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Abstract

Functional Magnetic Resonance Imaging (fMRI) is an exciting technology
which allows neuroscientists to gather data on activity within the brain.
This activity corresponds to neural processes such as emotion or motor
activities. By applying machine learning techniques to fMRI data, the
patterns corresponding to these processes can be recognised and classified.

The ability to classify neural processes opens up a wealth of opportunities
to neuroscientists. Early fMRI experiments focus on identifying regions of
the brain involved in processes such as pain or emotion. Having identified
these regions, it is possible to see how they react to stimuli differently in
participants with different conditions, for example depression, autism or
attachment disorder.

Most of this work is exploratory in nature, with analysis being carried out
offline, that is, once the fMRI data collection is complete. More recent ad-
vances in classification speed and accuracy, and in fMRI technology, have
allowed for real time experiments. During real time fMRI experiments the
classifier is trained and then used during the course of the experiment. In
what is termed a neurofeedback loop, the stimuli presented to the partici-
pant can be updated or altered dependent upon the classification result of
the output data. Real time fMRI has been used in many proof of concept
type experiments, such as navigating mazes or balancing a pendulum by
using different thought processes.

In order to better facilitate real time fMRI classification, it is proposed
here that an online classifier will be advantageous. During the course of a
real time fMRI experiment, training data is often very limited, therefore
the ability of a classifier to learn from new data during the course of the
experiment will be of benefit. In order to maintain speed and accuracy,
we propose a random subspace ensemble of linear classifiers.

Further to this, it is noted that in many cases, during the online phase,
true class labels may not be known. The use of an online ‘naive labelling’
classifier within an ensemble framework is proposed as an alternative to
a fixed pre-trained classifier. This is extended by the introduction of a
‘guided update’ strategy for the ensemble, whereby the classifiers within
the ensemble are updated using the ensemble decision, rather than the
individual decisions. Comparison of this strategy with a fixed classifier
ensemble and an ensemble of classifiers with individual ‘naive’ updates
is provided. Variations of the guided update strategy are also proposed,



whereby classifiers within the ensemble are only updated when specific
criteria are fulfilled. These criteria are based upon agreement with the
ensemble decision, and confidence in the ensemble decision.

The proposed methods are shown to provide more accurate results than
using a fixed classifier, and are tested across a variety of emotion based
fMRI data sets.

iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 fMRI Data and Analysis 5
2.1 Brain and Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Investigating the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Labelling fMRI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7.1 Voxel Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7.2 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Avoiding Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Traditional Analysis of fMRI Data . . . . . . . . . . . . . . . . . . . 25
2.10 Multivariate Analysis of fMRI Data . . . . . . . . . . . . . . . . . . . 26
2.11 Real Time fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.12 Software Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.13 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.13.1 Emotion Negative (EN1 and EN2) . . . . . . . . . . . . . . . 32
2.13.2 Emotion Both (EB) . . . . . . . . . . . . . . . . . . . . . . . . 32
2.13.3 Bangor 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Linear Classifiers for Streaming Data 35
3.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Offline Linear Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Support Vector Machine (Linear Kernel) . . . . . . . . . . . . 36
3.2.2 Linear Discriminant Classifier . . . . . . . . . . . . . . . . . . 37
3.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4 fMRI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



3.3 Online Linear Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Linear Perceptron for Streaming Data . . . . . . . . . . . . . 42
3.3.2 Balanced Winnow . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Online Linear Discriminant Classifier . . . . . . . . . . . . . . 43
3.3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Comparison of Online Linear Classifiers for Real Data . . . . . . . . . 52
3.4.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Naive Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 The Random Subspace Ensemble 62
4.1 Combining Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 Ensemble Design . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Random Subspace Ensemble . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Deriving Parameters for the RS Ensemble for fMRI Analysis . . . . . 68

5 Random Subspace Ensemble for Non-i.i.d. Streaming fMRI Data 74
5.1 A Simulation Experiment . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . 75
5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.4 Experiment with Real fMRI Data . . . . . . . . . . . . . . . . 77

5.2 Online Classifier Ensembles for fMRI Data . . . . . . . . . . . . . . . 77
5.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Processing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Classification of i.i.d. fMRI Streaming Data 85
6.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Kappa-error Diagrams . . . . . . . . . . . . . . . . . . . . . . 90
6.2.2 Individual vs Ensemble . . . . . . . . . . . . . . . . . . . . . . 93
6.2.3 Fixed vs Unsupervised Updates . . . . . . . . . . . . . . . . . 95

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vi



7 Semi-supervised Classification of Non-i.i.d. fMRI Streaming Data 97
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Guided Update Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2.1 Theory and Illustrations . . . . . . . . . . . . . . . . . . . . . 98
7.2.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Error-driven and Confidence-driven Updates . . . . . . . . . . . . . . 106
7.3.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . 107
7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8 Conclusion 117
8.1 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3 Publications Relating to the Thesis . . . . . . . . . . . . . . . . . . . 119

A Results Tables 121

Bibliography 125

vii



List of Figures

2.1 The location of the lobes in the forebrain. . . . . . . . . . . . . . . . 6
2.2 Top: Location of the amygdala, highlighted in yellow.

Bottom: Location of the insular cortex, highlighted in red.
Images created using the standard Talairach atlas in AFNI [24], images
courtesy of N. N. Oosterhof of Bangor University. . . . . . . . . . . . 7

2.3 fMRI experimental setup. Stimulus is presented to participant. Scans
are collected and analysed offline. . . . . . . . . . . . . . . . . . . . . 12

2.4 Plot of stimuli (black) and HRF (red). Time is measured on the x-axis. 13
2.5 Block design fMRI experiment. Red and blue represent stimuli from

two different classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Event-related fMRI experimental designs. Red and blue represent

stimuli from two different classes. . . . . . . . . . . . . . . . . . . . . 15
2.7 Examples of voxel masks derived from BOLD signal. Top row shows

the unmasked volume slice and the default mask. Red voxels indicate
those selected. Voxel mask sizes correspond to the complete volume
mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 The neurofeedback loop. Based on the classification output, the par-
ticipant is instructed to perform a mental exercise that will drive the
brain pattern closer to one corresponding to the desirable behaviour. 27

3.1 A classifier is a ‘black box’ into which a data point is passed as input,
and a class label is produced as output. . . . . . . . . . . . . . . . . . 35

3.2 (a) Data set 1: Two classes which are linearly separable in two dimen-
sions. (b) Data set 2: Two classes which are not linearly separable in
two dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 LDC (blue) and SVM (green) for linearly separable data.
(a) Training data
(b) Training and testing data. . . . . . . . . . . . . . . . . . . . . . . 39

3.4 LDC (blue) and SVM (green) for non linearly separable data.
(a) Training data
(b) Training and testing data. . . . . . . . . . . . . . . . . . . . . . . 40

3.5 The online Perceptron for linearly separable data. . . . . . . . . . . . 46
3.6 The online Winnow for linearly separable data. . . . . . . . . . . . . 47
3.7 Online linear discriminant classifier for linearly separable data. . . . . 48
3.8 The online Perceptron for non linearly separable data. . . . . . . . . . 49
3.9 The online Winnow for non linearly separable data. . . . . . . . . . . 50

viii



3.10 Online linear discriminant classifier for non linearly separable data. . 51
3.11 Cumulative error progression. . . . . . . . . . . . . . . . . . . . . . . 52
3.12 Online error plots and tables. . . . . . . . . . . . . . . . . . . . . . . 55
3.13 Online error plots and tables. . . . . . . . . . . . . . . . . . . . . . . 56
3.14 Online error plots and tables. . . . . . . . . . . . . . . . . . . . . . . 57
3.15 Wins versus losses for the three algorithms. The diagonal line corre-

sponds to wins = losses. . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Illustration of classifier ensemble. . . . . . . . . . . . . . . . . . . . . 62
4.2 Theoretical (red, circles) and simulation curves (black, dots) coincide

for the expected values of U , C and D for n = 1000, Q = 100 and
L = 10. The empirical curve is calculated as an average of 10 ensembles
with randomly sampled L = 10 sets of M features. . . . . . . . . . . . 73

5.1 The three RS characteristics and the ensemble error as functions of the
ensemble size L and the feature set size M . Each of the 2 classes in
the data set was sampled from a Gaussian distributions with Q = 50
relevant and n−Q = 450 noise features. . . . . . . . . . . . . . . . . 76

5.2 RS error on the real fMRI data set as a function of the ensemble size
L and the feature size M . The recommended values for L and M are
overlayed on the surface. . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Cumulative error progression for online data. . . . . . . . . . . . . . . 79
5.4 Trajectory of means of kappa error diagrams. . . . . . . . . . . . . . . 81
5.5 Design matrix highlighting occurrence of individual and ensemble er-

rors, plotted against the design matrix (black line). Individual errors
represented by red dot, ensemble errors by black cross. Transitions
between classes are illustrated by vertical grey stripes. . . . . . . . . . 81

6.1 Final cumulative error scores (%). Error scores are coloured from blue
through to red representing low and high error respectively. Values of
M are shown as rows of each coloured grid. ‘F’, ‘N’ and ‘S’ correspond
to fixed, naive and supervised ensembles. ‘I’ corresponds to mean
individual error of classifiers for a given M and NT . . . . . . . . . . 89

6.2 Figures for EB data taken with ensemble size L = 11, feature set car-
dinality M = 100 and training data set cardinality NT = 100.
(a) Error progression. Solid line indicates classifier ensembles. Dotted
line indicates individual classifiers. Plot illustrates changes in error
over time.
(b) Kappa-error progression. Kappa-error progression plots the changes
in pair-wise accuracy and diversity as the classifier ensembles learn over
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Typical error progression of individual classifiers (data set: EN1, size of
ensemble: L = 5, cardinality of feature subsets: M = 100, cardinality
of training data set: NT = 20). . . . . . . . . . . . . . . . . . . . . . . 94

ix



6.4 Comparison of different individual classifier progressions for the naive
ensemble. Improvement over the fixed ensemble was obtained with
both ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Simulation and theoretical results for the fixed ensemble and the two
update strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Cumulative error progression comparing the three strategies for L =
13, M = 20. Vertical lines represent class boundaries. . . . . . . . . . 103

7.3 Final cumulative error scores (%) taken at t = 187. ’F’, ’N’ and ’G’ cor-
respond to fixed, naive, and guided strategies,respectively. The range
of the final error scores is 17.8% – 22.2%. Error scores are coloured
from blue through to red representing low and high error respectively. 104

7.4 Pairwise wins vs losses. Significance calculated at α = 0.05. . . . . . . 105
7.5 Final cumulative error scores. The range of final error scores for each

data set is indicated in the title . Error scores are coloured from blue
through to red representing low and high error respectively. L is the
ensemble size, (L = {5, 9, 11} represent the rows of each coloured grid).
M is the cardinality of feature subsets. ‘N’, ‘G’, ‘E’, ‘C’ and ‘EC’
correspond to the naive, guided, error-driven, confidence-driven and
error plus confidence-driven ensembles respectively. . . . . . . . . . . 109

7.6 Data set EN1, L = 5, M = 250 . . . . . . . . . . . . . . . . . . . . . 112
7.7 Data set EN1, L = 5, M = 100 . . . . . . . . . . . . . . . . . . . . . 112
7.8 Data set EN2, L = 5, M = 20 . . . . . . . . . . . . . . . . . . . . . . 113
7.9 Data set EN2, L = 9, M = 250 . . . . . . . . . . . . . . . . . . . . . 113
7.10 Pairwise wins vs losses. Significance calculated at α = 0.05. . . . . . . 114

x



List of Tables

2.1 Summary of the three fMRI data sets . . . . . . . . . . . . . . . . . 33

3.1 Training and Testing Error for SVM and LDC (%) . . . . . . . . . . 40
3.2 Training and Testing Error for SVM and LDC (%) on fMRI Data . . 41
3.3 Data sets used in the experiment . . . . . . . . . . . . . . . . . . . . 53

5.1 Summary of the simulation results. Ē is the average RS ensemble error
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Chapter 1

Introduction

1.1 Motivation

The use of functional Magnetic Resonance Imaging (fMRI) as a tool for investigation

of processes within the brain. Until recently, analysis of fMRI data has been uni-

variate, considering data from each voxel in the scan independently. The activation

patterns associated with brain processes however, are highly distributed throughout

the brain. Univariate approaches are unable to capture and make use of this distribu-

tion. In order to improve the tools available to the psychologists and neuroscientists,

multivariate classification techniques are now being used for fMRI data.

A move towards neurofeedback experiments, conducted in real-time, has meant

that data handling and classification need to be fast, allowing the psychologist or

neuroscientist to update the stimuli according to the results.

Due to the expense and time taken to organise and conduct fMRI experiments,

it is advantageous to be able to complete an experiment in a single trial. Typically,

classifiers will be trained on data from one trial, and then used for classification

in subsequent trials. This work seeks to offer a classifier which can learn from a

small batch of training data at the start of a trial, and then continue to learn and

update throughout the course of the trial. There are many fields relating to this

thesis, an introduction is offered to each area, however only those methods used in
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the experiments are explained in detail. Data was kindly supplied by psychologists

from the School of Psychology, Bangor University.

1.2 Research Hypothesis

The human brain is a complex architecture, fascinating to both scientists and non-

scientists alike. Lately, the powers of fMRI have received much media attention.

Experiments hitting the headlines have included discovery of awareness in patients in

a vegetative state [92], and ‘love can ease pain’ [134].

Multivariate analysis of fMRI has allowed classification of participants’ ‘brain

states’ when they are subjected to different stimuli. Advances in classifier and fMRI

technology have meant that this analysis can now happen in real time.

fMRI data is complex in nature, and suffers from a very high feature-to-instance

ratio, typically, with very few training examples available. Linear classifiers, in par-

ticular the support vector machine with linear kernel, are popular for fMRI analysis

due to their speed and accuracy [23, 30, 75, 94].

Classifier ensembles are deemed to be more accurate than individual classifiers,

and are less prone to overfitting the data than individual classifiers. This is par-

ticularly beneficial in data sets with a large feature-to-instance ratio. The Random

Subspace (RS) ensemble framework [52] has been shown to be accurate for data sets

displaying such properties; specifically when there is high redundancy in the feature

set [116]. Experiments with the RS ensemble on fMRI data have shown promising

results, [71], which this thesis aims to build upon.

Here it is hypothesised that a classifier for fMRI data would benefit from continu-

ing to learn throughout the course of an experiment. An online classifier is capable of

updating after each new instance is presented. This means that the classifier is able

to continue learning beyond the initial training phase.
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It is also noted that there may be cases when the true ‘label’ of the participant’s

brain state may not be known. The use of naive labelling is proposed as a possible

solution [73]. The drawback is the possibility of a ‘runaway’ classifier, where the

uncorrected classifier progressively learns ‘the wrong thing’ [26]. By using naive la-

belling for online learning within a classifier ensemble, here, it is hypothesised that not

only will the classifier continue to learn throughout the course of the experiment, but

that the ensemble environment will counteract any runaway behaviours introduced

by naive labelling.

To test the hypothesis, it is proposed to use the ensemble decision, rather than

the individual classifier decisions for the updates of the online classifiers. As this

approach may compromise the diversity of the ensemble, this work is concluded by

offering different criteria which may be used to determine when to update the ensem-

ble members.

1.3 Outline of Tasks

In order to move towards real-time classification of potentially unlabelled fMRI data,

the overall task is broken down into a series of challenges.

1. To introduce and consider some of the challenges of analysing fMRI data.

2. To introduce the techniques which will be applied to fMRI analysis in this thesis,

namely linear classifiers, online classification and semi-supervised learning.

3. To introduce classifier ensembles, specifically the random subspace ensemble.

Parameters are derived for the random subspace ensemble for application to

fMRI data.

4. The naive labelling strategy for semi-supervised classification of i.i.d fMRI data.

5. Supervised classification of non-i.i.d. fMRI data.
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6. Exploration of update strategies for using naive labelling with classification of

non-i.i.d. fMRI data.

1.4 Contributions

This thesis offers the following contributions:

1. Guidelines to parameter selection for the random subspace ensemble. As part

of a collaboratory work recommendations for the parameters of the ensemble

based upon criteria of usability, feature set diversity and coverage were derived.

These values were tested on both synthetic and real fMRI data.

2. The use of naive labelling within an ensemble framework in order to reduce

the likelihood of a runaway classifier. The online naive labelling strategy is

compared with a fixed pre-trained classifier, and a classifier with supervised

online updates. Both individual classifiers and random subspace ensembles are

considered. The methods are tested on i.i.d. (shuffled) fMRI data.

3. The use of a random subspace ensemble of online linear classifiers for streaming

fMRI data. Three online classifier models were compared, both as individual

classifiers and as part of a random subspace ensemble.

4. The guided update strategy for a classifier ensemble. Two update strategies for

the random subspace ensemble were compared with a fixed pre-trained classifier

for streaming fMRI data.

5. Criteria upon which to update the guided ensemble. Three update criteria are

introduced for the guided ensemble. Ensembles updated using these criteria

were compared with the naive ensemble and guided ensemble.

4



Chapter 2

fMRI Data and Analysis

2.1 Brain and Behaviour

Human behaviour is controlled by the brain, and can be separated into processes

including motor control, vision and emotion. Different regions of the brain are re-

sponsible for different processes, with some processes involving more than one region

of the brain.

The brain can be categorised into three areas, the forebrain, the midbrain and the

hindbrain [18]. The midbrain and the hindbrain are mainly concerned with primary

support functions such as respiration and control of the pulse. The forebrain is

responsible for the majority of high level functions such as memory and language.

The forebrain is the area of the brain where conscious processes such as decision

making takes place.

The forebrain is further sub-divided into four regions, known as lobes, illustrated

in Figure 2.1. The function of the lobes is described below [39]:

The frontal lobe, is located at the front of the brain, and is where conscious deci-

sions are made. It is involved in regulating behaviour and handling the planning

and control of movement, and can be thought of as our management centre.

The parietal lobe, is located in the upper-rear part of the brain. This lobe is

involved in processing information about sensations such as temperature, pain
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Figure 2.1: The location of the lobes in the forebrain.

or pressure.

The temporal lobe, located beneath the parietal lobe, is the region of the brain

concerned with memory and language processes. Auditory and speech percep-

tion are processed in the temporal lobe.

The occipital lobe, is located at the rear of the brain and plays a key role in

processing visual information.

Perhaps the most important part of the forebrain is the cerebral cortex. The cerebral

cortex forms a thin surface layer on the outside of the forebrain. The layer is tightly

folded in order to give a high surface area. Also referred to as the grey matter, it

contains approximately ten billion brain cells. Below this surface layer lie bundles

of myelin nerve fibres, known as the white matter. These nerve fibres transport

information around the cortex and to other regions of the brain.

One goal of neuroscientists is to ascertain regions of the brain which are responsible

for controlling specific processes. Much research has focused on emotion. Detecting

and recognising emotion is the main focus of the studies in this thesis. Emotion has

been found to be regulated by both the amygdala and the insular cortex.
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Figure 2.2: Top: Location of the amygdala, highlighted in yellow.
Bottom: Location of the insular cortex, highlighted in red.
Images created using the standard Talairach atlas in AFNI [24], images courtesy of
N. N. Oosterhof of Bangor University.
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The amygdala is located within the temporal lobes, as can be seen in Figure 2.2

(top). Experiments have shown different levels of activation in the amygdala across

participants with certain psychological disorders such as borderline personality disor-

der, autism and depression. The emotional response of the amygdala has been used

by scientists to distinguish between groups of people experiencing these conditions,

and control groups [4, 88, 114].

The insular cortex is a portion of the cerebral cortex, as illustrated in Figure 2.2

(bottom). The insular cortex has been linked with cravings such as food or drug

cravings [45]. It also has a role in pain, and basic emotions such as anger, fear,

happiness or sadness.

2.2 Investigating the Brain

There are many techniques available for investigating the structure and behaviour of

the brain. These techniques are categorised as being either invasive or non-invasive.

Based upon the nature of the task in hand, one technique may be more appropriate

than another. Factors affecting the choice of technique include differences in spatial

and temporal resolution, and the ease of data acquisition - some setups are more

portable than others. The use of radiation in some techniques also affects their

appropriateness in certain circumstances. Six of the more common techniques are

described below:

Computerised Axial Tomography (CAT scan) (non-invasive) involves taking

a series of x-rays along an axis. These x-rays are stacked to generate a 3-

dimensional volume image. Different intensity levels in the image can be used

to distinguish between structures in the brain. CAT scans are typically used in

diagnostics, for example locating tumours, blood clots or fractures which may

occur as a result of a trauma.
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Positron Emission Tomography (PET scan) (invasive) involves injecting a ra-

dioactive tracer isotope into the body. As the isotope decays, it loses energy

until a point where it interacts with an electron. The process results in the

release of a pair of photons. These photons are detected by the PET scanner.

PET is used diagnostically and can be used to track response to cancer treat-

ments. One advantage of PET over other techniques, is its ability to show how

the body is responding to something over time, by tracking the progression of

the isotope through the brain, rather than capture a snapshot at a single mo-

ment in time. PET has been used for neuroimaging to study the response of the

brain to ageing [38] and in subjects with post traumatic stress disorder [102].

Magnetoencephalography (MEG) (non-invasive) records brain activity from

the magnetic fields produced by electrical activity in the brain. One advantage

of MEG is that it measures brain activity directly, (other techniques measure

brain activity by a secondary physiological response). In addition to this, MEG

has both excellent spatial and temporal resolution, in the order of a millimetre

and milliseconds respectively. The major drawback of MEG is that the magnetic

fields are only a few femoteslas in magnitude. A large amount of shielding is

therefore required during scanning in order to shield external signals, such as

those from the Earth’s magnetic field. Neuroscience experiments using MEG

include studying the response of the brain during movement [43], and studying

the sotomotor cortex (a brain region involved in motor control) in tetraplegic

patients [60].

Electroencephalogram (EEG) (non-invasive) is used to record electrical signals

within the brain via a series of electrodes placed on the scalp. Spatial resolution

of EEG is dependent upon the number of electrodes used, but is typically very

low. Another potential drawback of EEG is that the information gathered comes
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only from the areas of the brain close to the surface of the skull. Deeper neural

activity occurring within the folds of the cerebral cortex may not be accounted

for.

Advantages of EEG are the high temporal resolution and high tolerance to sub-

ject head movement. Another huge benefit is the portability of the technology.

Whereas other techniques require large static scanners, EEG experiments can

be carried out using a small portable headset or cap. This makes EEG a popular

choice for many experiments.

One example of an early experiment with EEG is the comparison of self-reported

emotional response in depressed patients and a non-depressed control group [28].

A more recent application sees the use of EEG in automatic seizure detection

[61].

Magnetic Resonance Imaging (MRI) (non-invasive) uses magnetic fields to align

protons in the body. Once the field is turned off, the protons return to their

previous state, releasing photons. These photons produce an electrical signal

which is measured by the scanner. MRI like CAT scans, generates scans one

slice at a time, with the slices being stacked to form a volume. MRI is typically

used for diagnostics, particularly when soft tissue structures, or structures with

low density contrast are involved.

Functional Magnetic Resonance Imaging (fMRI) (non-invasive) is used to

measure changes in neural activity. Increased neural activity results in a higher

demand for oxygen. The magnetic properties of oxygenated blood are different

to those of de-oxygenated blood. An increased vascular response is therefore

visible as a grey-level intensity change in the scan. This vascular response is

known as the Blood Oxygen Level Dependent (BOLD) response.
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fMRI is a non-invasive and powerful method for analysis of the operational

mechanisms of the brain. The data acquired from fMRI provides a spatially

accurate account of neural activity. Analysing the BOLD signal allows scientists

to discover how brain states are mapped onto patterns of neural activity, giving

insight into the functional architecture of the mind and the processes which

control and reflect human behaviour. By taking repeated scans over a period

of time, neural activity can be tracked and measured. Whilst the temporal

resolution of fMRI is far lower than that of EEG, the spatial resolution is much

higher, and it allows the measurement of activity throughout the brain, rather

than restricted to the surface.

Many neuroscience experiments focus on fMRI, and it is data gathered using

this technology which is considered for the remainder of this thesis.

2.3 Data Acquisition

fMRI data is acquired in a standard MRI scanner. The scanner takes the form

of a large cylindrical magnet. The participant lies on a table which is slid inside

the cylinder. Stimuli are presented to the participant whilst they are inside the

scanner. Stimuli may be images, audio, or sensory (such as heat or pain). The

brain is scanned after each presentation and the response is transferred to a server

or computer which is attached to the scanner. Scans make up a time series and

are collected and analysed once the experiment has concluded. The setup of the

experimental process is illustrated in Figure 2.3.

A scan is taken as a series of slices. These slices are built up into data volumes.

Each volume contains information from the full area that was scanned. Slice thickness

is measured in millimetres, ranging from 3mm upwards. The participants head is

typically braced in order to reduce any movement during the course of the experiment,

and to maintain alignment between sequential slices and volumes.
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Figure 2.3: fMRI experimental setup. Stimulus is presented to participant. Scans are
collected and analysed offline.

During the course of an fMRI experiment, many volumes may be acquired over

time. The length of time between each volumetric scan is known as the repetition

time, or TR. A typical TR will be somewhere between 1s and 3s. The lower the

TR, the higher the temporal resolution of the data. The echo time, or TE, is a

measurement of the scanner corresponding to the delay time between the initiation of

the magnetic field pulse by the scanner and the peak of the measured response (echo).

This measurement effectively determines the lag between the pulse and image sample

being recorded.

The strength of the magnet in the scanner is measured in Tesla. The higher

the Tesla rating of the scanner, the higher the spatial resolution of the scan. Higher

spatial resolution means that finer detail can be examined. Currently, scanner ratings

are typically 3-Tesla or 7-Tesla.

The activation of a voxel1 in response to a stimulus is shown in the scan as a

change in grey level intensity. Activation is expected to follow a given pattern known

as the haemodynamic response function (HRF). Figure 2.4 illustrates the pattern of

stimuli (black solid line) and HRF (red dashed line). The exact shape of the HRF

is known to vary between subjects, psychological states, experimental conditions and

different brain regions [50]. In addition to this, in practice, the response of the voxels

is noisy, and hence will not follow this pattern exactly.

Changes in activation over time can be analysed. Analysing groups of voxels,

1A voxel is a three dimensional, volumetric pixel.
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Figure 2.4: Plot of stimuli (black) and HRF (red). Time is measured on the x-axis.

or the whole volume image, allows for better interpretation of patterns representing

neural processes.

Data quality can be measured by the signal-to-noise ratio (SNR) and contrast-

to-noise ratio (CNR). The image SNR represents the quality of each individual vol-

umetric image, and is calculated by dividing the mean activation of voxels within a

volume by the standard deviation of the activation. The temporal SNR is calculated

on a voxel by voxel basis, as the mean value of the voxel over time divided by the

standard deviation of the activation of the voxel over time. Theoretically, increases

in the resolution of the scan (higher scanner rating), lead to higher spatial SNR.

Increasing the TR increases temporal SNR [6].

The CNR represents the maximum differences in signal intensity recorded in a

given voxel over the course of an experiment. CNR is defined over time for each

voxel as the ratio of task related variability (contrast) to non-task related variability

(noise) [46]. The contrast can be calculated as the difference in signal between classes.

High CNR means that differences in brain response to different stimuli will be more

easily detected. If CNR is low, then very little difference will be detected between

two conditions of interest [6]. CNR varies with TE; the optimal TE depends upon

the properties of the tissue being scanned.
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Figure 2.5: Block design fMRI experiment. Red and blue represent stimuli from two
different classes.

2.4 Experimental Design

The range of experimental designs available includes block design, event-related design

and real time experiments.

Block design experiments repeat several different stimuli from the same class back-

to-back in a ‘block’ in order to fully capture the response of the brain. A typical

block may last between 15 and 40 seconds. After each block of stimuli, it is

common to allow for a rest period in order to allow the brain to return to a

resting state. This may consist of either the presentation of neutral stimuli, or

no stimuli at all. Figure 2.5 illustrates an example presentation of stimuli in

a block design experiment. Each vertical line represents the presentation of a

stimulus. Examples of possible stimuli are the presentation of an image, sound,

or instruction.

Event-related designs display stimuli from different classes in a random order of pre-

sentation. There may be rest periods after each stimulus (spaced event-related)

or stimuli may be displayed successively (rapid event-related). Examples of the

presentation of stimuli for event-related designs can be seen in Figure 2.6.

Real time experiments involve adjusting the stimulus based upon the response of

the subject. Real time experiments are discussed further in Section 2.11.
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Spaced event-related design

Rapid event-related design

Figure 2.6: Event-related fMRI experimental designs. Red and blue represent stimuli
from two different classes.
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Figure 2.6 illustrates the stimuli presentations in block and event-related designed

experiments. Time is represented on the x-axis, the colours red and blue correspond

to stimuli from two different classes.

fMRI experiments may be carried out in a single run, or over the course of several

runs. Over the course of an experiment several participants may attempt the same

task. Analysis across several participants is more complex than with single participant

data. It is therefore beneficial to be able to analyse results using methods which can

be tailored to each individual participant.

2.5 Labelling fMRI Data

Assigning class labels to fMRI data is not a trivial task. In addition to the delay

from the TE, there is a delay (referred to as the haemodynamic delay) between the

reaction to a stimulus and the change in the BOLD response being measured.

Assuming the experiment has a block design, as is the case with our experimental

data, the first decision is how to handle the TRs. One solution is to average the

responses of the TRs within a given block (temporal compression), resulting in a

single data point per block. This method can reduce the effect of noise within the

data, however it also significantly reduces the amount of data points available.

The alternative to temporal compression is to include each TR as a separate data

point. In doing this, some noise is included in the data, however the increase in the

number of data points available is a big advantage. The two approaches are compared,

among others, by Mourao-Miranda et al, [95], where temporal compression was found

to improve the accuracy of the analysis. Whilst this may be the case, the approach

is not feasible for analysis of fMRI data in real time, where scans are required to be

processed individually. Considering each TR as a separate data point makes a step

towards the analysis of real time fMRI data.
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Having chosen to treat each TR as a separate data point, a further step is to

choose how to assign class labels. As previously mentioned, the response of the brain

to a stimulus is not instantaneous, the transition between brain states is gradual,

and it is unclear at which point one state ceases and the next begins. This leads

to a series of potential labelling scenarios varying with the extent of inclusion of the

haemodynamic delay. The simplest and most popular methods of label assignment

include:

‘Ignoring’ the haemodynamic delay - simple box car model - As a simple so-

lution, the instances (brain volumes) are labelled by taking the class label for

each brain volume to be consistent with the stimulus being presented. This is

line with one of the protocols suggested by Pereira at al [101]. It is acknowl-

edged that this assignment does not specifically consider the delay in the brain

response, however some delay is accounted for in the TE.

Taking into account the haemodynamic delay - shifted box car model - Class

labels are shifted by 1 TR in order to take into account for the delay in the

BOLD response.

Convolution of the signal with the HRF - In order to take into account the

haemodynamic delay, labels are derived from the expected activation, rather

than the presented stimuli. At any one time, the label assigned, corresponds to

the stimulus with the highest activation.

2.6 Data Preprocessing

In its raw form, fMRI data is noisy, and volumes or time slices may be misaligned

due to head movement or change in brain shape (due to the pulse for example). Data

acquired from the scanner requires several preprocessing steps before analysis can
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begin. Strother, [120], provides a detailed review of the preprocessing pipeline. The

most frequently used preprocessing steps are summarised below.

Slice timing correction: As each fMRI volume is acquired one slice at a time,

there is a slight time difference between acquiring the first and last slice of a

volume. In this time it is possible that physiological changes have occurred,

due to respiration or head motion, as well as changes in the BOLD signal.

The time series of the voxels within the volume are therefore shifted slightly

to compensate for this, or else the same event would appear to be initiated at

different times throughout the volume. That is, it would appear to start later

in the first slice than the last slice of the volume.

Motion correction: Subject head movement is a significant cause of artifacts. Al-

though the use of restraints significantly reduces head motion, slight movement

may still occur due to the nature of the experimental task, or due to discomfort

in the scanner. In addition to this, respiration and the pulse can cause motion

and changes to the shape of the brain. The motion may appear either as a

translation or a rotation or a combination thereof. Volume scans are therefore

re-aligned in order to compensate for this head motion.

Spatial filtering: Spatial smoothing is achieved by convolution of each fMRI volume

image with a gaussian kernel. In general, it is not a single voxel which will

respond to a stimulus, rather a group of neighbouring voxels. Hence, whilst

the noise factor for a given voxel is generally independent of other voxels, the

activation will typically extend over several adjacent voxels.

Whilst spatial smoothing has a benefit of increasing the SNR [42] of the image,

it comes at the cost of reducing the spatial resolution of the data. It is therefore

important that an appropriate gaussian kernel is used to ensure a balance is

achieved.
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Temporal filtering: High and low-pass filtering can be applied to the time series

to correct for artefacts and physiological noise. High-pass filters are used to

correct low frequency physiological noise, caused by respiration (∼0.25Hz) or

the pulse (∼1Hz) [42]. Low pass filtering, or temporal smoothing, can be used

for denoising [120].

Preprocessing steps are usually carried out by software packages such as Brainvoyager

QX (Braininnovation, Maastricht, The Netherlands) [47], AFNI [24] or SPM [42].

2.7 Data Preparation

Even when the data has been pre-processed, further steps may be considered prior to

analysis. These preparatory steps are used to make the data set more manageable,

and must be used with caution in order to avoid introducing bias into the data set.

Bias is discussed further in Section 2.8.

2.7.1 Voxel Mask

fMRI data analysis may be carried out on the full brain scan, or on parts of the scan

corresponding to specific brain regions. To extract a region of the brain a voxel mask

may be applied to the data volumes. One such mask is the grey matter voxel mask.

Recall that the grey matter is the area of the brain where the majority of neural

activity occurs. By excluding the white matter and non-brain regions from the scan,

irrelevant voxels are removed from the analysis. It is particularly desirable to avoid

‘discriminatory’ voxels appearing outside the brain, leading to false-positives, in a

scenario similar to that of the dead salmon2 [5]. Voxel masks may also be applied to

extract regions such as the amygdala or insular cortex, in experiments focusing on

emotions for example.

2In an experiment by Bennett et al, a frozen salmon was placed in an fMRI scanner and subjected
to a series of emotionally charged images. Results from the anaysis showed the salmon to be
‘responding’ to the stimuli. The work highlights the danger of false positives in fMRI analysis.
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There are many methods available for deriving a grey matter mask. The standard

method is to derive the mask using the anatomical MRI data where the resolution

is higher, and colour intensities correspond to the white and grey matter. Such a

mask can be extracted using software such as the SPM toolbox [42] or Brainvoyager

QX [47].

Here, an alternative method is offered for deriving an approximate grey matter

mask directly from the BOLD signal.

Deriving a mask from the BOLD signal

For working with fMRI data in real time, it is advantageous to derive a grey matter

mask quickly, and from the BOLD data itself. Similar to the masking procedure

described for removing artifacts by Cohen, [22], two properties are considered for

each voxel; its mean and variance in activation throughout its time-series.

• Voxels with a mean above a threshold are discarded - these are likely to corre-

spond to white matter.

• Voxels with a mean below a threshold are discarded - these are likely to be

outside the brain.

• Voxels with variance above a threshold are discarded - very noisy voxels are

likely to appear on the edge of the brain due to image registration issues.

• Voxels with variance below a threshold are discarded - voxels with low variance

are likely to be outside the brain or in the white matter.

Figure 2.7 shows examples of grey matter masks derived in this way, to illustrate

the effect of changing the parameters. The sub-figures show parameter combinations

relating to different thresholds (measured as percentiles) for the mean and variance.

The upper threshold on the mean can be seen to alter the amount of white matter

included. A lower threshold results in the area outside the brain being selected.
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Altering the thresholds on the variance does not appear to have much effect visually

on this ‘slice’ of the brain. Looking at the number of voxels included however, it can

be seen that widening the range of the variance increases the number of voxels.

2.7.2 Normalisation

Another next step in data preparation is normalisation. Normalisation is carried out

across the time series for each individual voxel. Normalising the signal in this way

ensures that the activation values of each voxel are in the same range. This allows bet-

ter identification of genuinely discriminative voxels, rather than voxels which simply

have a large range of activation values.

2.7.3 Feature Selection

Recall that fMRI data has a large feature-to-instance ratio, having many more features

than instances, and typically contains a large amount of irrelevant voxels. Irrelevant

voxels should not be confused with redundant voxels. An irrelevant voxel does not

offer any discriminatory power to the classifier. It can be thought of as noise. A

redundant voxel is one whose discriminatory properties may be mirrored by at least

one other voxel, or combination of voxels, in the voxel set. A large number of voxels

will make the classifier prone to over fitting the training data. A preliminary voxel

selection step may therefore be used. Instead of sampling from the whole set of voxels,

a smaller subset of voxels may be selected first [101]. Several techniques exist for this

step, and may be univariate or multivariate:

ANOVA or t-test (univariate) To test the hypothesis that the class means are

equal, statistical tests such as the t-test or ANOVA calculate a statistic for each

voxel. This gives an indication of the discriminatory power of that voxel based

on the data points and labels passed to the test. The F-statistic, t-statistic or

corresponding p-value can be used as a method to ‘rank’ voxels according to
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Default
Mean range: 0.6 – 0.96

Variance range: 0.01– 0.95
No mask: 106,720 voxels Mask size: 28,940 voxels

Mean range: 0.6 – 0.96 Mean range: 0.6 – 0.96 Mean range: 0.5 – 0.98
Variance range: 0.01– 0.99 Variance range: 0.05– 0.95 Variance range: 0.01– 0.95
Mask size: 29,590 voxels Mask size: 28,940 voxels Mask size: 38,219 voxels

Mean range: 0.65 – 0.9 Mean range: 0.5 – 0.98 Mean range: 0.65 – 0.9
Variance range: 0.01– 0.95 Variance range: 0.01– 0.99 Variance range: 0.05– 0.95
Mask size: 20,183 voxels Mask size: 39,411 voxels Mask size: 20,183 voxels

Figure 2.7: Examples of voxel masks derived from BOLD signal. Top row shows
the unmasked volume slice and the default mask. Red voxels indicate those selected.
Voxel mask sizes correspond to the complete volume mask.
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their importance. The voxels with the lowest p-values, corresponding to the

highest F or t-statistics are selected.

Maximum activation (univariate) This method considers the maximum activa-

tion of each voxel in the data set. Voxels are ranked according to their maximum

activation levels. The theory is that voxels with higher maximum activation

contribute more to the classification.

Two methods exist for selecting voxels from the ranked list. The first approach

considers the whole data set, the overall highest ranked voxels are selected as the

feature set. The second approach considers voxels on a class by class basis. For

each class the highest ranked voxels are selected, the resulting class based voxel

sets are merged to make up a final feature set [71]. The class based approach is

a step towards ensuring that the defining features of each class are represented

in the feature set, however requires a priori knowledge of the classes. Where

maximum activation has been used for feature selection in this thesis, it is the

overall ranking which has been considered.

SVM method (multivariate) By applying a classifier such as a support vector ma-

chine (SVM) (described in Section 3.2.1) to the data set, coefficients or weights

can be derived for each of the voxels. The weights are used to rank the voxels.

Those voxels with higher weights are those which contributed most to the clas-

sification, and are therefore more discriminative than those with lower weights.

The voxels with the higher weights are therefore the ones which are carried

forward.

Recursive feature elimination (RFE) (multivariate) This method follows a sim-

ilar principle to the SVM method. Rather than selecting the highest weighted

voxels, RFE eliminates the voxels with the lowest weight. The classification

and weight calculation process is repeated on the new reduced voxel set. As
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some voxels have been eliminated, weights and the ranked order of weights

may change. The voxels with the lowest weights in the new classification are

eliminated. The process is repeated until only the desired number of voxels

remain [49].

Other methods There are many other more complicated voxel selection methods

available. These range from the searchlight algorithm [64] and Monte Carlo

mapping [9] to genetic and memetic algorithms [1, 10]. Whilst techniques such

as these may offer a more sophisticated solution, they pose major complexity

challenges in terms of application to real time scenarios, due to their iterative

nature.

Admittedly, the univariate approaches do not consider potential relationships between

voxels. Some voxels may not be indicative individually, but may form part of an

indicative group, which multivariate methods may identify. On balance however, the

speed and simplicity of univariate techniques mean that they remain a popular choice

for feature selection.

2.8 Avoiding Bias

When analysing data from fMRI experiments it is important not to introduce any bias

into the data set. The first step in the analyses presented in this thesis is to separate

the data set into two further data sets, the offline training data set, and the online

streaming data set. So as not to introduce any bias into the analysis, it is important

that the feature selection and normalisation steps, if used, are performed in the correct

order. If a voxel mask is going to be applied, this should be the first step, else features

may be selected from outside the desired region. Feature selection should follow, it is

important that this takes place on the training data alone. The maximum activation

method of feature selection in particular, will not work if normalisation takes place
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first. Allowing the rest of the data to be seen at this stage is known as peeking or

double-dipping [65, 101]. After the features have been selected, then the remaining

data may be normalised, normalisation coefficients should be calculated for the offline

training data, and then applied to the streaming data volumes as they are acquired.

2.9 Traditional Analysis of fMRI Data

Much fMRI analysis focuses on the General Linear Model (GLM). When used for

fMRI analysis, the GLM models the activation of voxels across the time series. The

model takes the form

y = xβ + ε (2.1)

where y is the response variable (BOLD response), x is a matrix of predictors and β

is a matrix of coefficients corresponding to the relative contributions of the predictors.

Consider a simple case of a block design experiment where periods of stimulation

are alternated with periods of rest. The BOLD signal of a voxel over time is the

response variable y. The predictor variables x are the so called ‘design matrix’, which

is the time series of the stimuli as shown for a single stimulus in Figure 2.4 (in black).

Alternatively, x could be the stimuli convolved with the haeomodynamic response

function (HRF), plotted in red in Figure 2.4. The magnitude of the coefficients,

β, determines how closely the voxel output y is related to the stimuli. If for some

stimulus the signals y and xi were to be identical, then βi = 1, all other βj = 0, j 6= i

and ε = 0. The collection of βs across all voxels in the brain can be further analysed

to determine which voxels are truly related to the stimuli, and which have high β by

chance. Statistical tests involving multiple comparisons can be used for this purpose.

This technique can be used to test responses to different stimuli, determine regions

of interest, or to compare differences between different participant subgroups [56,57,

88,114]. The technique has also been used in studies about pain perception [62,103],

and more recently to investigate the brain activity of patients in a vegetative state [92].
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2.10 Multivariate Analysis of fMRI Data

Whilst univariate techniques have provided insight into the functional map of the

brain, multivariate machine learning techniques can advance knowledge by taking

into account inter-voxel relationships. Sitaram et al [115], present the argument

against univariate and region-of-interest approaches arguing that perceptual, cogni-

tive, or emotional activities generally recruit a distributed network of brain regions

rather than single locations. By applying multivariate analysis, these spatiotemporal

relationships can be captured and utilised. A classifier is trained to predict which

stimuli are being presented to the participant, based upon the entire fMRI volume

images.

Linear classifiers are preferred for the classification of fMRI data because they

are simple, fast, reasonably accurate and interpretable. Given the extremely large

feature-to-instance ratio associated with fMRI data, linear classifiers are expected to

outperform many other classifiers because they are less prone to over fitting the data3.

The spectrum of linear classifiers applied to fMRI data include the linear dis-

criminant classifier (LDC) and penalised versions thereof [48], the Gaussian Näıve

Bayes [90] (linear if all variances are assumed to be equal), sparse logistic regres-

sion [131] and more. The classifier used most often, however, is the support vector

machine classifier (SVM) [23, 29, 30, 66, 75, 93–95, 127, 132].

2.11 Real Time fMRI

Recently there has been interest in the development and application of real time

fMRI [22,25]. Real time experiments are typically achieved via a brain computer in-

terface (BCI). BCI technology is by no means unique to fMRI, and is also been used

with EEG, PET and MEG [31, 123, 130]. The BCI forms part of a loop known as a

3The classifiers mentioned in the following sections are described in more detail in Chapter 3
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Figure 2.8: The neurofeedback loop. Based on the classification output, the partici-
pant is instructed to perform a mental exercise that will drive the brain pattern closer
to one corresponding to the desirable behaviour.

neurofeedback loop. The neurofeedback loop is sketched in Figure 2.8. The partic-

ipant receives initial instructions and possibly some stimuli. Next, the participant’s

state of mind is measured and classified.

By applying online and real time classification to the data as it is collected, neu-

roscientists are able to acquire feedback during the course of the trial. The effi-

ciency and precision of real time fMRI for brain control has been demonstrated

by participants carrying out tasks such as navigating through computer-generated

mazes [53, 91, 133], balancing a virtual inverted pendulum [37], predicting decisions

in an economic game [54], and moving an arrow towards a target [77].

Real time fMRI classification allows for self-regulation experiments with fMRI.

Self-regulation is the ability to regulate ones’ own emotions or behaviour. Self-

regulation is achieved by controlling brain subnetworks, for example those involved in

pain perception [32] or sadness [106]. Based on the measured brain state, feedback is

given to the participant who then attempts to adjust his/her brain state to improve

task performance. A possible application of self-regulation is treating alcohol or drug

addiction. In order for self-regulation to be viable, delay between brain activity and

feedback to the participant needs to be minimal [128].

Weiskopf et al, [129], provide a review of real time fMRI for BCIs and self-

27



regulation. The review outlines technical issues raised by real time fMRI; such issues

include delays in getting data from the scanner and artifact control. Researchers

working with real time fMRI have to cope with artifacts such as head motion and

scanner drift in real time. This is of course in addition to the speed requirements

of the classifier. Hollmann et al [53, 55] tackle these issues by developing their own

programming language, experiment description language (EDL), in order to unify the

tasks.

Whilst many fMRI experiments are considered to be real-time, variations on the

setup exist. A range of analysis setups are discussed below.

Offline analysis The traditional case, where fMRI data is collected and then anal-

ysed offline.

Offline training, real-time experiment Currently, whilst there are increasing num-

bers of real time studies being conducted, very few update the classifiers during

the course of the fMRI run. The majority rely on a previously trained offline

classifier.

In this case, two or more runs of the experiment are conducted. The first

run is used for training and familiarisation with the task, data is collected and

analysed offline. The classifier is trained offline on the data, and is used for

real-time classification in subsequent runs. It is assumed that task performance

and neural activity are static, thus the classifier trained offline on data acquired

during the training run will be sufficiently accurate for classification during the

testing run.

Anderson et al [2], train the classifier one day, and test on another. In this case,

classification is carried out on a series of predefined brain regions. Rather than

to consider each individual voxel as a feature, the method considers 4 × 4 × 4

cubes of voxels. Based upon the offline data, for each voxel block, a baseline
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activation level is calculated as the average activation of the 64 voxels in the

block, averaged over time. For classification, the features are calculated on a

block by block basis as the difference between the average activation of the

block in the current scan, and the value calculated as baseline for that block.

Reducing the number of features in this way reduces the likelihood of overfitting,

however also runs the risk that properties of a potentially indicative voxel may

be diluted if it is surrounded by less indicative voxels.

Papageorgiou et al [100] also train an SVM classifier on a separate run to the

neurofeedback experiment. There may be circumstances where this setup is not

feasible. fMRI scanning is expensive and time-consuming. It is often desirable

to complete the entire experiment, training and neurofeedback in a single run.

In a study by Eklund et al [37], subjects are required to ‘control’ a pendulum.

By activating the motor cortex, participants are able to shift the pendulum

either to the left, or to the right. The perceptron classifier is trained during an

initial offline phase. During the real time phase, the fMRI data is classified and

the stimulus (balanced pendulum) is updated accordingly. During this setup,

the participant is responding independently of any stimuli. In this phase, there

are no clearly defined class labels, rather a desired goal to balance the pendulum

and an assumption that the participant wishes to succeed in the task! Whilst

primarily chosen for its speed and ease of implementation, the perceptron was

found to provide sufficient discrimination for this classification task.

Online classifier updates Given that it is not always practical to conduct multiple

runs of an experiment, due to time and cost restraints, a classifier which is

capable of training during the course of a run is beneficial. A weak classifier

may be trained on the first few TRs of a run, and then continue to learn and

adapt through the course of the experiment.

29



Laconte [76], presents a series of future challenges when working with real time

fMRI data. The author notes that future experiments may be designed in

such a way as that the brain response is expected to change over time. It is

suggested that future classifiers should be able to adapt and learn with the

data throughout the course of the run. Online classification techniques have

already been applied for EEG classification in BCI settings [11, 17, 81, 121].

Real time fMRI techniques have also been used to allow subjects to form words

using a character map [36], where the cursor is moved by different motor control tasks.

Classification was carried out using a single layer neural network and a multi-class

SVM. The neural network showed the best results, and was preferred due to its’ capa-

bility of handling multiple classes. The authors claim that for optimal performance,

SVM requires classes to be independent. Practically speaking, this is not always the

case. For example, in this experiment, tasks relating to the different classes involve

bilateral movement - left and right hand and toe movement. Some voxels will re-

spond to both left and right movements, thus reducing the independence between the

classes. The authors hypothesise that this is one reason for the poorer performance

of the SVM in this study. The authors comment that their fMRI classification system

is not flawless. However beyond curiosity, such experiments serve as proof of concept:

fMRI classification can be a fast and accurate component of the BCI for the purposes

of neurofeedback.

The length of time taken to feed back results in some circumstances is up to a

minute. Immediate feedback is defined by Weiskopf et al [129] as being recieved in un-

der 2 seconds, this approximately equates to ‘within a TR’. For real time experiments,

this is the target aimed for.

A recent paper by Hollmann et al [54], shows that brain responses can be predicted

1 or 2 seconds before the participant revealed a decision. The experiment was based

upon the ultimatum game, where two subjects are to share a sum of money. The first
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participant chooses how to split the money and the second participant has to decide

whether to accept or reject the proposed split. Should the split be rejected, neither

participant receives anything. The brain response of the responder was analysed

using an online relevance vector machine classifier (RVM) in conjunction with their

experiment description language [53, 55].

Aside from the neurofeedback impact that real time fMRI experiments can have,

there are also bonuses in terms of conducting the experiment. By receiving feedback

during the course of the experiment, a researcher is quickly able to spot any technical

errors and respond to problems as they arise.

When analysing real time fMRI data, there are two different approaches, the

incremental approach and the sliding window approach. The incremental approach

calculates statistics based upon all data presented up until a given moment in time.

The sliding window approach considers a subset of the total data collected within a

given time span. Whilst the sliding window approach relies less on stationarity, and

therefore may adapt better to concept drift, this comes at the cost of loss of statistical

power [130].

2.12 Software Packages

Various software packages and toolboxes are available for fMRI analysis. The most

frequently used packages include Brainvoyager QX [47], AFNI [24] and SPM [42].

Data analysis in this thesis has been carried out using Matlab [87], and the Matlab

statistics toolbox, with fMRI preprocessing being carried out in Brainvoyager QX.

2.13 Data Sets

Four fMRI data sets are considered as examples in this thesis. Full descriptions are

given below with a summary provided in Table 2.1.
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2.13.1 Emotion Negative (EN1 and EN2)

EN1 and EN2 are two runs of the same experiment, corresponding to single runs with

two different participants. Participants were instructed to up-regulate their target

region activity, evoking emotion, for periods of 20s using negative emotional imagery.

Periods of emotion are alternated with baseline periods of rest, of 14s. There were

12 blocks of up-regulation and rest. The classification task is to distinguish between

periods of emotion, and periods of rest.

2.13.2 Emotion Both (EB)

A single participant viewed a series of emotionally charged images in a block design

experiment. A sequence of fMRI brain scans was obtained from a single run. There

were 12 blocks of images with positive valence type, 12 blocks with neutral valence

type and 12 blocks with negative valence type. Each block of images lasted for a

period of 6 s (4 pictures presented for 1.5s) followed by a period of fixation (12s du-

ration)4. Fixation TRs are removed from the data set. The classification task is to

distinguish between positive, negative and neutral emotion.

For EN1, EN2 and EB, data was collected on a 3 Tesla Philips Achieva MR scanner

(TR = 2s, TE = 30ms, 30 slices, in-plane resolution 2× 2mm2, 3mm slice thickness).

Slices were positioned such that the bottom slice was 30mm ventral to the anterior

commissure and angled to encompass all of the ventral prefrontal cortex.

Preprocessing of the data was performed using Brainvoyager QX. The data were

corrected for intra-subject angular and translational motion and filtered to remove

long-term drift [58].

4The images were selected from a benchmark database, International Affective Picture System
(IAPS) [79], where each image has been rated on scales from 0 to 10 on two dimensions: arousal
(calm to excited) and valence (negative to positive)
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Table 2.1: Summary of the three fMRI data sets

Name # Instances Volume # Voxels Classes # Runs
size per run

EN1 204 60× 31× 44 81840 2 1
EN2 204 59× 32× 44 83072 2 1
EB 109 60× 62× 45 167400 3 1

Bangor 2 360 58× 40× 46 106720 3 3

2.13.3 Bangor 2

The participant viewed visual stimuli in 14 second blocks. The stimuli were taken

from three categories: faces, places and objects, plus a control block of fixation. Three

runs were carried out. For each category and fixation period, in each run, there were

six presentations from each category. Within each block, the individual stimuli were

presented at a rate of 1 Hz. Each run consisted of 120 TRs with blocks of stimuli

permuted across the runs. The data is pooled across the runs, giving an overall total

of 360 data points. The size of each scanned volume was 59 × 32 × 44, resulting in

106720 voxels per volume. Data was collected on a 1.5 Tesla Philips Achieva MR

Scanner (TR = 2s, TE = 50ms, 20 slices, in-plane resolution 4 × 4mm2, 5 mm slice

thickness). Preprocessing was again performed using Brainvoyager QX.

2.14 Summary

This chapter has introduced techniques for investigating the brain, with a focus on

functional magnetic resonance imaging (fMRI). fMRI data will be used throughout

this thesis. Different experimental designs for fMRI experiments are introduced.

Steps for preprocessing fMRI data prior to analysis have been described, including

optional extra steps such as feature selection, for preparing the data. In order to

extract the relevant voxels from the brain, a technique for deriving an approximate

grey matter mask from the BOLD signal has also been introduced.
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The progression of fMRI analysis is discussed, from traditional univariate tech-

niques such as correlations with the GLM, through to multivariate classification and

real time experiments. For classification, methods of assigning class labels are dis-

cussed.

Finally, the chapter introduces EN1, EN2, EB and Bangor 2, the four fMRI

datasets which are used throughout this thesis.
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Chapter 3

Linear Classifiers for Streaming
Data

3.1 Classification

A classifier can be thought of as a ‘black box’ into which an instance (data point) is

passed, and a class label is produced as output, as in Figure 3.1.

Taking N training instances, each described by n features; each instance comes

from one of C classes. Each instance xi ∈ <
n, i ∈ {1, . . . , N}, together with its

corresponding label yi, y ∈ {1, . . . , C} is passed to a training algorithm. The training

algorithm outputs a function, or series of functions, which are used to discriminate

between the classes. These are based upon the features of the training set. Subse-

quently, when a new instance is passed to the classifier, the classifier calculates the

class label by combining the properties of the new instance with the functions calcu-

lated during training. If the label assigned by the classifier does not match the true

label, then the classifier is noted as having made an error. For non-streaming data, a

separate testing data set, Te may be used. The error is measured as the proportion

Classifier- -Data Point Class Label

Figure 3.1: A classifier is a ‘black box’ into which a data point is passed as input,
and a class label is produced as output.
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of instances from Te which are incorrectly classified.

Maximum achievable classifier accuracy depends upon the distribution of the

classes, and the nature of the classifier chosen. Some common types of classifier

are discussed with examples below.

3.2 Offline Linear Classifiers

This work focuses mainly on linear classifiers due to their simplicity and speed. A

linear classifier can only achieve 0% error on the training data in cases where classes

are linearly separable. As noted in [89], for fMRI data, LDA and linear SVM can

actually perform better than non-linear classifiers, possibly because the latter are

more prone to overfitting.

3.2.1 Support Vector Machine (Linear Kernel)

The support vector machine (SVM) finds the maximum margin hyperplane between

two classes [13,124]. The SVM uses a kernel to map features into a high dimensional

feature space in which the classes are separable. There are many types of kernel

available, with linear, polynomial or radial basis functions being the most popular.

Here the focus is upon the linear kernel.

The SVM takes as input the data set and labels. The labels are in the form

y ∈ {−1, 1}. The SVM seeks to find the maximal margin hyperplane, wTxi + b = 0

such that wTxi + b < 0 when yi = −1 and wTxi + b > 0 when yi = 1.

By finding the maximal margin hyperplane, that is, the boundary with maximal

distance to the nearest data points, the risk of misclassification of unseen data points

is minimised. The support vectors correspond to those data points which control the

width of the margin, and thus are those closest to the boundary.

Closely related to the SVM is the relevance vector machine (RVM). The form of

the RVM is similar to the SVM, however instead of outputting class labels, the RVM

36



outputs a probabilistic classification.

3.2.2 Linear Discriminant Classifier

The Linear Discriminant Classifier (LDC) can be described as the minimum-error

classifier for classes with normal distribution and equal covariance matrices. The LDC

is a robust classifier, and thus can also yield good results even when the classes are

not normally distributed. Linear discriminant classifiers rely on a simple assumption

of Gaussianity of the data, which is often not met in practice. However, even when

the assumption does not hold, linear classifiers have been found to be surprisingly

accurate [51].

Denote by P (y) the prior probability for class y. The prior probability for class y

can be estimated as the proportion of training data coming from class y. The mean

and covariance matrix of the data set are represented by µ and Σ respectively. For

a training set of N data points, we represent estimates of the mean and covariance

matrix by mN and SN respectively1. For the training data set, these are calculated

as

mN =
1

N

N
∑

j=1

xj (3.1)

SN =
1

N

N
∑

j=1

(xj −mN)(xj −mN)
T (3.2)

Note that these are the biased estimates, non-biased estimates can be calculated by

replacing 1
N

by 1
N−1

.

The discriminant function for class y is described by

gy(x) = log[P (y)]−
1

2
µT
yΣ

−1µy + µT
yΣ

−1x (3.3)

which becomes

gy(x) = log[P (y)]−
1

2
(m

(y)
N )TS−1

N m
(y)
N + (m

(y)
N )TS−1

N x (3.4)

1Assume all vectors are column vectors
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Figure 3.2: (a) Data set 1: Two classes which are linearly separable in two dimensions.
(b) Data set 2: Two classes which are not linearly separable in two dimensions.

When an unseen data point is presented to the classifier for testing, the classifier

calculates gy(x) for y = {1, . . . , C}. The class y corresponding to the highest value

of gy is assigned to x.

3.2.3 Examples

Examples are calculated based on two synthetic two-dimensional data sets. Both

data sets are generated from gaussian distributions, separated and labelled to form

two classes. In one data set the data points are labelled such that the two classes

can be linearly separated in two dimensions. The second data set is labelled in such

a way that the classes can not be separated by a linear boundary. Each data set has

250 instances coming from each class. Figure 3.2 illustrates the two data sets. For

each data set a stratified sample of 40% of the data is used for training the classifier.

The remaining 60% is used for testing.

Linearly Separable Data Points

The SVM with linear kernel and the LDC are compared for the linearly separable

data set. The results are shown in Figure 3.3. The boundary derived from the LDC

is indicated in blue, with the boundary derived from the SVM in green. Data points
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Figure 3.3: LDC (blue) and SVM (green) for linearly separable data.
(a) Training data
(b) Training and testing data.

circled in green correspond to the support vectors of the SVM. For this data set where

both training and testing data points are linearly separable, both classifiers achieve

100% accuracy on both training and testing data. There is little difference between

the class boundaries derived from the different classifiers.

Data Points Which Cannot be Separated by a Linear Boundary

The SVM with linear kernel and the LDC are also compared for the data set where

data points are not linearly separable. The results are shown in Figure 3.4. The

boundary derived from the LDC is indicated in blue, with the boundary derived from

the SVM in green. Data points circled in green correspond to the support vectors of

the SVM. For this data set, the data points are not linearly separable in either the

training or the testing data. The training and testing error of both LDC and SVM

is noted in Table 3.1. There is no significant difference in the performance of the two

classifiers.
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Figure 3.4: LDC (blue) and SVM (green) for non linearly separable data.
(a) Training data
(b) Training and testing data.

Table 3.1: Training and Testing Error for SVM and LDC (%)

SVM LDC
Training error 4.5 4
Testing error 2 2
Overall error 3 2.8
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Table 3.2: Training and Testing Error for SVM and LDC (%) on fMRI Data

SVM LDC
Training error 0 0
Testing error 20.11 23.37
Overall error 21.08 18.14

3.2.4 fMRI Data

The two classifiers are also tested on fMRI data using the data set EN1, as described

in Section 2.13. A grey matter mask was calculated to remove irrelevant voxels. A

stratified sample of 9 data points per class was taken for training - this reflects the

amount of data which would be available for training in a neurofeedback experiment.

ANOVA was used on the training data to extract 2000 voxels to use as features

in the classification. The data was normalised, using coefficients calculated on the

training data, again reflecting the methodology used in real time fMRI analysis. The

remaining 186 data points were used for testing. Table 3.2 shows the training and

testing errors for the two classifiers.

In this case the SVM performs better than the LDC, however the ability of the

LDC to handle multiple classes online makes it more desirable for the purpose of this

thesis. Accuracy in fMRI experiments varies dependent upon the experiment. Holl-

mann et al [54] report accuracies of 70% using an RVM in a multi-subject trial. Ex-

perimental design also influences the acheivable classifier accuracy. Mourao-Miranda

et al [94], compare classifier accuracy for using averaged TRs (temporal compression)

versus treating each TR as a separate data point. Using temporal compression the

acccuracy was 90%, whist treating each TR as a separate training example accuracy

was 74%. The latter approach is the one used in this thesis as it is most representative

of the real-time scenario.

41



3.3 Online Linear Classifiers

Many domains where data is received in a streaming format are suited to online

learning. Such data comes from areas including credit card transactions, telecommu-

nications and internet searches [33, 34, 119].

Internet search data [21] and detection of suspicious URLs [85] are two applications

of online classification. Another major application of online classification is spam

filtering, with online linear classifiers [107, 112, 125]. More recently, online classifiers

have been applied to EEG data [11, 17, 81, 121].

An initial offline classifier will be trained on a small offline training sample. Dur-

ing the subsequent online classification each data point is classified by the ‘current’

classifier as it becomes available. For the purpose of comparing approaches, it is

assumed that true class labels are recovered immediately after classification. If the

‘current’ classifier misclassifies the incoming data point, then the classifier is updated

by adding the new data point to the training set, and recalculating the parameters

of the classifier. A classifier which updates only when a data point is misclassified in

this way is known as an error driven classifier.

3.3.1 Linear Perceptron for Streaming Data

The perceptron is an online linear classification algorithm for two classes, developed

by Rosenblatt [111]. The classifier consists of a single discriminant function, which

acts as a boundary between the two classes. The algorithm first initialises coefficients,

or weights, w = [w0, . . . , wn]
T as small random numbers. A learning parameter η is

also defined. The learning parameter corresponds to the ‘readiness to learn’ of the

algorithm, and defines the weighting of new data points compared to past data.

Assuming i data points have already been presented to the classifier, denote the

next data point as xi+1 ∈ <
n with its true label yi+1, initially unavailable. The data

point is augmented, z = [1 xT
i+1]

T , where the first element, 1, will multiply the
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bias coefficient w0. The data point is then classified by the ‘current’ classifier. The

predicted label (+1 or −1) for xi+1 is calculated as ypredicted = sign
(

zTw
)

, where

sign(a) = 1 if a ≥ 0 and sign(a) = −1 if a < 0.

If the data point is misclassified, the weight vector is updated as w← w−η z yi+1.

3.3.2 Balanced Winnow

The balanced winnow, [83], follows a similar principle to the perceptron, however has

two sets of weights; a positive set w+ and a negative set w−. Both sets of weights are

initialised as positive random numbers, and a learning rate β is chosen. The predicted

label for xi+1 is calculated as ypredicted = sign
(

zT (w+ −w−)
)

.

Following misclassification of a new data point, the n+ 1 weights of the balanced

winnow are updated. If yi+1 = +1, then w+
j ← β−zjw+

j and w−
j ← βzjw−

j , else if

yi+1 = −1, then w+
j ← βzjw+

j and w−
j ← β−zjw−

j , for j = 0, 1, . . . , n.

3.3.3 Online Linear Discriminant Classifier

The online linear discriminant classifier (O-LDC) is an adaptation of the linear dis-

criminant classifier. One immediate advantage of the O-LDC over the perceptron or

winnow, is the capability to classify data sets of more than two classes. In order to

carry out online updates the means and inverse covariance matrix require updating

after each misclassified data point. Let m
(y)
iy

be the estimate of the mean for class y,

where iy is the number of points from class y thus far. The total number of points in

the series is i = i1 + i2 + . . . + iC . Let Si be the estimate of the common covariance

matrix calculated from the i observations. Suppose that xi+1 comes from class y.

The recursive update for the mean of class y is calculated as

m
(y)
iy+1 =

1

iy + 1

(

iym
(y)
iy + xi+1

)

. (3.5)

The inverse covariance matrix for class y is updated as

S−1
i+1 =

i+ 1

i

(

S−1
i −

S−1
i z zT S−1

i
i(iy+1)

iy
+ zT S−1

i z

)

, (3.6)
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where z = x−m
(y)
ic+1. The prior probabilities are also updated, for class y, as P

(y)
i =

iy+1

i+1
, and for all other classes, P

(k)
i = ik

i+1
, where k 6= y. The O-LDC update is lossless.

This means that the recursively calculated estimates of m
(y)
iy

and Si are the equivalent

of those calculated using all i data points [35, 68].

3.3.4 Examples

For illustration, the same two data sets are used to show the progress of the online

classifiers. For each data set an initial stratified sample of 10% of the data is used for

an offline training data set, T . The remaining instances are shuffled and presented as

an online streaming data set, S. The classifier will update after each streaming data

point. The accuracy progression of the online classifiers is illustrated by a series of

plots. In each figure, the top left plot shows discriminant function as calculated on

the training data. Subsequent plots illustrate the performance of the classifier after

different amounts of online data have been presented.

In this thesis, two approaches are considered for the measurement of online error.

Due to the streaming nature of fMRI data, instead of a single error score, it is useful

to consider an error progression, in terms of time. The first approach, as with the

non-streaming case, is to consider a separate training data set Te, of size NTe. The

error rate is measured as the proportion of instances from Te which are misclassified

by the current classifier at time t.

∑NTe

i=0 e(i)

NTe

(3.7)

where e(i) = 0 if the classifier has labelled point i correctly, and 1, otherwise.

The second approach uses the online dataset, S to measure error. At time t,

instance xt is classified by the current classifier prior to training. If xt is misclassified,

then the classifier is noted as having made an error at time t. The error rate of the

classifier can be calculated as the number of data points incorrectly classified divided
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by the number of data points presented so far. The error rate can be represented

mathematically as an equation,
∑t

j=0 e(j)

t
(3.8)

where e(j) = 0 if the classifier has labelled the point at time j correctly, and 1,

otherwise.

Linearly Separable Data Points

Figures 3.5, 3.6 and 3.7 show the perceptron, winnow and O-LDC for linearly sepa-

rable classes. For each figure, the top left plot shows the boundary derived from the

training data. Subsequent plots show the progression of the boundary after online

updates. The title of each plot indicates the amount of online training data which

has been processed. New instances, that is those which have been presented since the

last plot, are illustrated by an x.

Not Linearly Separable Data Points

Figures 3.8, 3.9 and 3.10 show the perceptron, winnow and O-LDC for the case

where the training data is not linearly separable. Once again, the top left subplots

illustrate the classifier decision boundary after the training data, with subsequent

plots illustrating new instances as an x.

Cumulative Error

Figure 3.11 shows the cumulative error plots for the online classifiers for both data

sets. Cumulative error is calculated using Equation 3.8. In Figure 3.11(a) it appears

that there is no error progression for the O-LDC. This is due to the O-LDC achiev-

ing 100% accuracy on this data set, thus the error rate appears as a flat line at 0,

coincinding with the x-axis.
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Figure 3.5: The online Perceptron for linearly separable data.
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Figure 3.6: The online Winnow for linearly separable data.
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Figure 3.7: Online linear discriminant classifier for linearly separable data.

48



Training data 20% streaming data

−4 −2 0 2 4 6
−4

−2

0

2

4

6

−4 −2 0 2 4 6
−4

−2

0

2

4

6

40% streaming data 60% streaming data

−4 −2 0 2 4 6
−4

−2

0

2

4

6

−4 −2 0 2 4 6
−4

−2

0

2

4

6

80% streaming data 100% streaming data

−4 −2 0 2 4 6
−4

−2

0

2

4

6

−4 −2 0 2 4 6
−4

−2

0

2

4

6

Figure 3.8: The online Perceptron for non linearly separable data.
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Figure 3.9: The online Winnow for non linearly separable data.
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Figure 3.10: Online linear discriminant classifier for non linearly separable data.

51



0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

 

 

O−LDC
Perceptron
Winnow

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

 

 

O−LDC
Perceptron
Winnow

(a) Linearly separable data set (b) Non-linearly separable data set

Figure 3.11: Cumulative error progression.

3.4 Comparison of Online Linear Classifiers for Real

Data

An example is presented here from a previous work [104], to illustrate the choice of

classifier for online data. The three online linear classifiers, the perceptron, balanced

winnow and O-LDC, are compared across a selection of two-class i.i.d. data sets.

3.4.1 Data Sets

The data sets used for the tasks are summarised in Table 3.3.

Experimental results with the balanced winnow indicated some discrepancies when

the features had a large range of ranges and variances. To compensate for this, all

data was normalised with mean µ = 0 and variance σ2 = 1 for each feature.

3.4.2 Method

Each data set is prepared in the same way. Firstly, a testing data set, Te, is generated

by taking a stratified sample of 10% of the data points. A second stratified sample is

taken to make up an offline training data set, T . It is said, that to accurately train a

classifier, the size of the training data should be approximately 10 × n × c, where n

is the number of features and c is the number of classes in the data set [96]. As such,
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Table 3.3: Data sets used in the experiment

Data set Features Classes Data points Source
sonar 60 2 208 UCI

laryngeal1 16 2 213 Collection1

votes 16 2 232 UCI
breast 9 2 277 UCI
heart 13 2 303 UCI
liver 6 2 345 UCI
spect 44 2 349 UCI

ionosphere 34 2 351 UCI
wbc 30 2 569 UCI

laryngeal2 16 2 692 Collection
pima 8 2 768 UCI

1Collection http://pages.bangor.ac.uk/~mas00a/activities/real_data.htm

we set NT , the cardinality of the training data, to be NT = 1× n× c. The remaining

data points make up the online streaming data set, S. S is shuffled in order to remove

bias and ensure that the data is i.i.d..

Offline versions of the classifiers (perceptron, winnow and O-LDC) are trained on

T . Data points from S are then passed to each classifier in a streaming fashion. The

classifiers are tested on the incoming data point. If the classifier makes an error, then

the classifier is updated accordingly. The task is repeated 100 times for each classifier

on each data set. The error of the classifier is calculated on Te after each presentation

of a new data point in the online phase, using Equation 3.7.

3.4.3 Results

The results are organized as follows: Figure 3.12 to 3.14 show results of the comparison

of the online algorithms. For each graph, the y-axis represents the error score on Te.

The x-axis represents the number of data points from S which have been processed.

The blue, red and green lines represent the O-LDC, perceptron and balanced winnow

respectively. The plots show the progression of error scores. The data tables show
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the average and final testing error scores for the data sets.

3.4.4 Discussion

Figures 3.12 to 3.14 show the comparisons between the three online classifiers for each

data set. The end points of the plots give an indication as to how well each classifier

has performed on the particular data set, and represent error scores calculated after

the entirety of S has been presented. The precise values for these error scores can

be seen in the corresponding tables. For three of the data sets, ‘spect’, ‘ionosphere’

and ‘wbc’, the performance of the three classifiers are comparable, with no distinctly

better model. For the other eight data sets the results show the O-LDC to be a better

model than the perceptron or balanced winnow.

Whilst the end results of the O-LDC are impressive, the learning patterns of the

classifiers are also of interest. The learning patterns can be seen from the shapes of

the curves. The learning patterns of the O-LDC are markedly better than those of

the other two algorithms. The O-LDC is seen to converge whilst the perceptron and

balanced winnow oscillate. The learning rate of the classifiers can also be described

numerically as the average error of the classifier throughout the online run. Having a

lower average error indicates a better learning pattern, as the classifier has converged

faster. The values for the average error is also given in the error tables. s Paired

t-tests were carried out on both the final error and average error scores across the

data sets. The significance level for the paired t-tests was set at 0.05. The results of

the paired t-tests can be seen in Figure 3.15. The plots show wins versus losses for

the three algorithms. As there are three algorithms and eleven data sets, 3× 11 = 33

comparisons are made. Each classifier is part of 22 comparisons, thus the best point

is marked at 22 wins and no losses, and the worst point at 0 wins and 22 losses.

For the paired t-test on the final error score, the O-LDC had 16 significant wins and

1 loss. The number of wins and losses for each algorithm is represented by (wins,
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Figure 3.12: Online error plots and tables.
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Figure 3.13: Online error plots and tables.

56



WBC Laryngeal2

100 200 300 400

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 

 

O−LDC
Perceptron
Balanced Winnow

100 200 300 400 500

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Average Final
O-LDC 0.0534 0.0439

Perceptron 0.0523 0.0458
Winnow 0.0593 0.0532

Average Final
O-LDC 0.0522 0.0464

Perceptron 0.0733 0.0612
Winnow 0.1039 0.0749

Pima

100 200 300 400 500 600

0.24

0.26

0.28

0.3

0.32

0.34

Average Final
O-LDC 0.2426 0.2303

Perceptron 0.3087 0.3147
Winnow 0.2982 0.3000

Figure 3.14: Online error plots and tables.
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Figure 3.15: Wins versus losses for the three algorithms. The diagonal line corre-
sponds to wins = losses.

losses). For the paired t-test on the final error score, the O-LDC scored (16, 1), the

perceptron scored (5, 11) and the balanced Winnow scored (3, 12). For the paired

t-test on the average error score, the O-LDC scored (17, 3), the perceptron scored

(8, 12) and the balanced Winnow scored (4, 14). These results show the O-LDC to

have performed significantly better than either the perceptron or balanced winnow,

in both terms of final error and average error.

3.5 Semi-supervised Learning

It is generally assumed that true class labels are available throughout the classifier

training process. Classifiers can be updated online using these labels. In practice,

the true class labels may not be available, beyond an initial training phase. Semi-

supervised learning offers techniques where unlabelled data may be used to update

the classifier. Learning techniques can be broadly divided into three categories:

Supervised learning During supervised learning true class labels are known. This

is the category into which classification traditionally falls.
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Unsupervised learning During unsupervised learning labels are not known. The

goal is to seek information about the distribution of the data. Clustering is an

example of unsupervised learning.

Semi-supervised learning In reality, gathering labelled data can be expensive,

time consuming, destructive or dangerous, and very often requires professional

expertise [73]. On the other hand, large volumes of unlabelled data are relatively

easy to come by. Semi-supervised learning algorithms combine elements of both

supervised and unsupervised learning [97, 113]. Many paradigms exist, includ-

ing co-training [12, 63], link-based classification [84], Gaussian processes [80],

expectation maximisation (EM) [59] and naive labelling [73].

In the context of on-line classification for fMRI data, the choice of semi-supervised

learning algorithm is restricted by the streaming nature of the data. It is as-

sumed that a small initial labelled data set will be available, followed by a stream

of unlabelled data points. Iterative procedures such expectation maximisation

are therefore not suitable in the context of on-line classification.

Co-training is a method whereby two classifiers (C1 and C2) are trained on the

labelled data set, using different subsets of features. The classifiers are used

to predict labels for the unlabelled data. The data point and label combina-

tions most confidently predicted by C1 are used to train C2 and vice versa.

For application to on-line data, it is possible to use co-training in a ‘batch’ ap-

proach where the algorithm is applied after a given number of unlabelled data

points have been collected. Whilst the high feature-to-instance ratio of fMRI

data makes it well suited to splitting the feature space, this batch approach is

infeasible for providing real-time feedback.

By relaxing the requirements of the model, the predicted label of a classifier can

be used for updates after each data point. In doing this, the model becomes
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truly on-line, and can be used for streaming data.

The remainder of this thesis focusses upon naive-labelling, whereby the classi-

fier is updated by adding the new data point to the training set and taking the

predicted label as the true label. This approach should be taken with caution,

however, guarding against the possibility of a run-away classifier that progres-

sively learns ‘the wrong thing’ [26]. A more refined approach to using predicted

labels for unlabelled examples is dynamic labelling [44]. In this case, using a

similar principle to co-training, out of a pool of unlabelled data, the data point

whose label is most confidently predicted is used to update the classifier. The

process is iterated until no unlabelled examples remain. This method is only

suited however, to cases where the full pool of unlabelled data is immediately

available.

3.6 Naive Labelling

Naive labelling is a semi-supervised learning protocol whereby in the absence of

ground truth, updates are carried out using the label predicted by the classifier.

Without knowing the true class labels, there is a choice of using the predicted labels,

or using a fixed, pre-trained classifier throughout. This scenario is particularly rel-

evant for neurofeedback experiments. In these circumstances the fixed classifier will

have been trained on a small offline data set which may not be representative of the

data set as a whole. A classifier which has been trained offline on a small data set

will be likely to show a high error rate. In addition to this, any concept drift will

render a fixed classifier useless.

Training a classifier with naive labelling does not come without risk. The classifier

may be led astray should updates occur using incorrectly predicted class labels. This

may lead to ‘run-away’ behaviour where the classifier becomes less accurate as training

progresses [26, 27]. The likelihood of runaway classifiers is related to the amount of
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offline training data and on how well the underlying data distribution model is guessed

when designing the classifier [73]. It is expected that the lower the amount of training

data is, the higher are the chances of a runaway classifier appearing in the ensemble.

3.7 Summary

This chapter has touched upon many areas of machine learning and classification.

These areas are far broader and deeper than the scope of this thesis. The techniques

and methods discussed here have been selected with the end goal and challenges of

classifying streaming fMRI data in mind.

Recall that classification of fMRI data raises challenges such as a limited amount

of time to collect pilot data with the participant and a large feature-to-instance ratio.

Given these challenges the initial classifier may be of insufficient accuracy. Here it is

hypothesised that applying online classification to fMRI data is desirable. As such,

simple online linear classifiers have been introduced. These classifiers are capable of

processing large volumes of data quickly, with a low risk of overfitting.

Considering neurofeedback type real-time fMRI experiments, there is a realistic

possibility that class labels will not be available during the online phase. Concepts

such as semi-supervised learning are therefore introduced, specifically naive labelling,

which will be applied to fMRI data in Chapters 6 and 7.
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Chapter 4

The Random Subspace Ensemble

4.1 Combining Classifiers

A classifier ensemble is made up of several individual member classifiers. The en-

semble output can be considered as a decision made by a consensus of experts. The

output from the individual classifiers is fed into a ‘combiner’ and a decision is made.

This system is illustrated in Figure 4.1

A classifier ensemble is less sensitive to noise and redundant features than an indi-

vidual classifier. The problems associated with over-fitting are therefore less prevalent

in classifier ensembles than individual classifiers. Classifier ensembles are also deemed

to be more accurate than individual classifiers [67].

A good ensemble should be made up of diverse classifiers. If all classifiers in
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Figure 4.1: Illustration of classifier ensemble.
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the ensemble were to be the same, or very similar, then an ensemble would have

little or no advantage over an individual classifier in terms of accuracy, and may be

computationally more expensive. Diversity, and measures of diversity within classifier

ensembles is something to which much attention has been devoted [74]. In this work

kappa-error diagrams are adopted as a measure of ensemble diversity, kappa error

diagrams are discussed further in Section 6.2.1.

4.1.1 Ensemble Design

When designing a classifier ensemble there are four possible factors to take into con-

sideration [67]. At the data level, member classifiers may be trained on different

subsets of the data in order to generate diversity. Another way to generate diversity

is to train the member classifiers on different feature subsets. There is also a choice

as to which base classifiers to use. Finally, there are different forms of combiner.

Perhaps the most simple and intuitive combiner is the majority vote method.

For the majority vote, the class label with the highest number of ‘votes’ across the

individual classifiers is taken to be the ensemble output. Despite its simplicity, in

many settings, the majority vote has been found to be equally accurate as other more

complicated combiners [78]. The simple majority vote is the combination method used

throughout this work. It is noted that for cases of two-class data sets, in order to avoid

ties when using the majority vote, it is sensible to have an odd number of classifiers in

the ensemble. One major advantage of the majority vote over other methods, is that

once the individual classfiers are trained, no further training is required to construct

the ensemble.

For ensembles which train individual classifiers on different portions of the data

set, or on different feature subsets, several alternatives exist for selecting which data

points or features are used. Bagging (bootstrap aggregating) creates training subsets

by sampling with replacement from the set of data points (a bootstrap sample) [14].
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The consequence of sampling in this way is that a given data point may appear once,

more than once or not at all across the individual classifiers in the ensemble.

Boosting algorithms, with AdaBoost [41] being the most well known, also gen-

erate diversity by using different training examples. Instead of sampling uniformly

with replacement, boosting algorithms maintain a weight vector for the contribution

of each training example. At each iteration, the weight vector is updated. Train-

ing examples which are misclassified are assigned higher weights. This causes the

‘difficult’ examples to be featured more often in the training set, and forces their

properties to be taken into account, encouraging each new classifier to make different

errors to the previous one, thus generating diversity. Variants of boosting algorithms

have been used in a wide range of settings from credit card fraud detection (algorithm

AdaCost) [19] to optical character recognition [3].

Another algorithm, the Random Subspace (RS) method, trains ensemble members

on different feature subsets, selected at random. This method is described in more

detail in Section 4.2. Skurincha and Duin [116], compare the performance of bagging,

boosting and the RS ensemble with different base classifiers for two artificial and five

real data sets. The usefulness of each ensemble method was shown to be dependent

upon the training sample parameters and the base classifier chosen.

More recent additions to the field of classifier ensembles include the random oracle

[70], spherical oracle [109] and rotation forest [110].

Classifier ensembles have many applications, typically in areas where an individ-

ual classifier is prone to high error. These include face recognition, remote sensing

and medicine, each with their own challenges. For example, challenges presented by

remote sensing include huge volumes of data, with a large number of features. Typical

challenges tackled by classifier ensembles include those where there is too much data,

too little data, or too little of a specific type of data [98], for example when there are

very few instances from one class compared to another.
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For working with fMRI data, one of the greatest challenges is the feature-to-

instance ratio. Choosing an ensemble which trains on subsets of instances would only

exacerbate this challenge. As such, an ensemble which reduces the dimensionality

of the data set is the most appopriate. Whilst other approaches such as principal

component analysis also reduce dimensionality, in doing so, they transform the feature

space. The advantage of the random subspace approach, is that the output can be

directly related back to the location of the voxels within the brain.

Thus the remainder of this work focuses on the RS ensemble, which is described

in more detail below.

4.2 Random Subspace Ensemble

In general, when performing classification, the more features that are available, the

better the resulting classifier. It is however possible to ‘overfit’ the classifier on the

training set, especially in data sets with a high feature-to-instance ratio. The Random

Subspace ensemble (RS), introduced by Ho [52], is a classifier ensemble whereby

ensemble members are trained on feature subsets rather than the entire feature set.

The reduction in the dimensionality of the feature set while retaining the number of

training data points makes RS ensembles particularly suitable for data sets with a

large feature-to-instance ratio.

The RS ensemble requires two parameters. These correspond to the number of

classifiers in the ensemble, L, and the cardinality of the feature subsets, M . Define

X = {x1, . . . , xn} to be the total set of n features. To create an RS ensemble, L feature

subsets of size M < n are generated by drawing at random without replacement from

a uniform distribution over X. Each of these L subsets makes up the feature set for

one of the L classifiers. The L member classifiers are trained and tested using the

respective M features.
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The RS ensemble framework has been used with a variety of base classifiers in

a number of settings. In the original paper, Ho tests a random subspace ensemble

with decision tree classifiers against a single decision tree, and against ensembles

generated through bagging and bootstrapping [52]. Whilst the RS method received

close competition from bagging and bootstrapping for some data sets, Ho concluded

by saying that “the method is expected to be good for recognition tasks involving

many redundant features”. Sun et al, [122], compare ensemble methods, including

the RS ensemble, using EEG data, and found that the best choice of ensemble was

dependent upon the base classifier and choice parameters.

The RS ensemble has been shown to be highly effective in other data sets with

large feature-to-instance ratios. Micro-array data, like fMRI, suffers from high di-

mensionality of the feature space. Coupled with a low number of training examples,

problems with overfitting arise. The RS ensemble with linear SVM provides an ele-

gant and accurate solution [7, 8].

RS ensembles and variations thereof, have also been applied to face recognition

[20, 126, 135, 136]. The algorithm is believed to be of benefit due to the “inherent

sparsity and small sample size of data” [20]. This is a similar set of challenges to

the ones faced with fMRI data. In the face recognition study conducted by Zhu et

al [136], a variation termed semi-random subspace is used. The initial feature space

is broken down into several local regions, the RS approach is applied to each region

and the base classifiers are combined to make a final decision. Two combination

approaches were tested, firstly taking all the classifiers in parallel and combining the

outputs to make a final decision. The second approach is the hierarchical approach,

generating an intermediate decision for each local region. These local decisions are

then combined for the final ensemble output. By capturing any spatial relationships

between features in the local regions the semi-RS method was shown to improve upon

the results of the RS method for this task. In fMRI, the voxels which respond to a
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given stimulus are highly distributed throughout the whole brain. Whilst the semi-

RS method was shown to be successful for face recognition, selecting and separating

regions of the brain in this manner may break important relationships and not capture

the full response of the brain.

The RS ensemble approach has also been adopted by Polikar et al in an algorithm

for handling missing features [105].

fMRI data poses a severe classification challenge because of the extremely large

feature-to-instance ratio. The RS ensemble therefore seems a natural choice to apply

to fMRI data, especially as the algorithm is computationally inexpensive due to the

reduced number of features per ensemble member. Kuncheva and Rodriguez [71],

compare eighteen classifier methods for fMRI data. The experiments were conducted

with a variety of voxel selection methods and parameters. The RS ensemble with

SVM was shown to perform best across the trials conducted.

A random subspace based technique has also been used on fMRI data for brain

mapping [9,117,118], and as another application, Richiardi et al [108] use an ensemble

of decision trees to classify fMRI connectivity graphs1.

For data sets with a large number of irrelevant features, the RS ensemble has

been used in conjunction with an initial feature selection step. Bertoni et al [7] use

this technique for microarray data. The feature selection step is used in order to

remove noisy and irrelevant, uninformative genes from the analysis. The aim is to

improve the accuracy of the classifiers within the ensemble in order to further improve

the ensemble performance. The authors use a univariate significance based feature

selection approach, and acknowledge that any feature selection algorithm can be used.

There is a lack of clarity about the number of features, which ought be selected as

‘relevant’ or ‘statistically significant’. One approach is to set, instead of a predefined

number of voxels, a threshold on the significance level of a univariate statistic. This

1An fMRI connectivity graph describes the relationships between brain regions across a time
series, as the participants are subjected to different stimuli [108].
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may be a value such as α = 0.05, or a corrected value. Correction approaches include

the Bonferroni correction for multiple comparisons or the false discovery rate [99].

Dependent upon the choice of feature selection method, and the choice of correction

applied, there may be a dramatic difference in the number of voxels selected [99].

This is best illustrated by an example. Taking the EN1 data set, there are 81,840

voxels. Applying an ANOVA to the un-masked data set2, 43,332 voxels are found to

be significant at a significance level of α = 0.05.

The Bonferonni correction takes into account the number of statistics being calcu-

lated, and the family-wise error. If n test statistics are to be drawn from a distribution

with probability α of being greater than a threshold, the probability of all statistics

being less than the threshold is (1 − α)n. The family-wise error rate is the proba-

bility that one or more values are greater than α, 1 − (1 − α)n, which for small α

can be approximated as nα [42]. Applying the Bonferonni correction, the significance

threshold required can be re-calculated as α
n
.

For EN1, applying the Bonferroni correction reduces the number of significant

voxels to 11,446. For the three class data set, EB, there are 86,400 voxels. In the

same procedure, using an ANOVA, 7,806 voxels are found to be significant at p = 0.05.

Using a corrected p-value, this drops to 1 voxel. For consistency across data sets, the

approach used for this thesis is to set a predefined number of voxels, K, rather than

define a significance level.

4.3 Deriving Parameters for the RS Ensemble for

fMRI Analysis

In comparison with many other ensemble frameworks, the RS ensemble has an advan-

tage of requiring only two parameters, the number of classifiers in the ensemble, L,

and the number of features in each feature subset, M . There is very little guidance as

2As this is for illustration purposes only, the ANOVA was applied to the entire data set.
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to how best to select values for these parameters. Based upon a notion of ‘important’

features, a theoretical approach to derive values for L and M is proposed3.

Due to the large number of voxels in a typical fMRI scan, important discriminative

information may be contained in a relatively small number of voxels. An assumption is

made that there are Q of these ‘important’ voxels, contained in a set I = {q1, . . . , qQ},

I ⊂ X , where X is the set of all voxels, X = {x1,x2, . . . ,xn} and |I| = Q << n,

and the remaining n − Q voxels are random noise. Also, it is assumed that the

cardinality of the subspace M is much smaller than n. Recommended values for L

and M are sought in terms of n and Q, based upon the theory that accurate and

diverse individual classifiers are a prerequisite for better ensembles [15, 16, 67].

As the accuracy of the classifiers within the ensemble is not known a priori, prop-

erties of the feature subsets are used as potential indicators. Three such properties;

usability, coverage and feature set diversity are introduced.

Usability A classifier built upon random noise alone, will be no more accurate than

random chance. It is therefore of interest to have at least one q ∈ I in each

feature subset. A classifier is defined as being usable if its feature subset contains

at least one ‘important’ voxel q ∈ I.

To calculate the probability of drawing a feature subset that represents a usable

classifier, take Y to be the number of ‘important’ features in a subset of size

M , drawn without replacement from X . Y is a random variable which has a

hypergeometric distribution with probability mass function

P (Y = i) =

(

Q
i

)(

n−Q
M−i

)

(

n
M

) , i = 0, 1, . . . , Q.

Thus the probability of drawing a usable classifier is

P (usable classifier) = 1− P (Y = 0) = 1−

(

n−Q
M

)

(

n
M

)

3This work was conducted in collaboration with L.I.Kuncheva and J.J.Rodriguez [69, 72]

69



The usability of an ensemble is defined as the proportion of classifiers from

L which are defined as being usable. Define a completely usable ensemble as

an ensemble where all L member classifiers are usable. As feature subsets are

sampled independently, the probability of a completely usable ensemble is

P (U = 1) = P (usable classifier)L =

(

1−

(

n−Q
M

)

(

n
M

)

)L

.

This can be simplified as

P (U = 1) =

(

1−
M−1
∏

i=0

(

1−
Q

n− i

)

)L

.

Since it is assumed that M << n, the equation can be further simplified to

P (U = 1) ≈

(

1−

(

1−
Q

n

)M
)L

.

This approximation is equivalent to replacing the hypergeometric distribution

with a binomial distribution. Given the size of n for fMRI data, it can be said

that sampling with replacement is approximately equivalent to sampling without

replacement. Y can therefore be approximated with a binomial distribution

with parameters M and p = Q
n
. The probability of a completely usable classifier

in this case would be 1−
(

1− Q
n

)M
.

For a given parameter set (L, M , n and Q), the expected degree of usability

of the ensemble, E[U ], can be calculated. Denote by Z a random variable

which expresses the number of usable classifiers in the ensemble. Then Z has a

hypergeometric distribution. Define the total as the number of possible samples,

without replacement, of size M from X , that is,
(

n
M

)

. The number of usable

classifiers is calculated by taking the number of non-usable classifiers,
(

n−Q
M

)

,

from the total. The number of selected classifiers at a time is L. The expected

value of Z is Selected×Usable
Total

, therefore the expected usability of the ensemble is
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E[U ] = 1
L
E[Z]

E[U ] =
1

L
× L×

(

1−

(

n−Q
M

)

(

n
M

)

)

= 1−

(

n−Q
M

)

(

n
M

) .

The expected usability of the ensemble does not depend on the ensemble size

L. It is hypothesized that ensembles with a higher degree of usability will be

more accurate.

Coverage In order to best use the available information for classification, it is desir-

able to include as many q ∈ I in the feature subsets as possible. Ideally, each

q ∈ I to be selected at least once in the L samples of M features. The degree

of coverage of the ensemble, C, is defined as the proportion of features q ∈ I

(out of Q) which are selected for one or more of the L classifiers.

In order to calculate the degree of coverage, as the feature subsets are sampled

independently from X , the binomial approximation to the hypergeometric dis-

tribution can be used once again. The probability of selecting a given q ∈ I in

sample of size M , can be calculated as M
n
. Conversely, the probability that q

is not selected is 1 − M
n
. The probability that q is not selected in any of the L

feature subsets, denoted P (q̄), is P (q̄) =
(

1− M
n

)L
. The probability of q being

selected in at least one of the L feature subsets is therefore 1− P (q̄).

The probability of all features being covered is

P (Complete coverage) = P (C = 1) =

(

1−

(

1−
M

n

)L
)Q

.

Denote by Z the number of covered features out of Q. Z has binomial dis-

tribution with parameters Q and p = 1 −
(

1− M
n

)L
. The expected coverage

is

E[C] =
1

Q

(

1−

(

1−
M

n

)L
)

Q = 1−

(

1−
M

n

)L

.
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The expected coverage depends on the ensemble size L and the subset size M

but not on Q. The assumption here is that the higher the degree of coverage,

the more accurate the ensemble.

For fixed Q and n, E[U ] is monotonically increasing with M and E[C] increases

with both L and M . This suggests that a larger ensemble with a larger feature

sample is best. Note that in the extreme, the case of M = n, the ensemble will

be made up of classifiers built upon identical subsets. This defeats the object

in having an ensemble in the first place. It is also likely, that with an excessive

feature-to-instance ratio, the classifiers may overfit the data. A third property,

termed feature set diversity, is therefore introduced.

Feature set diversity In order to maintain a level of diversity within the ensemble,

it is important that the feature subsets used to construct the L classifiers are

non-identical. Given the assumption that n − Q voxels are random noise, and

do not contribute to the classification. Feature set diversity is calculated based

upon the contribution of the Q important features.

Denote by S1, S2, . . . , SL the L feature subsets sampled from X . Consider

S1, S2 ⊂ X such that |S1| = |S2| = M . Denote by I1 ⊆ I and I2 ⊆ I the

respective subsets of ‘important’ features in S1 and S2 respectively. Feature Set

Diversity (D) is defined as

D(S1, S2) = |I1 ∪ I2| − |I1 ∩ I2|.

Two classifiers are non-identical if their feature subsets differ by at least one

‘important’ voxel. Each feature q ∈ I may or may not contribute to D. A

value of 1 will be added if q is in either set but not in both. Then the expected

diversity for any pair of subsets S1 and S2 is

E[D] =

Q
∑

i=1

P (qi ∈ I1)P (qi /∈ I2) + P (qi /∈ I1)P (qi ∈ I2).

72



Usability Coverage Feature Set Diversity

E[U ] E[C] E[D]

200 400 600 800

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
200 400 600 800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
200 400 600 800

10

20

30

40

50

M

Figure 4.2: Theoretical (red, circles) and simulation curves (black, dots) coincide for
the expected values of U , C and D for n = 1000, Q = 100 and L = 10. The empirical
curve is calculated as an average of 10 ensembles with randomly sampled L = 10 sets
of M features.

Since all features in I have equal chance of being selected in a subset of size M ,

and the subsets are drawn independently,

E[D] = 2Q
M

n

(

1−
M

n

)

. (4.1)

This calculation disregards non-usable classifiers. An ensemble can be still be

diverse even if it contains non-usable classifiers for which I1 = I2 = ∅.

The expected theoretical value of E[U ]. E[C] and E[D] are calculated for n = 1000,

Q = 100 and L = 10. Simulations, calculated as an average of 10 ensembles are run

with L = 10 randomly sampled sets of M features. The resulting theoretical and

empirical curves, shown in Figure 4.2, are seen to coincide. Varying L had little effect

in the shape or position of the curve. Based upon these results we claim that values

of M close to n
2
are optimal as all three criteria reach their maxima.
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Chapter 5

Random Subspace Ensemble for
Non-i.i.d. Streaming fMRI Data

5.1 A Simulation Experiment

Having defined the three criteria and derived suggested values for L and M , a simu-

lation is used to check the relationship between the criteria and the accuracy of the

RS ensemble for fMRI type data.

5.1.1 Data

In order to illustrate and simulate the theory, a synthetic data set with realistic

properties is generated. This allows control of n and Q. This synthetic 2 class data

set is based upon the first two classes of the Bangor 2 data set. To create the data set,

the Contrast to Noise Ratio (CNR) for each voxel of the real fMRI data set (Bangor 2:

Classes 1 and 2) is calculated. The CNR of each voxel is then used to rank the voxels.

The means and covariance matrix are stored for the top Q voxels. These correspond

to the Q important features in the data. Multivariate Gaussian distributions were

simulated for each class. The remaining n − Q features were simulated as random

noise, with mean zero and standard deviation equal to the mean CNR for the Q

important features.
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5.1.2 Experimental Protocol

For each parameter combination (M,L,Q, n), detailed below, 10 data sets were gen-

erated. Each data set had 10 training examples per class (total 20 training examples)

and 100 testing examples per class (total 200 testing examples). This ratio was

chosen to reflect that of real fMRI data sets. Data sets were generated with total

number of features, n = {200, 500, 1000}, number of important features, Q, such that

Q
n

= {0.02, 0.05, 0.1, 0.25, 0.5, 1}. For the ensemble parameters, M took 20 evenly

spaced values from 1 to n, L took evenly spaced values between 1 and 200.

As a base classifier, an SVM was used. For each parameter combination the error

of the RS ensemble is calculated, along with the observed values for usability, U ,

coverage, C and feature set diversity D for the ensemble.

5.1.3 Results

From the results of the simulations surfaces for U , C, D are obtained along with the

error of the ensembles. These are visualised on a (L,M) grid. Figure 5.1 shows an

example of the surfaces for the distribution where n = 500 and Q = 50. Each point is

calculated as an average across 10 simulations, with data being drawn independently

from the chosen simulated distribution. The shapes of the surfaces were consistent

across all six ratios of Q
n
. The shape of the surfaces confirms the hypothesis that

larger values of U , C and D lead to more accurate ensembles.

From subplot (a) it can be seen, that as expected, usability does not depend upon

L. U quickly raises to 1 as M increases. Feature set diversity, subplot (c), produces

a ‘tent’-shaped surface. Once again, the values of D depend upon M , but not on L.

The largest values of D are achieved for M ≈ n
2
. Coverage, as seen in subplot (b),

has a value of 1 for the largest part of the grid. C is the only property which depends

upon L. The plot suggests that small to medium sized values of L are sufficient. As
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Figure 5.1: The three RS characteristics and the ensemble error as functions of the
ensemble size L and the feature set size M . Each of the 2 classes in the data set was
sampled from a Gaussian distributions with Q = 50 relevant and n− Q = 450 noise
features.

a rule of thumb, it is therefore suggested to use M = n
2
and L = n

10
for fMRI data.

The observed error is shown in subplot (d).

Table 5.1 summarises the simulation results. The table shows the Q
n

ratio, the

average error rate of the RS ensemble over the whole (L,M) grid, denoted Ē, as well

as the error using the recommended values, denoted Ē∗. Ē is seen to be greater than

Ē∗ across all values of Q
n
. The table also shows the correlation coefficients between the

RS ensemble error E, on one hand, and U , C, and D, on the other. These coefficients

support the hypothesis that large values of usability, coverage and feature-set diversity

are beneficial for the ensemble.
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Table 5.1: Summary of the simulation results. Ē is the average RS ensemble error
across the (L,M) grid. Ē∗ is the value of the ensemble error for the recommended
parameter values, M = n

2
and L = n

10
.

Correlation with E
Q
n
ratio Ē Ē∗ Range of E σ(E) Usability Coverage Diversity
0.02 7.99 1.25 0.70–50 16.43 −0.513 −0.873 −0.649
0.05 5.80 1.75 0.80–50 12.62 −0.602 −0.865 −0.566
0.10 5.73 1.40 0.60–50 11.83 −0.467 −0.791 −0.628
0.25 6.97 0.90 0.35–50 14.51 −0.174 −0.746 −0.645
0.50 5.47 2.15 0.35–50 10.94 −0.035 −0.540 −0.579
1.00 8.58 1.05 0.25–50 11.90 N/A −0.367 −0.543

5.1.4 Experiment with Real fMRI Data

The RS ensemble with SVM was run on classes 1 and 2 (faces and places) of the

Bangor 2 data set. Firstly, k = 1000 voxels were pre-selected using the SVM method.

Three-fold cross-validation was then applied to test the RS ensemble. The ensemble

was tested on a 10 × 10 grid of values for M and L. M was varied from 1 to k at

equal intervals, and L was varied from 1 to k/5. The ensemble error is illustrated as

a surface over the (L,M) grid in Figure 5.2. The recommended values of M = 500

and L = 100 are marked as lines across the 3-D surface. The lines intersect near the

minimum of the error surface, confirming empirically the recommendation for L and

M . The average error across the whole grid was 0.2138, the error at M = 500 and

L = 100 was 0.0521.

5.2 Online Classifier Ensembles for fMRI Data

Before applying naive labelling to streaming fMRI data, supervised online learning

is considered. Three online linear classifiers are tested on the EN1 data set. The

classifier models chosen are the perceptron, winnow and online linear discriminant

classifier (O-LDC). The questions of interest are
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Figure 5.2: RS error on the real fMRI data set as a function of the ensemble size L
and the feature size M . The recommended values for L and M are overlayed on the
surface.

1. Are random subspace ensembles more accurate than individual classifiers for

fMRI data?

2. Does online learning benefit the classifiers and/or the ensembles?

3. Which individual classifier is best suited for (supervised) classification of stream-

ing fMRI data?

5.2.1 Method

For this experiment the EN1 data set used as it is a 2-class problem, which suits

the perceptron and winnow. The data set was labelled using the standard box-car

method. The data set is prepared by taking an offline training data set, T consisting

of the first blocks of each presentation type, that is, the first block of emotion, and

first block of rest, of cardinality NT = 17. The remaining 187 data points, in sequence,

make up the online data set, S.

Experiment 1: Individual Classifiers For each base classifier (perceptron, win-

now and O-LDC), an offline (batch) version is trained on T , using class labels 1

and 2 to correspond to emotion and fixation respectively. This may be regarded
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as an initialization period in an fMRI experiment. After this initial training pe-

riod, the online data points are presented one at a time. As each data point is

presented, the ‘current’ classifier is tested; if the data point is misclassified then

the classifier is updated.

Experiment 2: Random Subspace Ensemble For each base classifier an RS en-

semble is trained on T . Based upon the M = n/2 recommendation, L = 11

and M = 1000 are chosen as the ensemble parameters. The online data points

are presented one at a time, and the individual classifiers within the ensemble

are tested. Each individual classifier which incorrectly classifies the data point

is updated. The accuracy of the ensemble is recorded.

5.2.2 Results

The cumulative error is calculated at each streaming data point in S, using Equa-

tion 3.8. The error progressions for the individual classifiers and RS ensembles are

illustrated in Figure 5.3 (a) and (b) respectively.

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

Online TRs

E
rr

or
 r

at
e

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

Online TRs

E
rr

or
 r

at
e

 

 

LDC
Perceptron
Winnow

(a) Individual classifiers (b) Ensemble classifiers

Figure 5.3: Cumulative error progression for online data.

The O-LDC outperforms the other classifiers both individually and as an ensem-

ble, which is seen by the end point of the progression showing a lower error score.
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The perceptron comes second whilst the winnow yields the worst results. The error

progression for the perceptron appears to start at zero as the perceptron correctly

classifies the first few data points in S. Table 5.2 summarises the final cumulative

error scores, at TR = 187. The results show that for all base classifiers, the RS en-

sembles perform better than the individual classifiers. The O-LDC is seen to improve

dramatically during the online learning phase, and is the most accurate base classifier

in both experiments. This reinforces the results from the i.i.d. example, which shows

the O-LDC to be better than the perceptron and winnow.

Table 5.2: Final errors for individual classifiers and classifier ensembles (%), taken at
TR = 187.

O-LDC Perceptron Winnow

Individual classifier 9.29 12.14 17.86
Classifier ensemble 5.71 8.57 17.14

Kappa-error Diagrams

As the online instances are presented and the classifiers in the ensemble are updated,

the mean pairwise error and kappa diversity scores change, creating a trajectory.

Figure 5.4 plots the trajectories of the means of the kappa-error clouds for the RS

ensembles over time, one trajectory for each base classifier model. The endpoint of

each trajectory is indicated with a marker. Take the RS ensemble of the perceptron

as an example, represented by a green trajectory and red square marker in Figure

5.4. Following offline training, the pairwise error of the ensemble is e ≈ 0.21, the

corresponding kappa diversity score is κ ≈ 0.3. In the case of the perceptron, the

general trend of the trajectory is downwards (indicating decreasing pairwise error)

and to the right (indicating decreasing diversity). The final pairwise error for the RS

ensemble of perceptron classifiers is e ≈ 0.125, with κ ≈ 0.7.
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The initial high diversity of the perceptron may explain its early accuracy. This

diversity decreases over time. Only the trajectory of the O-LDC ensemble shows an

improvement of both diversity and accuracy over time.
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Figure 5.4: Trajectory of means of kappa error diagrams.

50 100 150
Online TRs

D
es

ig
n 

m
at

rix

Figure 5.5: Design matrix highlighting occurrence of individual and ensemble errors,
plotted against the design matrix (black line). Individual errors represented by red
dot, ensemble errors by black cross. Transitions between classes are illustrated by
vertical grey stripes.

To compare the performance of the ensemble and individual classifiers, it is inter-

esting to see when classification errors occurred. Figure 5.5 shows the ‘design matrix’

corresponding to expected levels of neural activity. Peaks correspond to negative

emotion and valleys to rest (no emotion). Transition TRs, between the classes, are

marked by grey vertical stripes. These TRs are where errors in classification are ex-

pected to be made. Errors by the individual O-LDC are marked by red dots whilst

81



black x’s mark errors made by the O-LDC ensemble. For both classifiers, errors are

predominantly made in the first half of the experiment. This is a strong indication

that the classifiers improve over time. This supports evidence from the error pro-

gressions in Figures 5.3(a) and (b). In Figure 5.3(a), the error progression individual

O-LDC classifier is seen to make errors beyond TR = 100, whilst in Figure 5.3(b) the

ensemble is seen to stop making errors at approximately TR=80. In addition to this,

from Figure 5.5 it can be seen where the errors occur in terms of the design of the

experiment. Fewer errors occur at peaks and valleys than in the transition periods,

with those errors that do occur in peaks and valleys appearing early in training. Er-

rors made by the ensemble are seen to occur less frequently than those made by the

individual classifier. The ensemble is also seen to stop making errors sooner than the

individual classifier.

5.3 Processing Time

The O-LDC has been shown to perform more accurately than either the Perceptron

or Winnow. Also, the classifier ensembles have been shown to outperform the indi-

vidual classifiers. However in order to perform in real-time the updates need to be

sufficiently fast, it is important that the classifier ensemble can update within the

required amount of time (≈ 1TR). Experiments were conducted in order to test the

processing times for training and updating the O-LDC.

5.3.1 Method

This experiment used the EN1 data set. A stratified sample of 9 data points per

class was taken as an initial training sample. A grey matter mask was calculated

and applied, reducing the feature space from 83,072 voxels to 28,118. The time taken

to calculate the mask was 0.49s1. The time taken to perform two voxel selection

1Experiments were repeated 20 times, with mean times being reported. Experiments were carried
out using Matlab [87] on a laptop with an AMD Turion 64 x2 2GHz processor and 2GB of memory.
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Table 5.3: Update times (s) for individual classifiers
K Initial training time Update time
20 0.0029 0.0016
50 0.0050 0.0018
100 0.0119 0.0026
250 0.0811 0.0117
500 0.5745 0.0790
1000 3.6419 0.5015
2000 27.1080 3.3411

methods were compared, the ANOVA and maximum activation method. To select

2000 voxels from the 28,118, the ANOVA took 70.33s whilst the maximum activation

method took only 0.04s.

5.3.2 Results

Table 5.3 shows the processing time for training and updates for an individual clas-

sifier, with different numbers of features, K. Update times include time taken to

select the voxels (from the grey matter mask and ANOVA) and normalise the data

point, using the coefficients derived from the training data. Table 5.4 shows the initial

training times for classifier ensembles for different combinations of L and M . Table

5.5 shows the update times for the ensembles.

It can be seen that above K = 250 features the individual classifier slows dra-

matically. For the ensemble, even with L = 13 and M = 250 the updates occur well

within the required time (≈ 2s), and it has already been shown that in this setting,

the ensemble outperforms the its individual component classifiers. This supports the

hypothesis that the ensemble is the better choice for real time classification.

5.4 Discussion

The experiments show that for streaming fMRI data the random subspace ensem-

ble performs better than the individual online linear classifiers. This is based upon
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Table 5.4: Training times (s) for classifier ensembles
L = 5 L = 9 L = 11 L = 13

M = 20 0.0102 0.0135 0.0166 0.0188
M = 50 0.0182 0.0309 0.0366 0.0438
M = 100 0.0568 0.0989 0.1210 0.1449
M = 250 0.4054 0.7340 0.8977 1.0650

Table 5.5: Update times (s) for classifier ensembles
L = 5 L = 9 L = 11 L = 13

M = 20 0.0083 0.0154 0.0197 0.0215
M = 50 0.0094 0.0171 0.0207 0.0235
M = 100 0.0131 0.0247 0.0298 0.0356
M = 250 0.0626 0.1088 0.1325 0.1586

comparison between the mean performance of the individual classifiers and the mean

performance of the classifier ensembles. It may be argued that certain individual

classifiers perform better than the ensemble, however it is not possible to establish in

advance which individual classifiers these would be, hence the ensemble offers a more

robust output.

Across both the individual and ensemble experiments, the online linear discrim-

inant classifier (O-LDC) is seen to be more accurate than either the perceptron or

the winnow. As a linear classifier, the O-LDC is fast to train and has demonstrated

accurate results. The O-LDC is therefore the best choice of the base classifiers tested

here, for use in online pattern classification studies of the human brain.

For this study it has been assumed that the true class labels are known during

the online training phase. The situation when this is not the case is considered in

Chapters 6 and 7.
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Chapter 6

Classification of i.i.d. fMRI
Streaming Data

A study is proposed to determine whether a classifier benefits from naive labelling

when the data comes as a series of fMRI brain volume images. Whilst a run-away

classifier is a realistic adversity when naive labelling is used, it is hypothesized that

by using an RS ensemble, a sufficient number of classifiers within the ensemble will

be improved beyond their offline accuracy, and thus the ensemble will counteract any

adverse effects on an individual ensemble member.

6.1 Experimental Protocol

Three data sets are used, EN1, EN2 and EB. The data sets are labelled using a

shifted box-car method as described in Section 2.5, where the labels are shifted by

1 TR (corresponding to an offset of one data point). This means that the number

of instances in the experiment is 1 less than in the original data descriptions. For

each data set, a voxel mask is derived, based upon the BOLD signal, using the

method outlined in Section 2.7.1. This mask is applied to reduce the feature set,

predominantly to the grey matter of the brain. The resulting data sets are summarised

in Table 6.1.

The data points from each data set were split into two subsets: T , a data set

used for offline (batch) training, and S, a data set which is prepared and presented
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Table 6.1: Summary of data sets after applying the grey mask

Name Voxels (Features) Data Points Classes
EN1 28426 203 2
EN2 28662 203 2
EB 29865 108 3

to the classifier as online (streaming) data. The initial data points were shuffled and

sampled to form T . It is noted that this breaks the autocorrelation of the fMRI signal,

however in order to explore semi-supervised learning for streaming fMRI data, the

method first needs to be shown to work for stationary, independent and identically

distributed (i.i.d.) data. This issue is discussed later in relation to presenting the

online data stream.

Having selected T , the remaining data points are oversampled to construct S with

500 data points1. This is the closest approach to constructing i.i.d. sets. In order to

reduce the dimensionality of the feature set, following the recommended procedure

by De Martino et al. [30], a fixed amount (K), of voxels are pre-selected. This is

achieved by taking theK voxels with maximum activation, based on T . Both training

and testing data are normalised, using the mean and standard deviations calculated

for T .

A ‘fixed’ offline random subspace ensemble is trained on T alone. Three scenarios

are considered:

Scenario A: No Updates (Fixed). The online data points from S are presented

to the ensemble one at a time. The ensemble is not updated during the online

phase. The cumulative error is measured in order to compare whether using

naive labelling is better than the no-action scenario.

1The 500 data points are sampled independently from the remaining data points. Data points
may appear in S once, more than once, or not at all.
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Scenario B: Supervised Updates (Supervised). The true class labels are as-

sumed to be immediately available. As each online data point is presented

to the ensemble, each ensemble member is updated using the true class label.

Scenario C: Unsupervised Updates (Naive). The true class labels are assumed

to be unavailable. As each online data point is presented to the ensemble, each

ensemble member is re-trained using its individual predicted label as the true

label.

The experiments were conducted across a range of parameters; number of pre-selected

voxels K = 500, ensemble size L = [5, 9, 11] and feature set cardinality M =

[20, 50, 100]. The cardinality of the training sets were NT = [20, 40, 100]. Due to

the random nature of the feature selection for the RS ensemble, experiments were

repeated 50 times, and the results were averaged.

For each scenario, the error rates of the individual member classifiers which make

up the ensembles are also considered.

Computational costs of the preprocessing and classification are not assessed quan-

titatively here. This is not expected to be a major obstacle, however, given that

the classifiers have relatively low computational costs, and that earlier studies have

demonstrated the feasibility of real-time classification [37, 53, 54, 77], and processing

speed of computers is increasing over time.

The study seeks to answer the following questions:

Individual vs ensemble. For classification of unlabelled fMRI data, does an indi-

vidual classifier or classifiers in an ensemble framework yield better results? In

line with previous and existing research, classifier ensembles are expected to

have higher accuracy than an individual classifier. This may not be true if the

individual classifiers deteriorate progressively. At some point the ensemble will

become worse than the average individual classifier.
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Fixed vs untrained updates. For streaming fMRI data, is it advantageous to up-

date the ensemble using naive labels?

6.2 Results

The cumulative error progression is calculated for each time step using Equation 3.8.

The ‘final’ errors for the three data sets, taken at time t = 500 are summarised

as colour plots in Figure 6.1, full error values can be found in Tables A.1, A.2 and

A.3. For each combination of M and NT , ensembles of L = [5, 9, 11] classifiers are

generated, giving a total of 25 individual classifiers. The individual error is taken

as the mean error of these 25 classifiers at time t = 500. Each column of the table

represents a value of L, with the last column showing the mean error of the individual

classifiers, titled ‘I’. Each row of the table corresponds to a value of NT . Within each

coloured grid, rows correspond to values of M , and columns to the three RS ensemble

methods, Fixed (F), Naive (N) and Supervised (S).

As expected, the supervised classifier is superior to the fixed and naive classifiers.

The final error scores at t = 500 are compared for the fixed ensemble and the naive

ensemble in order to see which scenario works best for unlabelled data. The results of

this comparison are summarised in Table 6.2. A ‘+’ indicates that the naive ensemble

performs better than the fixed ensemble. A ‘−’ indicates the naive ensemble performs

worse than the fixed ensemble. Significance was calculated using a paired t-test,

uncorrected for multiple comparisons. Significant results at α = 0.05 are indicated

by ⊕ and 	.

For these parameters the results suggest that the naive ensemble is on a par or

better than the fixed ensemble (21 ⊕, 23 +, 35− and 4 	). For M ≥ 50, the naive

ensemble performs much better than the fixed ensemble, (20 ⊕, 19 +, 13 − and 2

	). Data set EB was the most ‘difficult’ for the classifiers, as this is where different
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Figure 6.1: Final cumulative error scores (%). Error scores are coloured from blue
through to red representing low and high error respectively. Values of M are shown as
rows of each coloured grid. ‘F’, ‘N’ and ‘S’ correspond to fixed, naive and supervised
ensembles. ‘I’ corresponds to mean individual error of classifiers for a given M and
NT .
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Table 6.2: Direct comparison of fixed and naive ensembles. ‘+’ and ‘-’ respectively,
represent a ‘win’ or ‘loss’ by the naive ensemble. A circle surrounding the + or -
indicates that the result is statistically significant at significance level α = 0.05. L is
ensemble size, M is cardinality of feature subsets, NT is cardinality of training data
set.

EN1 EN2 EB
NT 20 40 100 20 40 100 20 40 100
M

L = 5
20 - - 	 - - - + - -
50 + ⊕ + + ⊕ 	 - + +
100 - + ⊕ - ⊕ ⊕ + + +

L = 9
20 - - - - - - - - -
50 - ⊕ 	 + ⊕ - + + -
100 + ⊕ ⊕ ⊕ ⊕ ⊕ - + -

L = 11
20 + - 	 + - - ⊕ - +
50 + ⊕ - ⊕ ⊕ + - - +
100 ⊕ ⊕ ⊕ + ⊕ ⊕ - + -

emotions are being recognised. The other challenge with this data set is the addition

of a third class.

6.2.1 Kappa-error Diagrams

Kappa-error diagrams are now an accepted tool for comparing classifier ensembles

[86]. Each pair of classifiers in the ensemble generates one point on the diagram.

The x-axis of a kappa-error diagram is the diversity of the pair, κ. Lower values

of κ indicate higher diversity. Kappa measures the level of agreement between the

classifiers while correcting for chance [40]. Consider a testing set of N examples, the

pairwise κ is defined as follows

κ =
2(N11N00 −N01N10)

(N11 +N10)(N10 +N00) + (N11 +N01)(N01 +N00)
, (6.1)

where N11 is the number of testing examples on which both classifiers are correct,

where N00 is the number on which both classifiers are wrong, N10 is the number on

which classifier 1 is correct and classifier 2 is wrong, and N01 is the number where
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classifier 1 is wrong and classifier 2 is correct; N00 +N11 +N01 +N10 = N .

In a kappa-error diagram, the y-axis shows the averaged error rate of the pair.

Each ensemble can be plotted as a cloud of points in a kappa-error diagram. En-

sembles whose ‘clouds’ of points are situated closer to the bottom left corner of the

diagram are usually preferable as they display high pair-wise accuracy and high di-

versity.

For the experiments considered here, there is one classifier ensemble for every time

point t. It is interesting to see how the cloud shape and position of the kappa-error

diagram changes with time. For each TR the kappa error and pairwise accuracies are

calculated. To demonstrate how the kappa-error diagrams progress with time, the

mean of the kappa-error clouds are calculated at each TR. Instead of plotting the

entire clouds of points, it was decided to plot the trajectories of the centres.

In order to understand the mechanism of improvement through naive labelling en-

sembles, the progression of the error over time and the corresponding time-trajectory

on the kappa-error diagram are considered. Figure 6.2 (a) shows the error plot for

EB2 with L = 11, M = 100 and NT = 100. The plot is taken from t = 25 onwards,

as at low t there are large fluctuations in the cumulative error leading to the plot

appearing noisy and unstable. If the plot was to be taken from t = 0, then the plots

for all scenarios would start from one point, as the same offline ensemble is used in

each case. The marker and line colour indicate the base classifier, a solid line indicates

the classifier ensemble whilst a dashed line indicates the individual classifier.

The error rate of the fixed classifier is expected to remain constant over time. The

error rate of the supervised classifier will drop as the classifier sees more data. It is

hoped that the naive classifier follow the same pattern as the supervised classifier, in

that the error will drop as t increases, thus showing the naive labelling strategy to be

beneficial.

The figure shows the dashed lines, representing the individual classifiers, above
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Figure 6.2: Figures for EB data taken with ensemble size L = 11, feature set cardi-
nality M = 100 and training data set cardinality NT = 100.
(a) Error progression. Solid line indicates classifier ensembles. Dotted line indicates
individual classifiers. Plot illustrates changes in error over time.
(b) Kappa-error progression. Kappa-error progression plots the changes in pair-wise
accuracy and diversity as the classifier ensembles learn over time.

the corresponding solid lines. This indicates that the classifier ensembles outperform

the individual classifiers. The error of the supervised ensemble is seen to drop over

time, whilst the error of the fixed classifier ensemble remains constant. The naive

ensemble is seen to improve over time, with significantly better results than the fixed

ensemble.

Figure 6.2 (b) shows the kappa error trajectories corresponding to EB2 with L =

11, M = 100 and NT = 100. The cloud for the fixed ensemble is expected to float

about the initial point, as the only difference from one time point to the next will

be the estimate of kappa and the individual errors. The classifier and the ensemble

parameters do not change, hence the movement will be only a small fluctuation. The

supervised ensemble, on the other hand is expected to drop down the plot, indicating

that the individual accuracies improve with more data being seen. It is curious how

the diversity of the ensemble progresses, i.e., whether the cloud will move to the left

(larger diversity) or right. The endpoint of each trajectory is indicated with a marker.
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A good classifier ensemble will be both accurate and diverse, and thus appear near

the bottom left hand corner of the diagram. As the trajectories of the ensembles are

plotted over time, if the ensemble improves, it is expected that the trajectory will

progress towards the bottom left corner.

The trajectory of the supervised ensemble tracks down as accuracy increases. The

diversity decreases slightly, this suggests that all classifiers within the ensemble are

being driven towards the optimal classifier, thus are becoming more similar. The fixed

ensemble, as expected, shows very little progression. The naive ensemble shows an

increase in both accuracy and diversity, both of which are desirable characteristics.

To better see what is happening the individual progressions of the classifiers are

plotted. Figures 6.3 (a) and (b) show the typical patterns of the individual classifiers

for the fixed and supervised ensembles respectively: the error of the fixed classifiers

remains constant while the error of the supervised classifiers drops over time.

For the naive classifiers, it is desirable to see a similar shape to that of the su-

pervised classifiers. Figures 6.4 (a) and (b) show two cases of the patterns of the

individual naive classifiers. In both cases the naive ensemble performed significantly

better than the fixed ensemble. Figure 6.4 (a) is a case where the naive classifiers

show a desirable learning pattern, improving over time. In Figure 6.4 (b) some clas-

sifiers are seen to display runaway behaviour. What is interesting in this case is that

the naive ensemble still performs better than the fixed ensemble, indicating that the

ensemble environment counteracts the runaway behaviour.

6.2.2 Individual vs Ensemble

From Figure 6.1 the error of the individual classifiers is compared with the error of the

ensembles. The error rate for the ensembles can be seen to be lower. This supports the

hypothesis that a classifier ensemble is more accurate than an individual classifier.

In Figure 6.2 (a) the error progression of the individual classifiers can be directly
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Figure 6.3: Typical error progression of individual classifiers (data set: EN1, size of
ensemble: L = 5, cardinality of feature subsets: M = 100, cardinality of training
data set: NT = 20).
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(a) EN1: L = 9, M = 100, NT = 40. (b) EN2: L = 11, M = 50, NT = 20.

Figure 6.4: Comparison of different individual classifier progressions for the naive
ensemble. Improvement over the fixed ensemble was obtained with both ensembles.
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compared with the classifier ensemble. The classifier ensembles are seen to be more

accurate than their individual counterparts.

6.2.3 Fixed vs Unsupervised Updates

From Table 6.2 the results from the fixed classifier can be directly compared with

those of the naive ensemble. For the correct parameters, the naive ensemble with

unsupervised updates is beneficial to the ensemble. Specifically, when the cardinality

of the feature set is M ≥ 50 the naive ensemble performs better than the fixed

ensemble. The method is tested on two 2-class data sets and one 3-class data set.

The method performs best for the 2-class data sets, when the accuracy of the initial

fixed ensemble is higher.

6.3 Discussion

It has been shown that classifier ensembles are more accurate than individual clas-

sifiers for streaming i.i.d. fMRI data. The experiments also show that given an

appropriate choice of parameters, classifiers updating using the naive labelling strat-

egy perform well within an ensemble framework. It was shown that for sufficient

training data, a naive classifier ensemble performs significantly better than a fixed,

pre-trained classifier ensemble.

During a real time fMRI experiment, there is the potential for concept drift. An

online classifier working in this environment is required to be capable of updating

and adapting during the course of the experiment. Naive labelling offers an intuitive

solution to this problem.

In these experiments the data is treated as being i.i.d., which is not strictly the

case for fMRI in general. This approach serves as a first step towards semi-supervised

learning for streaming fMRI data. The non-i.i.d. case raises new questions. Auto-

correlations and the non-stationary nature of streaming fMRI data may weight and
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‘pull’ an online classifier in a certain direction, encouraging runaway traits. In the

next chapter, it is shown how naive labelling combined with the random subspace

ensemble may be applied to streaming fMRI data in order to simulate a real-time

scenario.
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Chapter 7

Semi-supervised Classification of
Non-i.i.d. fMRI Streaming Data

7.1 Introduction

Up to this point, online classifiers for fMRI have been considered in cases where data

was simulated as i.i.d. data, or where true class labels are known. During fMRI

experiments there may be concept drift. This can be attributed to head motion,

physiological changes or low-frequency scanner drift. Recall that, as stated by La-

Conte, [76], future applications of fMRI analysis may consider cases where changes

in patterns are expected. Experiments involving performance enhancement, rehabil-

itation or therapy expect the brain response to change over time, with trials being

conducted weeks, months or even years apart. In these cases, pre-trained supervised

classifiers will become less relevant and there is a need for a classifier which adapts

with the data as it trains over time. This is identified as one of the current challenges

in fMRI classification.

It has already been shown that with the correct parameter tuning, an ensemble

framework may constrain the potential negative behaviour of a classifier with naive

updates. As a next step, the theory is applied to streaming data, and options are

considered for handling changes within the data, that is, when there is both concept

drift and unlabelled data.
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The situation becomes a catch twenty two. A fixed pre-trained classifier may be

used, which is known to be inaccurate due to concept drift, or there is the gamble

with naive labelling, which may improve the classifier, but runs the risk of making

it worse. Here an alternative method is proposed for using naive labelling within an

ensemble framework. Consider guided updates : the ensemble prediction is taken to

be the ‘true’ label and is used to update each member classifier instead of its own

predicted label. In a related work, [82] also use ensemble labels to boost accuracy in

semi-supervised learning, in an offline co-training approach.

7.2 Guided Update Strategy

Intuitively, the predicted label from a classifier ensemble is likely to be more accu-

rate than the predicted label from an individual classifier within the ensemble. It

is hypothesised that by using the ensemble decision to update the individual ensem-

ble members, the likelihood of runaway classifiers is reduced. The ensemble with

‘guided’ updates is expected to perform better than an ensemble where its members

are updated using their individual predicted labels.

7.2.1 Theory and Illustrations

Before applying the guided update strategy to streaming fMRI data, the hypothesis

is first tested theoretically and with a simulated i.i.d. case.

Consider an ensemble of L classifiers. The ensemble receives a sequence of N i.i.d.

data points whose class labels are unknown. If the classifiers in the ensemble are not

updated throughout the online run, the ensemble at data point N will be equally

accurate as the starting ensemble. Updating the classifiers can improve ensemble

accuracy.

Two update strategies can be employed, both within the naive labelling approach.
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Individual Update. The member classifiers are re-trained by augmenting the train-

ing data with the current observation and the label proposed by the classifier

as the true label.

Ensemble Update. The member classifiers are re-trained by augmenting the train-

ing data with the current observation and the label proposed by the ensemble

as the true label.

The individual update can be regarded as a Markov chain where each processed

data point is a step in the chain. Denote the initial accuracy of the classifier by p.

Assume that, if a correct label is used for the update, the accuracy increases to p+ ε,

and if incorrect label is used, the accuracy decreases to p − ε, where ε is a small

positive constant. The transition matrix for the update step is

Before the update

After the update
wrong correct

wrong 1− pt + ε pt − ε
correct 1− pt − ε pt + ε

Note that the accuracy is tagged by t, the time step. The transition matrix con-

tains the current accuracy pt which varies from one step to the next. Thus the Markov

chain is non-homogeneous, and asymptotic distributions are not readily available.

The probability for correct classification at step t+ 1 can be calculated from the

transition matrix

pt+1 = pt(pt + ε) + (1− pt)(pt − ε) = pt + ε(2pt − 1). (7.1)

If the classifier is better than chance at the start (p > 0.5), the accuracy is expected

to increase progressively with t. For the individual update method, the majority vote

accuracy does not play a role in the update. Assuming independent classifiers, the

majority vote accuracy will increase with the increase of p.
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For the guided update, the probability for correct classification of the individual

classifier at step t+ 1 depends on the ensemble accuracy, Pens in addition to pt

pt+1 = Pens(pt + ε) + (1− Pens)(pt − ε) = pt + ε(2Pens − 1). (7.2)

Since for independent individual classifiers Pens > pt, the improvement in the

individual accuracy will be better for the ensemble updates.

Monte Carlo simulations were carried out to illustrate the behaviour of the two

types of updates compared to the fixed (not updated) classifier. 1000 independent

runs were performed for each of the two update strategies, and for the fixed ensemble

(no updates). The following protocol was used:

• L random numbers between 0.5 and 0.6 were generated as the initial accuracies

of the classifiers in the ensemble.

• 500 steps of online update were performed.

• At each step, L random numbers were sampled uniformly from the interval [0, 1]

and compared with the current classification accuracies to obtain ‘correct’ and

‘wrong’ classifications for each classifier.

• Majority vote accuracy of the ensemble was calculated and stored.

• The accuracy of each classifier was updated according to the respective strategy

– pt+1 = pt for the fixed ensemble strategy.

– pt+1 = pt + ε if the classifier was ‘correct’ at step t and pt+1 = pt − ε if the

classifier was ‘incorrect’, for the individual update strategy (ε = 0.001).

– pt+1 = pt + ε if the ensemble was ‘correct’ at step t and pt+1 = pt− ε if the

ensemble was ‘incorrect’, for the guided update strategy (ε = 0.001).
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The ensemble accuracies were averaged across the 1000 runs, producing curves with

500 consecutive online accuracies. Figure 7.1 plots the three curves together with the

predicted majority vote curves. The majority vote accuracy at step t was calculated

under the assumption of independent classifiers using

Pens =

L
∑

i=dL/2e

pit (1− pt)
L−i.

The individual accuracies pt were calculated iteratively, starting from p0 = 0.55 (the

expected value of the initial accuracies), and using updates as in equations 7.1 and

7.2.

Figure 7.1: Simulation and theoretical results for the fixed ensemble and the two
update strategies.

The figure shows that the ensemble-update leads to the best results, followed by

the single update. The assumptions that the data is i.i.d, the classifiers are indepen-

dent, and the updates lead to improvement (however small) if the correct label is used,

cannot be guaranteed in practice. Intuitive as they are, caution should be exercised.

Naive labelling has been shown to have mixed effect on the classification accuracy

depending on the classifier model, and even on the initial parameter guesses [68].
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Given the non-i.i.d. nature of fMRI data, a lesser difference will be seen between

the two update strategies, however this simulation serves as proof of concept and

supports the hypothesis. Having shown that the ensemble update strategy is capable

of improving upon the individual update strategy for i.i.d. data, the concept is applied

to streaming fMRI data.

7.2.2 Protocol

The experiment is carried out on data set EN1. Class labels were assigned using the

box-car approach, shifted by a single TR. The data sets are prepared by taking, as

an offline training sample, T , the first 17 instances of the data set. These instances

correspond to the first blocks of stimuli presented from each class. Volume masks are

derived and applied to each data set. This is the same approach as in Section 6.1,

and the data set summary in Table 6.1 applies here also. An ANOVA test is used on

T to pre-select a fixed amount, K = 2000, of voxels. The remaining 187 data points,

in sequence, make up the online training data, S. The data sets T and S are then

normalised, using the means and standard deviations calculated for T . Note that this

is different to the previous study on naive labelling, where the streaming data set was

shuffled and oversampled to form i.i.d. data.

An offline RS ensemble of O-LDC classifiers is trained on T . The same base

ensemble is used for each of the update strategies. Data points from S are presented

sequentially, with the following procedure being applied:

Fixed strategy Ensemble accuracy is tested on the new data point. No ensemble

update is carried out.

Naive strategy Ensemble accuracy is tested on the new data point. Each ensemble

member is updated using its individual predicted label.
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Figure 7.2: Cumulative error progression comparing the three strategies for L = 13,
M = 20. Vertical lines represent class boundaries.

Guided strategy Ensemble accuracy is tested on the new data point. Ensemble

members are updated using the ensemble decision.

The experiment is repeated for parameters L = [5, 9, 13], M = [20, 50, 100, 250].

7.2.3 Results

For each time-step t the cumulative error is calculated using Equation 3.8. Figure 7.2

plots of the cumulative error scores over time for parameters L = 13 andM = 20. The

vertical lines indicate the class boundaries. The presence of a sequence of multiple

instances from the same class (due to the block design of the experiment) can be

seen to affect the classifier in that with every class change a small peak is seen in the

error level. This peak arises where the classifier sees data points from the ‘transition’

period, where the true state of the brain is uncertain. The transition is the period

when the classifier is expected to make most mistakes. Overall, the trend of the plot

is that the error level declines over time, showing that the classifiers learn and adapt

with the data. The ensembles follow a similar learning pattern for the first two thirds

of the trial. For the last part, the naive and guided ensembles continue to gradually

improve, whilst the error of the fixed ensemble stabilises at around 22.5%.
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Figure 7.3: Final cumulative error scores (%) taken at t = 187. ’F’, ’N’ and ’G’
correspond to fixed, naive, and guided strategies,respectively. The range of the final
error scores is 17.8% – 22.2%. Error scores are coloured from blue through to red
representing low and high error respectively.

The ‘final’ error scores, taken at t = 187, are illustrated in Figure 7.3, and are

available numerically in Table A.4. Each ‘box’ corresponds to a value of L, whilst

each row corresponds to a value of M . Strategies can be compared for a given L,M

combination by looking at a row within a box. The range of final error scores across

the three strategies was 17.8% – 22.2%.

The results from the strategies are compared for all parameters using a paired

t-test with significance α = 0.05. Both the final error scores and the average error

are compared. For a given strategy, the average error corresponds to the area under

the error progression curve for that strategy and thus gives an indication of learning

capability. As there are 12 parameter sets and 3 strategies, a total of 36 pairwise

comparisons are made. The numbers of wins vs losses are plotted in Figure 7.4. The

best point is at 24 wins and no losses, the worst point at 0 wins and 24 losses.

Direct comparison of the naive and guided strategies with the fixed ensemble is

offered in Table 7.1. Strategies which perform better than the fixed classifier are

indicated by a ‘+’, strategies which perform worse are indicated by a ‘−’. Significant

results (calculated using a paired t-test at α = 0.05) are indicated by ⊕ and 	 re-

spectively. From Table 7.1 it can be seen that both the naive and guided ensembles

perform significantly better than the fixed ensemble for the vast majority of param-

eters. The guided ensemble, overall, has a higher number of ‘wins’ than the naive
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Figure 7.4: Pairwise wins vs losses. Significance calculated at α = 0.05.

Table 7.1: Direct comparison of the naive and guided strategies with the fixed en-
semble. Strategies which perform better than the fixed classifier are indicated by a
‘+’, strategies which perform worse are indicated by a ‘−’. Significant results are
indicated by ⊕ and 	 respectively.

L = 5 L = 9 L = 13
Naive Guided Naive Guided Naive Guided

M = 20 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
M = 50 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
M = 100 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
M = 250 ⊕ ⊕ ⊕ - ⊕ +
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ensemble across these parameter settings. This indicates that using the ensemble

decision to update the classifiers is beneficial. Making use of the higher accuracy of

the ensemble decision constrains potential runaway behaviour in individual ensemble

members, which in turn leads to a more accurate ensemble.

7.2.4 Discussion

Real-time fMRI classification faces the challenge of unlabelled data and concept drift.

This study proposes a solution in the form of classifier ensembles. The solutions have

been tested and illustrated on streaming fMRI data. The experiments show that the

ensembles benefit from updating during the online phase. Both update strategies

perform significantly better than the fixed strategy across a variety of parameters.

The guided update strategy offers a possible solution to the combination of unla-

belled data and concept drift. Results from the update strategy compare well with

the standard naive classifier ensemble, and perform significantly better than the fixed

classifier ensemble. The guided update strategy is shown to have a lower error score

than either the fixed or naive update strategies in seven of the twelve parameter com-

binations tested. From the cumulative plot it can be seen that the majority of errors

occur during transition periods. In order to prevent the classifiers learning ‘the wrong

thing’ during these periods, introduced below are further criteria, offering different

scenarios under which the ensemble may be updated.

7.3 Error-driven and Confidence-driven Updates

Two update criteria are considered: The confidence and error. By using confidence

and error to regulate the updates, three further guided update strategies are gener-

ated:

Error Driven Classifiers within the ensemble whose individual predicted label does

not agree with the ensemble decision are updated using the ensemble decision.
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Confidence Driven The confidence with which the ensemble has made its predic-

tion is calculated. Denote by y the outputted (predicted) label of the ensemble,

and by yi the predicted label of the component classifiers. Confidence is calcu-

lated as

confidence =

∑L
i=1{yi = y}

L

Classifiers within the ensemble are updated using the ensemble decision, when

the confidence in the predicted label is above a threshold. For data sets of two

classes this threshold may be between 50% and 100%, here 75% is chosen, as

the mid-point of the available range.

Error and Confidence Driven Classifiers within the ensemble whose predicted la-

bel does not agree with the ensemble decision are updated using the ensemble

decision, when the confidence in the predicted label is above a threshold.

7.3.1 Experimental Protocol

Experiments are carried out for the two single run, two-class ‘emotion detection’

fMRI data sets, EN1 and EN2, using the same protocol as in Section 7.2.2. For this

experiment, the parameters of the RS ensemble are chosen as L = {5, 9, 11} and

M = {20, 50, 100, 250}.

In the online phase of the experiment, the following strategies are considered:

Naive strategy Ensemble accuracy is tested on the data point. Classifiers are up-

dated using predicted labels from the individual classifiers.

Guided strategy Ensemble accuracy is tested on the data point. Classifiers are

updated using the ensemble decision.

Error Driven Ensemble accuracy is tested on the data point. Classifiers whose

individual predicted label does not agree with the ensemble decision are updated

using the ensemble decision.
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Confidence Driven Ensemble accuracy is tested on the data point. Confidence is

calculated. Classifiers are updated when the confidence in the predicted label

is above the threshold.

Error and Confidence Driven Ensemble accuracy is tested on the data point.

Confidence is calculated. Classifiers whose individual predicted label does not

agree with the ensemble decision are updated when the confidence in the pre-

dicted label is above the threshold.

7.3.2 Results

The cumulative error scores are calculated for each parameter, data set and method

combination using Equation 3.8. For each data set the final error scores (taken at

t = 187) are compared for each of the parameters and methods. The results are

illustrated for the two data sets in Figure 7.5. Numerical values for the final error are

available in Table A.5.

Table 7.2 summarises the number of wins per strategy. A winning ensemble is the

ensemble with the lowest error at the final data point, t = 187. As there are twelve

parameter combinations for each data set, there are 24 comparisons. Where there

was a tie between methods for one parameter set, both methods were awarded a ‘win’

as either is acceptable when choosing an optimal strategy, hence the total sums to

25.

Table 7.3 directly compares each of the methods with the naive classifier. Methods

which perform better than the naive classifier are indicated by a ‘+’, methods which

perform worse are indicated by a ‘−’. Significantly better/worse results (at α = 0.5,

tested using a paired t-test) are indicated by ⊕ and 	 respectively. The numbers of

each ‘result’ are summarised in Table 7.4.

In order to see if the new strategies improve upon the performance of the guided

ensemble, the results are directly compared. These are presented in Table 7.5, with

108



EN1: 21.92%–28.38%
M = 20 M = 50 M = 100 M = 250 %

100

50

20

N G C E EC

100

50

20

N G C E EC

100

50

20

N G C E EC

100

50

20

N G C E EC

EN2: 14.76%–19.61%
M = 20 M = 50 M = 100 M = 250 %

100

50

20

N G C E EC

100

50

20

N G C E EC

100

50

20

N G C E EC

100

50

20

N G C E EC

Figure 7.5: Final cumulative error scores. The range of final error scores for each
data set is indicated in the title . Error scores are coloured from blue through to red
representing low and high error respectively. L is the ensemble size, (L = {5, 9, 11}
represent the rows of each coloured grid). M is the cardinality of feature subsets. ‘N’,
‘G’, ‘E’, ‘C’ and ‘EC’ correspond to the naive, guided, error-driven, confidence-driven
and error plus confidence-driven ensembles respectively.

Table 7.2: Number of wins per strategy, taken by comparing ensemble errors at the
final data point. Total adds up to 25 due to a tie between methods for one parameter
set.

Strategy Number of wins
Naive 1
Guided 0
Error-driven 1
Confidence-driven 12
Error plus confidence-driven 11
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Table 7.3: Comparison with naive classifier ensemble. ‘G’, ‘E’, ‘C’ and ‘EC’ corre-
spond to the guided, error-driven, confidence-driven and error plus confidence-driven
ensembles respectively. Methods which perform better than the naive ensemble are
indicated by a ‘+’, methods which perform worse are indicated by a ‘−’. Significantly
better/worse results (at α = 0.5, tested using a paired t-test) are indicated by ⊕ and
	.

M = 20 M = 50 M = 100 M = 250
G E C EC G E C EC G E C EC G E C EC

EN1
L = 5 	 ⊕ + ⊕ + - + + - + + ⊕ - + - +
L = 9 	 + + ⊕ - - + - 	 - - + - ⊕ + ⊕
L = 11 	 + + ⊕ - - + + - - - + 	 - + +

EN2
L = 5 + - + + - - + - - 	 + - - - + +
L = 9 - - ⊕ - - 	 + - 	 - + - 	 + ⊕ +
L = 11 - - + - + 	 + - - - + + - - + +

Table 7.4: Summary of Table 7.3 showing number of each ‘result’ per strategy

Method ⊕ + − 	
Guided 0 3 14 7
Error driven 2 5 14 3
Confidence driven 2 19 3 0
Confidence plus error 5 11 8 0
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Table 7.5: Comparison with guided classifier ensemble. ‘E’, ‘C’ and ‘CE’ correspond
to the error-driven, confidence-driven and error plus confidence-driven ensembles re-
spectively. Methods which perform better than the guided ensemble are indicated by
a ‘+’, methods which perform worse are indicated by a ‘−’. Significantly better/worse
results (at α = 0.5, tested using a paired t-test) are indicated by ⊕ and 	.

M = 20 M = 50 M = 100 M = 250
E C EC E C EC E C EC E C EC

EN1
L = 5 ⊕ ⊕ ⊕ - + + + ⊕ ⊕ + + ⊕
L = 9 ⊕ ⊕ ⊕ - + + + ⊕ ⊕ + + ⊕
L = 11 ⊕ ⊕ ⊕ + + + + ⊕ ⊕ ⊕ + ⊕

EN2
L = 5 - + - - + - - + + + + +
L = 9 - ⊕ + - + + + ⊕ + ⊕ ⊕ ⊕
L = 11 + + - 	 + - + ⊕ + - + +

Table 7.6: Summary of Table 7.5 showing number of each ‘result’ per strategy

Method ⊕ + − 	
Error driven 5 10 8 1
Confidence driven 10 14 0 0
Confidence plus error 10 10 4 0

a summary in provided in Table 7.6.

All three adaptations of the guided ensemble are shown to improve upon the

guided ensemble. The methods are shown to perform well across a variety of parame-

ters. The results from Tables 7.2, 7.3, 7.4, 7.5 and 7.6 suggest that of those tested, the

best method for streaming fMRI data is the confidence driven method. The method

compares well against both the naive and guided ensembles. In direct comparison

with the guided ensemble, the confidence-driven ensemble is shown to perform better

for all parameters. The methods appear to perform better for EN1 than EN2. To

better see what is happening, the cumulative error plots and kappa error trajecto-

ries are considered. Figures 7.6, 7.7, 7.8 and 7.9 show the pairs of cumulative error

diagrams and kappa error trajectories for a selection of parameter combinations and

data sets.
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(a) Cumulative error plot (b) Kappa error trajectory

Figure 7.6: Data set EN1, L = 5, M = 250
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Figure 7.7: Data set EN1, L = 5, M = 100
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Figure 7.8: Data set EN2, L = 5, M = 20
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Figure 7.9: Data set EN2, L = 9, M = 250
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Figure 7.10: Pairwise wins vs losses. Significance calculated at α = 0.05.

Again, pairwise comparisons are performed using a t-test. With 5 methods tested

across 12 parameter sets and 2 data sets, a total of 240 pairwise comparisons are

made. The numbers of wins vs losses are plotted in Figure 7.10. The best point is at

96 wins and no losses, the worst point at 0 wins and 96 losses.

For EN1, in both cases, initially the error rates of the error-driven ensemble and

confidence plus error-driven ensemble are higher than these for the other three en-

sembles. As more streaming data points are processed the error rate for these two

ensembles continues to drop, whilst the error rate of the naive ensemble and guided

ensemble rises. These error changes are reflected in the kappa error trajectory dia-
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grams. The interesting point to note from these, is that the higher kappa value (and

thus lower diversity) is associated with the most accurate ensembles. It may be that

as the individual classifiers within the ensemble become more accurate they are driven

towards the optimal classifier, and thus as they become more accurate, they become

more similar and the diversity decreases.

For EN2, the cumulative error rate of all ensembles follows a similar pattern.

From the kappa-error trajectory diagrams the pairwise accuracy of the naive, guided

and confidence-driven ensembles can be seen to initially decrease, and then increase.

This is matched by an initial increase then decrease in diversity. The ‘error-driven’

and ‘confidence plus error-driven’ ensembles are seen to follow the opposite pattern,

resulting in a higher pairwise accuracy and lower diversity than the other three en-

sembles.

Whilst the ensembles follow different error patterns for the two data sets, the

results for the confidence-driven and confidence plus error-driven ensembles are con-

sistently better than, or on a par with the guided ensemble. Both strategies also show

good results compared with the naive ensemble.

7.3.3 Discussion

Real-time fMRI classification faces the challenge of unlabelled data and concept drift.

The naive and guided ensembles have previously been shown to handle streaming data

better than a fixed classifier. This study proposes several extensions to the guided

update strategy, in an attempt to maintain ensemble diversity and accuracy, and con-

strain the possibility of runaway classifiers given the potential changing environment.

The solutions have been tested on streaming fMRI data.

When compared with the naive and guided ensembles, for two two-class data sets,

ensembles updating using the confidence criterion, or confidence combined with error,

were shown to perform best. These methods performed well consistently, compared
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with both the naive and guided ensembles. Experiments were carried out with a

simple O-LDC classifier for its simplicity and speed. Whilst the experiments are not

carried out in real time, there is no reason that the online classification algorithms

would not be capable of working in real time. Further work testing the methods with

a variety of base classifiers and across a wider variety of data sets may give a deeper

understanding of the mechanism of improvement offered by the guided update.
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Chapter 8

Conclusion

8.1 Summary of Work

Classification of fMRI data comes with many challenges. Performing the classification

of fMRI data in real time only adds to these. By applying online classification to fMRI

data, it has been shown that classifier performance improves as more instances are

seen. Linear models have been popular for classification of fMRI data as they are

sufficiently accurate and are fast enough to work in real time. This work has continued

in the same vein, using an online variant of the linear discriminant classifier (O-LDC).

Results have been shown to be fast, with updates occuring well within the acceptable

time (2s) for ‘immediate’ feedback in real-time fMRI trials.

The O-LDC has been used in conjunction with a random subspace (RS) ensemble.

The ensemble framework allows for fewer features to be used per classifier, and due

to the excessive amount of features in fMRI data, is less computationally expensive

than a single classifier trained upon the entire feature set. By using an RS ensemble,

there is also a lesser risk of over-fitting the classification model.

It was noted that there are cases in fMRI experiments when the true brain state of

a participant is unknown. In such cases, it is impossible to update the classifier using

a known label. It was hypothesised that using the label predicted by the classifier

as the true label, online classification could still be applied. Furthermore, it was
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hypothesised that by using the ensemble label rather than the individual classifier

labels to update the ensemble members, a more accurate result would be achieved.

Chapter 5 introduces streaming fMRI data, simulating a real time scenario. Three

base classifiers are tested in an ensemble, the perceptron, winnow and O-LDC. The

O-LDC was shown to have a better learning pattern than the other two classifiers,

and produced more accurate results.

Chapter 6 presents a study of the naive labelling scenario, using RS ensembles

of O-LDC classifiers for i.i.d. (shuffled) fMRI data. The ensemble update strategy

was shown to perform better than the individual update strategy, with both update

strategies performing better than a fixed, pre-trained classifier.

Combining the results of both studies, a further study, presented in Chapter 7

considers naive labelling for streaming fMRI data. Once again, the ensemble update

strategy was shown to prevail. Acknowledging that there is a potential for concept

drift in fMRI data, and that there is uncertainty around the transition period between

brain states, two update criteria were introduced. These criteria correspond to the

certainty of the ensemble decision, and the decision of the member classifiers within

the ensemble. Updating the member classifiers when the ensemble was confident in its

decision proved to be the best strategy, and meant that classifiers were not updated

during the uncertain, transition phases.

8.2 Future Work

The next step would be to apply the methods discussed here in real time. Unfor-

tunately this was not possible for this thesis as there was no direct access to the

fMRI scanner. The updates for the O-LDC are fast. Both classifying the incoming

data point and updating the classifier ensemble happen within a TR, allowing for

immediate feedback.
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Perhaps one of the greater challenges with real time fMRI is that of preprocessing

the raw data and preparing each data volume for classification. Working with raw data

direct from the scanner, whilst the fastest approach, introduces excess noise into the

data. Steps such as filtering and motion correction can be computationally expensive,

and large head motions may be over compensated, introducing error. Weiskopf et

al [129] detail some of the challenges and proposed solutions for preprocessing fMRI

data in real time. With computational power ever on the increase, it is not expected

that these issues would be of great consequence.

Another interesting line of future work would be to further examine the mech-

anisms of using the ensemble decision for classifier updates, in particular, with the

update criteria in place. Greater understanding of this process could lead to the de-

velopment of further techniques, not just for the RS ensemble with O-LDC classifiers,

but for a variety of ensemble frameworks and base classifiers, applicable to many

types of very high-dimensional streaming data.
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Table A.1: EN1 Error Table (%)
L = 5 L = 9 L = 11 Individual

F N S F N S F N S F N S

|T | = 20

M = 20 30.68 31.12 14.26 29.42 29.94 13.41 30.00 29.97 12.83 33.28 34.61 19.76
M = 50 29.52 28.75 7.84 27.86 28.48 7.30 27.33 26.66 7.28 29.93 31.46 11.45
M = 100 27.45 27.52 5.18 28.99 27.99 4.88 26.56 25.08 4.71 28.63 30.18 7.06

NT = 40

M = 20 24.88 25.66 13.68 21.75 22.33 11.23 20.62 21.03 11.69 32.43 32.97 19.49
M = 50 25.43 24.09 8.08 25.45 24.39 7.54 24.21 23.19 7.19 27.04 27.00 11.14
M = 100 24.74 24.16 5.36 26.59 24.77 5.18 24.86 23.44 4.76 26.33 26.14 6.86

NT = 100

M = 20 18.80 19.82 12.24 17.37 18.06 11.14 16.40 17.39 11.02 25.21 25.96 17.83
M = 50 17.43 16.85 5.24 13.42 14.57 4.34 15.04 15.27 4.25 24.71 25.06 9.16
M = 100 23.64 22.24 5.07 23.44 21.74 4.86 24.47 23.17 4.95 24.75 23.44 6.18

Table A.2: EN2 Error Table (%)
L = 5 L = 9 L = 11 Individual

F N S F N S F N S F N S

NT = 20

M = 20 32.30 32.39 17.78 31.05 31.45 16.55 30.69 30.32 16.23 33.25 34.79 23.29
M = 50 29.80 29.15 10.23 30.11 29.63 9.86 30.54 29.43 9.18 31.09 32.79 15.15
M = 100 30.14 30.43 7.08 30.11 28.94 6.76 30.10 30.04 6.56 30.66 32.62 9.64

NT = 40

M = 20 29.16 29.49 16.40 27.05 27.73 14.80 25.36 25.92 14.70 35.69 36.19 22.80
M = 50 30.45 28.49 10.12 30.91 29.30 9.75 29.43 27.73 9.12 30.93 30.83 14.59
M = 100 29.87 28.82 6.86 28.96 26.83 6.16 28.64 26.87 6.17 29.57 29.50 8.92

NT = 100

M = 20 23.96 24.16 15.36 22.00 22.80 13.12 21.18 21.46 12.50 29.52 30.36 20.90
M = 50 21.94 23.32 6.82 20.56 20.62 5.50 18.38 18.14 5.25 29.43 30.10 11.88
M = 100 28.90 26.90 5.90 29.42 26.01 5.84 28.80 25.73 5.54 29.44 27.30 7.41
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Table A.3: EB Error Table (%)
L = 5 L = 9 L = 11 Individual

F N S F N S F N S F N S

NT = 20

M = 20 63.00 62.93 30.73 62.52 63.54 27.10 64.71 63.44 26.04 64.12 64.68 40.33
M = 50 62.03 62.73 15.72 63.09 62.25 14.20 62.22 63.11 13.56 62.90 63.84 22.24
M = 100 62.49 61.59 10.42 61.78 62.80 10.31 63.45 63.80 10.16 62.98 63.60 11.81

NT = 40

M = 20 62.20 62.46 26.08 61.51 62.79 22.11 60.21 60.83 21.87 64.03 64.09 36.98
M = 50 61.74 61.36 13.00 61.65 61.44 11.67 60.99 61.87 11.14 62.46 62.64 18.30
M = 100 62.23 62.17 8.71 60.90 60.16 8.33 61.27 61.02 8.17 62.04 62.10 9.67

NT = 100

M = 20 56.42 58.01 1.82 58.76 59.25 1.60 60.91 60.26 1.56 62.00 62.14 2.81
M = 50 57.19 56.85 1.11 54.21 55.23 1.08 58.97 57.69 1.15 60.64 60.72 1.48
M = 100 59.12 58.76 1.25 59.10 60.31 1.31 58.11 59.54 1.33 60.52 60.64 1.38

Table A.4: EN1 Error (%)
M = 20 M = 50 M = 100 M = 250

F N S F N S F N S F N S
L = 5 22.18 19.61 18.35 21.71 18.78 18.24 21.96 19.56 19.47 22.03 20.24 21.22
L = 9 22.02 18.92 17.82 21.91 18.61 18.09 22.00 18.92 19.39 22.03 20.92 22.09
L = 13 21.76 18.90 17.95 21.90 18.36 17.83 21.99 19.14 19.38 22.00 20.59 21.87
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Table A.5: Error Table (%)
EN1 EN2

L = 5 L = 9 L = 11 L = 5 L = 9 L = 11

M = 20

N 26.82 25.45 25.05 17.74 16.46 17.25
G 28.38 27.80 27.27 17.67 16.72 17.61
C 25.89 24.98 24.45 16.74 15.40 17.04
E 24.75 24.86 25.02 18.70 17.43 17.43
EC 25.37 24.17 23.82 17.71 16.70 18.14

M = 50

N 25.67 24.76 24.19 17.14 16.82 16.46
G 25.65 25.74 25.49 17.73 17.71 16.22
C 25.44 24.56 24.02 16.74 16.82 16.17
E 26.54 25.41 25.34 18.01 18.41 18.66
EC 25.25 24.86 23.60 17.78 17.06 17.20

M = 100

N 27.04 23.86 23.66 17.01 15.47 18.54
G 27.92 25.87 24.74 17.87 16.75 19.61
C 25.86 23.89 23.67 16.26 14.76 17.87
E 26.04 24.24 23.81 19.06 15.90 18.67
EC 24.62 23.40 23.01 17.38 16.13 17.80

M = 250

N 25.41 24.77 23.66 18.37 18.27 17.24
G 26.49 25.10 25.66 18.61 19.48 17.90
C 26.09 23.37 23.02 17.09 16.84 17.01
E 25.00 22.59 23.87 18.57 17.02 18.44
EC 24.53 21.92 23.25 17.40 17.25 17.17
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