample of the columns of Z.

The number of features to sample, k is a parameter of the algorithm

and should be specified as one of the inputs. You can try to write

your own MATLAB code.

3.7.5 Random Forest

Random Forest [4] (Figure 3.29) is one of the most successful clas-

sifier ensemble methods. Delgado et al. [8] carried out a massive

experimental comparison of classifiers in an attempt to answer the

provocative question: Do we need hundreds of classifiers to solve

real-world classification problems? A staggering 179 classifiers from

17 families were compared on 121 data sets. And the authors’ answer

is no! We don’t need hundreds of classifiers. The current favourites

are Random Forest [4] and the SVM [5]. Ah, wait, but there is a

new kid on the block! Rotation Forest [16] beats them all according

to a more recent study by Bagnall et al. [2]. (I am quite proud of

this, actually, as I have a little contribution myself to the Rotation

Forest ensemble method.)

The beauty of Random forest is in its simplicity. In fact, this is

just Bagging as in Figure 3.26! The twist is that the base classifiers

used in the ensemble are random trees.

Figure 3.29: An illustration of Random Forest.

Classifier ensembles 111

The difference between the decision tree which you saw in Sec-

tion 3.5 and a random tree is subtle, but very powerful in creating

a diverse ensemble. Just genius! Suppose we have reached node x

in the training process of the tree. Instead of checking all possible

features so as to pick the best split, we subsample M of the n fea-

tures and only select among the sampled ones. A fresh sample of M

features is drawn for each intermediate node. At the testing stage,

a random tree is exactly the same as a standard tree.

There are many more classifier ensemble methods; you can take

my word for it! But enough is enough! You are now well prepared

to face the world of classification ,.

112 Classifiers

Chapter 4

Feature Selection

Feature selection is a huge topic in pattern recognition. Over 25,000

papers were published in the past 10 years containing “feature selec-

tion” in their title or abstract. Who is going to read all these papers,

I wonder. What is feature selection and why is it so important?

Suppose that you are working with a bioinfomratics team who

are analysing microarray data. They wish to know which collection

of genes out of a set of 7,000 genes are the most relevant in distin-

guishing between a healthy tissue and a cancerous tissue. Feature

selection is about answering this question.

4.1 Redundant, irrelevant and useful fea-

tures

A feature x is a good feature if we can predict the class labels using

its value. In real data, a single feature is almost invariably insuf-

ficient for a good class prediction, which is why we have a set of

features X. It is important to make sure that the set of features

113

114 Feature Selection

which we select from X is good collectively. Such a set, ideally, will

not contain any redundant features or irrelevant features.

Redundant features are the ones which do not contribute any

new discriminative information to the subset already selected. For

example, if there is on feature that predicts the class labels perfectly,

all other features are redundant. Irrelevant features are those which

are not related to the class label variable. This means that we cannot

predict the class label by observing the feature value. If a feature is

irrelevant, it is redundant too because it would not contribute any

new discriminative information.

Figure 4.1 demonstrates the difference between redundant, irrel-

evant and useful features. Suppose that we have only two features,

x and y. Then the data lives in a 2D space. The classes are shown

with different colours in the figure.

(a) Redundant (b) Irrelevant (c) Useful

Figure 4.1: An example of redundant, irrelevant and useful features.

Either x or y in subplot (a) is redundant because the labels (red

and blue) can be predicted without an error by the other feature. In

subplot (b), feature x is perfect but feature y contains zero discrim-

inative information. If we know the value of y only, we will have no

way of saying with any certainty whether the point is red or black. y

is both irrelevant and redundant. Finally, look at subplot (c). Both

x and y are irrelevant. If we know only x or only y, we will be none

the wiser which class label to assign. However, when we have x and

A taxonomy of approaches 115

y together, we can label the point without any error.

This brings us to the most important point in feature selection.

Some features which are irrelevant individually may be invaluable

in a group with other features.

This is like mixing ingredients to achieve

a certain property. Taken one by one,

none of the ingredients alone will give us

the desired property. We need a certain

combination of ingredients which interact

with one another.

Some of the ingredients together may give us a close enough

result, some other combinations may be worse, regardless of whether

we remove an ingredient or put a new one. And the worst thing is

that we can’t predict how the ingredients will behave together. For

example, we can’t assume that two individually good features will

make a good pair. All depends on what happens when they are

mixed!

So, the million-dollar question is: How do we identify those fea-

tures that are relevant together?

4.2 A taxonomy of approaches

Before we look at the fun algorithms for feature selection, I am giving

you an elaborate diagram (Figure 4.2) with a lot of unfamiliar words

in it. Bear with me, please. We’ll see what these are in a minute.

Feature selection is a branch of what is known as dimensionality

reduction. We start with n features but wish to build our classifier

on m features, where m < n. Sometimes, ‘feature selection’ is used

as a synonym of ‘dimensionality reduction’. Weird, right?

116 Feature Selection

Figure 4.2: The dimensionality reduction (feature selection) taxon-

omy.

4.3 Feature extraction

The two branches are features extraction and feature selection. In

feature extraction, we take the whole feature space and transform

if into a new space of a smaller dimension. This can be done, for

example, by multiplying the vector x ∈ <n by a transformation

matrix T of size m × n, that is x′ = Tx, and x′ ∈ <m. This is a

linear transformation because the components of x′ are obtained by

linear combinations of the components of x.

A prime example of feature extraction is the Principal Compo-

nent Analysis (PCA) method. PCA calculates T using a dataset

(without labels). This method rotates the original space in such a

way, that the components of x′ are arranged by how much they ex-

plain the variability of the data. The most important components

Feature selection 117

are at the front. Last components are thought to be irrelevant be-

cause the data has almost the same value for each such component.

Initially T is an n× n matrix and x′ has n components itself. (But

what use is that? We wanted to reduce n!) The solution is to keep

the first m components and discard the remaining (less important)

n−m components. This means that we take only the first m rows

of T to make sure that x′ ∈ <m.

PCA is often used to project the data in 2D so that we can look

at it. In other words, we cut and keep only the first two components

and plot the data in the space they span. If we also include the

labels in the plot, we can see how the classes are behaving; whether

they are easily distinguishable or not.

Notice two things. First, we do not reduce the original feature

set! We will still need all the features in x in order to calculate x′.

Second, we didn’t mention class labels in the calculation of T . This

means that PCA does not care whether the features are relevant or

redundant in regard to classification. It only cares about preserving

as well as possible the variability of the data, so that we don’t lose

much information when using the new feature space.

4.4 Feature selection

Feature selection, on the other hand, reduces the original set of

features. It branches into two strands in our diagram: Univariate

and Multivariate.

4.4.1 Univariate feature selection

The reason for this distinction is that there is an abundance of uni-

variate methods which is dictated by the specifics of real life prob-

lems. In univariate feature selection, we evaluate each feature sepa-

118 Feature Selection

rately and then choose the individually best m features (Ranking). I

know, I know, we were just saying how important it is to consider the

features together! The problem is that, in many real-life datasets,

the number of objects N is too small compared to the number of

features n, and any judgement on the merit of feature combinations

is unreliable. Remember the overtraining phenomenon – where the

classifier learns the data very well but cannot generalise to new data.

Something like this happens in datasets where N << n. Let’s re-

turn to the example of selecting genes for discriminating between

two classes of tissues. Usually the number of objects is less than

hundred (for example, patients in a medical trial) while the num-

ber of genes is several thousands. If you picture the matrix of this

dataset (N × n), you will understand why such datasets are called

“wide”.

4.4.2 Multivariate feature selection

If we have enough data, we can do multivariate feature selection.

There are two questions to answer: (1) How do we pick the com-

binations which we want to evaluate? and (2) What criterion do

we use to evaluate a given feature set? In answering these ques-

tions, researches have come up with a wonderful variety of methods.

Look at the beautiful and exotic examples which I selected for you

in (Figure 4.3), which all take inspiration from nature. How do

animals look for pray, camouflage themselves, organise their com-

munity, locate relevant objects, coordinate their foraging? Other

feature selection algorithms follow processes and phenomena from

physics, for example particle swarm movement.

Feature selection 119

Grey wolf algorithm

Cuttlefish algorithm

Bat algorithm

Ant colony algorithm

Bee algorithm

Figure 4.3: What is in fashion in feature selection today?

How do we pick feature combinations to evaluate?

There are n features. How many possible subsets are there? Create

n potential positions in the feature set, one for each feature. Store a

0 in position i if feature i is not chosen, and 1 if it is. Then you have

2n possible subsets. This number includes the combination of all 0s.

But all zeros is an empty subset! Therefore, we have 2n− 1 possible

feature sets to traverse through. And now imagine that you have

a bioinformatics dataset with 1000 features. Hmm, the super-hero

computer that can handle going through all feature subsets has not

been born yet!

Checking each possible subset is called exhaustive search. Indeed,

this approach is applicable only for relatively small feature spaces.

120 Feature Selection

What can we do instead?

One possible solution is Sequential Forward Selection (SFS). The

SFS algorithm is shown in Figure 4.4. We start with an empty

set and add one feature at a time; the one which makes the best

combination with the already selected features. The algorithm stops

when we reach the desired number of features.

Sequential Forward Selection

Input: A labelled data set Z, a function f(S,Z) that evaluates a feature

set S, a desired number of features m.

Denote by X the set of features.

1. Start with an empty set S. Rank the features individually using f .

Put the top feature in S.

2. Check all remaining features x ∈ X \ S by adding temporarily one

feature at a time to the current subset S. Evaluate S′ = S ∪ {x}
using f .

3. Add permanently to S the feature that gave the best combination

S′.

4. Continue from 2 until the desired number of features is reached

(|S| = m).

Output: Subset S.

Figure 4.4: The Sequential Forward Selection (SFS) algorithm.

Does the algorithm look a bit confusing with all the notations?

Alright, here is a toy example.

⊕⊕⊕ Example 4.4.1

Suppose that you have 10 features numbered from 1 to 10 and want

to select a set of 3. I am choosing a fake criterion function f(S)

Feature selection 121

(nothing to do with any data) to evaluate a subset S calculated in

the following way. f(S) is a sum of the feature numbers in S taken

with sign plus if the cardinality of S is even, and with sign minus if

the cardinality is odd. For example, f(S) where S = {1, 4, 7} is

f(S) = −(1 + 4 + 7) = −12.

Notice the minus sign. This is because there are 3 features in S. If

S was S = {1, 4}, we would have f(S) = 1 + 4 = 5. Without loss of

generality we will assume that higher values of f are better.

Start SFS! First, we evaluate all features individually and rank

them.

feature # 1 2 3 4 5 6 7 8 9 10

f −1 −2 −3 −4 −5 −6 −7 −8 −9 −10

The best feature will be 1, hence S = {1}. At step 2, we add one

feature at a time

feature # 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10

f 3 4 5 6 7 8 9 10 11

The best pair is S = {1, 10}. At step 3,

feature # 1,10,2 1,10,3 1,10,4 1,10,5 1,10,6 1,10,7 1,10,8 1,10,9

f −13 −14 −15 −16 −17 −18 −19 −20

Thus, the final set with three features is S∗ = {1, 2, 10} with

value f(S∗) = −13. Not ideal. With cardinality 3 we have a better

subset S∗∗ = {1, 2, 3} with value f(S∗∗) = −6. But, to be fair, SFS

was never claimed to guarantee finding the best subset.

			

A question to you: How many evaluations of the criterion func-

tion f do we need in order to select 5 features out of 20? What

proportion is this of the total number of feature subsets?

122 Feature Selection

Usually the evaluation function f is so peculiar, with multiple

minima and maxima, and plenty of irregularities. SFS is not guar-

anteed to return the best subset of features in real life. It only

checks a relatively small number of subsets. The only approach that

guarantees finding the best subset is the exhaustive search.

4.4.3 What criterion do we use to evaluate a given

feature set?

The approaches here are: Filter, Wrapper and Embedded.

The wrapper approach is the simplest – you

train a classifier on the data using only the

features in the candidate subset, and the error

estimate of the classifier shows how good this

candidate subset is. That is wrapper, not

rapper ,. It is called wrapped because the

classifier is wrapped within the error estimate.

The filter approach, on the other hand, bypasses the whole train-

ing and testing of a classifier and replaces this with a simpler calcu-

lation. For example, we can calculate some form of scaled distance

between the centres of the classes in the spaces spanned by the fea-

tures in the candidate set. The larger the distance, the better. This

evaluation can be done in a fraction of the time needed to train

and test a classifier. When we are planning to evaluate millions of

candidate subsets, a filter approach is preferable.

In the embedded approach, the classifier selects features anyway,

because feature selection is part of the training algorithm. The prime

example in this category is the decision tree classifier. Remember,

only features chosen at the nodes of the tree are then used to label

a new object. Then we just don’t need the other features.

Feature selection 123

Some answers and solutions

� How many evaluations of the criterion function f do we need (in

SFS) in order to select 5 features out of 20?

To choose the first feature, we need 20 evaluations. Then,

there are 19 features left which can be taken one at a

time to check which the best pair is. Therefore, the to-

tal number of evaluations for selecting 5 features would

be: 20 + 19 + 18 + 17 + 16 = 90 evaluations.

� What proportion is this of the total number of feature subsets?

The total number of possible feature sets is 220 − 1 =

1, 048, 575. Then the proportion of evaluations to select

5 features through SFS is 8.6× 10−5.

124 Feature Selection

Chapter 5

Clustering

5.1 Introduction to clustering

Clustering means labelling the points in an unlabelled data set intro

groups (clusters) in order to discover structures in the data. Clus-

tering belongs to the branch Unsupervised learning in the PR Cycle

diagram in Figure 1.6.

We would like the individuals in the same group to be similar to

each other and dissimilar to the individuals from the other groups.

Things (objects) can be labelled into groups in many different ways

depending on how we define similarity. In our humble interpretation

of the world, however, similarity and dissimilarity will be measured

by distance in the feature space. Funnily, in the Australian abo-

riginal language Dyirbal, there is a category, ‘balan’, that includes

women, fire, and dangerous things. [13] If the different groups are

compact and well separated, then they could be easily discovered

and their characteristics could be interpreted by the end user.

Consider a data set like the one in Figure 5.1 (a).

125

126 Clustering

(a) (b)

Take a look at the data set

in the top left plot. We

can see the three clusters!

A good clustering algorithm

would recognise them even

though some of the points

want to escape their own clus-

ter and join the neighbour.

(c)

Figure 5.1: An examples of a data set and two partitions of it into

three clusters.

Introduction to clustering 127

A partition is any labelling of the data. Any! A good parti-

tion would be one which corresponds to our (human) perception of

grouping. An example of a good partition is shown in plot (b). An-

other partition is shown in plot (c), also into three clusters. Notice

that little dark blue loner in the middle of plot (c)? That is your

third cluster! The algorithm deemed it to be too far away from its

neighbours and therefore it is a cluster of its own.

In two dimensions, it is easy! We can see the result and agree

or disagree with the clustering algorithm. We can cluster the points

ourselves, come to that. But in 3 and more dimensions, things are

dramatically different. There is no easy way to see the clusters. The

only possible validation of our results lies with the end user. Their

data – their verdict. The user may discover that the grouping we

return to them makes sense and use the result in their further work.

For example, if the data were cancer patients, different treatment

plans could be tried with different groups discovered by our cluster

analysis. But there is no single number that can tell use how good

our result is. Recall Supervised learning. There we have class la-

bels which we need to match. We have the classification error as a

measure of success. No such luck with unsupervised learning.

Then how can we design our algorithms? By choosing what we

want them to do: put similar points together in the same cluster and

dissimilar points in different clusters. Easier said than done! How

do we define similar and dissimilar? How do we go about changing

the point labels without compromising the meaning of the cluster?

How do we make sure that our algorithms converge and not loop

forever?

Here we will study two archetypal clustering approaches and their

leading representative methods: hierarchical clustering with the sin-

gle linkage method and non-hierarchical clustering with the k-means

method.

128 Clustering

5.2 Hierarchical clustering and the single

linkage method

5.2.1 The generic agglomerative clustering algo-

rithm

Hierarchical clustering grows or splits the clusters step by step.

There are two sub-approaches:

� Agglomerative clustering: Start with every object being a clus-

ter of its own. Group clusters successively until all objects fall

into one single cluster.

� Divisive: Start with all objects in one single cluster. Split

clusters successively until every object becomes a cluster of its

own.

Then we decide on the number of clusters that are most likely

to be present in the data, and return to the user the labels at the

respective step. The vast majority of clustering algorithms in this

category are agglomerative. Figure 5.2 shows the generic agglomer-

ative clustering algorithm. The variants differ only by the definition

of the function d(p, q) that measures the distance between two clus-

ters of points, p and q.

5.2.2 Single linkage

The prime example of an agglomerative clustering algorithm is Single

Linkage. For this variant of the generic algorithm, the distance

between two clusters is defined as the distance between the closest

points, one from each cluster

d(Ci, Cj) = min
x∈Ci,y∈Cj

{dE(x,y)}, (5.1)

Hierarchical clustering and the single linkage method 129

The Generic Agglomerative Clustering Algorithm

Input: An unlabelled data set Z and a distance function d(Ci, Cj) be-

tween clusters of points Ci and Cj .

1. Start with clusters C1, . . . , CN , each containing a single object zj ∈
Z.

2. Find the nearest pair of distinct clusters according to d, say Ci and

Cj , merge them, delete Cj and decrease the number of clusters by

1.

3. If the number of clusters is 1, then STOP, else continue from 2.

4. Determine the likely number of clusters in the data and return those

cluster labels.

Output: Cluster labels.

Figure 5.2: The generic agglomerative clustering algorithm

where Ci and Cj are clusters of points and dE is Euclidean distance.

Any other distance between two points x and y can be used too (see

Section 3.4.1).

This distance between clusters is also called the nearest neighbour

distance. Hence, sometimes single linkage is called nearest neighbour

clustering.

⊕⊕⊕ Example 5.2.1

Take a look at the one-dimensional dataset in Figure 5.3. It consists

of six 1D points (one feature only): Z = {−1, 2, 6, 20, 22, 26}. Let’s

apply single linkage to this data set. This example will explain only

how we run steps 1–3 in the algorithm in Figure 5.2. Step 4 is trickier

and deserves an example of its own.

At Step 1, each point is a cluster itself, therefore we have six

130 Clustering

clusters. Let’s call them (a), (b), (c), (d), (e) and (f) as in the figure.

This will be our Iteration #1. At Step 2, we identify the two nearest

clusters. To do so, we must calculate the distances between all 15

pairs of clusters. Well, we can see from the figure that clusters (d)

and (e) are the closest. As instructed, we merge them into (d, e).

Now cluster (e) does not exist on its own, and we have five remaining

clusters: (a), (b), (c), (d, e), and (f). This is Iteration #2 done.

Figure 5.3: The iterations in applying single linkage to a 1D dataset.

According to Step 3, we should check whether the cluster num-

ber is 1. As it is 5, we continue from Step 2 with the new cluster

structure. Before we continue though, record the distance at which

the clusters were merged. In our case, this distance is 22 − 20 = 2.

This will be a criterion value, say J . So, for our Iteration #2, we can

record J(2) = 2. Just for completeness, we can also record J(1) = 0.

For Iteration #3, we identify the next nearest pair of clusters.

These are (a) and (b) at distance 3. Join them into (a, b), record

J(3) = 3, and end up with four clusters: (a, b), (c), (d, e), and (f).

At the next iteration, we have a choice. Both pair of clusters: (a, b)

and (c), as well as (d, e) and (f) are at the same distance of 4. Any

of the two pairs can be taken at Iteration #4. I have chosen (a, b)

and (c) in the example. Hence, at Iteration #4 we have clusters

Hierarchical clustering and the single linkage method 131

(a, b, c), (d, e), and (f), and J(4) = 4. It is only fair that we join

(d, e) and (f) next, therefore at Iteration #5, there are two clusters:

(a, b, c) and (d, e, f), and J(5) = 4.

Still not done! There are two clusters, so, as instructed by Step

3, we need one more iteration. Iteration #6 sees us to one cluster

(a, b, c, d, e, f) with J(6) = 20 − 6 = 14. Now we are done and can

proceed to the scary and exciting Step 4. 			

I will certainly ask you to run single linkage by hand, either for

your homework assignment or for the exam. How do we document

the iterations? Table 5.1 shows you how to do this for the example

above.

Table 5.1: Documenting the iterations of running Single Linkage by

hand for Example 5.2.1.

Iteration # Clusters Number J

1 (a), (b), (c), (d), (e), (f) 6 0

2 (a), (b), (c), (d, e), (f) 5 2

3 (a, b), (c), (d, e), (f) 4 3

4 (a, b, c), (d, e), (f) 3 4

5 (a, b, c), (d, e, f) 2 4

6 (a, b, c, d, e, f) 1 14

5.2.3 Determining the number of clusters for ag-

glomerative clustering

This is Step 4 from the generic agglomerative clustering algorithm

shown in Figure 5.2. This step is the same for any variant of the

agglomerative algorithm, not just single linkage.

Now that we have the table with the iteration records, we should

132 Clustering

decide how many clusters are likely in the data. Looking at Fig-

ure 5.3, what is your estimate? How many clusters?

The idea behind this method of determining the likely number

of clusters is simple and intuitive. Think of the distance criterion J

as ‘force’ which is needed to join the two clusters. Obviously, the

further we go with the iterations, the more force we will need as the

clusters closer together would have been joined already. So, we look

at the increase of the force at each iteration (call this a ‘jump’). If

the force increases by the same amount, the jumps will be the same

from iteration to iteration. But if we come across a particularly

large jump, this will indicate that a lot more force is required to

join the two clusters compared to that on the previous iteration.

In other words, these two clusters strive to stay apart. Therefore,

we calculate all the jumps and choose the number of clusters to be

that before the largest jump. For the above example, we add a last

column in the table with the value of the jump as in Table 5.2. For

Iteration #i, the jump is J(i) − J(i − 1). We don’t have a jump

value for Iteration #1.

Table 5.2: Determining the likely number of clusters by the largest

jump for Example 5.2.1.

Iteration # Clusters Number J Jump

1 (a), (b), (c), (d), (e), (f) 6 0 –

2 (a), (b), (c), (d, e), (f) 5 2 2

3 (a, b), (c), (d, e), (f) 4 3 1

4 (a, b, c), (d, e), (f) 3 4 1

5 (a, b, c), (d, e, f) 2 4 0

6 (a, b, c, d, e, f) 1 14 10

The largest jump is for Iteration #6 (hence the line in the table),

which tells us not to make the move from 2 clusters to 1 cluster.

Hierarchical clustering and the single linkage method 133

Figure 5.4: Illustration of the process of determining the likely num-

ber of clusters through analysing the jumps of the criterion J .

Therefore we recommend 2 clusters for this data. Figure 5.4 plots

the criterion value, J , as a function of the number of clusters, just

to give a graphical illustration of the process of determining the

likely number of clusters. The two clusters that we return can be

reproduced from the table: (a, b, c) and (d, e, f).

Test yourself on this problem: Figure 5.5 shows the scatterplot of

an unlabelled data set Z with 8 objects. The objects are numbered

as shown in the figure.

Apply the single linkage clustering algorithm to this data. Give

the steps in the table format explained above. Subsequently, recom-

mend the number of clusters for this data set, and show which points

134 Clustering

Figure 5.5: Scatterplot of a 2D data set.

are included in each cluster. (And if you are VERY impatient, skip

to the end of this chapter to see the solution.)

5.2.4 Dendrograms

A dendrogram is a diagram that shows the hierarchical relationship

between objects, usually as a result of hierarchical clustering. The

name dendrogram derives from the ancient Greek word ‘dendron’

meaning ‘tree’. The dendrogram of the clustering result for Exam-

ple 5.2.1 is shown in Figure 5.6.

The iterations are drawn by joining the points at the respective

value of the distance J . For example, Iteration #2 is carried out

Hierarchical clustering and the single linkage method 135

Figure 5.6: Dendrogram of the clustering result for Example 5.2.1.

The red line shows the ‘cut’ into to two clusters.

at distance J(2) = 2, and the points that are joined are 4 and 5.

The next pair of points are 1 and 2, at distance J(3) = 3, and so

on. The ordering of the points on the x-axis is immaterial as these

points represent objects. The dendrogram is drawn to scale only on

the y-axis to show the distance between the objects and clusters.

This dendrogram helps seeing straight away where the largest

jump of J is. In this case, it is between 4 and 14. The red horizontal

line shows where the split is done. The two clusters resulting from

the cluster analysis can also be read from the dendrogram. These

are the subtrees from the red line down to the x-axis. The two

clusters are (4, 5, 6) and (1, 2, 3). Note that it does not matter which

cluster we will call cluster #1 and cluster #2. The important part

is to recognise that there are two groups and to give the members

136 Clustering

of these groups different labels.

5.2.5 The chain effect of single linkage

When the clusters are well-separable, single linkage will identify

them without a problem, as will any other reasonable clustering

algorithm. But when there is noise, single linkage might struggle.

Even a single outlier in the data could be catastrophic. The al-

gorithm will group everything else in one cluster and declare the

outlier a cluster of its own. Single linkage works well when the clus-

ters are shaped like strings. Many other clustering algorithms may

not succeed in this case.

Figure 5.7 shows an example of two data sets with different clus-

ter configurations. Single linkage fails to identify the spherical clus-

ters. It singles out an outlier as one of the clusters (circled point)

and labels all other points as the other cluster (grey crosses). For the

data with elliptical clusters, single linkage separates the two clusters

perfectly. But notice that the leftmost and the rightmost points

of each of these clusters are far apart from one another, suggesting

that points in the same cluster are not similar at all. They are la-

belled into the same clusters because their nearest neighbour from

the whole data is from that cluster. This behaviour of single linkage

is called the chain effect.

5.2.6 Mean (centroid) linkage

Single linkage is very useful when the clusters have intricate con-

figuration but at the same time are well separable. On the other

hand, when there is noise in the data, the mean linkage may be

more suitable.

The difference between single linkage and mean linage is only in

the way we define the distance between clusters of points. In single

Hierarchical clustering and the single linkage method 137

(a) Spherical data (b) Single linkage on (a)

(c) Elliptical data (d) Single linkage on (c)

Figure 5.7: For which type of data is single linkage useful?

linkage, this distance was the point-wise distance between the two

nearest points, one from each cluster (Equation (5.2)). In mean

linkage, the distance between two clusters is the Euclidean distance

between their centroids:

d(Ci, Cj) = dE


1

|Ci|
∑
x∈Ci

x︸ ︷︷ ︸
mean of Ci

,
1

|Cj |
∑
y∈Cj

y

︸ ︷︷ ︸
mean of Cj

 , (5.2)

where Ci and Cj are clusters of points, dE is Euclidean distance,

and |.| denotes cardinality. Any distance between the means (points

in the feature space) can be used too (see Section 3.4.1).

138 Clustering

Figure 5.8 mirrors Figure 5.7 in that the same data sets are

used. But this time, we apply the mean linkage. Look how different

the clusters are! Mean linkage does not mind the noise and the

outliers, and identifies the two clusters in (a) (circled points versus

grey crosses), while it fails to distinguish the string-like clusters in

(c).

(a) Spherical data (b) Mean linkage on (a)

(c) Elliptical data (d) Mean linkage on (c)

Figure 5.8: For which type of data is mean linkage useful?

And again, we would not know in advance which type of data we

have in the n-dimensional space. How do we know which method is

suitable? The end user has the final word on this. Hopefully some

of the solutions which we offer them will make good sense!

Hierarchical clustering and the single linkage method 139

5.2.7 MATLAB code and a caveat

MATLAB offers a function linkage which can calculate the criterion

value. Then, after determining the likely number of clusters (by

ourselves, that is!), function cluster can be used to retrieve the

cluster labels. An example is shown below.

⊕⊕⊕ Example 5.2.2

For this example we retrieved the data set ‘zoo’ from the famous

UCI Machine Learning Repository1. To simplify the example, we

cut only a part of the data as shown below:

antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1

bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1

buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1

cheetah,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1

dolphin,0,0,0,1,0,1,1,1,1,1,0,1,0,1,0,1

frog,0,0,1,0,0,1,1,1,1,1,0,0,4,0,0,0

giraffe,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1

haddock,0,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0

honeybee,1,0,1,0,1,0,0,0,0,1,1,0,6,0,1,0

housefly,1,0,1,0,1,0,0,0,0,1,0,0,6,0,0,0

leopard,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1

lion,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1

newt,0,0,1,0,0,1,1,1,1,1,0,0,4,1,0,0

piranha,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0

seal,1,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1

stingray,0,0,1,0,0,1,1,1,1,0,1,1,0,1,0,1

toad,0,0,1,0,0,1,0,1,1,1,0,0,4,0,0,0

tuna,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,1

The 16 features (corresponding to the columns) are as follows:

1. hair Boolean

2. feathers Boolean

3. eggs Boolean

1https://archive.ics.uci.edu/ml/machine-learning-databases/zoo/

140 Clustering

4. milk Boolean

5. airborne Boolean

6. aquatic Boolean

7. predator Boolean

8. toothed Boolean

9. backbone Boolean

10. breathes Boolean

11. venomous Boolean

12. fins Boolean

13. legs Numeric (0,2,4,5,6,8)

14. tail Boolean

15. domestic Boolean

16. catsize Boolean

The following piece of code applies single linkage to this data.

File zoo_short_nolabels.txt contains the data.

1 clear, clc, close all
2 t = readtable('zoo short nolabels.txt');
3 data = table2array(t(:,2:end));
4 N = size(data,1); % number of objects to cluster
5 names = table2array(t(:,1));
6

7 z = linkage(data); % apply single linkage
8

9 % Determine the number of clusters
10 J = z(:,3); % distances (Iterations 2 to N)
11 [∼,index largest jump] = max(diff(J));
12 number of clusters = N − index largest jump;
13

14 % Plot the dendrogram and the cut−off line
15 dendrogram(z,'Labels',names)
16 set(gca,'XTickLabelRotation',90)
17 hold on
18 t = (J(index largest jump) + J(index largest jump+1))/2;
19 plot([0 N+1],[t t],'r−','linewidth',1.5)
20

Hierarchical clustering and the single linkage method 141

Figure 5.9: Dendrogram for the zoo data and single linkage cluster-

ing.

21 % Find the cluster labels
22 labels = cluster(z,'MaxClust',number of clusters);
23

24 % List the animals
25 for i = 1:number of clusters
26 fprintf('\nCluster %i:\n',i)
27 in cluster = find(labels == i);
28 for j = 1:numel(in cluster)
29 fprintf(' %s\n',names{in cluster(j)})
30 end
31 end

The code displays the dendrogram and the cut-off line (Fig-

ure 5.9) so the clusters can be read from the plot.

In addition, the code lists the names of the animals in each clus-

ter:

142 Clustering

Cluster 1: dolphin, haddock, piranha, seal, stingray, tuna.

Cluster 2: antelope, bear, buffalo, cheetah, frog, giraffe, honeybee, housefly,

leopard, lion, newt, toad.

			

Where is the caveat? The result from the clustering depends

critically on the chosen distance and not only! Rescaling the features

may have a dramatic effect on the result too. Feature # 13 in the

zoo data is the only non-Boolean feature. What will happen if we

rescale it between 0 and 1 so that it does not dominate all other

features in calculating the distances. Why should the number of

legs be eight times more important than whether or not the animal

produces milk? As soon as we apply this rescaling, the clustering

results changes. Instead of two clusters, with this tiny modification,

single linkage returns 14 clusters:

Cluster 1: stingray; Cluster 2: tuna; Cluster 3: piranha; Cluster 4: haddock;

Cluster 5: frog; Cluster 6: toad; Cluster 7: newt; Cluster 8: bear; Cluster

9: cheetah, leopard, lion; Cluster 10: antelope, buffalo, giraffe; Cluster 11:

dolphin; Cluster 12: seal; Cluster 13: honeybee; Cluster 14: housefly.

Which result is better? I am leaning more towards the two-

cluster result. But there is no right or wrong in clustering. All is

in the eye of the beholder, especially if that beholder is the domain

expert whose data we have been analysing.

5.3 Non-hierarchical clustering: k-means

5.3.1 Preliminaries

Non-hierarchical clustering is different from hierarchical clustering in

that the partitions in subsequent iterations are not nested. In single

Non-hierarchical clustering: k-means 143

linkage, if two points are labelled in the same cluster at iteration

i, they will stay together in the same cluster until the end of the

algorithm. This is not guaranteed for non-hierarchical algorithms,

where the points can be reassigned to any cluster at the subsequent

iterations.

In non-hierarchical clustering, the number of clusters is chosen

in advance. This number is usually chosen by the end user who

knows/suspects/hypothesises the likely number of clusters.

5.3.2 The famous k-means algorithm

k-means is the most well-known clustering algorithm. It dates back

to the 1950s. In this algorithm (Figure 5.10), the data is split

initially into k clusters (a number specified by the user), and at each

iteration points are moved to another cluster if they are closed to its

current centroid (the mean). The algorithm stops when there is no

possible point movement.

The initial means can be chosen in many different ways. The

common practice is to pick randomly k points from the dataset Z

for this purpose. These means can be generated as small random

numbers or as numbers “equally spread” in the part of the space Rn

occupied by the data. (Tricky, that last one!)

In our examples we will stick to choosing the means among Z.

⊕⊕⊕ Example 5.3.1

We will apply k-means on a small, toy dataset with two features, x

and y and 5 points (Figure 5.11).

Let’s cluster the points into k = 2 clusters. Choose points 1

and 3 to be the initial means, m1 = [2, 0]T and m2 = [2, 3]T . At

Iteration #1, we label the points to the closest mean. Thus point

1 will be in cluster 1 while all the other points will be in cluster 2.

Moving to the next step of the algorithm, we recalculate the means.

144 Clustering

The k-means Algorithm

Input: An unlabelled data set Z and a distance function d(x,y) between

points x ∈ Rn and y ∈ Rn and a number of clusters k.

1. Pick the k initial means as points in Rn.

2. Classify all the objects in Z according to the nearest mean using

distance d.

3. Recalculate the means.

4. If there is a change in any of the means, then continue from step 2.

Otherwise stop, return the cluster labels.

Output: Cluster labels.

Figure 5.10: The k-means clustering algorithm

The mean for cluster 1 is point 1 itself, that is m′1 = [2, 0]T , which

is the same as the initial mean. For cluster 2, whose old mean was

the chosen point 3, we now have

m′2 =

[
1 + 2 + 4 + 5

4
,

2 + 3 + 4 + 4

4

]T
= [3, 3.25]T .

Check whether there has been a difference in any of the old and

new means. We have m′1 = m1, but m′2 6= m2. Therefore we

should proceed with Iteration #2. Reassign the means so that the

old means are replaced by the new means, that is m1 ← m′1 and

m2 ←m′2.

At Iteration #2, we first re-cluster the data. This time, point 2

will be labelled in cluster 1. The new means are:

m′1 =

[
2 + 1

2
,

0 + 2

2

]T
= [1.5, 1]T .

Non-hierarchical clustering: k-means 145

Object #

(Data point) x y

1 2 0

2 1 2

3 2 3

4 4 4

5 5 4

Figure 5.11: Data used in Example 5.3.1

m′2 =

[
2 + 4 + 5

3
,

3 + 4 + 4

3

]T
= [3.67, 3.67]T .

Noticing that m′1 6= m1 and m′2 6= m2, we carry out Iteration #3.

At Iteration #3, the points are relabelled in the same clusters!

Therefore the means will be the same. The stopping criterion kicks

in, and we return the cluster labels: points 1 and 2 are in cluster 1,

and points 3, 4, and 5 are in cluster 2.

The migration of the means and the respective clusters are shown

in Figure 5.12.

			

How shall we record the iterations? For small 2D datasets, we

should store the means of all clusters for each iteration. Table 5.3

shows the record for the k-means run in Example 5.3.1.

5.3.3 The criterion function Je

Let’s delve deeper into k-means. Why does it work? Typically, non-

hierarchical clustering methods optimise a certain criterion which

146 Clustering

(a) Starting centres (b) Iteration #1

(c) Iteration #2 (d) Iteration #3

Figure 5.12: Migration of the cluster centres. The final two clusters

are shown in subplot(d).

ensures that points in the same cluster are similar to one another

and dissimilar to points from different clusters. For k-means, this

criterion is called Je. This criterion evaluates how good a certain

partition is. Smaller values of Je mean better partitions. The value

is not comparable with any pre-defined constant but can be used to

compare two different partitions of the same data. See the example

in Figure 5.13.

If the partition reflects well the cluster structure in the data, the

value of Je is small. The mean linkage algorithm gives a better result

Non-hierarchical clustering: k-means 147

Table 5.3: An example of recording the k-means iterations.

Iteration 1

Old means: (2.00, 0.00) (2.00, 3.00)

Clusters: (1);(2, 3, 4, 5);

New means: (2.00,0.00)(3.00,3.25)

Iteration 2

Old means: (2.00, 0.00) (3.00, 3.25)

Clusters: (1, 2);(3, 4, 5);

New means: (1.50,1.00)(3.67,3.67)

Iteration 3

Old means: (1.50, 1.00) (3.67, 3.67)

Clusters: (1, 2);(3, 4, 5);

New means: (1.50,1.00)(3.67,3.67)

Returned clusters: (1, 2) (3, 4, 5)

than single linkage for this data set. Indeed, the clusters identified

by mean linkage are more “reasonable”.

Suppose that the data has been partitioned into c clusters C1, . . . , Cc.

Denote by mi the mean of cluster Ci. The criterion function is cal-

culated as:

Je =

c∑
i=1

Je(i),

where

Je(i) =

c∑
x∈Ci

||x−mi||2. (5.3)

Let’s calculate Je for the partition of the 5-point data shown

Figure 5.12, subplots (c) and (d). First, the means of the two clusters

148 Clustering

Figure 5.13: Two partitions of the same dataset and the respective

values of the Je criterion function.

are: m1 = [1.5, 1]T and m1 = [3.67, 3.67]T , calculated already in

Example 5.3.1. Then

Je(1) = (2− 1.5)2 + (0− 1)2︸ ︷︷ ︸
||x1−m1||2

+ (1− 1.5)2 + (2− 1)2︸ ︷︷ ︸
||x2−m1||2

= 2.5.

and

Je(2) = (2− 3.67)2 + (3− 3.67)2︸ ︷︷ ︸
||x3−m2||2

+ (4− 3.67)2 + (4− 3.67)2︸ ︷︷ ︸
||x4−m2||2

(5− 3.67)2 + (4− 3.67)2︸ ︷︷ ︸
||x5−m2||2

= 5.33.

Finally

Je = Je(1) + Je(2) = 2.5 + 5.33 = 7.83.

Not that the choice of the initial means is random. Different

initial means can lead to different final results! How is this possible?

Unfortunately, Je could be multi-modal, which means that there

Non-hierarchical clustering: k-means 149

may be numerous local minima achieved by different partitions. For

example, if we chose data points 2 and 5 as the initial means in Ex-

ample 5.3.1, we would end up with clusters (1, 2, 3) and (4, 5). One

of these solution is better than the other in terms of Je but for some

initialisations, k-means will be trapped into the local minimum. For

the 5-point example, the two partitions are the only minima. There

are 10 possible pairs of points to initialise the means. Four of these

initialisations will lead to partition (1, 2), (3, 4, 5) with Je = 7.83

and the other six initialisations will lead to partition (1, 2, 3), (4,5)

with Je = 5.83. This dependency on the initialisation, underpins the

standard practice of using k-means. We run k-means a set number

of times (say, 10), and then pick the result with the smallest Je.

There is no guarantee that we have hit the global minimum of Je
but more attempts give us a better chance.

K-means implementation in MATLAB is child’s play! You can

do it easily. But I will be a bit lazy here and will use the ready-made

function kmeans of MATLAB’s Statistics Toolbox.

⊕⊕⊕ Example 5.3.2

This example is an illustration of k-means on a slightly more grown-

up problem. Suppose that you have an image and you want to

represent it in the most faithful way with k colours. The image

chosen here is ‘peppers’, one of the standard MATLAB images. The

code below formats the red, green and blue channels of the image

as the three features in the dataset, and then clusters them into 10

clusters.

1 clear, clc, close all
2 a = imread('peppers.png'); % upload image
3 s = size(a);
4

150 Clustering

5 % Create data
6 b red = double(a(:,:,1));
7 b green = double(a(:,:,2));
8 b blue = double(a(:,:,3));
9 data = [b red(:) b green(:) b blue(:)];

10

11 number of clusters = 10; % Choose the number of clusters
12

13 % Determine the labels and centroids (colours)
14 [labels,co] = kmeans(data,number of clusters);
15 im = ind2rgb(reshape(labels,size(a,1),size(a,2)),co/255);
16

17 % Show the result
18 figure, set(gca,'Pos',[0 0 1 1])
19 imshow(im,'InitialMagnification','fit')
20 figure, set(gca,'Pos',[0 0 1 1]), imshow(a)

Figure 5.14 shows the original image and result from the cluster-

ing. The original image has 99,059 colours while the clustered image

has only 10. And you have to agree, the resulting colours (cluster

centres) are pretty close to the original! Long live k-means! ,
			

Finally, here is a problem for you to try. (It will take time but

is a nice exercise!)

Consider the 1D (unlabelled) data set

Z = [6,−10, 1, 0,−2, 18,−14, 3,−6]T .

1. Run k-means to cluster the data set into 3 clusters using the

first three points as the initial means. Show the final clusters.

2. Calculate the Je criterion for each iteration.

See the answers at the end of the chapter.

Non-hierarchical clustering: k-means 151

(a) Original (b) Colour-clustered by k-means

Figure 5.14: An example of k-means applied to cluster the 99,059

colours in the original image into 10 clusters. Each pixel in subplot

(b) is shown with its cluster colour.

The promised answers and solutions

The solution of the Single Linkage problem from page 133 is shown

below. Table 5.4 gives the record of the iterations and Figure 5.15

shows the clusters.

Table 5.4: Iterations of SL for the problem from page 133.

Iteration # Clusters Number J Jump

1 1,2,3,4,5,6,7,8 8 0 –

2 48,1,2,3,5,6,7 7 1.000 1.000

3 17,48,2,3,5,6 6 2.000 1.000

4 23,17,48,5,6 5 2.000 0.000

5 157,23,48,6 4 3.606 1.606

6 14578,23,6 3 4.000 0.394

7 14578,236 2 4.123 0.123

8 12345678 1 5.000 0.877

Clusters returned: (2,3), (1,7), (4,8), (5), (6).

152 Clustering

Figure 5.15: The five clusters returned for the problem from

page 133.

The solution of the k-means problem from page 150 is shown in

Table 5.5 and Figure 5.16

Figure 5.16: Clusters found for the problem from page 150.

Non-hierarchical clustering: k-means 153

Table 5.5: Iteration record for the k-means problem from page 150.

Iteration 1

Old means: (6.00) (-10.00) (1.00)

Clusters: (1, 6);(2, 7, 9);(3, 4, 5, 8);

New means: (12.00)(-10.00)(0.50)

Iteration 2

Old means: (12.00) (-10.00) (0.50)

Clusters: (6);(2, 7, 9);(1, 3, 4, 5, 8);

New means: (18.00)(-10.00)(1.60)

Iteration 3

Old means: (18.00) (-10.00) (1.60)

Clusters: (6);(2, 7, 9);(1, 3, 4, 5, 8);

New means: (18.00)(-10.00)(1.60)

Clusters returned: (7, 2, 9), (5, 4, 3, 8, 1), (6)

The values of Je for the three iterations are: Iteration #1, Je = 190; Itera-

tion #2, Je = 111.25; Iteration #3, Je = 69.2.

154 Clustering

Chapter 6

Neural Networks

6.1 A brief history of neural networks

Since the dawn of time humans have been fascinated by how the

brain works. Ancient Egyptians believed that human brain is the

‘seat of intelligence’. The breakthrough in neuroscience came in the

20th century with a series of hypes of enthusiasm followed by troughs

of disillusionment. Below is a brief story of Neural Networks.1

6.1.1 The early ages

• 1943. Neurophysiologist Warren McCulloch and mathe-

matician Walter Pitts wrote a paper on how neurons in the

brain might work. They modelled a simple neural network

using electrical circuits assuming that neurons can perform

logical operations like ‘and’, ‘or‘, and ‘not’.

1They were called before ‘neuronal networks’, ‘neural nets’, and more recently

‘Artificial Neural Networks’. We drop the ‘A’ as most people do these days.

155

156 Neural Networks

• 1949. Canadian psychologist Donald Hebb introduced the

concept of reinforcement learning. According to this con-

cept, neural pathways are strengthened each time they are

used and weakened if they are not used for a prolonged

amount of time.

• 1951. Using symbolic reasoning, cognitive scientist Mar-

vin Minsky created the first neural network that solved a

problem from the real world: finding the best way out of a

labyrinth.

• 1958. American psychologist Frank Rosenblatt invented

the famous ‘perceptron’. Drawing upon biological princi-

ples, he built an electronic device and showed its ability to

learn. These so called perceptrons are the basis of today’s

(artificial) neural networks.

• 1969. Marvin Minsky and Seymour Papert published their

study: “Perceptrons – An introduction to computational ge-

ometry”. Heavily criticising the ability of neural networks

built using perceptrons, this study is often thought to have

caused a decline in neural networks research in the 1970s

and early 1980s. During this period, researchers developed

smaller projects outside the mainstream, while symbolic AI

research saw explosive growth.

6.1.2 The second wave

The problem was that, in those times, there was no suitable algo-

rithm to train a reasonably sized neural network. Seeds of the fa-

mous error backpropagation algorithm existed long before that time.

Similar algorithms were used for solving problems in different areas.

It was only in the 1970 when this algorithm was applied for training

neural networks. Two similar versions were independently developed

A brief history of neural networks 157

by Paul Werbos (in his 1974 dissertation) and by David E. Rumel-

hart, Geoffrey E. Hinton, Ronald J. Williams and James McClelland

(1986). The authors of the latter study claimed to have overcome

the problems presented by Minsky and Papert, and that “their pes-

simism about learning in multilayer machines was misplaced”. This

heralded a Renaissance in the neural networks research.

In 1989, Kurt Hornik, Maxwell Stinchcombe and Halbert White

published a study to ascertain that multilayer feedforward networks

are universal approximators. In other words, however twisted and

difficult the class distribution is in Rn, there is a feedforward neural

network with a finite structure which is able to approximate the

classification regions with any given, fixed precision.

The applications boomed, and all the other classifiers you have

seen in Chapter 3 were deemed inferior to King Neural Network.

Well, this is not strictly true... Brewing since the 1960, the sup-

port vector machine classifier (SVM) rose to power in the early 1990s.

By the early 2000s, SVM dominated the research scene overshad-

owing the neural networks. During those times, you could hardly

publish a paper in a renown journal or conference if there weren’t

any SVMs or other type of kernel classifiers in it. But don’t despair!

Neural networks returned with a vengeance!

6.1.3 The blossom of deep learning

Deep learning neural networks were born from the giant advance-

ments in technology. By year 2000, we were ready to process large

amount of information in a very short time, and people started ex-

perimenting with massive neural network structures, with many lay-

ers of thousands of neurons on each layer. A strong fundament of

the NN area had been laid already, and the path of deep learning

was clear.

158 Neural Networks

In March 2019, Yoshua Bengio,

Geoffrey Hinton and Yann LeCun

were awarded the prestigious Tur-

ing Award, generally recognised as

the highest distinction in computer science, something like and the

“Nobel Prize of computing”. They received it for conceptual and

engineering breakthroughs that have made deep neural networks a

critical component of computing.

Nowadays deep learning neural networks (DL) dominate the land-

scape of artificial intelligence. They have won numerous challenges

and competitions, and have found their use in many applications in

areas such as computer vision, speech recognition, natural language

processing, bioinformatics, drug design, medical image analysis, and

board game play. We will learn more about their exploits later in

the book.

6.2 Structure and elements of a NN

Neural Networks (NN) are engineering/mathematical models mim-

icking the structure and functioning of the brain.2

Neural networks may solve many different problems but most

such problems boil down to:

� Clustering (unsupervised learning)

� Classification (supervised learning)

� Regression (function approximation and prediction)

6.2.1 Neurons: real and artificial

Since the seminal model by McCulloch and Pitts, many models of

neurons have been proposed; some quite sophisticated and elaborate,

2Notice that we are still talking about Artificial Neural Networks.

Structure and elements of a NN 159

some beautifully simple. A diagram of the current favourite model

is shown in Figure 6.1.

Figure 6.1: A diagram of the biological neuron.

Why is this model the favourite? Because it translates into the

standard common element that most NNs are made of (eh, well,

apart from the posh deep learning NNs, but they are a different

species altogether as we shall see later). The computational version

of the diagram in Figure 6.1 is shown in Figure 6.2.

The circle in this figure represents the soma. It takes inputs from

the dentrites, where each such input ui is multiplied by the respective

semantic weight wi, i = 0, . . . , q. Ah, and look at the sneaky pair

u0 and w0! They are called the bias input and the bias weight. The

bias input u0 has a fixed value of 1. Always, always. It is needed

so that we have the chance to add a constant (w0) to the sum of

weighted inputs. The inputs and the weights can be organised into

vectors: u = [u1, u2, . . . , uq]T and w = [w1, w2, . . . , wq]T .

This diagram shows what is happening in the neuron and how

160 Neural Networks

Figure 6.2: A diagram of the computational neuron.

the output is calculated from the inputs and the synaptic weights.

First, we calculate the net sum, which we will denote by the adorably

funny, worm-like, Greek letter ‘xi’ (that is ‘\xi’ in LATEX):

ξ = w0u0 + w1u1 + · · ·+ wquq.

And, clever as we are, we can use the summation notation, and

even scalar product of two vectors (recall your first year maths) to

represent this same quantity:

ξ =

q∑
i=0

wiui = w0u0 + wTu.

The net sum represents the ‘excitement’ that reaches this neuron

through its inputs (the dendrites). According to biology, if there is a

Structure and elements of a NN 161

lot of this excitement at a given time, the neuron gets excited itself

and propagates the joy through its output (the axon) to the neurons

connected to it. To model this process, the net sum ξ is compared

with a threshold (typically zero). If ξ ≥ 0, the neuron gets activated,

or fires, yielding a 1 at its output. Else (ξ < 0), the neuron outputs

a value of zero. This simple threshold rule is sometimes insufficient.

Take a look at Figure 6.3.

Figure 6.3: Four widely used activation functions.

There are four widely used activation functions which define how

the output v depends on the net sum ξ. Notice that, even though

the neuron has q inputs (plus the sneaky bias), the net sum is just

one number: the weighted sum of the inputs plus the bias weight.

Formally the activation functions are defined as follows:

162 Neural Networks

� Threshold.

v =

{
0, when ξ < 0

1, when ξ ≥ 0
.

� Polarised Threshold.

v =

{
−1, when ξ < 0

1, when ξ ≥ 0
.

� Sigmoid.

v =
1

1 + exp(−ξ)
.

� Identity.

v = ξ.

Notice the case where ξ is exactly 0. We shall assume that the

threshold activation function jumps to 1, and returns v = 1.

⊕⊕⊕ Example 6.2.1

u0 = 1

0.5

��

u1
2

##
u2

−1
// // v

Consider the neuron shown on the left.

Calculate the net sum ξ and the output v

for input u = [0.9, 1.5]T using the thresh-

old activation function.

According to the above equations,

ξ = 0.5× 1 + 2u1 − u2.

That is, ξ = 0.5×1+2×0.9−1.5 = 0.8. Since ξ ≥ 0, the output

is vthreshold = 1.

Now, let’s calculate the output v for the sigmoid activation func-

tion:

vsigmoid =
1

1 + exp(−0.8)
≈ 0.69.

			

Structure and elements of a NN 163

6.2.2 The Threshold Logic Unit (TLU)

A Threshold Logic Unit (TLU) is a neuron with a threshold activa-

tion function (either the standard or the polarised version). TLU

was the first widely used (and widely criticised) model of neuron.

The modern version which almost completely replaced the TLU uses

the sigmoid activation function because, unlike the threshold activa-

tion, the sigmoid is differentiable. A huge advantage! Nonetheless,

due to the historical significance of TLU, we will be studying it in

more detail.

How can we use TLU for classification? Recall the neuron from

Example 6.2.1. Notice that if we set the net sum to zero, ξ =

w0 +w1u1 +w2u2 = 0, we have an equation of a line in 2D. For this

TLU, the line is 2u1−u2 + 0.5 = 0. The line is shown in Figure 6.4.

1

0.5

��

u1

2.0
&&

u2 −1.0
// // v

𝑢1

𝑢2

positive side

𝑣 = 1

negative side

𝑣 = 0

Figure 6.4: Geometric interpretation of TLU as a line splitting the

space into two half-spaces corresponding to the two outputs v = 0

and v = 1.

164 Neural Networks

Hm, this is not an easy thing to do – to figure out how

the damn thing on the left in Figure 6.4 all of a sudden

becomes a line in 2D! Grab a cup of coffee, sit down and

think about this until you get it. This will give you power

and enlightenment, I promise!

TLU in 2D splits the plane in two half-planes. All points on the

one side of the line will return positive net sums ξ = 2u1− u2 + 0.5,

and will make the TLU fire (v = 1) while all points on the other side

will return negative net sums and leave the TLU dormant (v = 0).

Now, assume that we put directly features x1 and x2 as the TLU

inputs u1 and u2. This is how TLU turns into a classifier! We say

that v = 0 will correspond to class 1 and v = 1, to class 2. Voila!

We have a linear two-class classifier. In other words, every TLU is

a linear classifier. And this is not only in 2D; the same holds for

Rn for any n. In the n-dimensional case, we will have n inputs and

n+ 1 weights but the output is always one of the class labels: v = 0

or v = 1.

Here is a set of problems and questions for you (see the answers

at the back oft he chapter):

1. Calculate the output v for a TLU with weights w0 = −2,

w1 = 4, w2 = −6, and w3 = 5 for input [−1,−2,−1]T .

2. Calculate the output v for a neuron with the same weights as in

the previous question but with a sigmoid activation function.

3. Draw the classification regions for a TLU with weights w0 = 3,

w1 = 1, and w2 = 0.

4. How will the classification regions for a polarised TLU differ

from the ones for the standard TLU?

The Perceptron 165

6.3 The Perceptron

6.3.1 A bit of history

In 1958, Rosenblatt stirred a controversy among the budding AI

community by announcing his perceptron. Speculations flourished.

New York Times reported that the perceptron is the “embryo of

an electronic computer” which will be capable of mimicking numer-

ous human activities such as walking, talking, seeing, writing, and

even reproducing itself. Not only that, but this computer will be

conscious of its existence! Wow!

Rosenblatt constructed his Perceptron automaton, named Mark I,

which occupied 6 racks of electronic equipment. Mark I was meant to

be a visual pattern classifier. The success of this early-days physical

model led to the current fame and glory of the perceptron.

The Institute of Electrical and Electronics En-

gineers (IEEE), the world’s largest professional

association dedicated to advancing technologi-

cal innovation and excellence for the benefit of

humanity, named its annual award in honour of

Frank Rosenblatt.

Technically speaking, the perceptron we use today, is exactly a

TLU! Agreed, in the current era of challenging and complex classifi-

cation problems, the perceptron’s practical application as a two-class

linear classifier is somewhat limited. But we cannot progress in this

field without honouring this highly influential model by diligently

studying its details.

6.3.2 The famous perceptron training algorithm

Here comes one way of training a linear classifier in the n-dimensional

space. But beware! This will work ONLY for two classes, and only

166 Neural Networks

if the classes are completely separable by a linear function.

The algorithm is shown in Figure 6.5.

The Perceptron Training Algorithm

Input: A labelled data set Z and a learning rate η.

1. Pick the n + 1 initial weights w = [w0, . . . , wn]T . These could be

small random numbers.

2. Errors ← 1;

3. While Errors 6= 0

(a) Errors ← 0;

(b) For for each zj ∈ Z

i. Classify zj according to the current perceptron weights

w.

ii. If zj is mislabelled by the current rule, set Errors ← 1,

and update the weights as follows:

wi ← wi − (2v − 1) η zij ,

where v is the output of the perceptron for zj , η is the

learning rate, and zij is the value of feature i of object

zj . To update w0 (the bias weight), we use z0j = 1.

Output: Final set of weights w.

Figure 6.5: The perceptron training algorithm

The learning rate η is a positive constant that determines how

quickly or slow the discriminant function will be found. As we shall

see later, the convergence of the algorithm does not depend on the

value of η but only on whether the classes are linearly separable.

The Perceptron 167

⊕⊕⊕ Example 6.3.1

In this example, we will carry the steps of the perceptron training

algorithm for two consecutive elements of Z (two steps of loop 3(b))

Let the current weights be w = [3,−2,−1]T . Figure 6.6 shows

the perceptron line (solid black line) and the two respective class

regions: Red and Blue. For class Blue, v = 0, and for class Red,

v = 1. Two points from Z are also plotted, z1 = [4,−2]T and

z2 = [−3, 3]T , both from class Blue.

Figure 6.6: A step in the perceptron training algorithm.

Assume that the given learning rate is η = 0.5. Points z1 and

z2 are submitted in this order to the perceptron training algorithm.

Let’s calculate the perceptron output for z1

ξ(z1) = 3− 2× 4− (−2) = −3.

168 Neural Networks

As ξ(z1) < 0, v = 0, and we label z1 in class Blue. So far, so good.

Point z1 is in its own classification region, so we don’t have a reason

to change the weights. For z2, we have

ξ(z2) = 3− 2× (−3)− 3 = 6.

Then v = 1, and z2 is labelled in class red. Wrong class! Step

3(b)ii in the algorithm tells us that the weight should be recalculated

(recall that η = 0.5 and the current values of the weights are w =

[3,−2,−1]T):

w0 = 3− (2× 1− 1)× 0.5× 1 = 2.5

w1 = −2− (2× 1− 1)× 0.5× (−3) = −0.5

w2 = −1− (2× 1− 1)× 0.5× 3 = −2.5

We plot the new boundary in Figure 6.6 with a dashed line. Look

what happened! Now z2 will be on the right side of the boundary

but z1 escaped to the wrong side! This is why we have to make

passes through the algorithm over and over and update the weights

until there are no points outside their own regions (Errors = 0).

			

6.3.3 The perceptron convergence theorem

Will the algorithm ever converge? The theorem has two clauses (you

must know them both):

1. If the two classes are linearly separable in Rn, then the algorithm

always converges in a finite number of steps to a linear discriminant

function with zero resubstitution errors, for any learning rate η.

The Perceptron 169

2. If the two classes are not linearly separable in Rn, then the

algorithm will loop infinitely through Z, and never converge for any

learning rate η.

The plot on the left shows an example in

2D where 10,000 points are generated in the

unit square, labelled into two classes so that

the true boundary is the diagonal from (0,0)

to (1,1). Drawn in the figure is the final

boundary returned by the perceptron train-

ing algorithm. How good is that!

The perceptron algorithm is not that difficult to program. You

can do it! Start with this:

1 function w = perceptron training(d,l,e)

Here d is the dataset, l is the vector with the labels, and e is the

learning rate η. The output is the final weight vector. And I can tell

you that I have the rest of the function in 106 characters (without

counting the white spaces). This count also includes all semicolons

to suppress unwanted output in the MATLAB command window.

Can you beat that?

The promised answers and solutions

Answers to the questions from page 164:

1. Calculate the output v for a TLU with weights w0 = −2, w1 = 4,

w2 = −6, and w3 = 5 for input [−1,−2,−1]T .

ξ = −2 + 4(−1)− 6(−2) + 5(−1) = 1.

Since ξ ≥ 0, vthreshold = 1.

170 Neural Networks

2. Calculate the output v for a neuron with the same weights as in the

previous question but with a sigmoid activation function.

vsigmoid =
1

1 + exp(−1)
= 0.7311.

3. Draw the classification regions for a TLU with weights w0 = 3,

w1 = 1, and w2 = 0.

The equation of the line is ξ = 3 + x = 0 or

x = −3. The regions are illustrated on the

left. The blue region corresponds to v = 1,

and the pink region, to v = 0.

4. How will the classification regions for a polarised TLU differ from

the ones for the standard TLU?

They would not differ. The only difference between the two activa-

tion function is the value of v. In the standard threshold activation,

the labels of the classes would be 0 and 1, and for the polarised ac-

tivation, −1 and 1.

Chapter 7

MLP, RBF, and SOM

These fabulous 3-letter acronyms mean: Multi-Layer Perceptron

(MLP), Radial Basis Function networks (RBF) and Self-Organising

Maps (SOM). They were so important in the course of the life of

neural networks, that we will devote a whole chapter to them! En-

joy.

7.1 Multi-Layer Perceptron (MLP)

7.1.1 Two perceptrons together

We saw that one perceptron (TLU) splits the feature space into two

regions. In 1D these two regions are intervals (−∞, b), [b,∞) where

b is the boundary. In 2D, these are the two halves of the 2D plane

separated by the line that we call the discriminant function. In

3D, the perceptron defines a plane which splits the 3D space into

two half-spaces. Remember from your first year maths what we call

a linear structure in higher spaces? A hyperplane! A hyperplane

will also split Rn into two halves: a positive one and a negative

171

172 MLP, RBF, and SOM

𝑥1 𝑥2

𝑣1 𝑣2

4 -2
1

4
-3

-1

Figure 7.1: An example of four regions defined by an NN with 2

perceptrons.

one. What will happen if we put two perceptrons together? See for

yourself in Figure 7.1.

As each perceptron splits the space into two halves, two percep-

trons with different wights will define 4 regions. We can therefore

distinguish between four classes: (v1 = 0, v2 = 0), (v1 = 0, v2 = 1),

(v1 = 1, v2 = 0), and (v1 = 1, v2 = 1).

And just imagine what this NN will be able to

recognise! A lot more complicated and inter-

twined class regions.

7.1.2 Structure of MLP

Multi-layer perceptron is called so because it consists of multiple

layers of perceptrons. It has an input layer, a set number of hidden

Multi-Layer Perceptron (MLP) 173

𝑥1 𝑥2 𝑥𝑛
…

𝑔1 𝐱 𝑔2 𝐱 𝑔𝑐 𝐱…

classifier

discriminant
functions

features

hidden layers

input layer

output layer

no lateral
connections

Figure 7.2: Structure of a multi-layer perceptron and its use as a

classifier.

layers, and an output layer as shown in Figure 7.2. The features of

an object to be classified are submitted at the input layer. The black

dots in Figure 7.1 represent the input layer nodes. Their purpose is

just to transmit the features to all neurons in the the first hidden

layer. According to our categorisation by activation function (Fig-

ure 6.3), the input neurons are of type identity: they directly put

through the net sum value, which in this case is the feature value

itself.

Notice that there are no lateral connections at any of the layers,

nor are there any backward connections. This type of networks are

174 MLP, RBF, and SOM

called feedforward NNs.

The number of hidden layers is not restricted and nor is the

number of neurons at each hidden layer. However, if we are to

use our NN as a classifier, the number of inputs must be the same

as the number of features (n) and the number of outputs must be

the same as the number of classes (c). Each output is associated

with a class. It will give us the value of the respective discriminant

function gi(x). As always, the final class label is chosen as the tag

of the largest discriminant function. And, as discussed before, if we

have only two classes, one discriminant function would suffice. We

can assign the class labels based on its value. In NNs, typically, the

output value is between 0 and 1, and a threshold of 0.5 determines

the cut-off points between the classes.

Now, you can argue, my clever clever reader, that we can do

exactly the same for multiple classes! Why don’t we cut one dis-

criminant function (one output) into c intervals and assign class

labels according to which interval the output falls in? True, we can

do that. But training the network to learn this output pattern be-

comes awkward. Besides, we will lose important information! If we

have all c outputs, we will know how much each of the classes is

supported for the given input x. This will give us a chance to offer

‘the top k classes’ to the user, which could be very important if we

are dealing with a large number of classes.

⊕⊕⊕ Example 7.1.1

This is, actually, something for you to do. Suppose that

you have an MLP with two inputs, two hidden layers with

3 and 2 neurons, respectively, and three outputs. The

neurons at the hidden layers and the output layer have

identity activation. So, try this:

1. If you are to use the MLP as a classifier (as explained above),

Multi-Layer Perceptron (MLP) 175

what is the dimensionality of the feature space, and how many

classes are there?

2. Sketch the MLP.

3. Write MATLAB code to calculate the output of this MLP

using the weight vectors below (recall that the first weight is

always w0, the bias weight):

Layer Neuron #1 Neuron #2 Neuron #3

Hidden 1 [−2, 1,−1]T [4,−3, 3]T [4,−2,−3]T

Hidden 2 [−3, 2, 2, 1]T [−2, 2, 0,−1]T

Output [2,−2, 3]T [−2,−1,−3]T [2, 2, 4]T

4. Suppose that the outputs of the MLP correspond to classes 1,

2, and 3, respectively. Use your code to calculate the output

of the network for objects: x1 = [−2, 6]T , x2 = [3, 5]T , and

x3 = [−1, 8]T . Based on the output, determine what class

label will be assigned to each of these objects.

Look for the solution at the end of this chapter. But do try first,

please! 			

7.1.3 The error backpropagation algorithm

The error backpropagation algorithm gained popularity for training

NNs in the 1980s. This is an iterative algorithm which takes labelled

data, object by object, and tweaks the weights of the NN to gradually

improve the classification accuracy of the NN.

176 MLP, RBF, and SOM

Fo
rw

ar
d

 p
ro

p
ag

at
io

n

B
ac

kp
ro

p
ag

at
io

n

The NN is initialised with

small random weights. Each

iteration of the algorithm con-

sists of two steps. In the for-

ward propagation step, an ob-

ject is submitted at the input

of the NN and the output is

calculated. The output is com-

pared to the desired output

and an error vector is calcu-

lated.

In the backpropagation step, the error vector is propagated back-

wards by calculating the hypothetical error at the previous layer.

The weights of the neurons at this layer are changed to minimise

the error. The change is similar to that in the perceptron training

algorithm. When all the layers are visited, the next object from the

training data is submitted at the input. The algorithm finishes when

either a limit number of iterations is reached of the training error of

the NN drops below a given threshold.

Let’s have a look at how the error at the top layer is calculated.

Suppose that we use the NN as a classifier into 4 classes. Thus,

there will be 4 outputs: o = [o1, o2, o3, o4]T . Suppose that the object

submitted at the input, x, is from class 3. The ideal NN output for

this object would be o = [0, 0, 1, 0]T . Now, suppose that our network

gave output ô = [0.3, 0.6, 0.4, 0.1]T . The error vector is (square error

loss)

e = [(ô1 − o1)2, (ô2 − o2)2, (ô3 − o3)2, (ô4 − o4)2]

= [0.32, 0.62, 0.62, 0.12] = [0.09, 0.36, 0.36, 0.01].

The elements of these vector will be used to change the weights of the

four output neurons. The error will be recalculated for the neurons

Multi-Layer Perceptron (MLP) 177

at the penultimate layer, and propagated in the same way down to

the first hidden layer.

There are two versions of the backpropagation algorithm: online

and batch.

On-line backpropagation training. In the on-line version, the weights

of the NN are modified after the presentation of each object, as ex-

plained above. The objects in the training data are arranged in

random order. A presentation of the whole data set is called an

epoch. After an epoch, the data in the training set is shuffled ran-

domly, and a new epoch is started. The stopping criterion of the

algorithm is often a set number of epochs.

Batch backpropagation training. In the batch version, the weights of

the NN are modified after presentation of the whole data set. The

objects are presented during the forward pass but there is no back-

propagation step until the last object in the data set is presented.

The error is accumulated, and used in a single backpropagation step.

Thus, the concept of epoch here does work. All of the data set is

seen before the backpropagation step.

Remember the learning rate η in the perceptron training algo-

rithm? We found out that it is not too important because the al-

gorithm will always converge if the classes are linearly separable,

for any η. The learning rate will only determine how slow or how

quickly this will happen. This is not the case for backpropagation.

Unfortunately, we have no guarantees that the network can separate

the classes perfectly. At each step the algorithm minimises the error

but it can easily slip into a local minimum of the error function.

In other words, there may be another set of weights which gives a

lower training error but the algorithm was “unlucky” to get trapped

into the local minimum. Backpropagation is a stochastic algorithm.

There are several random elements which will govern the algorithm

178 MLP, RBF, and SOM

and eventually determine where it finishes. These random elements

are the initial random weights and the ordering of the data points in

the training data (for the on-line version). To minimise the chance

of getting trapped in a local minimum, researchers have come up

with a clever idea: modify the learning rate to ‘dislodge’ the NN

from a possible local minimum of the error.

To get a fine-tuned solution, we need to start with a large learning

rate, where the NN learns fast, and then decrease the learning rate

when we approach the minimum of the error. To avoid getting stuck

in a local minimum, we can suddenly shoot the learning rate up again

and let the NN follow a different path to another minimum. If this

new minimum happens to be less good than the previous one, we

can always return and pick the version of the weights which gave

us the best NN. The number of these peaks of the learning rate is

not limited. If we plot the the learning rate over the number of

iterations, the graph may look like saw teeth.

Local
minimum

With momentum

Another interesting idea is to

add a momentum to the learn-

ing rate. This means that

once the weights start mov-

ing in a particular direction in

the weight space, they tend to

continue moving in that direc-

tion. The benefit of this idea

can be illustrated by imagin-

ing a ball rolling down a hill.

With the standard learning rate pattern, gradually declining

along the iteration count, the ball may get stuck in a little trough

on the slope. But if the ball has enough momentum, it will be able

to jump out of the trough and continue rolling down the hill.

Radial basis functions networks (RBF) 179

Choosing the pattern of change of the learning rate and the mo-

mentum is the single most important thing in training a NN, includ-

ing the oh-so-fashionable deep learning NNs.

There are many studies on how to tune these pa-

rameters, the most influential recent one being

about the Adam optimiser [11].

Here are a few questions for you to test your understanding:

1. Describe the principle of the backpropagation algorithm and

its two versions.

2. Describe the type of classification regions which a TLU can

produce, and which an MLP can produce.

3. Explain how you may use an MLP neural network as a classi-

fier.

7.2 Radial basis functions networks (RBF)

7.2.1 The activation function

Radial basis func-

tion networks take

their name from the

activation function

of their neurons.

The shape of the

function for a single

input u is shown on

the left.

180 MLP, RBF, and SOM

The equation is

f(u) = exp

(
− (u− c)2

2s2

)
,

where c ∈ R is a centre and s is a positive constant called the spread

of the function. In the example in the figure, c = 0 and s = 1. Note

that the function is symmetric about c.

In two di-

mensions, the func-

tion looks like a

pointy sombrero or a

witch’s hat.

The function is radially symmetric about the centre, hence RBF.

The equation in two dimensions is

f(w) = exp

(
− (u− cu)2 + (v − cv)2

2s2

)
,

where w = [u, v] ∈ R2 is the vector with the inputs to the neuron,

s is again a scalar constant determining the spread of the function,

and c = [cu, cv] ∈ R2 is the centre.

And here we stop with the picture of RBF, because we can’t draw

in Rn. But we can calculate the value of the activation function for

n inputs. In this case x and the centre c both live in Rn, that is

x = [x1, x2, . . . , xn]T ∈ Rn and c = [c1, c2, . . . , cn]T ∈ Rn. The

activation function returns a single value (the output of the neuron)

Radial basis functions networks (RBF) 181

calculated as

f(x) = exp

−
squared Euclidean distance︷ ︸︸ ︷

(x1 − c1)2 + · · ·+ (xn − cn)2

2s2

 .

And look at the numerator of the fraction in the exponent! This

is the squared Euclidean distance between x and c! This means

that all points that are at the same distance from c (equidistant)

will have the same value of f(x). There is the radial symmetry we

were talking about!

Intuitively, points which are closer to the centre (in any dimen-

sion) will activate the neuron more, compared to more distant points.

The highest activation is achieved if the input hits exactly the cen-

tre c.

7.2.2 Structure and operation of RBF

A typical RBF NN consists

of an input layer, a sin-

gle hidden layer with RBF

neurons on it, and a single

output layer, usually with

identity neurons. For each

hidden neuron, we need to

know the centre vector c

with as many elements are

the number of inputs, and

the spread s.

For each output neuron, we need k + 1 weights, where k is the

number of hidden neurons.

182 MLP, RBF, and SOM

The example below shows you how to calculate the output of an

RBF NN for a given input.

⊕⊕⊕ Example 7.2.1

An RBF is shown in Figure 7.3. Calculate the output of the network

for x1 = 2. (This could easily be an exam question.)

identityidentity

RBF 𝑐2 = 3, 𝜎 = 2RBF 𝑐1 = −2, 𝜎 = 2

OUTPUT

INPUT𝑥1

𝑦1 𝑦2

1

2

-1 1
-1

2
4

Figure 7.3: An example of an RBF NN.

Solution. Notice that we have a 1D space, hence the centres c1 and

c2 contain only a single value. The spread is denoted here by σ and

has value two for both neurons.

Calculate first the output of hidden neuron 1 (left) for x1 = 2

h1 = exp

(
− (2− (−2))2

2× 22
)

)
= exp(−2) = 0.1353.

For the second hidden neuron,

h2 = exp

(
− (2− 3)2

2× 22
)

)
= exp

(
−1

8

)
= 0.8825.

Radial basis functions networks (RBF) 183

Next we calculate the outputs:

y1 = −1× 1 + 2× 0.1353 + 4× 0.8825 = 2.8006.

y2 = 2× 1 + (−1)× 0.1353 + 1× 0.8825 = 2.7472.

If we were using this NN as a classifier with two classes, and treat the

outputs as values of the discriminant functions for the two classes,

we should assign class 1 to x1 = 2 as y1 > y2.

			

A question to you: How many parameters does an RBF NN have

if it has 5 inputs, 10 nodes at the hidden layer and 3 output nodes?

(Assume that all hidden nodes have the same fixed spread s = 1)

Solution. n = 5 (5-dimensional input space), therefore each centre

(one per hidden node) will be an n-dimensional vector too. There

are 10 hidden nodes, therefore there will be 10× 5 = 50 parameters

for the hidden nodes. There are 3 output nodes, each will have 10

weights plus a bias weight. Therefore, there will be 3×(10+1) = 33.

parameters for the output nodes. Then the total is 50 + 33 = 83

parameters.

7.2.3 Training of RBF

Training an RBF amounts to finding all its parameters so that we

can label an input. Among many possible training methods, I chose

for you the following two:

Method 1: Random centres + regression. Pick the centres randomly

from the training set. Then train the weights of the output nodes

using a regression technique.

Figure 7.4 shows the results of this method of training for a 2-

class data set.

184 MLP, RBF, and SOM

5 centres

0.90 0.90 0.95

10 centres

0.90 0.91 0.94

Figure 7.4: Results from training RBF NNs on the same data set

using Method 1: Random centres + regression. The testing accuracy

is shown under each plot.

The classes are plotted with black and red dots. The region for

the black class discovered by the RBF is shown in grey, and the

region for the red class, in pink. The actual classification boundary

used to label the points originally is the diagonal plotted with the

black dashed line. These regions are what we want to approximate.

But we have to be fair to these RBF guys, they don’t know that!

They only have the data in the scatter plot.

We trained six RBFs for the same data set; three with 5 cen-

Radial basis functions networks (RBF) 185

tres and 3 with 10 centres (sigma was set at 0.5 in all runs). The

data points randomly picked as centres are circled. The testing ac-

curacy of the RBF classifier is given under the respective subplot.

All RBF versions have actually done a pretty good job in identifying

the regions, haven’t they?

Method 2: Trained centres + regression. This training method is a

little more elaborate than Method 1. It goes through the following

steps:

1. Set a target threshold ε for the training error. Start with an

empty set of centres.

2. Add temporarily one centre at a time from the available points

in the data set. Calculate the weights using a regression tech-

nique. Calculate the RBF NN error with the added centre.

3. Choose the centre with the smallest error (E) and add it per-

manently to the set with centres.

4. If E is larger than ε, then repeat from the Step 2. Else, return

the trained RBF (centres and weights).

We can set an arbitrarily small ε but then we are risking over-

training. If we continue the training process until all data points

become centres, then the training error (resubstitution error) will

be equal to zero. What is then a good error rate threshold? We

could use a validation set to gauge this. We can cut some of our

(precious!) training set to serve as validation, and keep training

while the error of the RBF on the validation set goes down. As soon

as it starts picking up, we should stop the training and return the

RBF version corresponding to the lowest error on the validation set.

Figure 7.5 shows the progression of the training of an RBF using

Method 2. Starting with one centre, the training proceeds to select-

ing 13 out of the 60 centres. At this iteration, the training error

186 MLP, RBF, and SOM

1 centre 2 centres ... 6 centres ... 13 centres

0.65 0.71 0.85 0.90

Figure 7.5: Progression of the RBF training using Method 2:

Trained centres + regression. The testing accuracy is shown un-

der each plot.

dropped under the threshold ε = 0.001. The Figure shows iterations

1, 2, 6 and 13, and the respective testing error under each subplot.

Figure 7.6 shows the training and testing errors as the training

progresses from 1 to 13 centres. The training error goes down at each

iteration while the testing error levels off. The best testing error is

achieved at 7 centres while the training error achieves minimum at

13 centres. Overfitting danger!

Figure 7.6: Training and testing error of RBF training Method 2

as a function of iterations (number of centres). The best values are

indicated with triangle markers.

Self Organising Maps (SOM) 187

They are good! RBF neural networks are quite good. The prob-

lem, as with almost any other classifier, is picking the right com-

bination of parameters: number of centres, the spread sigma, the

training method (and the error threshold, if applicable). A large

training data would let us set aside a validation set, and tune pa-

rameters on unseen data.

7.3 Self Organising Maps (SOM)

Finish scientist Teuvo Kohonen has been credited with the

creation of the foundation of Self Organising Maps (SOM).

The SOM algorithm grew out of early models of associative mem-

ory and adaptive learning.

7.3.1 Definition and examples

Self-organizing maps (SOMs) are a data visualisation technique which

reduces the data dimensionality. The main idea is to produce a ‘map’

of usually one or two dimensions. Each node on the map is respon-

sible for a subset of data points. Note that these data points live

in Rn even though their representation is in 1D or 2D. Ideally, sim-

ilar data points in Rn will be represented by the same node or by

neighbouring nodes in the SOM.

What can SOMs be useful for? A neat and convincing example of

the wonders of SOM is developed by Weller et al. [21]. Palynology is

the study of pollen grains and other spores (palynofacies), especially

in geological deposits. The existence, type and density of such spores

can be indicators of oil deposits! Moneeeeey! Under the microscope

they look as the lovely duvet pattern in Figure 7.7.

188 MLP, RBF, and SOM

Figure 7.7: Examples of microscope images containing palynofacies.

Suppose we have a data set with many images. How can we

catalogue the species within? Let us dream on and assume that we

have a nice piece of software which will extract the single creatures

from each image, and will take the most important collection of

features from each creature. Now train a SOM network to place all

these creatures in a 2D table. Similar creatures go in the same cell.

Figure 7.8 is reproduced from the study by Weller et al. [21]. Lo

and behold, the creatures have found their ways into the table!

Compare the top left cell with the bottom right cell! They can’t

be more different. And, indeed, they are farthest apart in the map.

Neighbouring cells contain similar creatures. This is all done auto-

matically, by training the SOM. How cool is that?

Here is another example. Suppose that we are interested in the

content of an array of over 3,000,000 colours. Think of each stored

colour as a pixel in an image. The array is pictured in Figure 7.9 (a).

Figure 7.9 (b) is the initial SOM where each cell of the map is

initialised with a random colour. By the end of the training, the

map looks as shown in Figure 7.9 (c). A different initialisation will

lead to a different final map but the palette of colours will be similar.

Examples of five outputs started with different SOM initialisations

are shown in Figure 7.10.

Self Organising Maps (SOM) 189

Figure 7.8: A SOM with categorised palynofacies (after [21]).

Are you curious now to see where these colours come from? The

image used for training the SOM is shown in Figure 7.11. It is

a beautiful view of Menai Straight photographed from the Bangor

side. The pixels were scrambled and fed to the training algorithm of

the SOM. The colours in the photo are represented well in the SOM

outputs even though the arrangements are different.

For comparison, we we ran the SOM training for another image

with a different colour palette. The results are shown in Figure 7.12.

Don’t get me wrong! SOM are not used exclusively for revealing

190 MLP, RBF, and SOM

(a) Input colours (b) Initial SOM (c) Output SOM

Figure 7.9: Illustration of SOM.

Figure 7.10: Different SOM outputs for the input array of colours

shown in Figure 7.9 (a).

colours in arrays. Arrays of colours make a nice example of how

data in the original 3D space (red-green-blue) is summarised in a

2D table.

7.3.2 Training of SOMs

Hebbian learning

Training of SOMS draws upon Hebbian learning (Donald Hebb,

1949) which postulates that:

1. If two neurons on either side of a synapse (connection) are ac-

tivated simultaneously (i.e., synchronously), then the strength

of that synapse is selectively increased.

Self Organising Maps (SOM) 191

Figure 7.11: Original images for the SOM in Figures 7.9 and 7.10.

Figure 7.12: Input image (colours) and three SOM outputs.

2. If two neurons on either side of the synapse are activated asyn-

chronously, then this synapse is selectively weakened or elimi-

nated.

Understanding the SOM activation pattern

Training of SOM is based on the concept of activation pattern. Con-

sider a 2D SOM where each cell of the map is a node of the network.

Each node on the SOM stores n values and can be associated

with a point in Rn. Denote those points by si,j , where i is the row

192 MLP, RBF, and SOM

(a) Structure of SOM (b) Activation pattern (c) 4-neighbourhood

Figure 7.13: Structure of SOM, an activation pattern, and a 4-neigh-

bourhood pattern.

of the node and j is its column. During the SOM training, objects

from the training set are submitted in random order. For each ob-

ject, the distances to all si,j are calculated, and the nearest node

is identified. This node gets activated, or ‘fires’, while the remain-

ing nodes remain dormant. Subplot (a) in Figure 7.13 highlights in

black a hypothetical activated node, say (i∗, j∗). Subplot (b) shows

the activation pattern of the SOM, where the chosen cell of the map

is shown in black. In addition, we consider the neighbourhood of

the activated cell. These are the cells on the SOM closest to the

activated cell, and NOT the cells whose si,j are closest to si∗,j∗ .

The 4-neighbourhood of the activated cell is shown in subplot (c).

Sometimes 8-neighbourhood is used instead of 4-neighbourhood.

The SOM training algorithm

The SOM training algorithm is shown in Figure 7.14.

The algorithm runs T times through the data set Z (as before,

each pass through Z is called an epoch) receiving one element z ∈ Z
at a time, and updating the SOM accordingly. The winner node and

its neighbours are identified. Their weights si,j are updated using

equations (7.1) and (7.2), respectively. The updates will ‘pull’ the

node in Rn towards z. The difference in the update is only in that

the winner is pulled by α, and the neighbours, by α2. Since α < 1,

α2 < α, which means that the winner will be pulled closer than the

Self Organising Maps (SOM) 193

The SOM Training Algorithm

Input: A labelled data set Z, the SOM size (M × K), a learning rate

α ∈ (0, 1), and a limit number of epochs T .

1. Initialisation. Initialise the weights si,j on the M × K grid with

small random numbers, i = 1, . . . ,M , j = 1, . . . ,K. Shuffle Z.

2. Competition. A new data point z ∈ Z is presented to the algorithm.

The nodes on the grid compete for it, and the closest node (in the

input space Rn) is declared the winner.

3. Cooperation. The neighbours of the winner are identified.

4. Update. The weights of the winner and the neighbour nodes are

updated, so that the nodes become ‘more like’ the input. (Self-

amplification inspired by Hebbian learning.) The following equation

is used for the winner node:

wnew,q ← wold,q + α(zq − wold,q), q = 1, . . . , n. (7.1)

where wold,q is the current value of the q-th element of the winner’s

si,j and zq is the q-th element of z. The neighbours are updated as

wnew,q ← wold,q + α2(zq − wold,q), q = 1, . . . , n. (7.2)

5. Repetition. If the number of epochs (passes through the whole of

Z) is not reached, shuffle Z and continue from step 2.

Output: SOM network with si,j , i = 1, . . . ,M , j = 1, . . . ,K.

Figure 7.14: The SOM training algorithm.

neighbours.

And notice another thing – the pulling only happens in Rn. The

SOM doesn’t move an inch! It is the same grid from start to finish.

Only the correspondence of the nodes with Rn will change; the nodes

194 MLP, RBF, and SOM

will move until they are settled. (In the examples above, the initial

random colours will gradually move towards colours represented in

the colour array so that similar colours in R3 stay close in the SOM

gird.)

There is another little detail which I missed in the algorithm. On

purpose. It may complicate the matter a little but, in real applica-

tions, it is essential. If we use the same α throughout, the algorithm

may not converge to a precise solution. It may oscillate about the

solution without going close. This is why we need yet another pa-

rameter which will dictate how α decreases with iterations. We may

choose γ < 1 so that at each iteration we decrease α by α← α× γ.

The problem with such algorithms is that the success of the algo-

rithm depends critically on the right tuning of the parameters. In

other words, we need to run experiments to determine useful values

of: M , K, α and γ.

⊕⊕⊕ Example 7.3.1

Here we will carry out only two tiny steps of the SOM training

algorithm to see how things work.

Consider a SOM network as a 3-by-3 grid as

shown on the left. The neighbourhood of a

node is defined as all the nodes immediately

connected to it. At the beginning of the train-

ing process, the weights of the nodes are random

pairs of values as shown in Table 7.1.

Table 7.1: Initial weights of the SOM in Example 7.3.1.

node # 1 2 3 4 5 6 7 8 9

w1 −10 11 10 −5 −7 −8 12 −8 −8

w2 3 −6 −5 −5 7 12 13 −12 −2

Self Organising Maps (SOM) 195

Object z1 = [7, 10]T has been submitted for training of the SOM,

followed by object z2 = [3, 0]T . Let’s see how the SOM will change

after each training step. We shall assume that the learning rate is

α = 0.6 and will forget about γ for now.

Notice that there are only 2 weights for each node of the SOM.

So, our data lives in R2. We love R2! We can plot things there. So

we will start by plotting weights and z1 to find the winning node.

Figure 7.15 shows this plot.

Figure 7.15: Representation of the SOM nodes from Example 7.3.1

in the original 2D space and the effect ot training with object z1
(shown with a triangle).

Notice that, at the start of the training, neighbourhood in the

SOM grid does not translate into neighbourhood in the original

196 MLP, RBF, and SOM

space. When we change the weights, we change the positions of

the nodes in R2 but not on the SOM grid. Thus the points will float

around until they represent the data that is used to train the SOM.

This data set is NOT shown in the figure! The data points z ∈ Z
will be coming one by one and make the nodes float about until they

assume positions representing the data in the best possible way. For

example, the nodes may nestle in the centres of clusters. This will

happen as the of points from a cluster will be close to one another

and will thus activate the same winner node on the SOM.

The data point of interest, z1 = [z11, z12]T = [7, 10]T , is shown

with a fancy triangle in the figure. Its closest node from the SOM

(in the original space!) is node 7. Node 7 is the winner, marked with

a black circle. In the cooperation step, we identify the neighbours

of node 7. Here is the catch! These neighbours are NOT in the

original R2 space; they are the neighbours in the SOM lattice! Node

7 is connected with nodes 4 and 8, therefore they will be updated

too. At the update phase, according to equation (7.1), we have:

w7,1 ← w7,1 + α(z11 − w7,1) = 12 + 0.6× (7− 12) = 9

and

w7,2 ← w7,2 + α(z12 − w7,2) = 13 + 0.6× (10− 13) = 11.2.

The new position of node 7 is shown with a circled blue dot.

Observe that node 7 is pulled at α = 0.6 of the way from 7 to

z1. For the neighbour nodes 4 and 8, the updates are similar but

we use α2 instead of α, which will pull them only 0.36 of the way

from the node to z1. The new positions of these nodes are marked

with grey dots in the figure. Their new weights are respectively

w4 = [−0.68, 0.4]T , w8 = [−2.6,−4.08]T .

You can complete this example on your own! The starting posi-

tion of the nodes in <2 will be the position after the change resulting

Self Organising Maps (SOM) 197

from seeing z1. Go ahead, have a try. The answer is at the back of

this chapter. 			

And guess what! You can program the SOM in MATLAB, even

the fancy version with both alpha and gamma. The trickiest part

would be determining the neighbourhood on the SOM grid. Best of

luck!

SOM had a few close relatives over the years: Vector Quanti-

sation (VQ) and Learning Vector Quantisation (LVQ). VQ was the

unsupervised version and LVQ was the supervised one. Both VQ

and LVQ use training algorithms very similar to SOM’s, mimicking

Hebbian learning. VQ has been used for clustering and LVQ for

classification. But, somehow, they have run their course and have

given way to newer, more effective classification methods. Will SOM

survive the quest of time? Who knows? Keep it in your piggy bank

as a quirky visualisation tool.

A final remark

There are many more types and models of NNs, and we haven’t even

touched the elephant in the room, the Deep Learning! I used to teach

Hopfield NNs in this module, not because they are very widely used

but because they are part of the ‘classics’. The field is really very

large and there is no space here to indulge in reinforcement learning,

Boltzmann machines and more. But now you know the basics and

you can build upon that foundation. ,

198 MLP, RBF, and SOM

The promised answers and solutions

Solution of Example 7.1.1

1. Dimensionality of the feature space is n = 2. The number of classes is

c = 3 because there are three outputs.

2. The sketch of the MLP is shown on the left.

3. MATLAB code to calculate the output of the MLP for a random input
x = [1, 2]T . The code displays at the end the three outputs of the MLP
for the given input.

1 clear, clc, close all
2

3 % Weights of the first hidden layer H1
4 w1 = [−2,1,−1;4,−3,3;4,−2,−3];
5

6 % Weights of the second hidden layer H2
7 w2 = [−3,2,2,1;−2,2,0,−1];
8

9 % Weights of the output layer
10 wo = [2,−2,3;−2,−1,−3;2,2,4];
11

12 x = [1,2]; % input
13 xa = [1 x]; % augmented x with u 0 = 1 (the bias input)
14

15 h1 = w1 * xa'; % the three outputs of H1
16 ah1 = [1 h1']; % augmented output of H1
17

18 h2 = w2 * ah1'; % the two outputs of H2
19 oh2 = [1 h2']; % augmented output of H2

Self Organising Maps (SOM) 199

20

21 o = wo * oh2'; % the output of the MLP
22 disp(o) % display the MLP output

The output of this code is o1 = −12, o2 = 9, o3 = −12. This output

spells class 2 for the given x = [1, 2]T because o2 > o1 and o2 > o3.

4. Now just replace line 12 with x = [-2,6]; and read the output: o1 =

−80, o2 = 11, o3 = 0, which assigns class label 2 to x1 = [−2, 6]T . For

x2 = [3, 5]T , we get [39,−15, 14], which places it in class 1, and for x3 =

[−1, 8]T , the output is [−54,−3, 16], which places it in class 3.

Solution of the second part of Example 7.3.1

Figure 7.16 illustrates the movement of the nodes of the SOM after sub-

mitting z2 = [z21, z22]T = [3, 0]T .

The closest node in R2 will be the (new) node 4, and the neighbours

(on the SOM!) will be nodes 1, 5 and 7. The calculations are shown below:

w4,1 ← w4,1 + α(z21 − w4,1) = −0.68 + 0.6× (3− (−0.68)) = 1.5280

and

w4,2 ← w4,2 + α(z22 − w4,2) = 0.4 + 0.6× (0− 0.4) = 0.16.

For the neighbours,

w1,1 ← w1,1 + α2(z21 − w1,1) = −10 + 0.36× (3− (−10)) = −5.32

w1,2 ← w1,2 + α2(z22 − w1,2) = 3 + 0.36× (0− 3) = 1.92

w5,1 ← w5,1 + α2(z21 − w5,1) = −7 + 0.36× (3− (−7)) = −3.4

w5,2 ← w5,2 + α2(z22 − w5,2) = 7 + 0.36× (0− 7) = 4.48

w7,1 ← w7,1 + α2(z21 − w7,1) = 9 + 0.36× (3− 9) = 6.84

w7,2 ← w7,2 + α2(z22 − w7,2) = 11.2 + 0.36× (0− 11.2) = 7.168.

The new position of 4 is marked with a circled blue dot, and the new

positions of 1, 5 and 7, with grey dots.

200 MLP, RBF, and SOM

Figure 7.16: Representation of the SOM nodes upon presentation of

training object z2 (triangle) after training with z1.

Chapter 8

Deep Learning NNs

Deep learning neural networks (DL) are top fashion at the moment.

There could be a whole module, and more than one, come to that,

about DL. We will only have a little glance in this module.

8.1 Some definitions

A deep-learning neural network is a large-scale neural network with

multiple hidden layers of units. A DL can be viewed as a structure

with multiple levels of representations of the data where higher level

features are derived from lower level features to form a hierarchical

representation. The final representation layer can be used as input

to a standard classifier. In a way, DL can be thought of as giant

feature extractors.

Unlike standard NNs, DL have bespoke and elaborate training

algorithms and protocols. Two essential requirements for using DL

are:

� Parallelism. Multiple graphics processing units (GPUs), mul-

201

202 Deep Learning NNs

tiple machines, computer clusters are needed for the training

of a DL.

� Large training data. The number of data points in the training

data set must be large: thousands, sometimes millions. If the

data set is not sufficiently large, it is often augmented with

artificial data points.

There is no consensus at the moment about the exact birthday

of DL or the people who conceived it (maybe there will be by the

time you read this book) [17]. DL area grew gradually on the foun-

dation of NNs, and keeps moving forward with massive leaps owing

to scientists like Geoffrey Hinton, Andrew Ng, Yann LeCun, Andrej

Karpathy and many more.

8.2 Applications of DL

Jason Brownlee keeps an enlightening website with curious applica-

tions of DL1. His list includes eight applications:

1. Colourisation of Black and White Images.

2. Adding Sounds To Silent Movies.

3. Automatic Machine Translation.

4. Object Classification in Photographs.

5. Automatic Handwriting Generation.

6. Character Text Generation.

7. Image Caption Generation.

8. Automatic Game Playing.

Image colourisation with DL is amazing! See the results pub-

lished by Zhang et al. [22] in Figure 8.1.

1https://machinelearningmastery.com/inspirational-applications-deep-learning/

Applications of DL 203

Figure 8.1: Example of image colourisation with DL (Zhang et

al. [22]).

Plus, I checked out their cool demo.2 See the results in Figure 8.2.

Compare the result with the original which I converted into grey to

submit to the demo. How good is that? Even Pikachu is yellow! I

can’t shake off the thought that there was somebody on the other

end of the demo who quickly laid the colours by hand. (Kidding...)

This colourisation has been applied to colourise old black and

white movies.

The second application in Brownlee’s list – adding sound to silent

movies – is also fabulous. One day you will have books with sound,

but not today. You’ll have to watch the little video on YouTube.3

2https://demos.algorithmia.com/colorize-photos
3https://www.youtube.com/watch?time_continue=12&v=0FW99AQmMc8

204 Deep Learning NNs

(a) Submitted (b) Partly colourised (c) Result (d) Original

Figure 8.2: Results from the grey image colourisation using DL.

Figure 8.3 is reproduced from the website of Google Translate

app announced in July 2015.4 It illustrates the success of DL in

translating text in images.

Figure 8.3: An example of the stages of image text translation by

DL.

Automatic object classification in photographs has been a pre-

cious AI dream for a long time. Recall the ImageNet data mentioned

in the introduction chapter (Figure 1.5)? This collection has been a

treasure for training and evaluating DLs. Figure 8.4 shows an im-

age as well as the tags and labels proposed by two image labelling

systems: Imagga5 and Vision AI6.

Vision AI even outlines the boxes with the detected objects.

What is even more interesting, is that DL can learn form specific,

4https://ai.googleblog.com/2015/07/how-google-translate-squeezes-deep.

Applications of DL 205

Imagga

100.00% ski

82.57% snow

73.37% skier

72.50% mountain

64.06% winter

58.76% cold

42.18% sport

40.90% mountains

36.73% slope

32.70% extreme

Vision AI

92% Person

91% Person

79% Person

76% Ski

68% Pants

61% Outerwear

52% Luggage & bags

Figure 8.4: Two examples of labelling an image by a DL.

complex concepts from data without knowing any labels! This is

related to the idea of a ‘grandmother cell’, proposed in the 1960 and

quickly dismissed by psychologists at the time.

html
5https://imagga.com/auto-tagging-demo
6https://cloud.google.com/vision/

206 Deep Learning NNs

The grandmother cell is a hypotheti-

cal neuron that represents a complex

but specific concept or object.

Suppose that the concept/object is the person’s grandmother.

The neuron will activate upon seeing Grandma, hearing her name

or talking about her. Curiously, people have also named this neuron

the ‘Jennifer Aniston Neuron’. So, I can rest assured that, in my

brain, I have neuron that lights up like a Christmas tree every time

when I see Jennifer Anniston on the screen, or even now as I am

typing! I love this!

And even more curiously, a massive experiment

with DL led to the same discovery! One neuron

(the grandmother neuron) learned to pick cats (yes,

cats!) after seeing 10 million unlabelled videos.

In 2012, a research team led by Andrew Ng and Jeff Dean, fed 10

million random YouTube videos to the Google Brain Simulator built

on 16,000 computers with one billion connections. Google Brain

developed that peculiar neuron which fired only for videos featuring

cats even though there were no labels (cats/no cats) on the training

videos.

DeepMind Technologies was founded in the UK in 2010 and

swiftly bought by Google in 2014. The company has created a neu-

ral network that learns how to play video games in a similar way

that humans do, based only on the pixels shown on the computer

screen.

Applications of DL 207

In 2016 the AlphaGo program developed by

DeepMind beat a human professional Go

player Lee Sedol, the world champion at the

time. World is competing to develop faster

and cleverer DL models capable of defeating

star human players of any game. The more

complex the game, the better!

OK, these applications were more for fun. According to almighty

Wikipedia, DL have been used in many more areas:

9. Automatic speech recognition

10. Natural language processing

11. Drug discovery and toxicology

12. Customer relationship management

13. Recommendation systems

14. Generating video from still images

15. Bioinformatics

16. Medical image analysis

17. Image restoration

18. Financial fraud detection

19. Military

The list keeps growing. Where is data (and these days data is

everywhere), DL can prove to be useful.

But don’t get too excited yet! DL are NOT the answer to every-

thing! They are good but not perfect. Moreover, they can be fooled.

And ever since the rise of DL there has been a parallel stream of re-

search looking into the flaws and brittleness of DL. [15, 19]

208 Deep Learning NNs

Do you know what this creature is? Yes, an ostrich

(struthio camelus). You would imagine that a DL

NN would easily learn to recognise an ostrich; its

appearance is so unmistakable.

But look an laugh! Our super-

clever DL thinks all these im-

ages are ostriches too!

How could this happen? The thing is, we can change a tiny amount

of pixels in an image and flip the DL’s decision into a completely

different category. The resultant image looks remarkably like the

original but the DL no longer gets it. This is called brittleness of the

decision and is the opposite term to robustness. The subtle changes

in the mistaken images above are done on purpose. They are skilfully

crafted into the image to make the DL’s decision flip.

The problems of DL do not stop with

images. Last year, I was at a confer-

ence in Bilbao, Spain. I wanted to check

the weather for the afternoon, and voiced

the question to my phone: “What is the

weather like in Bilbao today?” Check out

what the DL NN understood! Hilarious!

‘Bill’s bowel’ – ’Bilbao’? Really?

But imagine that fooling DLs is not done just for the fun of

it. Take a DL that is used to detect financial fraud. A malicious

attack on the data submitted to the DL may rob you of thousands

Structure and operation of DLs 209

of pounds. There is a whole area of research called Adversarial

Machine Learning which looks into this problem.

8.3 Structure and operation of DLs

There are many varieties of DL depending on the task being solved.

For image classification, for example, the first layers of a DL are

structured in a way to resemble the functioning of the visual cor-

tex in response to a specific stimulus. For audio processing, image

segmentation, retail analysis, DLs will have not only bespoke archi-

tectures but also tailor-made training algorithms.

One of the most advanced and publicly visible application of DL

is for image classification. The challenges of image classification are

beautifully summarised in a collage I found while surfing the Inter-

net7. I pinched the idea and created one of my own (see Figure 8.5).

Figure 8.5: Challenges of image classification.

7http://cs231n.github.io/classification/

210 Deep Learning NNs

DL works a treat for this type of data with all its challenges. The

specific type of DL for this task are Convolutional Neural Networks

(CNNs / ConvNets). ConvNet architectures make the explicit as-

sumption that the inputs are images, which allows for simplifying

the network compared to a fully connected version.

CNNs make use of several different types of neurons which we

have not seen during our travels thus far. The neurons at the first

layer (called convolutional layer) take a 3-dimensional input. This

input is a block from the input image as illustrated in Figure 8.6.

Figure 8.6: Illustration of the input to the neurons at the first CNN

layer.

The size of the input block is a× b (pixels) ×3 (colours). Here a

and b are hyper-parameters of the algorithm. (Keep an eye on the

number of parameters that we need to set up in order to train our

CNN.) The number of weights for this neuron will be 3ab+ 1, where

1 is added for the bias weight. In image processing parlance, we can

call this neuron a filter.

The question is now, which block of the im-

age do we submit to which neuron at the

first layer? CNN takes advantage of the fact

that the input is an image, and not a random

collection of blocks of the desired size.

Structure and operation of DLs 211

Thus, we slide the block across the whole image with step s pixels,

where s is called the “stride”, and is another hyper-parameter (three

so far). One neuron at the first layer will take one block as its input.

This action will produce an image of the same size as the input with

new pixel values calculated through the filter; this operation is called

convolution.

What happens to the corner and edge pixels? We pad the sides

with zeros. The size of the padding is another hyper-parameter

(making four now). Usually it is chosen so that the output of the

convolution (after sliding the block across the whole image) is of the

same size as the initial image. For example, if we have a 5 × 5 × 3

block, it will stick out of the image by 2 pixels, and they will be

assigned value 0 (black).

As we slide the same filter across the whole image, the number

of tunable parameters for generating the new image will be 3ab+ 1.

⊕⊕⊕ Example 8.3.1

Let’s see how a convolution layer will operate on the lovely image

of Menai Straight from Figure 7.11. Figure 8.7 shows the original

image of size 615× 820× 3 and the results of a convolution pass.

Figure 8.7: An example of the result from a convolutional pass on

an image with an averaging filter.

212 Deep Learning NNs

Consider a block of size 20×20×3 with an averaging filter which

has identity output and zero bias weight. In other words, all 1200

weights will be equal to 1/1200, and the net sum will be the output

of the neuron. Notice the slightly darker edges. This is because of

the zero-padding (black). 			

Now take K such filters with different

weights. They form the first hidden layer

of the CNN, called the “convolution layer”

(CONV). The number K is called depth, and

it is up to us to pick it (the fifth hyper-

parameter).

So, this convolution layer will consist of K stacked filter out-

puts of size width×height×K, and will serve as the input to the

next layer. The interesting thing about the CONV layer is that,

depending on the chosen filters, it may discover interesting (small)

colour, texture and orientation patterns in the original image. The

further layers are meant to use these patterns in forming higher-level

concepts.

Recall that the neurons in each depth slice (filter) use the same

weights and bias. This is called parameter sharing. Parameter shar-

ing is a way to ensure that the CNN training is manageable.

And the story goes on. CONV is typically followed by a RELU

layer. RELU returns the same structure as CONV but all negative

outputs are set to zero.

Following RELU, we typically have a POOL layer which reduces

the pixel dimensionality.

Structure and operation of DLs 213

In the max-pool implementation, to

reduce the weight and the height of

the image by a factor of 2, we replace

every 2×2 square of each depth slice

by the maximum number among the

4 numbers in the square as shown on

the left.

Note that neither RELU nor POOL have trainable weights; they

both perform fixed functions.

A final fully connected layer (FC) completes the CNN. This layer

is the traditional NN layer where all neurons at the layer before are

connected with all neurons at the subsequent layer. In classifica-

tion, FC has c neurons, one for each class. The tag of the neuron

with maximum activation for a given input image x will determine

the label for that image. A basic CNN configuration is shown in

Figure 8.8.

Figure 8.8: A basic CNN configuration.

⊕⊕⊕ Example 8.3.2

Consider the CNN configuration in Figure 8.8 for solving a 5-class

problem. Assume that the input image is of size 32 × 32 × 3, the

block sizes are a = 5, b = 5, there are K = 12 depth slices in CONV,

and POOL reduces the width and the height of the image by a factor

of 2. Calculate the number of trainable parameters of this CNN.

214 Deep Learning NNs

Solution. Each of the 12 depth slices in CONV will need 5×5×3+1 =

76 weights. Then CONV requires 76 × 12 = 912 weights. Neither

RELU nor POOL will add to this count. After POOL, the output

size will be 12×16×16 = 3072. There will be 5 output neurons in FC

because there are 5 classes. Each of the 3,072 neurons at POOL will

be connected to the 5 output neurons (plus a bias weight, giving a

total of (5+1)×3, 072 = 18, 432 weights from POOL to FC. Then the

overall total number of tunable parameters is 912+18, 432 = 19, 374.

			

In reality, CNN are a lot more complex, for example:

INPUT − C −R− C −R− C −R− P︸ ︷︷ ︸
repeat

...C −R− C −R− C −R− P − FC

Training of a CNN is no mean feat. The configuration will dictate

the suitable training methods and procedures. Most such procedures

are based on the error backpropagation algorithm which we studied

already in Section 7.1.3. Getting the training right is an art that

can be learned with a lot of practice. The problem is that, with data

size in order of millions, and with thousands of trainable parame-

ters, training a single instance of CNN takes weeks even with the

best that modern technology can offer (computer clusters, GPUs,

etc.). Gaining experience in training CNN, especially starting from

scratch, may not be on the cards for all of us. Yet, if we are faced

with a problem similar to one already approached by a CNN, we

can use a pre-trained CNN! Bring it on! For example, if our classes

of objects we want to recognise in images are in the list of classes

of a pre-trained CNN for object recognition, we can run our images

through the CNN and restrict the output to classes of interest only.

Which CNN is the best? 215

8.4 Which CNN is the best?

Of course, there isn’t any one CNN that dominates the rest of them.

Different problems call for very different CNN structures and train-

ing. But there have been frequent challenges on image classification.

Table 8.1 contains some data about the most popular CNNs to date.

Table 8.1: Popular CNNs

Year Name Details

1990 LeNet
The first successful application of CNN due to Yann

LeChen

2012 AlexNet
The first work that popularised CNN in computer vision.

Won the 2012 ImageNet challenge ILSVRC.

2013 ZF Net

Due to Zeiler and Fergus. Won the 2013 ImageNet chal-

lenge ILSVRC. Improvement over AlexNet – expanded

the size.

2014 GoogLeNet

Due to Szegedy et al. from Google. Inception-v4 Won

the 2014 ImageNet challenge ILSVRC. Developed ‘In-

ception’ module. Reduced the total number of weights

of the CNN.

2014 VGG Net

Due to Simonyan and Zisserman. Runner-up in the

2014 ImageNet challenge ILSVRC. Showed that the

depth of the network is critical. Back to large number of

parameters. Pre-trained models are available.

2015 ResNet
Residual Network. Due to Ke et al. Won the 2015 Ima-

geNet challenge ILSVRC. The top choice as of May 2016.

216 Deep Learning NNs

Will DL go out of fashion soon? Who knows? Like every other

area of human knowledge, DL will find their happy equilibrium be-

tween demand and supply. Some day.

Conclusion

Disclaimer: All images in this book are either my own, or sourced

from Google under the licence ‘Labelled for reuse’.

Disclaimer out of the way, remember the ‘pattern recognition

cycle’? It starts with Real World and ends with Real World as

shown in Figure 1.6. The user comes to you with their data and

their questions. Now that you have gone through this module, you

should be a lot more knowledgeable about the possible spells and

magic potions to help you bring a solution back to the user.

Imagine this is the last lecture of the semester. What do you

think I do at the last lecture (pick one)?

a.) Prepare a revision of the material.

b.) Give the class a mock exam (better still, give them the real

exam questions).

c.) Other.

The correct answer is c.) Other. This last lecture is the last time

I see the class before they graduate (however few troopers come to

that lecture, just a few weeks before Christmas). I am adamant

that all students who graduate from university must know the in-

ternational student anthem. So, yes, I ask them to sing. Check

217

218 Deep Learning NNs

it! Ask my former students. I stand them up, show them a few

YouTube renditions of Gaudeamus igitur (from New Zealand, Peru,

Romania, Russia, USA, Spain, Indonesia Italy, Mexico, Norway and

Poland - I just pick 3-4 of those to play) only to discover that UK

students don’t have a clue what this is! Then I display the lyrics on

the screen and ask them to sing along with an endearing group of

Finish graduates.8 Ah, yes, and I threaten the class that I will fail

anybody who does not sing. (I am only human, I have to have fun

too!) I love this! Celebration of life while it lasts. Actually, I can’t

claim novelty or originality for asking the class to sing Gaudeamus

igitur. My friend Ina Slavova did this, maybe 30 odd years ago as a

young lecturer in computer science at the New Bulgarian University

in Sofia. I laughed my head off when she told me.

Now I will leave you with the lyrics (only two of the verses!) and

will hope you can sing it too:

Gaudeamus igitur

Iuvenes dum sumus.

Post iucundam iuventutem

Post molestam senectutem

Nos habebit humus.

Vivat academia!

Vivant professores!

Vivat membrum quodlibet;

Vivant membra quaelibet;

Semper sint in flore.

8https://www.youtube.com/watch?v=Aa_5aRxqi8Q

Bibliography

[1] K. Bache and M. Lichman. UCI machine learning repository.

http://archive.ics.uci.edu/ml, 2013. University of California,

Irvine, School of Information and Computer Sciences.

[2] Anthony J. Bagnall, Aaron Bostrom, Gavin C. Cawley, Michael

Flynn, James Large, and Jason Lines. Is Rotation Forest the

best classifier for problems with continuous features? CoRR,

abs/1809.06705, 2018.

[3] J. C. Bezdek, J. M. Keller, R. Krishnapuram, L. I. Kuncheva,

and N. R. Pal. Will the real iris data please stand up? IEEE

Transactions on Fuzzy Systems, 7(3):368–369, 1999.

[4] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[5] Corinna Cortes and Vladimir N. Vapnik. Support-vector net-

works. Machine Learning., 20(3):273–297, 1995.

[6] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and

Li Fei-fei. Imagenet: A large-scale hierarchical image database.

In In Proceedings of the International Conference of Computer

Vision and Pattern Recognition (CVPR), pages 248–255, 2009.

219

220 BIBLIOGRAPHY

[7] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern

Classification. Wiley, 2001.

[8] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and

Dinani Amorim. Do we need hundreds of classifiers to solve real

world classification problems? Journal of Machine Learning

Research, 15:3133–3181, 2014.

[9] R.A. Fisher. The use of multiple measurements in taxonomic

problems. Annals of Eugenics, 7:179–188, 1936.

[10] David J. Hand. Measuring classifier performance: a coherent

alternative to the area under the ROC curve. Machine Learning,

77(1):103–123, 2009.

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization, 2014.

[12] L. I. Kuncheva. Combining Pattern Classifiers. Methods and

Algorithms. Wiley, 2nd edition, 2014.

[13] Georgre Lakoff. Women, Fire and Dangerous Things. The

University of Chicago Press, 1987.

[14] Gordon D. Murray. A cautionary note on selection of variables

in discriminant analysis. Journal of the Royal Statistical Soci-

ety. Series C, 26(3):246–250, 1977.

[15] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neu-

ral networks are easily fooled: High confidence predictions for

unrecognizable images. CoRR, abs/1412.1897, 2014.

[16] J. J. Rodŕıguez, L. I. Kuncheva, and C. J. Alonso. Rotation for-

est: A new classifier ensemble method. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 28(10):1619–1630,

Oct 2006.

BIBLIOGRAPHY 221

[17] Jürgen Schmidhuber. Deep learning in neural networks: An

overview. 2014. Technical Report IDSIA-03-14.

[18] E. H. Shortliffe and B. G. Buchanan. A model of inexact reason-

ing in medicine. Mathematical Biosciences, 23(3-4):351—-379,

1975.

[19] Christian Szegedy, Google Inc, Wojciech Zaremba, Ilya

Sutskever, Google Inc, Joan Bruna, Dumitru Erhan, Google

Inc, Ian Goodfellow, and Rob Fergus. Intriguing properties of

neural networks. 2014. arXiv:1312.6199 [cs.CV].

[20] Paul Viola and Michael J. Jones. Robust real-time face detec-

tion. International Journal of Computer Vision, 57(2):137–154,

May 2004.

[21] Andrew F. Weller, Anthony J. Harris, and J. Andrew Ware.

Artificial neural networks as potential classification tools for

dinoflagellate cyst images: A case using the self-organizing map

clustering algorithm. Review of Palaeobotany and Palynology,

141:287––302, 2006.

[22] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful im-

age colorization. In ECCV, 2016.

222 BIBLIOGRAPHY

Appendix A

Maths you should know

What do you need to remember from your school maths?

1. Equation of a line in 2d

ax+ by + c = 0.

2. Equation of a plane in 3d

ax+ by + cz + d = 0.

3. Deriving the equation of a line in 2d from the coordinates of 2

points A(x1, y1) and B(x2, y2).

x− x1
x2 − x1

=
y − y1
y2 − y1

.

Example: A(3,−2) and B(1,−1).

x− 3

1− 3
=

y − (−2)

−1− (−2)
,

x− 3

−2
=
y + 2

1

223

224 Maths you should know

x− 3 = −2y − 4,

and, finally

x+ 2y + 1 = 0.

4. Plotting a line in 2d in your notes. Pick two points on the line,

plot them on paper, and connect them using a straight edge.

For example, plot the line given by the equation

6x− 2y + 8 = 0.

Pick x = 0. Calculate y = −8/(−2) = 4. First point is

P (0, 4). Pick y = 0. Calculate x = −8/6 = −1.33. Second

point is Q(−1.33, 0). (See Figure A.1.)

5. Equation of a circle

(x− cx)2 + (y − cy)2 = r2,

where the centre is at C(cx, cy), and the radius is r, and equa-

tion of a sphere

(x− cx)2 + (y − cy)2 + (z − cz)2 = r2,

where the centre is at C(cx, cy, cz), and the radius is again r.

6. How the equation of line/plane is used to find out whether two

points lie on the same side of the line/plane.

Substitute the coordinates of the two points in the left-hand-

side of the equation of the line/plane. If the signs of the sums

are the same, the two points lie on the same side of the line/-

plane.

7. Euclidean distance in 2d, 3d and n-d. Consider two points

in Rn: X(x1, x2, . . . , xn) and Y (y1, y2, . . . , yn). The Euclidean

distance is

d(X,Y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

225

Figure A.1: Example of plotting a line given by its equation.

8. How we find the equation of a line which passes through a given

point A(a1, a2) and is orthogonal to vector v = [v1, v2]T ?

Start by constructing an equation of a line using the compo-

nents of v as the coefficients

v1x+ v2y + c = 0.

This way we guarantee that the line is orthogonal to v. Second,

point A must satisfy the equation because A lies on the line.

Therefore

v1a1 + v2a2 + c = 0,

and

c = −v1a1 − v2a2.

The equation of the line is

v1x+ v2y − v1a1 − v2a2 = 0.

226 Maths you should know

Example: Find the equation of a line which passes through a

given point P (6,−4) and is orthogonal to vector v = [−2, 10]T ?

−2x+ 10y + 12 + 40 = 0

x− 5y − 26 = 0.

Check with P : 6− 5(−4)− 26 = 6 + 20− 26 = 0.

Index

1nn, 90, 92

adversarial machine learning, 209

attribute, 18

bagging, 105

Bayes, 12, 60

Bayes classifier, 60

Bayes theorem, 12

binary classification, 17, 32

bootstrap sample, 105

centroid linkage, 136

circle, 224

class, 16

positive, negative, 47

class labels, 18

classification region, 28

classifier, 27, 63

decision tree, 97, 122

training, 98

ensemble, 104

if-then, 82

largerst prior, 84

largest prior, 54

majority, 84

nearest mean (NMC), 64

nearest neighbour (1-nn), 90

OneR, 85

rule-based, 82

support vector machine (SVM),

101

ZeroR, 84

classifier ensembles, 104

AdaBoost, 107

bagging, 105

base classifier, 105

boosting, 107

homogeneous and heteroge-

neous, 105

random forest, 110

random subspace, 108

unstable classifiers, 105

cluster, 125

cluster analysis, 125

clustering, 125

agglomerative, 128

227

228 INDEX

hierarchical, 128

k-means, 127, 143

mean (centroid) linkage, 136

non-hierarchical, 142

single linkage, 127, 128

single linkage, chain effect,

136

confusion matrix, 41, 43

convolutional neural networks, 210

CONV layer, 212, 213

parameter sharing, 212

POOL layer, 212

RELU layer, 212

covariance matrix, 77

cross-valdiation, 40

cross-validation

fold, 40

crowdsourcing, 23

data

imbalanced, unbalanced, 54

data set, 20

big, 23

iris, 22

labelled, 20

UCI repository, 22

wide, 23, 118

decision tree, 97

decision stump, 96

intermediate nodes, 97

leaves, 97

random tree, 110

root, 97

deep learning, 201

dimensionality reduction, 115

discriminant function, 27, 29

distance

Euclidean, 91

Hamming, 91

Manhattan, city-block, 92

nearest nighbour, 129

epoch, 177, 192

error rate, 43

Euclidean distance, 64, 91, 224

F measure, 57

false negative, 47

false positive, 47

feature, 18, 113

redundant, irrelevant, 114

feature selection, 113

diagram, 115

exhaustive search, 119

filter approach, 122

sequential forward selection

(SFS), 120

wrapper approach, 122

feature space, 19

feedforward neural networks, 174

generalisation, 41

GM measure, 57

grand truth, 17

INDEX 229

if-then classifier, 82

imbalanced data, 54

k-means, 127, 143

k-nearest neighbour classifier (k-

nn), 90

algorithm, 92

KAGGLE, 13

knn, 90, 92

MATLAB, 93

leave-one-out (LOO), 40

line in 2D, 33, 223

loss matrix, 56

Majority classifier, 84

MATLAB, 34, 45, 71, 93

ROC curve, 52

matrix

loss, 56

mean linkage, 136

MNIST dataset, 17

multi-label classification, 17

multiclass classification, 17

mutually exclusive, 17

nearest mean classifier (NMC), 64

nearest neighbour classifier (1-nn),

90

NETFLIX, 12

neural networks, 155

activation function, 161

backpropagation, 157

bias input, 159

bias weight, 159

biological neuron, 159

deep learning, 157, 201

convolution, 211

convolutional neural net-

work (CNN)), 210

epoch, 177

error backpropagation algo-

rithm, 175

feedforward, 174

Hebbian learning, 190

learning rate, 178

learning vector quantisation

(LVQ), 197

MLP, 171

momentum, 178

multi-layer-perceptron (MLP),

171

net sum, 160

neuron, 159

firing, 161

perceptron, 156, 165

radial basis functions (RBF),

179

RBF, 171, 179

sigmoid activation function,

162

SOM, 171

activation pattern, 191

threshold logic unit (TLU),

230 INDEX

163

vector quantisation (VQ), 197

neuron, 159

object, 18, 19

OneR classifier, 85

training, 85

overfitting, 25, 36

overtraining, 36

pattern recognition cycle, 25, 217

perceptron, 156, 165

convergence theorem, 168

training algorithm, 165

plane, 223

principal component analysis (PCA),

116

probabilities

class-conditional, 60

posterior, 60

prior, 60

probability

unconditional, 60

RBF, 179

training, 183

recall and precision, 57

reinforcement learning, 156

ROC curve, 49

area under (AUC), 53

operational point, 50

ROC curves, 47

rule-based classifiers, 82

sensitivity, 48

SFS (see feature selection), 120

sigmoid activation function, 162

single linkage, 127, 128

chain effect, 136

specificity, 48

sphere, 224

supervised pattern recognition, 25

SVM, 101

threshold logic unit (TLU), 163

training and testing, 39

cross-validation, 40

data shuffle, 39

hold-out (H-method), 39

leave-one-out, 40

resubstitution (R-method), 39

training and testing protocols, 37

true negative, 47

true positive, 47

UCI repository, 22

unsupervised learning, 125

unsupervised pattern recognition,

25, 125

Voronoi cell, 71

Voronoi diagrams, 71

ZeroR classifier, 84

