CHAPTER 4

COMBINING LABEL OUTPUTS

How do we combine the outputs of the individual classifiers in the ensemble? Nu-
merous theoretical analyses [145,207,235,241,249,260,394], experimental compar-
isons [109,152,222,382,434,436] and reviews [392,439] look for the answer to this
question.

4.1 Types of classifier outputs

Consider a classifier ensemble consisting of L classifiersin the set D = {Dy,..., Dp}
and a set of classes Q@ = {wi,...,w.}. Xu et al. [425] distinguish between three
types of classifier outputs

» Class labels. (The Abstract level.) Each classifier D; produces a class label
s; € 2,1 =1,...,L. Thus, for any object x € R" to be classified, the L
classifier outputs define a vector s = [s1,...,s1]T € QL. At the abstract level,
there is no information about the certainty of the guessed labels, nor are any
alternative labels suggested. By definition, any classifier is capable of producing
a label for x, so the abstract level is universal.
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» Ranked class labels. The output of each D; is a subset of the class labels €2,
ranked in order of plausibility [184,391]. This type is especially suitable for
problems with a large number of classes, such as character, face and speaker
recognition.

» Numerical support for the classes. (The Measurement level.) Each classifier D;
produces a c-dimensional vector [d; 1, . . .,d; ). The value d; ; represents the
support for the hypothesis that the vector x submitted for classification comes
from class w;. The outputs d; ; are functions of the input x, but to simplify the
notation we will use just d; ; instead of d; ;(x). Without loss of generality, we
can assume that the outputs contain values between 0 and 1, spanning the space
[0, 1]°.

We add to this list one more output type:

» Oracle. The output of classifier D; for a given x is only known to be either
correct or wrong. We deliberately disregard the information as to which class
label has been assigned. The oracle output is artificial because we can only
apply it to a labeled data set. For a given data set Z, classifier D; produces an
output vector y; such that

1, if Dj; classifies object z; correctly,
Yij = . 4.1
0, otherwise.
4.2 A probabilistic framework for combining label outputs
Consider class label outputs s = [sq,...,s7]7 € QF. We are interested in the

probability
P(wy isthe trueclass [s), k=1,...,¢,

denoted for short P(wg|s). Assume that the classifiers give their decisions indepen-
dently, conditioned upon the class label. Conditional independence means that!

P(Sl,SQ, e ,sL|wk) = P($1|wk)P(52|wk) e P(SL|wk).

Therefore we can write

L
P(wkls) = I;(g”ﬁ) H P(sg|wr). 4.2)
i=1

Split the product into two parts depending on which classifiers suggested wy.
Denote by 1 _’ﬁ the set of indices of classifiers which suggested wy, and by I* the

However, this assumption precludes unconditional independence, that is,

P(s1,82,...,81) # P(s1)P(s2)... P(sp).
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set of indices of classifiers which suggested another class label. The probability of
interest becomes

P(wgls) = P (“”“)) x 1 P(silww) x [T P(silw). (4.3)

P(s
ielf ierk

This decomposition allows us to define the optimality conditions for several com-
bination rules [244]. Optimality is understood in a sense that the combiner guaran-
tees the minimum possible classification error.

4.3 Majority vote

Never underestimate the power of stupid people in large groups.

- George Carlin

4.3.1 ‘Democracy’ in classifier combination

Dictatorship and majority vote are perhaps the two oldest strategies for decision mak-
ing [84, 159]. Three consensus patterns: unanimity, simple majority and plurality,
are illustrated below. Assume that shapes correspond to class labels, and the deci-
sion makers are the individual classifiers in the ensemble. The final label in all three
consensus patterns is m

Unanimity @« = = = = = = = =m =
Simple majority m m m m m m A A A A
Plurality m = m = A A A x X X

Assume that the label outputs of the classifiers are given as c-dimensional binary

vectors [d; 1, . ..,d; )T €{0,1}¢,i=1,..., L, where d; ; = 1 if D; labels x in w;,
and 0, otherwise. The plurality vote will return class wy, if
L L
d; k= max di ;. 4.4
; ik g ; .7 ( )

Ties are resolved arbitrarily. This rule is often called in the literature the majority
vote. It will indeed coincide with the simple majority (50% of the votes +1) in the
case of two classes (¢ = 2). Xu et al. [425] suggest a thresholded plurality vote.
They augment the set of class labels €2 with one more class, w1, for all objects for
which the ensemble either fails to determine a class label with a sufficient confidence
or produces a tie. Thus the decision is

{wk, if ZiL=1 diyx > a.L, @.5)

Wet+1, otherwise,



116 COMBINING LABEL OUTPUTS

where 0 < a < 1. For the simple majority, we can pick a to be % + €, where € is
arbitrarily small and 0 < € < % When o = 1, (4.5) becomes the unanimity voting
rule: a decision is made for a class label only if all decision makers agree on that
label; otherwise the ensemble refuses to decide and assigns label w.41 to x. The
algorithm of the majority vote combiner is shown in Figure 4.1.

MAJORITY (PLURALITY) VOTE COMBINER (MV)
Training: None

Operation: For each new object

1. Find the class labels s, ..., s, assigned to this object by the L base
classifiers.
2. Calculate the number of votes for each class w, k=1, ...,c.
L
P(k) = I(siwp),
i=1

where I(a,b) = 1if a = b and 0 otherwise.

3. Assign label £* to the object, where

k* = arg max P(k).

Return the ensemble label of the new object.

Figure 4.1 Training and operation algorithm for the Majority Vote combiner.

The plurality vote (4.4), called in a wide sense ‘the majority vote’, is the most
often used rule from the majority vote group [26,28,248,250,260, 343].

4.3.2 Accuracy of the majority vote

Assume that

» The number of classifiers, L, is odd.

» The probability for each classifier to give the correct class label is p for any
x € R™
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* The classifier outputs are independent, that is, for any set of classifiers A C D,
A={D;,...,D;.},

,P(.DZ‘1 =S4y e 7Di}< :SiK)
= P(Dh :Sil)x'--XP(DiK :Six)a (46)
where s;; is the label output of classifier D, .

According to (4.4), the majority vote will give an accurate class label if at least
|L/2] + 1 classifiers give correct answers (|a] denotes the ‘floor’, which is the
nearest integer smaller than @).? Then the accuracy of the ensemble is

e L\ | ,
Praj= Y (m pr(—p)tm 4.7

m=|L/2|+1

The probabilities of correct classification of the ensemble for p = 0.6,0.7,0.8
and 0.9, and L = 3,5, 7 and 9, are displayed in Table 4.1.

Table 4.1 Tabulated values of the majority vote accuracy of L independent classifiers with
individual accuracy p.

L=3 L=5 L=7 L=9
p=06 06480 0.6826 0.7102 0.7334
p=0.7 0.7840 0.8369 0.8740 0.9012
p=08 0.8960 0.9421 0.9667 0.9804
p=09 09720 0.9914 09973 0.9991

The following result is also known as the Condorcet Jury Theorem (1785) [359]

1. If p > 0.5, then P,,,; in (4.7) is monotonically increasing and

Prej —+1 as L — oo. 4.8)

2. If p < 0.5, then Pp,,; at (4.7) is monotonically decreasing and

Praj =0 as L — oc. 4.9)

3. If p = 0.5, then Pp,q; = 0.5 for any L.

This result supports the intuition that we can expect improvement over the indi-
vidual accuracy p only when p is higher than 0.5. Lam and Suen [250] proceed to

Notice that the majority (50 %+1) is necessary and sufficient in the case of two classes, and is sufficient
but not necessary for ¢ > 2. Thus the accuracy of an ensemble using plurality when ¢ > 2 could be
greater than the majority vote accuracy.
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analyze the case of even L and the effect on the ensemble accuracy of adding or
removing classifiers.

Shapley and Grofman [359] note that the result is valid even for unequal p, pro-
vided the distribution of the individual accuracies p; is symmetrical about the mean.

EXAMPLE 4.1 Majority and unanimity in medical diagnostics

An accepted practice in medicine is to confirm the diagnosis by several (suppos-
edly independent) tests. Lachenbruch [245] studies the unanimity and majority
rules on a sequence of 3 tests for HIV diagnosis.

Sensitivity and specificity are the two most important characteristics of a medical
test. Sensitivity (denoted by U) is the probability that the test procedure declares
an affected individual affected (probability of a true positive). Specificity (de-
noted by V) is the probability that the test procedure declares an unaffected
individual unaffected (probability of a true negative).?

Denote by 1" the event ‘positive test result’, and by A, the event ‘the person
is affected by the disease’. Then U = P(T|A) and V = P(T|A), where the
over-bar denotes negation. We regard the test as an individual classifier with
accuracy p = U x P(A) +V x (1 — P(A)), where P(A) is the probability for
the occurrence of the disease among the examined individuals, or the prevalence
of the disease. In testing for HIV, a unanimous positive result from 3 tests is
required to declare the individual affected [245]. Since the tests are applied one
at a time, encountering the first negative result will cease the procedure. Another
possible combination is the majority vote which will stop if the first two readings
agree or otherwise take the third reading to resolve the tie. Table 4.2 shows the
outcomes of the tests and the overall decision for the unanimity and majority
rules.

Table 4.2 Unanimity and majority schemes for three independent consecutive tests.

Unanimity sequences for decision (+):  (+ + +)

Unanimity sequences for decision (—=): (=)  (+=) (++ —)
Majority sequences for decision (+):  (++) (—++4) (+—+4)
Majority sequences for decision (—):  (——=) (—=+—=) {(+—-)

Assume that the three tests are applied independently and all have the same
sensitivity u and specificity v. Then the sensitivity and the specificity of the

3In social sciences, for example, sensitivity translates to ‘convicting the guilty” and specificity, to ‘freeing
the innocent” [359].
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procedure with the unanimity vote become

Uuna = ’U,3,
Vina = 1—(1-v)2 (4.10)
For the majority vote,
Unaj = u®+2u*(1 —u)=u*(3 - 2u),
Vinaj = v%(3—2v). 4.11)

For 0 <u < 1and 0 < v < 1, by simple algebra we obtain
Uina <u and Vi, > v, (4.12)

and
Unaj >u  and Ve > 0. (4.13)

Thus, there is a certain gain on both sensitivity and specificity if majority vote is
applied. Therefore, the combined accuracy P,,; = U x P(A)+V x(1-P(A))
is also higher than the accuracy of a single test p = u x P(A) +v x (1 — P(A)).
For the unanimity rule, there is a substantial increase of specificity at the expense
of decreased sensitivity. To illustrate this point, consider the ELISA test used for
diagnosing HIV. According to Lachenbruch [245], this test has been reported to
have sensitivity u = 0.95 and specificity v = 0.99. Then

Usna ~ 0.8574  Vina ~ 1.0000
Umaj = 0.9928  Ving; ~ 0.9997.

The sensitivity of the unanimity scheme is dangerously low. This means that
the chance of an affected individual being misdiagnosed as unaffected is above
14%. There are different ways to remedy this. One possibility is to apply a more
expensive and more accurate second test in case ELISA gave a positive result,
for example, the Western Blot test, for which u = v = 0.99 [245].

4.3.3 Limits on the majority vote accuracy: an example

Let D = {Dy, D2, D3} be an ensemble of three classifiers with the same individual
probability of correct classification p = 0.6. Suppose that there are 10 objects in a
hypothetical data set, and that each classifier correctly labels exactly 6 of them. Each
classifier output is recorded as correct (1) or wrong (0). Given these requirements, all
possible combinations of distributing 10 elements into the 8 combinations of outputs
of the three classifiers are shown in Table 4.3. The penultimate column of Table
4.3 shows the majority vote accuracy of each of the 28 possible combinations. It is
obtained as the proportion (out of 10 elements) of the sum of the entries in columns
‘1117, *101°, ‘011’ and ‘110’ (two or more correct votes). The rows of the table are
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Table 4.3  All possible combinations of correct/incorrect classification of 10 objects by three
classifiers so that each classifier recognizes exactly 6 objects. The entries in the table are the
number of occurrences of the specific binary output of the three classifiers in the particular
combination. The majority vote accuracy F,,.; and the improvement over the single classifier,
Pinaj — p are also shown. Three characteristic classifier ensembles are marked.

No 111 101 01l 001 110 100 010 000 Ppaj Pmaj—Dp
a b c d e f g h

Pattern of success

1 0 3 3 0 3 0 0 1 0.9 0.3
2 2 2 2 0 2 0 0 2 0.8 0.2
3 1 2 2 1 3 0 0 1 0.8 0.2
4 0 2 3 1 3 1 0 0 0.8 0.2
5 0 2 2 2 4 0 0 0 0.8 0.2
6 4 1 1 0 1 0 0 3 0.7 0.1
7 3 1 1 1 2 0 0 2 0.7 0.1
8 2 1 2 1 2 1 0 1 0.7 0.1
9 2 1 1 2 3 0 0 1 0.7 0.1
10 1 2 2 1 2 1 1 0 0.7 0.1
11 1 1 2 2 3 1 0 0 0.7 0.1
12 | 1 1 3 4 0 0 0 0.7 0.1
Identical classifiers

13 6 0 0 0 0 0 0 4 0.6 0.0
14 5 0 0 1 1 0 0 3 0.6 0.0
15 4 0 1 1 1 1 0 2 0.6 0.0
16 4 0 0 2 2 0 0 2 0.6 0.0
17 3 1 1 1 1 1 1 1 0.6 0.0
18 3 0 1 2 2 1 0 1 0.6 0.0
19 3 0 0 3 3 0 0 1 0.6 0.0
20 2 1 1 2 2 1 1 0 0.6 0.0
21 2 0 2 2 2 2 0 0 0.6 0.0
22 2 0 1 3 3 1 0 0 0.6 0.0
23 2 0 0 4 4 0 0 0 0.6 0.0
24 5 0 0 1 0 1 1 2 0.5 -0.1
25 4 0 0 2 1 1 1 1 0.5 -0.1
26 3 0 1 2 1 2 1 0 0.5 -0.1
27 3 0 0 3 2 1 1 0 0.5 -0.1

Pattern of failure
28 4 0 0 2 0 2 2 0 0.4 -0.2
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Table 4.4 The 2 x 2 relationship table with probabilities.

Dy, correct (1) Dy wrong (0)
D; correct (1) a b
D; wrong (0) c d

Total,a +b+c+d=1

ordered by the majority vote accuracy. To clarify the entries in Table 4.3, consider
as an example the first row. The number 3 in the column under the heading ‘101°,
means that exactly 3 objects are correctly recognized by D1 and Dj (the first and the
third 1’s of the heading) and misclassified by Ds (the zero in the middle).

The table offers a few interesting facts:

» There is a case where the majority vote produces 90% correct classification.
Although purely hypothetical, this vote distribution is possible and offers a dra-
matic increase over the individual rate p = 0.6.

* On the other hand, the majority vote is not guaranteed to do better than a single
member of the ensemble. The combination in the bottom row has a majority
vote accuracy of 0.4.

The best and the worst possible cases illustrated above are named ‘the pattern of
success’ and the ‘pattern of failure’ [241] and detailed next.

4.3.4 Patterns of success and failure

Consider two classifiers D; and Dy, and a 2 x 2 table of probabilities that summarizes
their combined outputs as in Table 4.4,

The three-classifier problem from the previous section can be visualized using
two pairwise tables as in Table 4.5. For this case,

a+bt+c+d+e+f+g+h=1 (4.14)

Table 4.5 The probabilities in two 2-way tables illustrating a 3-classifier voting ensemble.

D5 correct (1) D3 wrong (0)
Dy — Dy —
D) 1 0 D) 1 0
1 a b 1 e f
0 c d 0 g h

The probability of correct classification of the majority vote of the three classifiers
is (two or more correct)
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Ph.j=a+b+c+te. 4.15)

All three classifiers have the same individual accuracy p, which brings in the
following three equations

a+b+e+ f=p, Djcorrect;
a+c+e+g=p, Dsycorrect; (4.16)
a+b+c+d=p, Dscorrect

Maximizing Py,q; in (4.15) subject to conditions (4.14), (4.16) and a, b, ¢, d, e,
f. 9, h >0, for p = 0.6, we obtain P,,,; = 0.9 with the pattern highlighted in
Table43:a=d=f=9g=0,b=c=e=0.3, h =0.1. This example, optimal
for 3 classifiers, indicates the possible characteristics of the best combination of L
classifiers. The ‘pattern of success’ and ‘pattern of failure’ defined later follow the
same intuition although we do not include a formal proof for their optimality.

Consider the pool D of L (odd) classifiers, each with accuracy p. For the majority
vote to give a correct answer we need | L /2] + 1 or more of the classifiers to be cor-
rect. Intuitively, the best improvement over the individual accuracy will be achieved
when exactly | L/2] + 1 votes are correct. Any extra correct vote for the same x will
be wasted because it is not needed to give the correct class label. Correct votes which
participate in combinations not leading to a correct overall vote are also wasted. To
use the above idea, we make the following definition:

The ‘pattern of success’ is a distribution of the L classifier outputs such that:

1. The probability of any combination of |L/2]| + 1 correct and |L/2| incorrect
votes is a;

2. The probability of all L votes being incorrect is 7y;

3. The probability of any other combination is zero.

For L = 3, the 2-table expression of the pattern of success is shown in Table 4.6.

Table 4.6  The Pattern of Success.

D3 correct (1) D3 wrong (0)
Dy — Dy —
Dill1 oo D1 0
1 0 « 1 « 0
0 a 0 0 0 ~r=1-3«



MAJORITY VOTE 123

Here no votes are wasted; the only combinations that occur are where all clas-
sifiers are incorrect or exactly |L/2] 4+ 1 are correct. To simplify notation, let
I = |L/2|. The probability of a correct majority vote (Pp,q;) for the pattern of
success is the sum of the probabilities of each correct majority vote combination.

L
Each such combination has probability c.. There are 1 ways of having [ + 1
+

correct out of L classifiers. Therefore

L
P = . 4.17
/ Q+1)a 17

The pattern of success is only possible when P,,; <1

a<—1 (4.18)

()

To relate the individual accuracies p to « and P4, consider the following argu-
ment. In the pattern of success, if D; gives a correct vote, then the remaining L — 1

. . L . . .
classifiers must give [ correct votes. There are ; ways in which the remain-

ing L — 1 classifiers can give [ correct votes, each with probability . So the overall

accuracy p of D; is
L-1
p = l Q. (4.19)

Expressing o from (4.19) and substituting in (4.17) gives

pL 2pL

Prhoyi=—=—. 4.20
Y l4+1 L+1 (4.20)

Feasible patterns of success have Py,,; < 1, so (4.20) requires

L+1

< —. 421
Y (4.21)
Ifp > % then P,,,; = 1 can be achieved, but there is an excess of correct

votes. The improvement over the individual p will not be as large as for the pattern
of success but the majority vote accuracy will be 1 anyway. The final formula for
P, maj is

. 2pL
Pmaj = min {17 L—H} . (4.22)
The worst possible behavior of an ensemble of L classifiers each with accuracy p,
is described by the pattern of failure.
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The ‘pattern of failure’ is a distribution of the L classifier outputs such that:

1. The probability of any combination of | L/2] correct and | L/2] + 1 incorrect
votes is 3;

2. The probability of all L votes being correct is J;
3. The probability of any other combination is zero.

For L = 3, the 2-table expression of the pattern of failure is shown in Table 4.7.

Table 4.7  The Pattern of Failure.

D3 correct (1) D3 wrong (0)

Dy — Dy —
Dy | 1 0 DLl oo
1 6=1-38 0 1 0 g
0 0 B 0 80

The worst scenario is when the correct votes are wasted, that is, grouped in com-
binations of exactly [ out of L correct (one short for the majority to be correct). The
excess of correct votes needed to make up the individual p are also wasted by all the
votes being correct together, while half of them plus one would suffice.

L
The probability of a correct majority vote (Pp,q;) is §. As there are ; > ways of

having [ correct out of L classifiers, each with probability 3, then

Poaj=06=1— (?) B. (4.23)

If D; gives a correct vote then either all the remaining classifiers are correct (prob-
ability &) or exactly [ — 1 are correct out of the L — 1 remaining classifiers. For the

second case there are L1 ways of getting this, each with probability 5. To get

the overall accuracy p for classifier D; we sum the probabilities of the two cases
L-1
p=265+ B. (4.24)
-1
Combining (4.23) and (4.24) gives

pL—1 (2p—1)L+1
I+1 L+1

Pmuj = (4.25)
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For values of individual accuracy p > 0.5, the pattern of failure is always possible.

Matan [277] gives tight upper and lower bounds of the majority vote accuracy in
the case of unequal individual accuracies (see Appendix A.1). Suppose that classifier
D; has accuracy p;, and {Dy, ..., Dy} are arranged so that p; < po--- < pr. Let
k=141=(L+1)/2. Matan proves that

1. The upper bound of the majority vote accuracy of the ensemble is

max Pp,q; = min{l, ¥(k),¥(k — 1),...,X(1)}, (4.26)
where
1 L—k+m
B(m) = — Z; pi, m=1,... k. 4.27)

2. The lower bound of the majority vote accuracy of the ensemble is

min Pp,,; = max{0,£(k),&{(k —1),...,6(1)}, (4.28)
where
1 & L—k
&(m) = - sz;lﬂpi - m=1,... k. (4.29)

EXAMPLE 4.2 Matan’s limits on the majority vote accuracy

Let D = {Dq,..., D5} be a set of classifiers with accuracies (0.56, 0.58, 0.60,
0.60, 0.62), respectively. To find the upper bound of the majority vote accuracy
of this ensemble, form the sums ¥(m) form = 1,2,3

(1) = 0.56+0.58 +0.60 = 1.74;
1
B(2) = 5 (056 +0.58 1 0.60 +0.60) = L17;
1
33) = 3 (0.56 4 0.58 4+ 0.60 + 0.60 + 0.62) = 0.99. (4.30)
Then
max Ppq; = min{1,1.74,1.17,0.99} = 0.99. (4.31)
For the lower bound,
€(1) = 0.60+0.60+0.62— (5—3) = —0.18;
1 5—-3
§(2) = 5 (058+0.60 +0.60 +0.62) - 2 0.20;
1 —
£B3) = 3 (0.56 4+ 0.58 + 0.60 + 0.60 + 0.62) — % =0.32. (4.32)

min Pp,,; = max{0, —0.18,0.20,0.32} = 0.32. (4.33)
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The range of possible results from the majority vote across D is wide, so
without more knowledge about how the classifiers are related to each other we
can only guess within this range. If we assume that the classifier outputs are
independent, then P,,,; = 0.67, which indicates that there is much more to be
achieved from the majority vote with dependent outputs.

Matan’s result leads to the pattern of success and the pattern of failure as the upper
and the lower bounds respectively, for p; = - - - = pr, = p. Demirekler and Altincay
[87] and Ruta and Gabrys [343] give further insights into the behavior of the two
limit patterns.

Hierarchical majority voting ensembles have been found to be very promising
[277,343,359]. There is a potential gain in accuracy but this has only been shown
by construction examples.

4.3.5 Optimality of the majority vote combiner

Majority vote (plurality vote for more than two classes) is the optimal combiner when
the individual classifier accuracies are equal, the ‘leftover probability’ is uniformly
distributed across the remaining classes, and the prior probabilities for the classes
are the same. The following theorem states this result more formally.

Theorem 4.1 Let D be an ensemble of L classifiers. Suppose that

1. The classifiers give their decisions independently, conditioned upon the class
label.

2. The individual classification accuracy is P(s; = w|wg) = p for any classifier
i and class wy, and also for any data point in the feature space.

3. The probability for incorrect classification is equally distributed among the
remaining classes, that is P(s; = wjlwy) = foranyi = 1,...,L,
k,j=1,...,cj #k.

Then the majority vote is the optimal combination rule.

cl’

Proof. Substituting in the probabilistic framework defined in (4.3),

(/J
Plwgls) = "”‘ < [ »x H c—l (4.34)
ielh ielk
1-p
p HZEI" c—1
_ prch_l T
iert  ierk €It =1
- pr“l xﬁlfp (4.36)
<1l o= .
’LEIk =1

Notice that P(s) and the last product term in (4.36) do not depend on the class
label. The prior probability, P(wy) does depend on the class label but not on the
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votes, so it can be designated as the class constant. Rearranging and taking the
logarithm,

_ L
og(Plan) = o (5 ) + o (Ple)

plc—1
+ log (%) X |15 (4.37)

where |.| denotes cardinality. Dividing by log (p(lcf_plv and dropping all terms that
do not depend on the class label or the vote counts, we can create the following
class-support functions for the object x

i (%) = log (Plwr)) + |IF). (4.38)

log (p (10:,31 ))
N———
class constant ¢(wy)

Note that |1 i| is the number of votes for wy. Choosing the class label corresponding
to the largest support function is equivalent to choosing the class most voted for,
subject to a constant term. [ |

Interestingly, the standard majority vote rule does not include a class constant, and
is still one of the most robust and accurate combiners for classifier ensembles. The
class constant may sway the vote, especially for highly unbalanced classes and un-
certain ensemble decisions where the number of votes for different classes are close.
However, including the class constant will make majority vote a trainable combiner,
which defeats one of its main assets. To comply with the common interpretation,
here we adopt the standard majority vote formulation, whereby the class label is
obtained by

w = arg max |I_’Zfr |. (4.39)

4.4 Weighted majority vote

The weighted majority vote is among the most intuitive and widely used combin-
ers [204,261]. It is the designated combination method derived from minimizing a
bound on the training error in AdaBoost [118, 133].

If the classifiers in the ensemble are not of identical accuracy, then it is reasonable
to attempt to give the more competent classifiers more power in making the final
decision. The label outputs can be represented as degrees of support for the classes
in the following way

g, = {1, if D; labels x in w;, (440)

0, otherwise.
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The class-support function for class w; obtained through weighted voting is

L
,U,j(X) = Zbidi,j) (441)
i=1

where b; is a coefficient for classifier D;. Thus, the value of the class-support func-
tion (4.41) will be the sum of the weights for those members of the ensemble whose
output for x is wj.

441 Two examples

EXAMPLE 4.3 Assigning weights to the classifiers

Consider an ensemble of three classifiers D1, Do, and D3 with accuracies 0.6,
0.6, and 0.7, respectively, and with independent oracle outputs. An accurate
ensemble vote will be obtained if any two classifiers are correct. The ensemble
accuracy will be

Poaj = 0.62 x 0.3 +2 x 0.4 x 0.6 x 0.7 + 0.6% x 0.7 = 0.6960. (4.42)

Clearly, it will be better if we remove D¢ and D3, and reduce the ensemble to
the single and more accurate classifier D3. We introduce weights or coefficients
of importance b;, © = 1,2, 3, and rewrite (4.4) as: choose class label wy, if

L L
D bidip = maxybidi. (4.43)
i=1 i=1
For convenience we normalize the weights so that
c
> b =1 (4.44)
i=1

Assigning by = by = 0 and b3 = 1, we get rid of D; and D», leading to
P,.; = ps = 0.7. In fact, any set of weights which makes D3 the dominant
classifier will yield the same FP,,,;, for example, b3 > 0.5 and any b; and by
satisfying (4.44)

In the above example the weighted voting did not improve on the single best classifier
in the ensemble even for independent classifiers. The following example shows that,
in theory, the weighting might lead to a result better than both the single best member
of the ensemble and the simple majority.

EXAMPLE 44 Improving the accuracy by weighting

Consider an ensemble of 5 classifiers Dy, ..., D5 with accuracies (0.9, 0.9, 0.6,
0.6, 0.6).* If the classifiers are independent, the majority vote accuracy (at least

+After [359].
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3 out of 5 correct votes) is

Praj = 3%0.9%x0.4x0.6+0.6°+6x0.9x0.1 x0.6% x 0.4
~ 0.877. (4.45)

Assume now that the weights given to the voters are (1/3, 1/3, 1/9, 1/9, 1/9).
Then the two more competent classifiers agreeing will be enough to make the
decision because the score for the class label they agree upon will become 2/3. If
they disagree, that is, one is correct and one is wrong, the vote of the ensemble
will be decided by the majority of the remaining three classifiers. Then the
accuracy for the weighted voting will be

P = 09242x3%x0.9x0.1x0.6%x0.4+2x0.9x0.1x0.6°
0.927. (4.46)

Again, any sct of weights that satisfy (4.44) and make the first two classifiers
prevail when they agree, will lead to the same outcome.

4.4.2 Optimality of the weighted majority vote combiner

Here we use the probabilistic framework 4.2 to derive the optimality conditions for
the weighted majority vote. This type of combiner follows from relaxing the as-
sumption about equal individual accuracies. Hence the majority vote combiner is a
special case of the weighted majority combiner for equal individual accuracies.

Theorem 4.2 Let D be an ensemble of L classifiers. Suppose that

1. The classifiers give their decisions independently, conditioned upon the class
label.

2. The individual classification accuracy is P(s; = wy|wy) = p; for any class wy,
and also for any data point in the feature space.

3. The probability for incorrect classification is equally distributed among the
remaining classes, that is P(s; = wjlwy) = =2, forany i = 1,...,L,

c—1"
k,j=1,...,cj#k.

Then the weighted majority vote is the optimal combination rule with weights

w¢:10g<1pjp_>, 0<p<1. (4.47)
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Proof. Following the same derivation path as with the majority vote optimality,
equation (4.3) becomes

_ Plwg) 1—p;
Plwils) = — R g pi X g[ — (4.48)
ierk ieI®
L
P(wg) pi(c—1) 1—p;
_ 44
P(s) XH — D ><,l_Ic—l (449)
iel® =1
L
1 1—p; pi(c—1)
= P(wy —_ . 4.50
P(s)x_l_[c—l>< (wk)x. 1—p; ( )
i=1 ielk

Then

L .
log(P(wkls)) = log (%)Jrlog(mwk))

+ Z log (%) +|I-,i| x log(c —1). (4.51)
i€lIk | pi

Dropping the first term, which will not influence the class decision, and expressing
the classifier weights as

wZv:log(lpip), 0<p <1,
—Dpi

will transform equation (4.51) to

ne(x) = log (P(wy)) + Z w; + |I_’f_| x log(c —1). (4.52)
y ielIk|
class constant ¢(wy) +
]
If p, =pforalli =1,..., L, equation (4.52) reduces to the majority vote equa-

tion (4.37).

Similar proofs have been derived independently by several researchers in different
fields of science such as democracy studies, pattern recognition and automata theory.
The earliest reference according to [26,359] was Pierce, 1961 [309] .

The algorithm of the weighted majority vote combiner is shown in Figure 4.2.
Note that the figure shows the conventional version of the algorithm which does not
include the class constant or the last term in Equation (4.52).

4.5 Naive-Bayes combiner

Exploiting the independence assumption further leads to a combiner called the ‘inde-
pendence model’ [385], ‘naive Bayes’, ‘simple Bayes’ [103] and even ‘idiot’s Bayes’
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WEIGHTED MAJORITY VOTE COMBINER (WMV)
Training

1. Obtain an array F(yy ) with individual outputs of L classifiers for
N objects. Entry e(i, j) is the class label assigned by classifier D; to
object 7. An array Ty 1) with the true labels is also provided.

2. Estimate the accuracy of cach base classifier D;, i = 1,..., L, as the
proportion of matches between column ¢ of E and the the true labels
T'. Denote the estimates by p;.

3. Calculate the weights for the classifiers

1,¢:1og<1pilA>, 0O<pi<1, i=1...,L.

— Vi

Operation: For each new object

1. Find the class labels sq, ..., sy assigned to this object by the L base
classifiers.

2. Calculate the score for all classes

Pk) = Z v;, k=1,...,c.

3. Assign label £* to the object, where

k* = arg max P(k).

Return the ensemble label of the new object.

Figure 4.2  Training and operation algorithm for the Weighted Majority Vote combiner.

[107,330]. Sometimes the first adjective is skipped and the combination method is
called just ‘Bayes combination’.

4.5.1 Optimality of the Naive Bayes combiner

We can derive this combiner by finally dropping the assumption of equal individual
accuracies in the probabilistic framework 4.2.
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Theorem 4.3 Let D be an ensemble of L classifiers. Suppose that the classifiers
give their decisions independently, conditioned upon the class label. Then the Naive

Bayes combiner
L
max {P(wk) H P(s; |wk)}

i=1

is the optimal combination rule.

Proof. Think of P(s; = wj|wy) as the (j, k)-th entry in a probabilistic confusion
matrix for classifier <. In this case, equation (4.2) can be used directly

P(wk)

L
P(wgls) = Ple) [ PGsilwr) - (4.53)
i=1

Dropping P(s), which does not depend on the class label, the support for class wy, is

L
ps(x) = Plwi) [T Psilwr) - (4.54)
i=1

4.5.2 Implementation of the Naive Bayes combiner

The implementation of the Naive Bayes (NB) method on a data set Z with cardinality
N is explained below. For each classifier D;, a ¢ X ¢ confusion matrix CM* is
calculated by applying D; to the training data sct. The (k, s)th entry of this matrix,
cmy, , is the number of elements of the data set whose true class label was wy,, and
were assigned by D, to class ws. Denote by Ny the number of elements of Z from
class wg, K = 1,...,c. Taking cm};,si /N, to be an estimate of the probability
P(s;Jwy), and Nj/N to be an estimate of the prior probability for class w,, the
support for class wy, in (4.54) can be expressed as

L
1 .
(%) = —= [ [ em’ (k. 50). (4.55)
Nk i=1

EXAMPLE 4.5 Naive Bayes combination

Consider a problem with L=2 classifiers, D; and D, and ¢ = 3 classes. Let
the number of training data points be N = 20. From these, let 8 be from w;,
9 from wy and 3 from wj3. Suppose that the following confusion matrices have
been obtained for the two classifiers

6 2 0
CM'=1|1 8 0|, and CM?*=
1 0 2

(4.56)

[=JENICRNTN
o vt w
W =
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Assume D1(x) = s1 = wq and Da(x) = so = w; for the input x € R™.
Using (4.55),

1
1 (x) o :§><2><4:1;
1 8
pa(x) o §><8><3:§%2.67;
1
p3(x) o §><0><O:0. 4.57)

As p12(x) is the highest of the three values, the maximum membership rule
will label x in wo.

Notice that a zero as an estimate of P(s;|wy) automatically nullifies py (x) regardless
of the rest of the estimates. Titterington et al. [385] study the Naive Bayes classifier
for independent categorical features. They discuss several modifications of the esti-
mates to account for the possible zeros. For the Naive Bayes combination, we can
plug in (4.54) the following estimate:

i 1
. cmy, o+ ¢
P(si|lwg) = —/——— 4.58
(silwr) N,+1 ( )
where IVy, is the number of elements in the training set Z from class wy, k = 1,...,c.

The algorithm for the training and the operation of the NB combiner is shown in
Figure 4.3. MATLAB function nb_combiner is given in Appendix A.2.

EXAMPLE 4.6 Naive Bayes combination with a correction for zeros
Take the 20-point data set and the confusion matrices CM* and CM? from the

previous example. The estimates of the class-conditional pmfs for the values
§1 = wg and so = wy arc

o () (!
# N N, +1 Ny +1

243\ [4+1
~ 0.050
20X<8+1)<8+1

(X) ~ & v C%’Q + % C%,l + %
H2 N Ny+1 Ny +1
841 341
_ 2 (s T5) ~ 0125
20 9+1 9+1
(x) ~ & N C}a;yg + % C§71 + 3
Hs N N3 +1 N3 +1
3 0+3\ (0+1
= — =~ 0.001. 4.5
20X(3+1><3+1 (4.59)
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NAIVE BAYES COMBINER (NB)
Training
1. Obtain an array F(y ) with individual outputs of L classifiers for

N objects. Entry e(i, j) is the class label assigned by classifier D to
object 1. An array T( 1) with the true labels is also provided.

2. Find the number of objects in each class within 7'. Denote these num-
bers by N1, Ny, ..., N,.

3. For each classifier D;, ¢ = 1,..., L, calculate a bespoke ¢ x ¢ confu-
sion matrix C;. The (jy, j2)-th entry is

K(jl?jZ) + %

Ci(jlaj?) = N 1 3
J1

where K (41, j2) is the number of objects with true class label ji, la-
beled by classifier D; in class js.

Operation: For each new object

1. Find the class labels s, ..., sy, assigned to this object by the L base
classifiers.
2. Foreachclasswy, k=1,...,c

(a) Set P(k) = Jx.
(b) Fori =1...L,calculate P(k) < P(k) x C;(k, s;).

3. Assign label k£* to the object, where

k* = arg max P(k).

Return the ensemble label of the new object.

Figure 4.3  Training and operation algorithm for the NB combiner.

Again, label ws will be assigned to x. Notice that class w3 now has a small
non-zero support.

Despite the condescending names it has received, the Naive Bayes combiner has been
acclaimed for its rigorous statistical underpinning and robustness. It has been found
to be surprisingly accurate and efficient in many experimental studies. The surprise
comes from the fact that the combined entities are seldom independent. Thus, the
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independence assumption is nearly always violated, sometimes severely. However,
it turns out that the classifier performance is quite robust, even in the case of depen-
dence. Furthermore, attempts to amend the Naive Bayes by including estimates of
some dependencies, do not always pay off [103].

4.6 Multinomial methods

In this group of methods we estimate the posterior probabilitics P(wy|s) for all k£ =
1,...,c, and every combination of votes s € Q. The highest posterior probability
determines the class label for s. Then, given an x € R", first the labels sq,..., s
are assigned by the classifiers in the ensemble D, and then the final label is retrieved
fors = [s1,...,s1]7.

“Behavior Knowledge Space”(BKS) is a fancy name for the multinomial combi-
nation. The label vector s is regarded as an index to a cell in a look-up table (the BKS
table) [190]. The table is designed using a labeled data set Z. Each z; € Z is placed
in the cell indexed by the s for that object. The number of clements in each cell are
tallied, and the most representative class label is selected for this cell. The highest
score corresponds to the highest estimated posterior probability P(wg|s). Ties are
resolved arbitrarily. The empty cells are labeled in some appropriate way. For exam-
ple, we can choose a label at random or use the result from a majority vote between
the elements of s.

To have a reliable multinomial combiner, the data set should be large. The BKS
combination method is often overtrained: it works very well on the training data but
poorly on the testing data. Raudys [324,325] carried out a comprehensive analysis of
the problems and solutions related to the training of BKS (among other combiners)
for large and small sample sizes.

The BKS combiner is the optimal combiner for any dependencies between the
classifier outputs. The caveat here is that it is hardly possible to have reliable esti-
mates of the posterior probabilities for all possible ¢’ output combinations s, even
for the most frequently occurring combinations.

EXAMPLE 4.7 BKS combination method

Consider a problem with three classifiers and two classes. Assume that Dy, D»
and D3 produce output (81, 82, 83) = (w2, w1, ws). Suppose that there are 100
objects in Z for which this combination of labels occurred: 60 having label wy,
and 40 having label w». Hence the table cell indexed by (w2, w1, wo) will contain
label w; no matter that the majority of the classifiers suggest otherwise.

From an implementation point of view, the BKS combiner can be regarded as the
nearest neighbor classifier in the space of the ensemble outputs over the training data
set. The concept of distance is replaced by exact match. If there are more than one
nearest neighbors (exact matches) in the training set, the labels of the matches are
tallied, and the label of the largest class representation is assigned. The algorithm is
shown in Figure 4.4
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BEHAVIOR KNOWLEDGE SPACE (BKS) COMBINER
Training

1. Obtain a reference array F(y 1) with individual outputs of L classi-
fiers for NV objects. Entry e(i, j) is the class label assigned by classifier
Dj to object i. An array T\« 1) with the true labels is also provided.

2. Find the prevalent class label within 1", say wy,.

Operation: For each new object

1. Find the class labels assigned to this object by the L base classifiers
and place them in a vector row r.

2. Compare r with each row of the reference array. Record in a set S the
labels of the objects whose rows match r.

3. If there is no match (S = {)), assign label w,, to the new object. Oth-
erwise, assign the prevalent class label within S. If there is a label tie,
choose at random among the tied classes.

Return the ensemble label of the new object.

Figure 4.4  Operation algorithm for the BKS combiner for a given reference ensemble with
labeled data and a set of new objects to be labeled by the ensemble.

EXAMPLE 4.8 BKS combiner for the fish data

A MATLAB function bks_combiner implementing the algorithm in Figure
4.4 is given in Appendix A.2. A MATLAB script which uses the function to la-
bel the fish data is also provided. Note that the script needs function fish_data,
given in Appendix A.1.

Fifty random linear classifiers were generated in the data space. The grid
space was scaled to the unit square. To generate a linear classifier, a random
point P(p1,p2) was selected within the square (not necessarily a node on the
grid). Two random numbers were drawn from a standard normal distribution, to
be used as coefficients a and b in the line equation ax + by + ¢ = 0. Then the
constant ¢ was calculated so that P lies on the line: ¢ = —ap; — bpo.

BKS has been applied to combine the outputs of the 50 classifiers. Figure 4.5
shows the classifier boundaries and the regions labeled as the fish (class black
dots) by the ensemble with three levels of noise: 0%, 20% and 35%. The accu-
racy displayed as the plot title is calculated with respect to the original (noise-
free) class labels.



COMPARISON OF COMBINATION METHODS FOR LABEL OUTPUTS 137
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Figure 4.5 BKS classifier combiner for ensembles with I, = 50 random linear classifiers
for the fish data, with different amount of label noise.

The accuracy of the BKS combiner is very high, even for large amount of
label noise. The real problem with this combiner comes when the testing data
evokes ensemble outputs which do not appear in the reference ensemble. If the
reference data is sufficiently representative, unmatched outputs will be relatively
rare. Our implementation of the BKS combiner does not look beyond the exact
match. It is possible to combat the brittleness of the method by considering
distances between the (nominal) label vectors.

4.7 Comparison of combination methods for label outputs

Table 4.8 shows the optimality scopes and the number of tunable parameters for each
combiner.

In practice, the success of a particular combiner will depend partly on the validity
of the assumptions and partly on the availability of sufficient data to make reliable
estimates of the parameters.

The optimality of the combiners is asymptotic, and holds for sample size ap-
proaching infinity. For finite sample sizes, the accuracy of the estimates of the pa-
rameters may be the primary concern. A combiner with fewer tunable parameters
may be preferable even though its optimality assumption does not hold.

EXAMPLE 4.9 Label output combiners for the fish data set

Consider the following experiment. Fifty linear classifiers were randomly gen-
erated in the grid space of the fish data set. An example of 50 linear boundaries
is shown in Figure 4.6 (a).

The labels of the two regions for each linear classifier were assigned ran-
domly. The accuracy of the classifier was evaluated. Note that the accuracy
estimate is exact because we have all possible data points (nodes on the grid). If
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Table 4.8  Scopes of optimality (denoted by a black square) and the number of tunable
parameters of the 4 combiners for a problem with c classes and an ensemble of L classifiers.

Combiner 1 2 3 4 Number of parameters
Majority vote (not trained) B — — — none (requires equal priors for the classes)
Weighted majorityvote ® B - - L+4c
NaiveBayes H HW MW - Lxc’+c
BKS m m m m ("

Column headings:

1. Equal p

2. Classifier-specific p;

3. Full confusion matrix

4. Independence is not required

the accuracy was less than 50%, the regions were swapped over. Knowing the
exact value of the classification accuracy eliminates the estimation error. Thus
the only source of error in the ensemble error estimate came from the assump-
tions being incorrect.

The shaded regions in plots (b), (c) and (d) in Figure 4.6 show the ensemble
classification regions for class ‘black dots’, for three combination rules: the
majority vote (4.39), the Naive Bayes combiner (4.54) with the correction for
zeros and for the BKS combiner. The individual and ensemble accuracies are
detailed in Table 4.9.

Table 4.9 Classification accuracies in % of the individual and ensemble classifiers for
different label combiners

Classifier/Ensemble ~ Example  Average of 200 runs +o

Largest prior classifier 64.48 64.48+0.00
Average individual classifier 59.76 59.91+0.81
Majority vote (not trained) *70.60 68.53+2.69
Weighted majority 68.84 69.63£1.91

Naive Bayes *82.92 75.214+2.85

BKS *95.72 94.42£1.00

Table note: * Plot appears in Figure 4.6.

Two hundred runs were carried out with different random ‘bunch of straws’
(50 random classifiers) thrown in the unit square. Table 4.9 shows the average
accuracies together with the standard deviations. The accuracies are ranked as
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Figure 4.6 A random linear ensemble for the fish data set.

expected for the 200-run experiment. Progressively alleviating the assumption
of equal individual accuracies pays off. Weighted majority vote is better than the
majority vote, and Naive Bayes is better than both. BKS is always the best com-
biner because there is no parameter estimation error. However, this ranking is
not guaranteed. Violation of the assumptions may affect the ensemble accuracy
to various degrees, and disturb the ranking.

Appendix
A.1 Matan’s proof for the limits on the majority vote accuracy

Here we give a sketch of the proof as offered in [277].
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Theorem A.4 Given is a classifier ensemble D = {D1,...,Dr}. Suppose that
classifiers D; have accuracies p;, © = 1,...,L, and are arranged so that p; <
pa---<pp. Letk=1+1=(L+1)/2. Then

1. The upper bound of the majority vote accuracy of the ensemble is
max Pr,q; = min{l, ¥(k),X(k —1),...,3(1)}, (A.1)
where

| Ldetm
m) = — E: vk (A.2)

2. The lower bound of the majority vote accuracy of the ensemble is

min Prg; = max{0,&(k), €(k — 1),...,6(1)}, (A3)
where
Em) = — Z pi— 2= k, m=1,...,k. (A4)
Mk
Proof (sketch)

Upper Bound. The accuracy p; is the average accuracy of D, across the whole
feature space R", and can be written as

p= [ Txpxx (A5)
where Z; is an indicator function for classifier D;, defined as

1, ifD, i dy x,
IZ- (X) _ { s 1 ; recognizes correctly X (A6)

0, otherwise,

and p(x) is the probability density function of x. The majority vote accuracy is the
probability of having £ or more correct votes, averaged over the feature space R"™.

Praj = / p(x)dx. (A7)
JISTi(x) >k

First we note that P,,,,; < 1, and then derive a series of inequalities for P,,,4;. For
any x where the majority vote is correct, at least k of the classifiers are correct. Thus,

L L L
o= 3 [ Teowxdx= [ > Texpix) dx
=1 i=1 i=1

> / kp(x)dx = kPpq;. (A.8)
ST (%) >k

V



2
3
4

SELECTED MATLAB CODE 141

Then
1 L
Praj < 7 Z}p (A.9)

Let us now remove the most accurate member of the ensemble, D, and consider the
remaining L — 1 classifiers

IEDD /R _ Zi(x)p(x) dx. (A.10)

For cach point x € R™ where the majority vote (using the whole ensemble) has
been correct, that is, > Z;(x) > k, there are now at least £ — 1 correct individual
votes. Thus,

L—1 -1
Sp = / 3 T (x)p(x) dx
i=1 " =1
> / (k—1)p(x) dx = (k — 1) Prqj- (A.11)
Z.(x)>k

Then
Praj < 7= sz (A.12)

Similarly, by dropping from the remaining set the most accurate classifier at a time,
we can derive the series of inequalities (A.1). Note that we can remove any classifier
from the ensemble at a time, not just the most accurate one, and arrive at a similar
inequality. Take for example the step where we remove Djy. The choice of the
most accurate classifier is dictated by the fact that the remaining ensemble of L — 1
classifiers will have the smallest sum of the individual accuracies. So as Pp,q; is less
than 5 ZZ 1 Di, it will be less than any other sum involving L — 1 classifiers which
includes py, and excludes a smaller p; from the summation.

The next step is to show that the upper bound is achievable. Matan suggests to
use induction on both L and k for that [277].

Lower Bound. To calculate the lower bound, Matan proposes to invert the concept,
and look again for the upper bound but of (1 — P,,4;).

A.2 Selected MATLAB code

function oul = nb_combiner (otl, ree,rel)
% ——— Nailve Bayes (NB) combiner for label outputs
% Input: ————————————————— - ——————————
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for

end

for

end

COMBINING LABEL OUTPUTS

otl: outputs to label
= array N (objects)-by-L(classifiers)
entry (i,j) is the label of object i
by classifier j (integer labels)
ree: reference ensemble
= array M(objects)-by-L(classifiers)
entry (i,3J) is the label of object i
by classifier j (integer labels)
rel: reference labels
= array M(objects)-by-1
true labels (integers)

Output: —=————————mm oo

oul: output labels
= array N (objects)-by-1
assigned labels (integers)

Training ——————————————————————————————————————
max (rel); % number of classes, assuming that the
class labels are integers 1,2,3,...,C

o

size(ree,2); % number of classifiers

i=1:c
cN (i) = sum(rel == 1i); % class counts

i=1:1L

% cross-tabulate the classes to find the

% confusion matrices

for j1 = 1:c
for j2 =1

Q
2
o
I~

= 3j2) + 1/c) / (cN(Jl) + 1);
% correction for zeros included

end

% Operation ——————-——-——-———————————————————————————

N =
oul
for

size(otl,1);
= zeros(N,1l); % pre—-allocate for speed

i = 1:N
P = cN/numel (rel);
for j = l:c % calculate the score for each class
for k = 1:L
P(j) = P(J) * CM(k).cm(3,otl(i, k));
end
end
[T,oul (1)] = max(P);

function oul = bks_combiner (otl, ree,rel)

o
S
3
g

—--— BKS combiner for label outputs
Input: ———————————"—————————————————————————————

Hie!
.cm(jl,j2) = (sum(rel == jl & ree(:,1i)
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otl: outputs to label
array N (objects)-by-L(classifiers)
entry (i,j) is the label of object i
by classifier 3 (integer labels)
ree: reference ensemble
= array M(objects)-by-L(classifiers)
entry (i, Jj) is the label of object i
by classifier 37 (integer labels)

rel: reference labels
= array M(objects)-by-1
true labels (integers)
Output: -------------"-—"—"""""""""""""""—"—"———
oul: output labels

= array N(objects)-by-1
assigned labels (integers)

o o o° P o® A O OO o o° o° o° OO J° o

N = size(otl,1);
M = size(ree,l);
largest_class = mode (rel);

oul = zeros(N,1l); % pre-allocate for speed
for i = 1:N
matches = sum(ree "= repmat (otl(i,:),M,1),2) == 0;
if sum(matches)
oul (i) = mode (rel (matches));

o

else % there is no match in the reference

o

% ensemble output; use the largest prior

oul (i) = largest_class;
end
end

An example of using the BKS combiner function is shown below. Note that, with
a minor edit of lines 31-35, the the BKS function can be replaced by the Naive Bayes
combiner function or any other combiner function.

clear all, close all
clc

% Generate and plot the data

[T, ,labtrue] = fish_data(50,0);

[x,v,1b] = fish_data(50,20); figure, hold on

plot (x(lb == 1),y (1lb == 1), 'k.", "markers',14)

plot (x(1lb == 2),y(lb == 2),'k.", 'markers', 14, ...
'‘color',[0.87, 0.87, 0.87])

axis ([0 1 0 1]) % cut the figure to the unit square

axis square off % equalize and remove the axes

o

Generate and plot the ensemble of linear classifiers
= 50; % ensemble size

= numel (x); % number of data points

ensemble = zeros(N,L); % pre-allocate for speed

for i = 1:L

o) rand(l,2); % random point in the unit square

w randn(l,2); % random normal vector to the line

2z =
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w0 = p x w'; $ the free term (neg)
plot ([0 11, [wO, (wO-w(1))]1/w(2),'r-"',...
'linewidth',1.4) % plot the linear boundary

plot(p(l),p(2),"'r.", 'markersize',15)
pause (0.08)
t =2 - ([xy] »w'" —-w0 >0);
if mean(t == 1lb) < 0.5, t = 3-t; end % revert labels
ensemble (:,1) = t; % store output of classifier i
end
% Find and plot the BKS combiner output
output_bks = bks_combiner (ensemble,ensemble, 1b) ;
accuracy_bks = mean (output_bks == labtrue);
plot (x (output_bks==1),y (output_bks==1), 'bo', 'linewidth',1.5)

title (['BKS accuracy ',num2str (accuracy_bks)])



CHAPTER 5

COMBINING CONTINUOUS-VALUED
OUTPUTS

5.1 Decision profile

Consider the canonical model of a classifier illustrated in Figure 1.9. The degrees
of support for a given input x can be interpreted in different ways, the two most
common being confidences in the suggested labels and estimates of the posterior
probabilities for the classes.

Let x € R™ be a feature vector and = {wy,ws,...,w.} be the set of class
labels. Each classifier D; in the ensemble D = {D;, ..., Dy} outputs c degrees of
support. Without loss of generality we can assume that all ¢ degrees are in the interval
[0,1], that is, D; : R™ — [0,1]°. Denote by d, j(x) the support that classifier D,
gives to the hypothesis that x comes from class w;. The larger the support, the more
likely the class label w;. The L classifier outputs for a particular input x can be
organized in a decision profile (D P(x)) as the matrix shown in Figure 5.1.

The methods described in this chapter use DP(x) to find the overall support for
each class, and subsequently label the input x in the class with the largest support.
There are two general approaches to this task. First, we can use the knowledge
that the values in column j are the individual supports for class w;, and derive an
overall support value for that class. Simple algebraic expressions, such as average
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Output of classifier D;(x)

-dl’l(X) dl’j(X) dl’C(X)-
DP(X) = di_yl(X) dz_] (X) di,c(x) . (51)
_dLﬁl(X) dLA’j(X) dL’c(X)_

T

Support from classifiers D ... Dy, for class w;

Figure 5.1 Decision profile for an input x

or product, can be used for this. Alternatively, we may ignore the context of DP(x)
and treat the values d; ;(x) as features in a new feature space, which we call the
intermediate feature space. The final decision is made by another classifier that
takes the intermediate feature space as input, and produces a class label (stacked
generalization). The important question is how we train such architectures to make
sure that the increased complexity is justified by a corresponding gain in accuracy.

5.2 How do we get probability outputs?

Calibrating the classifiers’ outputs is important, especially for heterogeneous ensem-
bles [31]. Some of the base classifiers described in Chapter 2 produce soft labels
right away. An example of such outputs is the discriminant scores of the linear dis-
criminant classifier. It is more convenient though if these degrees were in the interval
[0, 1], with O meaning no support and 1 meaning full support. We can simply normal-
ize the values so that R is mapped to [0, 1]. In addition, to comply with the probability
context, we can scale the degrees of support so that their sum is one. The standard
solution to this problem is the softmax method [107]. Let g1(x),. .., g.(x) be the
output of classifier D. Then the new support scores g/ (x), . . ., g.(x), g;(x) € [0, 1],
Z§=1 g5(x) = 1, are obtained as

e {g()
950 = S e (g} 6-2)

It is desirable that g;- (x) are credible estimates of the probabilities for the classes
given the input x. Some ways to obtain continuous outputs as estimates of the pos-
terior probabilities P(w;|x), j = 1,..., ¢, are detailed below.
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5.2.1 Probabilities based on discriminant scores

Consider the linear and the quadratic discriminant classifiers. These classifiers are
optimal for normal class-conditional densities (a seldom valid but very useful as-
sumption). The discriminant function for class w;, denoted g;(x), is derived from
log P(w;)p(x|w;) by dropping all the additive terms that do not depend on the class
label as shown by equations (2.8) — (2.11).

For the linear discriminant classifier, we arrived at (2.11)

1 _ _
gi(x) = log(P(w;)) — iu?E Y+l x = wio +w! x (5.3)

Returning the dropped terms into the starting equation, we have

lo(Pwi)p(plr)) = log(P(w)) — 3 (x — ) "5 (x — )
gi(x)
——%]og(?w)—-%logHEH). (5.4)

Denote by C' the constant (possibly depending on x but not on ¢) absorbing all
dropped additive terms

cz—%%@m—%bmmy (5.5)

Then
P(w;)p(x|w;) = exp(C) exp{g,(x)}. (5.6)

The posterior probability for class w; for the given x is

Playlx) = Z@a)rtle;) W{;Zﬁ;"”” .7)

__ow(@ xexp{g (9 explgiF g

>k—10xp(C) x exp {gr(x)}  Doj_g exp {gr(x)}

which is the softmax transform (5.2).

For a two-class problem, instead of comparing g;(x) with g2(x), we can form
a single discriminant function g(x) = g1(x) — g2(x), which we compare with the
threshold 0. In this case,

1

T o (9] 69

Pw|x) =
and
1

1+exp{g(x)}
This is also called the logistic link function [310].

Pwslx) =1— P(wi|x) = (5.10)
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Alternatively, we can think of g(x) as a new feature, and estimate the two class-
conditional pdfs, p(g(x)|wi) and p(g(x)|ws) in this new one-dimensional space.
The posterior probabilities are calculated from the Bayes formula. The same ap-
proach can be extended to a c-class problem by estimating a class-conditional pdf
p(g;(x)|w;) on gj(x), j = 1,...,c¢, and calculating subsequently P(w;|x).

Next, consider a neural network (NN) with ¢ outputs, each corresponding to a
class. Denote the NN output by

(yla"'7yc) ERC

and the target by

(tl, . ,tc) S {O, 1}6.

The target for an object z; from the data set Z is typically a binary vector with 1 at
the position of the class label of z; and zeros elsewhere. It is known that, if trained
to optimize the squared error between the NN output and the target, in the asymp-
totic case, the NN output y; will be an approximation of the posterior probability
P(wj|x), j = 1,...,c[40,330]. Wei et al. [414] argue that the theories about the
approximation are based on several assumptions that might be violated in practice:
(i) that the network is sufficiently complex to model the posterior distribution accu-
rately, (ii) that there are sufficient training data, and (iii) that the optimization routine
is capable of finding the global minimum of the error function. The typical trans-
formation which forms a probability distribution from (y1,...,yr) is the sotfmax
transformation (5.2) [107]. Wei et al. [414] suggest a histogram-based remapping
function. The parameters of this function are tuned separately from the NN training.
In the operation phase, the NN output is fed to the remapping function and calibrated
to give more adequate posterior probabilities.

EXAMPLE 5.1 SVM output calibration

Figure 5.2 (a) shows a two-dimensional data set with two classes plotted with
different markers. Each class contains 3,000 data points. A training set of 120
points was randomly sampled. The training set is marked on the plot with thicker
and brighter markers. The SVM classifier was trained using this training data.
The classification boundary is shown on the scatterplot.

To examine how accurately the calibrated SVM output matches the poste-
rior probabilities, the whole data set of 6,000 objects was fed to the trained
SVM classifier and the outputs were calibrated into posterior probabilities using
(5.10). Next, a histogram with 100 bins was created and the 6,000 probability
estimates for class 1 were distributed in the respective bins. The true class labels
of the objects were recovered and used to calculate the probability for class 1 in
each bin. Figure 5.2 (b) shows the nearly perfect correspondence between the
SVM probabilities and the probabilities calculated from the data labels.
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Figure 5.2  Calibrated output for the SVM classifier on a 2-d, 2-class data set.

5.2.2 Probabilities based on counts: Laplace estimator

Consider finding probability estimates from decision trees. Each leaf of the tree de-
fines a set of posterior probabilities. These are assigned to any point that reaches the
leaf. Provost and Domingos [314] analyze the reasons for the insufficient capability
of the standard decision tree classifiers to provide adequate estimates of the prob-
abilities and conclude that the very heuristics that help us build small and accurate
trees are responsible for that. Special amendments were proposed which led to the so
called Probability Estimating Trees (PETs). These trees still have high classification
accuracy but their main purpose is to give more accurate estimates of the posterior
probabilities.

We calculate estimates of P(w;|x), j = 1,...,¢, as the class proportions of the
training data points that reached the leaf (the maximum likelihood (ML) estimates).
Let k1, ..., k¢ be the number of training points from classes wy, . . . , w, respectively,
at some leaf node ¢, and let K = k1 + ... + k.. The ML estimates are

P(wﬂx)z%, i=1,...,c (5.11)
The problem is that when the total number of points, K, is small, the estimates of
these probabilities are unreliable. Besides, the tree-growing strategies try to make the
leaves as pure as possible. Thus, most probability estimates will be pushed towards
1 and 0 [430].

To remedy this, the Laplace estimate or Laplace correction can be applied [314,
384,430]. The idea is to adjust the estimates so that they are less extreme. For c
classes, the Laplace estimate used in [314] is

kj-l-l
K+c¢

Zadrozny and Elkan [430] apply a different version of the Laplace estimate using a
parameter m which controls the degree of regularization of the estimate (called m-

P(wj|x) = (5.12)
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estimation). The idea is to smooth the posterior probability towards the (estimate of
the) prior probability for the class

A k; +m x P(w;)

P(wj|x) = L—+~17—-12, 5.13
If m is large, then the estimate is close to the prior probability. If m = 0, then we
have the ML estimates and no regularization. Zadrozny and Elkan suggest that m
should be chosen so that m x P(w;) ~ 10 and also point out that practice has shown
that the estimate (5.13) is quite robust with respect to the choice of m.

Suppose that w* is the majority class at node ¢. Ting and Witten [384] propose
the following version of the Laplace estimator:
1 El;éj ki+1

. T T K+2
P(w;|x) = (5.14)

(1 — P(w*|x)) x E%’ otherwise.

ifw; =w*,

The general consensus in the PET studies is that for good estimates of the pos-
terior probabilities, the tree should be grown without pruning, and a form of the
Laplace correction should be used for calculating the probabilities.

The same argument can be applied for smoothing the estimates of the k nearest
neighbor classifier (k-nn) discussed in Chapter 2. There are many weighted versions
of k-nn whereby the posterior probabilities are calculated using distances. While
the distance-weighted versions have been found to be asymptotically equivalent to
the non-weighted versions in terms of classification accuracy [24], there is no such
argument when class ranking is considered. It is possible that the estimates of the
soft k-nn versions are more useful for ranking than for labeling. A simple way to
derive P(wj|x) from k-nn is to average the similarities between x and its nearest
neighbors from class w;. Let k be the number of neighbors, x(9) be the i-th nearest
neighbor of x, and d(x,x")) be the distance between x and x(*), Then

1
Exmewj Ax)

1

p(wj|x) = %
2 i1 Ty

(5.15)

Albeit intuitive, these estimates are not guaranteed to be good approximations of the
posterior probabilities.

EXAMPLE 5.2 Laplace corrections and soft k-nn

Figure 5.3 shows a point in a 2-dimensional feature space (the cross, x) and its
7 nearest neighbors from w; (open circles), wo (bullets) and ws (triangle).
The Euclidean distances between x and its neighbors are as follows:

X 1 2 3 4 5 6 7
Distance | I V2 2 22 2v2 V13

Label w2 w1 w1 Wws w1 w1 w2
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Figure 5.3 A point in a 2-dimensional feature space and its 7 nearest neighbors from w;
(open circles), w2 (bullets) and w3 (triangle).

The probability estimates 11;(x), j = 1,2, 3, using the Laplace corrections
and the distance-based formula are shown in Table 5.1. As seen in the table,
all the corrective modifications of the estimates bring them closer to one an-
other compared to the standard ML estimates, i.e., the modifications smooth the
estimates away from the 0/1 bounds.

Table 5.1 Probability estimates for the example in Figure 5.3 using the Laplace corrections
and distance-based k-nn

Method pa (x) p2(x) p3(x)
ML 2=0571 2=028 3 =0.143
Standard Laplace [314] 2 =0.500 2 =0.300 3 = 0.200
m-estimation [430] &% =0.421 & =0316 + =0.263

(m = 12, equiprobable classes)
Ting and Witten [384] 22 =0.444 12=0370 2 =0.185
Distance-based 0.576 0.290 0.134

Accurate estimates are a sufficient but not a necessary condition for a high classifica-
tion accuracy. The final class label will be correctly assigned as long as the degree of
support for the correct class label exceeds the degrees for the other classes. Investing
effort into refining the probability estimates will be justified in problems with a large
number of classes ¢, where the ranking of the classes by their likelihood is more im-
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portant than identifying just one winning label. Examples of such tasks are person
identification, text categorization, and fraud detection.

5.3 Non-trainable (fixed) combination rules

5.3.1 A generic formulation

Simple fusion methods are the most obvious choice when constructing a multiple
classifier system [207,237,382,394,399]. A degree of support for class wj is calcu-
lated from the L entries in the j-th column of DP(x)

wi(x) = F (dy,j(x),...dr;(x)), (5.16)

where F is a combination function. The class label of x is found as the index of the
maximum g;(x). F can be chosen in many different ways:

» Average (Sum)

1

L
1
pi(x) == > d; j(x). (5.17)
=1

* Minimum/maximum/median combiner, for example,

i (x) = mlax{di_,j(x)}. (5.18)

* Trimmed mean combiner (competition jury). For a K% trimmed mean the L
degrees of support are sorted and %% of the values are dropped on each side.
The overall support p;(x) is found as the mean of the remaining degrees of
support.

* Product combiner

pi(x) = [ [ dij (). (5.19)

Represented by the Average combiner, the category of simple non-trainable com-
biners is described in Figure 5.4, and illustrated diagrammatically in Figure 5.5.
These combiners are called non-trainable, because once the individual classifiers are
trained, their outputs can be fused to produce an ensemble decision, without any
further training.

EXAMPLE 5.3 Simple non-trainable combiners
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AVERAGE COMBINER
Training: None

Operation: For each new object

1. Classify the new object x to find its decision profile DP(x), as in
equation (5.1).

2. Calculate the support for each class by

1

L
1
Pk)y=2) dj; k=1, c
=1

3. Assign label £* to the object, where

k* = arg max P(k).

Return the ensemble label of the new object.

Figure 5.4  Training and operation algorithm for the Average combiner.

The following example helps to clarify simple combiners. Let c = 3 and L = 5.
Assume that for a certain x

0.1 05 0.4
0.0 0.0 1.0

DP(x)= |04 0.3 0.4]. (5.20)
02 0.7 0.1
0.1 0.8 0.2

Applying the simple combiners column-wise, we obtain

Combiner p1(x) p2(x)  ps(x)
Average 0.16 0.46 0.42
Minimum  0.00 0.00 0.10
Maximum  0.40 0.80 1.00
Median 0.10 0.50 0.40
40% trimmed mean  0.13 0.50 0.33
Product  0.00 0.00 0.0032
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Figure 5.5  Operation of the Average combiner.

Note that we do not require that d; ;(x) for classifier D; sum up to one.
We only assume that they are measured in the same units. If we take the class
with the maximum support to be the class label of x, the minimum, maximum,
and product will label x in class w3, whereas the average, the median and the
trimmed mean will put x in class ws.

5.3.2 Equivalence of simple combination rules

5.3.2.1 Equivalence of MINIMUM and MAXIMUM combiners for two classes
Let D = {D1,...,Dr} be the classifier ensemble and 2 = {w;,ws} be the set
of class labels. The individual outputs are estimates of the posterior probabilities.
The output d; ; of classifier D; (supporting the hypothesis that x comes from class
wj) is an estimate of P(w;[x), j = 1,2. Here we prove that the minimum and the
maximum combiners are equivalent for ¢ = 2 classes and any number of classifiers
L, provided the two outputs from each classifier satisfy

P(w1|x) + P(ws|x) = 1.

This equivalence means that the class label assigned by the minimum and the maxi-
mum combiners will be the same. In case of a tie for one of the rules, there will be
a tie for the other rule as well, and any of the two class labels could be assigned in
both cases.
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Proposition. Let aq,...,ar, be the L outputs for class w1, and 1 — a1,...,1 —ap,
be the L outputs for class wa, a; € [0,1]. Then the class label assigned to x by the
MINIMUM and MAXIMUM combination rules is the same.

Proof. Without loss of generality assume that a; = min; a;, and a;, = max; a;.
Then the minimum combination rule will pick a; and 1 — ar, as the support for wq
and wo respectively, and the maximum rule will pick a;, and 1 — a;. Consider the
three possible relationships between a; and 1 — ar.

(@ Ifar>1-—ar then ar >1— ai,and the selected class is w
with both methods.

(b) Ifai<1l—ar then az <1-— ai,andthe selected class is w>
with both methods.

(¢) Ifar=1-—ar then ar =1-— ai1,andwe will pick a class at random
with both methods.

Note: A discrepancy between the error rates of the two combination methods
might occur in numerical experiments due to the random tie-break in (c). If we agree
to always assign class w; when the support for the two classes is the same (a perfectly
justifiable choice), the results for the two methods will coincide.

5.3.2.2 Equivalence of MAJORITY VOTE and MEDIAN combiner for two classes
and odd L Consider again the case of two classes, and L classifiers with outputs
for a certain x, a1, ...,ar, forclass wy,and 1 — aq,...,1 — ar, for class wo, where
L is odd.

Proposition. The class label assigned to x by the MAJORITY VOTE rule and ME-
DIAN combination rule is the same.

Proof. Assume again that a; = min; a;, and a;, = max; a;. Consider the median
rule first. The median of the outputs for class wy is @ r+1.
2

(a) If aLg > 0.5, then the median of the outputs for wo, 1 — ALy < 0.5, and

class wy will be assigned. The fact that az+1 > 0.5 means that all QL1 L1ree 0L
2 2

are strictly greater than 0.5. This makes at least % posterior probabilities for w;

greater than 0.5, which, when ‘hardened’, will give label w;. Then the majority vote
rule will assign to x class label w;.

(b) Alternatively, if arLs < 0.5, then 1 — arts > 0.5, and class wy will be as-

signed by the median rule. In this case, at least % posterior probabilities for wa

are greater than 0.5, and the majority vote rule will assign label wo as well.

(c) For a Ly = 0.5 a tie occurs, and any of the two labels can be assigned by
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the median rule. The same applies for the majority vote, as all the soft votes at 0.5
(same for both classes) can be ‘hardened’ to any of the two class labels.

Again, a difference in the estimated errors of the two methods might occur in
experiments due to the arbitrary ‘hardening’ of label 0.5. For example, if we agree
to always assign class w; when the posterior probabilities are both 0.5, the results for
the two methods will coincide.

5.3.3 Generalized mean combiner

The generalized mean [105] is a useful aggregation formula governed by a parameter.
Applied in the classifier combination context, the ensemble output for class w; is

«

1 L
pj(x, ) = (ZZ dij(x)* ] (5.21)
=1

where « is the parameter. Some special cases of the generalized mean are shown in
Table 5.2.

Table 5.2  Special cases of the generalized mean

a— —00 = py(x, ) = min;{d; ;(x)} minimum
-1
a=-1 = pixa = (% S d;(x)) harmonic mean
=

1L
a—=0 = pixa)= (Hf:1 dij (x)) geometric mean
a=1 = pxa)=13r d;x) arithmetic mean

a—>00 = pi(x,a)=max;{d;;(x)} maximum

Observe that the geometric mean is equivalent to the product combiner. Raising
to the power of % is a monotonic transformation which does not depend on the class
label j, and therefore will not change the order of 1;(x)s. Hence the winning label
obtained from the product combiner will be the same as the winning label from the
geometric mean combiner.

As we are considering non-trainable combiners here, we assume that the system
designer chooses o beforehand. This parameter can be thought of as the ‘level of
optimism’ of the combiner. The minimum combiner (¢ — —o0) is the most pes-
simistic choice. With this combiner, we know that w; is supported by all members
of the ensemble at least as much as p;(x). At the other extreme, maximum is the
most optimistic combiner. Here we accept an ensemble degree of support 1;(x) on
the ground that at least one member of the team supports w; with this degree.. If
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we choose to tune o with respect to the ensemble performance, then we should re-
gard the generalized mean combiner as a trainable combiner as discussed later. The
generalized mean combiner is detailed in Figure 5.6.

GENERALIZED MEAN COMBINER
Training: Choose the level of optimism « (see Table 5.2).

Operation: For each new object:

1. Classify the new object x to find its decision profile DP(x), as in
equation (5.1).

2. Calculate the support for each class by

1 L
P(k)z(zz dl-,k(x)a> L k=1,...c
i=1

3. Assign label £* to the object, where

k* = arg max P(k).

Return the ensemble label of the new object.

Figure 5.6  Training and operation algorithm for the Generalized Mean combiner.

EXAMPLE 54 Effect of the level of optimism o.

To illustrate the effect of the level of optimism o we used the 2-D rotated checker
board data set. Examples of a training and a testing data sets are shown in Figure
5.7 (a) and (b), respectively.

One hundred training/testing sets were generated from a uniform distribution
within the unit square. The labels of the points were assigned as in the rotated
checker board example. In each experiment, the training set consisted of 200
examples and the testing set consisted of 1,000 examples. Each ensemble was
formed by taking 10 bootstrap samples of size 200 from the training data (uni-
form sampling with replacement) and training a classifier on each sample. We
chose SVM as the base ensemble classifier.! A Gaussian kernel with spread
o = 0.3 was applied, with a penalizing constant C' = 50. The generalized mean
formula (5.21) was used, where the level of optimism « was varied from —50 to

The version we used is the SVM implementation within the Bioinformatics toolbox of MATLAB.
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Figure 5.7  An example of a training (a) and testing (b) set for the rotated checker board
data. One hundred randomly sampled training/testing sets were used in the experiment.

50 with finer discretization from —1 to 1. The ensemble error, averaged across
the 100 runs, is plotted against « in Figure 5.8 (a).
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Figure 5.8  Generalized mean combiner for the checkerboard data.

A zoom window of the ensemble error for v € [—2, 5] is shown in Figure
5.8 (b). The average, product and harmonic mean combiners are identified on
the curve. For this example, the average combiner gave the best result.

The results from the illustration above should not be taken as evidence that the av-
erage combiner is always the best. The shape of the curve will depend heavily on
the problem and on the base classifier used. The average and the product are the two
most popular combiners. Yet, there is no guideline as to which one is better for a
specific problem. The current understanding is that the average, in general, might be
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less accurate than the product for some problems, but is the more stable of the two
[8,109,207,281,382,383].

Even though Figure 5.8 shows a clear trend, the actual difference between the
ensemble classification errors for the different combiners is negligible. Much more
accuracy can be gained (or lost) by changing the width of the Gaussian kernel o, or
the penalizing constant C'.

5.3.4 A theoretical comparison of simple combiners

Can we single out a combiner that performs best in a simple scenario? Consider the
following set-up [9, 235]:

* There are only two classes, 2 = {w1,wa}.

= All classifiers produce soft class labels, d;;(x) € [0,1], i = 1,2, j =
1,..., L, where d;;(x) is an estimate of the posterior probability P(w;|x) by
classifier D; for an input x € R™. We consider the case where for any x,
de(X) + dj’Q(X) =1, j = ]., ey L.

» Let x € R™ be a data point to classify. Without loss of generality, we assume
that the true posterior probability is P(w1|x) = p > 0.5. Thus, the Bayes-
optimal class label for x is w;, and a classification error occurs if label wy is
assigned.

Assumption. The classifiers commit independent and identically distributed errors
in estimating P(wy|x) such that

dj1(x) = P(wr]x) +n(x) = p +n(x), (5.22)

and respectively
dj2(x) =1—p—n(x), (5.23)

where 7(x) has

(i) a normal distribution with mean 0 and variance o (we take o to vary between
0.1and 1)

(i) a uniform distribution spanning the interval [—b, +b] (b varies from 0.1 to 1).

Thus d; 1(x) is a random variable with normal or uniform distribution and so is
d 5,2 (X) .

The combiners we compare are minimum (same as maximum), average and me-
dian combiners [235] (equation (5.16)). As the median and the majority vote com-
biners are also identical for two classes, the comparison includes majority vote as
well. Finally, we include the individual classification rate and an ‘oracle’ combiner
which predicts the correct class label if at least one classifier in the ensemble gives a
correct prediction. The performance of the combination rules is expected to be better
than that of the individual classifier but worse than that of the oracle.
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Table 5.3 shows the analytical expressions of the probability of error for the com-
biners under the normal distribution assumption, and Table 5.4, for the uniform
distribution. The derivations of the expressions are shown in Appendix A.1. As
explained in the appendix, there is no closed-form expression for the Min/Max com-
biner for the normal distribution of the estimation error, so these combiners were
taken into the comparison only for the uniform distribution.

Table 5.3  The theoretical error P, for the single classifier and the six fusion methods for
the normal distribution.

Method Ensemble crror rate P,

0.5 —
Single classifier <I>< - p) (Individual error rate)
Min/Max -
L(0.5 —
Average (Sum) P (M)
L j L—j
L 0.5—p)\’ 0.5 — J
Median/Majority S ( > ) ( P ) x {1 By <—pﬂ
N\ o o
==
L
Oracle d (0'5 — p)
o

Notes:

L is the number of classifiers in the ensemble;

p is the true posterior probability P (w1 |x) for class w1 for the given object x;

®(.) is the cumulative distribution function for the standard normal distribution N (0, 1).

Figures 5.9 and 5.10 show the ensemble error rate for the normal and uniform
distributions, respectively, as a function of two arguments: the true posterior proba-
bility P(w1|x) = p and the parameter of the distribution. For the normal distribution
(Figure 5.9), o took values from 0.1 to 1, and for the uniform distribution, b took
values from 0.1 to 1, ensuring that p — b < 0.5. The posterior probability p was
varied from 0.5 to 1 for both figures. The ensemble size for this example was L = 5
classifiers.

The surfaces in both figures are clearly layered beneath one another. Expect-
edly, the top surface (largest error) is the individual classifier while the bottom layer
(smallest error) is the oracle combiner. Further on, when p is close to 0.5, the Bayes
error is high, and so is the ensemble error. The ensemble error goes down to O for
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Table 5.4  The theoretical error P, for the single classifier and the six fusion methods for
the uniform distribution (p — b < 0.5).

Method Ensemble error rate P,
0.5 — b
Single classifier 2—5+ (Individual error rate.)
L
) 1/1-2p
Min/M - 1
in/Max 3 ( % + )
V3L(0.5 —
Average P <¥>

L j L—j
. . L 0.5—p+0b\’ 05—p+b]"’
M /M E _— 1—-—
edian/Majority : (j) X ( % ) X [ %
j=tF

05—p+b\~
Oracle (2—b>

Notes:

L is the number of classifiers in the ensemble;

p is the true posterior probability P (w1 |x) for class w1 for the given object x;

®(.) is the cumulative distribution function for the standard normal distribution N (0, 1).

a higher p and a lower variability of the estimate (low o and low b), and does so
quicker for the better combiners.

The average and the median/vote methods have a closer performance for normally
distributed than for the uniformly distributed 7, the average being the better of the
two. Finally, for the uniform distribution, the average combiner is outperformed by
the minimum/maximum combiner.

Figure 5.11 shows the behavior of the combiners as a function of the ensemble
size L. We chose a fairly difficult problem where the true posterior probability is 0.55
(high uncertainty), and the spread parameter of the distributions is large (¢ = 0.9 for
the normal distribution, and b = 0.9 for the uniform distribution. The figure confirms
that the above observations hold for any number of classifiers. It also indicates that
larger ensembles secure a smaller classification error, and amplify the performance
differences of the combiners. Even though this analysis is based on assumptions and
theory, it suggests that checking several combiners for a set of trained classifiers may
pay off.

Similar analyses can be carried out for distributions other than normal or uniform.
Kittler and Alkoot [206], Chen and Cheng [71] and Cabrera [62] studied the behav-
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Figure 5.9 Ensemble error rate of the individual classifier and the simple combiners for
normal distribution of the estimation error 7).

ior of various combiners for non-normal distributions and large ensemble sizes. The
conclusion is that for non-symmetrical, bimodal or heavy-tailed distributions, the
combiners may have very different performances. Even though the assumptions may
not hold in real-life problems, these analyses suggest that choosing a suitable com-
biner is important.

We should be aware of the following caveat. Although the combiners in this
section are considered non-trainable, any comparison for the purpose of picking one
among them is, in fact, a form of training. Choosing a combiner is the same as tuning
the level of optimism « of the generalized mean combiner. We look at the question
“to train or not to train” later in this chapter.

5.3.5 Where do they come from?

5.3.5.1 Intuition and common sense. Many simple combiners come from in-
tuition and common sense. Figure 5.12 shows an example. Suppose that we want
to bet on a horse, and have 3 choices. One of the horses will win the race, and the
classification task is to predict which horse. The only information we have access
to is the opinions of four friends. Each friend offers a guess of the probability for
each horse to win the race. The friends are the classifiers in the ensemble, and the
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Figure 5.10 Ensemble error rate of the individual classifier and the simple combiners for
uniform distribution of the estimation error 7.

probabilities they predicted are arranged in a decision profile, as shown in the fig-
ure. The decision maker has to decide which combination rule to apply. If there
is no further information about how accurate the predictions might be, the decision
maker can choose their level of optimism, and pick the respective combiner. Take
the over-conservative minimum combiner, for example. Given a horse, the support
for this ‘class’, denoted i, can be interpreted in the following way. All experts agree
to at least a degree p that the horse will win. It makes sense therefore, to choose the
horse with the largest p. The opposite strategy is to choose the horse that achieved
the highest degree of support among all horses and all experts. In this case, there is
at least one expert that believes in this horse with a degree this high. Both minimum
and maximum combiners disregard the consensus opinion. Conversely, the average
(sum), median and the jury combiners measure a central tendency of the support
for the classes. The decision maker might reach a different conclusion depending
on the combination rule they apply. In absence of a ground truth, we cannot judge
whether the decision was right. This example merely demonstrates the flexibility of
the simple combiners.

Interestingly, many simple combiners can be derived as the optimal combiner
under various scenarios and assumptions.
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Figure 5.11 Ensemble error for the simple combiners as a function of the ensemble size L
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Which horse shall | put my money on?
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Class | ™, 1 ™ A
Expert i ; "-

Mark 0.4 0.1 0.5
Connor 0.2 0.2 0.6
Diana 0.2 0.8 0.0
Jake 0.3 0.3 0.4

What is the general consensus?

All experts rate the chances of the white
horse as at least 0.2.

At least one of my experts believes that the
gray horse has a 0.8 chance.

Remove the pessimist and the optimist,
and average the rest.

Figure 5.12  Simple combiners come from intuition and common sense.

5.3.5.2 Conditional independence of features. We can regard d; ;j(x) as an es-
timate of the posterior probability P(w;|x) produced by classifier D;. Finding an
optimal (in Bayesian sense) combination of these estimates is not straightforward.
Here we give a brief account of some of the theories underpinning the most common

simple combiners.

Average 0.275 0.350 0.375

Minimum 0.2 0.1 0.0
| | |

Maximum 0.4 0.8 0.6
| \ \

ury 0.250 0.250 0.450
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Consider L different conditionally independent feature subsets. Each subset gen-
erates a part of the feature vector, x¥), so that x = [x(1), ... x(W)]T x € R". For
example, suppose that there are n = 10 features altogether and these are grouped
in the following L = 3 conditionally independent subsets (1,4,8), (2,3,5,6,10) and
(7,9). Then

X(l) = [1‘171’4,1’8}71, X(z) = [sz,x3,$4,1‘671‘10]T, X(g) = [x77*r9]T'

From the assumed independence, the class-conditional pdf for class w; is a product
of the class-conditional pdfs on each feature subset (representation)

p(x|w;) Hp x(’)|w (5.24)

Deriving the product rule weighted by the prior probabilities as the optimal com-
biner for this case is straightforward [44,231,256]. The j-th output of classifier D;
is an estimate of the probability

P(w;)p(x9|w;)

1x@ D) =
P(wj |X 7Dz) - p(X(Z)) ) (525)
hence @ ”
; Plw;[x*)p(x™)
(2) N\ J
p(x'*|w;) = . (5.26)
( s) P(wj)
The posterior probability using the whole of x is
L
Pw;)p(xlw;)  Plw;) :
Pw;|x) = z 1= 1 p(xD|w;). (5.27)
g p(x) oo 1 ’
Substituting (5.26) into (5.27),
L (i)
P(w;|x) = P(w;)* D) H Playlx®) x iz P (5.28)

p(x)

The fraction at the end does not depend on the class label % therefore we can ig-
nore it when calculating the support j1;(x) for class w;. Taking the classifier output
di x(x) as the estimate of P(w,;|x(")) and estimating the prior probabilities for the
classes from the data, the support for w; is calculated as the product combination
rule

L
P(wjlx) o Plwy) P Plwx?) (5.29)

i=1

L
= Plwp) "I [ din(x) = p;(x). (5.30)
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Kittler et al. [207] take this formula further to derive the average combiner. They
investigate the error sensitivity of the two combiners and show that the average com-
biner is much more resilient to estimation errors of the posterior probabilities than the
product combiner. The product combiner is over sensitive to estimates close to zero.
Presence of such estimates has the effect of veto on that particular class regardless of
how large some of the estimates of other classifiers might be.

5.3.5.3 Kullback-Leibler divergence. Miller and Yan [281] offer a theoretical
framework for the average and product combiners based on the Kullback-Leibler
divergence (KL). KL divergence measures the distance between two probability dis-
tributions, ¢ (prior distribution) and p (posterior distribution). KL divergence is also
called ‘relative entropy’ or ‘cross-entropy’, denoted by K L(p || ¢).2 It can be in-
terpreted as the amount of information necessary to change the prior probability
distribution ¢ into posterior probability distribution p. For a discrete x,

KL(p | q) =) p(x)log, <§%) : (5.31)

For identical distributions, the KL divergence is zero. We regard each row of D P(x)
as a prior probability distribution on the set of class labels € and use d; ;(x) to
denote the estimate of the probability P(w;|x, D;). Denote by P;) the probability
distribution on €2 provided by classifier D;, i.e., Py = (d;1(x), ..., d;(x)) . For
example, let DP(x) be

03 0.7
DP(x) = 0.6 0.4
0.5 0.5

Then Py = (0.3,0.7) is the pmf on Q = {w;,ws} due to classifier D;.

Given the L sets of probability estimates, one for each classifier, our first hy-
pothesis is that the true values of P(w;|x) (posterior probabilities) are the ones most
agreed upon by the ensemble D = {Dy,..., Dr}. Denote these agreed values by
P.ps = (p1(x), ..., te(x)). Then the averaged KL divergence across the L ensem-
ble members is

L
1
KLy = Z E KL(Pens || P(z)) (5.32)
i=1

We seek P, s which minimizes (5.32). To simplify the notation, we shall drop the
(x) from 11;(x) and d; j(x) keeping in mind that we are operating on a specific point
x in the feature space R". Take 0K Lg,/0p;, include the term with the Lagrange

21t is assumed that for any 2, if g(2) = 0 then p(z) = 0, and also 0 x log 0 = 0.
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multiplier to ensure that P, is a pmf, and set to zero

C
T [KLaU+A<1—ZMk>‘|
J k=1
In 0 [ ke
= =Y = lo A 533
1< :
- - <1og2 ( s ) + C) A=0, (5.34)
L di;
where C' = ﬁ Solving for yj, we obtain
L 1
py =20 [(di) ™. (5.35)
i=1

Substituting (5.35) in ZZ=1 p; = 1 and solving for A we arrive at

c L
A=C —log, (Z H(di,k)i> . (5.36)

k=1i=1

Substituting A back in (5.35) yields the final expression for the ensemble probability
for class w; given the input x as the normalized geometric mean

NV GG
Y I (dige)
1

Notice that the denominator of p; does not depend on j. Also, the power + in
the numerator is only a monotone transformation of the product and will not change
the ordering of the discriminant functions obtained through product. Therefore, the
ensemble degree of support for class w;, u;(x) reduces to the product combination
rule

n (5.37)

L
M = H di¢j~ (538)
i=1

If we swap the places of the prior and posterior probabilities in (5.32) and again
look for a minimum with respect to 15, we obtain

a C
o [KLM, +A (1 — Z“k)]

k=1
L
1 0
= 12 o

> d;log, (d“’c)} —A (5.39)
i=1

1 Mk

L
1
R S T (5.40)
CLW; ’
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where C' is again ﬁ Solving for p; gives

L
1
Ki=—"yT Zdi,j- (5.41)
ACL P

Substituting (5.41) in Zzzl 1 = 1 and solving for A leads to

1 K& L 1
N din = —— — _—, 542
CLI;; W CoL T ¢ ©42)

The final expression for the ensemble probability for class w;, given the input x, is
the normalized arithmetic mean
1L
W=7 Z di . (5.43)
=1
which is average combination rule (the same as average or sum combiner).

The average combiner was derived in the same way as the product combiner under
a slightly different initial assumption. We assumed that P,,,s is some unknown prior
pmf which needs to be transformed into the L posterior pmfs suggested by the L
ensemble members. Thus, to derive the average rule, we minimized the average
information necessary to transform P, to the individual pmfs.

Miller and Yan go further and propose weights which depend on the ‘critic’ for
cach classifier and each x [281]. The ‘critic’ estimates the probability that the classi-
fier is correct in labeling x. Miller and Yen derive the product rule with the critic
probability as the power of d; ; and the sum rule with the critic probabilities as
weights. Their analysis and experimental results demonstrate the advantages of the
weighted rules. The authors admit that there is no reason why one set-up should be
preferred to another.

5.4 The weighted average (linear combiner)

Given an object x, this combiner aggregates the class supports from the decision
profile to arrive at a single support value for each class. Three groups of average
combiners can be distinguished based on the respective number of weights:

= L weights. In this model there is one weight per classifier. The support for class
wj is calculated as

/,Lj (X) = w; di,j (X) (544)

IR

Il
-

?

» cx L weights. The weights are class-specific and classifier-specific. The support
for class wj is calculated as

,U,J‘(X) = wij di,j (X) (545)

M-

i=1
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Again, only the j-th column of the decision profile is used in the calculation,
that is, the support for class wj; is obtained from the individual supports for w;.

» c¢xcx L weights. The support for each class is obtained by a linear combination
of the entire decision profile D P(x),

L ¢
pi(x) =D > wiks di (%), (5.46)
i=1 k=1
where w;y; is the (¢, k)-th weight for class w;. The whole of the decision profile
is used as the intermediate feature space.

We following subsections present different ways to calculate the weights.

5.4.1 Consensus theory.

The weights may be set so as to express the quality of the classifiers. Accurate and
robust classifiers should receive larger weights. Such weight assignments may come
from subjective estimates or theoretical set-ups.

Berenstein et al. [35] bring to the attention of the Artificial Intelligence com-
munity the so called consensus theory which has enjoyed a considerable interest in
social and management sciences but remained not well known elsewhere. The the-
ory looks into combining expert opinions and in particular combining L probability
distributions on €2 (in our case, the rows of the decision profile D P(x)) into a single
distribution (i1 (x), . . ., te(X)). A consensus rule defines the way this combination
is carried out. Consensus rules are derived to satisfy a set of desirable theoretical
properties [34,44,2809].

Based on an experimental study, Ng and Abramson [289] advocate using simple
consensus rules such as the weighted average, called the linear opinion pool (5.44),
and the weighted product called the logarithmic opinion pool. The approach taken to
assigning weights in consensus theory is based on the decision maker’s knowledge
of the importance of the experts (classifiers). The weights are assigned on the basis
of some subjective or objective measure of importance of the experts [35].

5.4.2 Added error for the weighted mean combination

Extending the theoretical study of Tumer and Ghosh [393], Fumera and Roli derive
the added error for the weighted average combination rule [143, 145].
The ensemble estimate of P(w;|x) is

L
Pwjle) =Y widij, i=1.....c (5.47)
i=1

where d; ; is the respective entry in the decision profile and w; are classifier-specific
weights such that

Y wi=1, w;>0. (5.48)
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Under a fairly large list of assumptions, a set of optimal weights for independent
classifiers can be calculated from the added errors of the individual classifiers, E , .,
m = 1,..., L. The added error is the excess above the Bayes error for the problem
for the specific classifier. The weights are

1
E* .
w; add i=1

=7 —> ooy L. (5.49)

k=1 B
Since we do not have a way to estimate the added error, we can use as a proxy the
estimates of the classification errors of the base classifiers.

Despite the appealing theoretical context, this way of calculating the weights was
not found to be very successful [144]. This can be due to the unrealistic and restric-
tive assumptions which define the optimality conditions giving rise to these weights.
Fumera and Roli’s experiments suggested that for large ensembles, the advantage of
weighted averaging over simple averaging disappears. Besides, in weighted averag-
ing we have to estimate the L weights, which is a potential source of error and may
cancel the already small advantage.

5.4.3 Linear regression

One way to set the weights is to fit a linear regression to the posterior probabilities.
Take d; j(x),% = 1,..., L, to be estimates of the posterior probability P(w,|x). For
classification problems, the target output is given only in the form of a class label.
So the target values for P(w;|x) are either 1 (in w;) or O (not in w;). Figure 5.13
shows the training and the operation of the regression combiner.

Classifier combination through linear regression has received significant attention.
The following questions have been discussed:

» Should the weights be non-negative? If they are, the value of the weight may
be interpreted as the importance of a classifier.

» Should the weights be constrained to sum up to one?

» Should there be an intercept term?

It is believed that these choices have only a marginal impact on the final outcome
[193,384]. The important question is what criterion should be optimized. Minimum
Squared Error (MSE) is the traditional criterion for regression [175-177,388]. Dif-
ferent criteria have been examined in the context of classifier combination through
linear regression, for both small [120] and large ensembles [327], an example of
which is the hinge function, which is responsible for the classification margins [120,
395].

Consider the largest regression model, where the whole decision profile is in-
volved in approximating each posterior probability as in equation (5.46). Given a
dataset Z = {z1,...,zy} withlabels {y1,...,yn},y; € Q, Ergodan and Sen [120]
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REGRESSION COMBINER

Training: Given is a set of L trained classifiers and a labeled data set.

1. Find the outputs (decision profiles) of the classifiers for each point in
the data set.

2. Foreachclass j,7 = 1,...,c, train a regression of the type (5.46). We
can choose to fit the regression with or without an intercept term.

3. Return the coefficients of the c regressions. The coefficients of the
regression for class j are denoted by w;y; as in (5.46). If there was an
intercept term, the number of returned coefficients for each regression
isLxc+ 1.

Operation: For each new object

1. Classify the new object x and find its decision profile DP(x) as in
equation (5.1).

2. Calculate the support for each class P(j) = p;(x) as in equation
(5.46).

3. Assign label i* to the object, where

i* = arg max P(j).
j=1

Return the ensemble label of the new object.

Figure 5.13  Training and operation algorithm for the linear regression combiner.

formulate the optimization problem as looking for a weight vector w which mini-
mizes

N c
1
U(w) = NZ Z L(pi(z5),yj,wi, W) + R(W), (5.50)
Jj=1 i=1

objects classes

where £(u;(z;),y;j,w;, w) is the loss incurred when labeling object z; € Z, with
truc label y;, as belonging to class w;. R(w) is a regularization term which serves
to penalize very large weights.> Why is the penalty term needed? Say there are

3 An intercept term b can be added to the regression in equation (5.46), and included in the weight vector
W.
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5 classifiers and 4 classes. For this small problem, the regression (5.46) will need
L x¢xc=>5x4x4 =80 weights. The chance of over-training cannot be ignored,
hence the need for a regularization term.

To use this optimization set-up, two choices must be made: the type of loss func-
tion £ and the regularization function R.

Let us simplify the notation to £(a, b) where a € {—1,1} is the true label, and b
is the predicted quantity. The classification loss is £(a, b) = 0 if the signs of a and b
match and £(a,b) = 1, otherwise. Minimizing this loss is ideal but mathematically
awkward, hence Rosasco et al. [339] analyze several alternatives:

» The square loss
L(a.b) = (a —b)* = (1 — ab)?. (5.51)

* The hinge loss
L(a,b) = max{1l —ab,0}. (5.52)
This is the criterion function that is minimized for training the SVM classifier.

» The logistic loss

1
L(a,b) = ) In(1 + exp{—ab}). (5.53)
Based on its theoretical properties, Ergodan and Sen [120] recommend the hinge loss
function.
Reid and Grudic [327] study the effect of different regularization functions

» [, regularization, which, used with the square loss function (5.51), is called
ridge regression
R(w) = A wi = X|wl[3. (5.54)
k

* L, (LASSO)* regularization
R(w) =\ Jwi| = A||wll1. (5.55)
k
» The elastic net regularization, which combines the above two. The regulariza-

tion term is
R(w) = A[wl|3 + (1= X)[[w]1. (5.56)

Ridge regression arrives at dense models (using all classifiers in the ensemble)
whereas LASSO produces sparse ensembles. Applying the three penalty terms with
the square loss for large ensembles, Reid and Grudic [327] draw the following con-
clusions. Ridge regression outperforms non-regularized regression, and improves on

4LASSO stands for Least Absolute Shrinkage and Selection Operator.
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the performance of the single best classifier in the ensemble. LASSO was not as
successful as the ridge regression, leading the authors to conclude that dense models
were better than the sparse models.

Calculating the solution of the optimization problem with the hinge loss function
is not straightforward. However, MATLAB Statistics Toolbox offers a ridge regres-
sion code, which we will use for the illustration here.

EXAMPLE 5.5 Ridge regression for posterior probabilities

We used again the letter data set from the UCI Machine Learning Repository [22].
The set consists of N = 20000 data points described by n = 16 features and
labeled into the ¢ = 26 classes of the letters of the Latin alphabet. Since the data
set is reasonably large, we used the hold-out method for this example. The data
set was randomly split into training, validation and testing parts. The training
part was used to train L = 51 linear classifiers, the validation part, for train-
ing the ridge regression with a pre-specified value of the parameter A, and the
testing part was used to estimate the testing error of the ensemble. Each clas-
sifier was trained on a bootstrap sample from the training set. The data set was
chosen on purpose. The number of classes is large, ¢ = 26, which means that
the dimensionality of the intermediate space is L X ¢ = 51 x 26 = 1326. This
makes classification in the intermediate space challenging, and sets the scene
for demonstrating the advantages of ridge regression. Twenty six sets of coef-
ficients were fitted on the 1,326 features, one regression for each class, and the
ensemble outputs were calculated as explained in Figure 5.13.

Table 5.5 shows the ensemble error for a ridge regression on the whole deci-
sion profile (5.46), minimizing MSE with Ly penalty term (5.54).

Table 5.5 Ensemble error for a ridge regression with parameter A.
training/validation/testing split in %

A 4/16/80  12/48/40  16/64/20  8/72/20

0.01  0.1728 0.1034 0.1012  0.0985

0.02 0.1714 0.1031 0.1007  0.0985

0.50  0.1559 0.1029 0.1012  0.0975

0.80  0.1536 0.1029 0.1014  0.0985

LDC on training+validation ~ 0.3056 0.2913 0.2944  0.3108
Decision Tree on ensemble  0.3925 0.2993 0.2801  0.2834

Along with the ridge regression results, we show the classification error for

1. The linear discriminant classifier (LDC) trained on the training plus validation
data, and tested on the testing data.’

SFunction classify from the Statistics Toolbox of MATLAB was used for the LDC.
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2. Decision tree classifier built on the validation set, using as inputs the classifier
outputs. The classifiers were trained on the training data. The decision tree was
tested on the classifier outputs for the testing data. Thus, the decision tree is the
combiner, trained on unseen data, and tested on another unseen data set.®

What does the example show?

(i) The regression combiner was invariably better than the decision tree combiner.
In all four splits of the data into training/validation/testing, the ensemble errors
for the ridge regression were smaller that these for the decision tree combiner.

(ii) The regression combiner was invariably better than the individual LDC. Inter-
estingly, the decision tree combiner failed miserably in comparison with the
regression combiner for this problem, and barely managed to improve on the
classification error of the individual LDC for the two larger validation sets.

(iii) Larger validation sets led to smaller ensemble errors. The training set was kept
small on purpose. By doing so we aimed at creating an ensemble of fairly weak
but diverse linear classifiers. For such an ensemble, the combiner would be
important, and clear differences between the combiners could be expected.

(iv) The penalty constant X had a marked effect for the smallest validation set and
a little effect for larger sets. This was also to be expected, as A is supposed to
correct for the instability of the regression trained on a small sample.

This example shows that the regression combiner may work well, especially for
problems with a large number of classes, and large ensemble sizes, resulting in a
high-dimensional intermediate feature space. Its success will likely depend on the
data set, the ensemble size, the way the individual classifiers are trained, and so on.

Regression methods are only one of many possible ways to train the combination
weights. Ueda [395] uses a probabilistic descent method to derive the weights for
combining neural networks as the base classifiers. Some authors consider using
genetic algorithms for this task [73,249].

5.5 A classifier as a combiner

Consider the intermediate feature space where each point is an expanded version
of DP(x) obtained by concatenating its L rows. Any classifier can be applied for
labeling this point [189,384,395].

5.5.1 The supra Bayesian approach

Jacobs [193] reviews methods for combining experts’ probability assessments. Supra
Bayesian methods consider the experts’ estimates as data, as many of the combiners

SFunction classregtree from the Statistics Toolbox of MATLAB was used for the Decision tree
classifier.
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do. The problem of estimating ;(x) becomes a problem of Bayesian learning in
the intermediate feature space where the decision profile D P(x) provides the L x ¢
features. Loosely speaking, in supra Bayesian approach for our task, we estimate the
probabilities p;(x) = P(w;|x), j = 1,...,¢, using the L distributions provided by
the ensemble members. Since these distributions are organized in a decision profile
DP(x), we have

1 (x) = P(w;|x) < p(DP(x)|w;)P(w;), j=1,...,¢, (5.57)

where p(DP(x)|w;) is the class-conditional likelihood of the decision profile for
the given x and w;. We assume that the only prior knowledge that we have is some
estimates of the ¢ prior probabilities P(w;).

When the classifier outputs are class labels, the supra Bayesian approach is the
theoretical justification of the multinomial combination method, also called BKS
(Chapter 4). For continuous-valued outputs, this approach, albeit theoretically well-
motivated, is impractical [193]. The reason is that the pdf p(DP(x)|w;) is difficult
to estimate. In principle, the supra Bayesian approach means that we use the in-
termediate feature space to build a classifier which is as close as possible to the
Bayes classifier thereby guaranteeing the minimum possible classification error rate.
Viewed in this light, all combiners that treat the classifier outputs in D P(x) as new
features are approximations within the supra Bayesian framework.

5.5.2 Decision Templates

The idea of the Decision Templates combiner (DT) is to remember the most typical
decision profile for each class wj, called the decision template, DT}, and then com-
pare it with the current decision profile DP(x) using some similarity measure S.
The closest match will label x. Figures 5.14 and 5.15 describe the training and the
operation of the decision templates combiner.

Two typical measures of similarity S are based upon

= The squared Euclidean distance. The ensemble support for w; is
1 c
X ¢

(DT (i, k) — d; 1 (%)), (5.58)

M=

pi(x) =1-—

i=1 k=1

where DT (i, k) is the (¢, k)-th entry in decision template DT;. The outputs y;
are within the interval [0,1] but this scaling is not necessary for classification
purposes. The class with the maximum support would be the same if we use
just
L ¢
pi(x) == > (DT;(ik) — di i (x))°. (5.59)
i=1 k=

—

This calculation is equivalent to applying the nearest mean classifier in the in-
termediate feature space. While we use only the Euclidean distance in (5.58),
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DECISION TEMPLATES COMBINER

Training: For j = 1,..., ¢, calculate the mean of the decision profiles of
all members of w; from the data set Z. Call this mean decision template
DT}

where N; is the number of elements of Z from w;.

Operation: Given the input x € R™, construct DP(x). Calculate the
similarity S between D P(x) and each DTj,

wi(x) =S(DP(x),DT;) j=1,...,c

and label x to the class with the largest support.

Return the ensemble label of the new object.

Figure 5.14 Training and operation algorithm for the Decision Templates combiner.
there is no reason to stop at this choice. Any distance could be used, for example
the Minkowski or the Mahalanobis distances.

» A symmetric difference coming from the fuzzy set theory [222,233]. The sup-
port for w; is

L ¢
p00) = 1= =3 S max{min{ DTy (i, k), (1 - dis(x)),
i=1 k=1
min{(1 ~ DT (i, k). (9} ). (5.60

EXAMPLE 5.6 Decision templates combiner (DT).

Let ¢ = 3, L = 2, and let the decision templates for w; and wy be respectively

06 0.4 0.3 0.7
DTy = (0.8 02| and DT> = |04 0.6
0.5 0.5 0.1 0.9

Assume that for an input x, the following decision profile has been obtained:
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COMBINER
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Figure 5.15  Operation of the decision templates combiner.

03 0.7
DP(x) = (0.6 0.4
05 05

The similarities and the class labels using the Euclidean distance and the
symmetric difference are as follows

DT version  pi(x)  pe2(x)  Label
Euclidean distance  0.9567  0.9333 w1
Symmetric difference  0.5000  0.5333 w2

The difference in the ‘opinions’ of the two DT versions with respect to the class
label is an indication of the flexibility of the combiner.

5.5.3 A linear classifier

The Linear Discriminant Classifier (LDC) seems a good choice for determining the
weights of the linear combiner [324,325,434]. It has an advantage over the regression
method because it minimizes a function directly related to the classification error
while regression methods optimize posterior probability approximations. Better still,
we can use the SVM classifier with the linear kernel, which is capable of dealing with



178 COMBINING CONTINUOUS-VALUED OUTPUTS

correlated inputs (the classifier outputs) and small training sets [161]. In fact, any
classifier can be applied as the combiner, which brings back the rather philosophical
issue raised by Tin Ho [183]: Where do we stop growing the hierarchy of classifiers
upon classifiers? Do we even have to?

5.6 An example of nine combiners for continuous-valued outputs

Consider again the fish data set, generated with 20% label noise. Seventeen random
linear classifiers were generated as the base ensemble classifiers. Their classification
boundaries are plotted with lines in each data scatterplot in Figure 5.16.

Min/max
62.96

Average (Sum)
69.12

LDC combiner Ridge regression
69.12 87.96 81.56

79.72 68.32 80.52

Figure 5.16 Comparison of 9 combiners on the fish data.

The continuous-valued outputs (posterior probability estimates) were obtained us-
ing the MATLAB function classify. Each of the nine combiners gives rise to two
plots. The left plot contains the grid with the noisy fish data. The region labeled as
the fish (black dots) by the ensemble is overlaid. The accuracy displayed under the
combiner’s name is calculated with respect to the original (noise-free) class labels.
The right plot is a gray-scale heat map of the ensemble estimate of P(fish|x). The
contour for P(fish|x) = 0.5, delineating the classification region for class fish, is
plotted with a thick line over the heat map.

In this example, the LDC, the Ridge regression (A = 0.5, not tuned) and the SVM
combiner were the winners, with above 80% correct classification rate, given that
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the largest prior classifier would give only 64.48%. The worst combiner happened
to be the minimum combiner (equal to the maximum combiner for two classes). The
average, weighted average and decision templates combiners were obviously too
simplistic for the problem, and gave disappointingly low ensemble accuracies. On
the other hand, the ‘peppery’ right plot for the decision tree combiner demonstrates
a great deal of over-training. Nonetheless, this combiner achieved over 79% correct
classification, which indicates that, for this problem, even though both alternatives
are wrong, over-fitting gives a better pay-off than under-fitting.

As noted before, this example should not be taken to mean that LDC is always the
best combiner, and minimum/maximum is the worst. The message is that the choice
of a combiner is important, and should not be casually sidelined.

5.7 To train or not to train?

Some combiners do not need training after the classifiers in the ensemble have been
trained individually. An example of this type is the majority vote combiner. Other
combiners need additional training, for example, the weighted average combiner. A
third class of ensembles develop the combiner during the training of the individual
classifiers, an example of which is AdaBoost, discussed later. If a large data set is
available, training and testing can be done on large, non-intersecting subsets, which
allows for precise tuning while guarding against over-fitting. Small data sets, on
the other hand, pose a real challenge. Duin [108] points out the crucial role of the
training strategy in these cases and gives the following recommendations:

1. If a single training set is used with a non-trainable combiner, then make sure
that the base classifiers are not overtrained.

2. If a single training set is used with a frainable combiner, then leave the base
classifiers undertrained and subsequently complete the training of the combiner
on the training set. Here it is assumed that the training set has a certain ‘training
potential’. In order to be able to be train the combiner reasonably, the base
classifiers should not use up all the potential.

3. Use separate training sets for the base classifiers and for the combiners. Then
the base classifiers can be overtrained on their training set. The bias will be
corrected by training the combiner on the separate training set.

Dietrich et al. [93] suggest that the second training set, on which the ensemble
should be trained, may be partly overlapping with the first training set used for the
individual classifiers. Let R be the first training set, V' be the second training set,
and T be the testing set. All three sets are obtained from the available labeled set Z,
so RUV UT = Z. If Z is small, the three sets might become inadequately small
thereby leading to badly trained classifiers and ensemble, and unreliable estimates of
their accuracies. To remedy this, the two training sets are allowed to have an overlap
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controlled by a parameter p
RNV
Rl

where |.| denotes cardinality. For p = 0, R and V are disjoined and for p = 1,
the classifiers and the ensemble are trained on a single set & = V. The authors
found that better results were obtained for p = 0.5 compared to the two extreme
values. This suggests that a compromise should be sought when the initial data set Z
is relatively small.

Stacked generalization has been defined as a generic methodology for improving
generalization in pattern classification [420]. We will present it here through an
example, as a protocol for training a classifier ensemble and its combiner.

(5.61)

EXAMPLE 5.7 Stacked generalization

Let Z be a data set with IV objects partitioned into 4 parts of approximately equal
sizes, denoted A, B, C and D. Three classifiers, Dy, Dy and D3, are trained
according to the standard 4-fold cross-validation protocol depicted in Figure
5.17. At the end of this training, there will be four versions of each of the
classifiers trained on (ABC), (BCD), (ACD), or (ABD), respectively.

Dy D, D, Dy, D, D, D, D, D, D, D, D,

Part A Part B Part A Part A
&
«@\0\ ’ Part B ‘ ’ Part C ‘ ’ Part C ‘ ’ Part B ‘
’ Part C ‘ ’ Part D ‘ ’ Part D ‘ ’ Part D ‘
% FOLD #1 FOLD #2 FOLD #3 FOLD #4
«é—‘;‘\(\ ’ Part D ‘ ’ Part A ‘ ’ Part B ‘ ’ Part C ‘

Figure 5.17  Standard 4-fold cross-validation set-up.

The combiner is trained on a data set of size N obtained in the following
way. For any data point z; in subset A, we take the outputs for that point from
the versions of Dy, Dy and D3 built on (BCD). In this way subset A has not been
seen during the training of the individual classifiers. The three outputs together
with the label of z; form a data point in the training set for the combiner. All the
points from subset B are processed by the versions of the three classifiers built
on (ACD) and the outputs added to the training set for the combiner, etc. After
the combiner has been trained, the four subsets are pooled again into Z and D,
D5 and D3 are re-trained, this time on the whole of Z. The new classifiers and
the combiner are then ready for operation.

Many authors have studied and compared the performance of ensemble combin-
ers [9, 109,206,321, 325,337,382,383,399,400,434]. Most such studies, both em-
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pirical and theoretical, do not elect a clear winner. This is to be expected in view of
the “no panacea theorem” [187]. The value of such comparative studies is to accu-
mulate knowledge and understanding of the conditions which could guide the choice
of a combiner. These conditions may be the type of data or the problem, as well as
the ensemble size, homogeneity, diversity and building strategy.

Appendix
A.1 Theoretical classification error for the simple combiners

A.1.1 Set-up and assumptions
We reproduce the scenario and the assumption from the text.
* There are only two classes, Q = {w1,w2}.

= All classifiers produce soft class labels, d;;(x) € [0,1], i = 1,2, j =
1,..., L, where d;;(x) is an estimate of the posterior probability P(w;|x) by
classifier D; for an input x € R™. We consider the case where for any x,
dj,l(X) + dj’Q(X) == ].,J = ]., ey L.

» Let x € R™ be a data point to classify. Without loss of generality, we assume
that the true posterior probability is P(w1|x) = p > 0.5. Thus, the Bayes-
optimal class label for x is wy, and a classification error occurs if label ws is
assigned.

Assumption. The classifiers commit independent and identically distributed errors
in estimating P(w;|x) such that

dj1 (%) = Pwi|x) +1(x) = p + (%), (A1)
and respectively d; 2(x) = 1 — p — 1(x), where 7(x) has

(i) a normal distribution with mean 0 and variance o (we take o to vary between
0.1 and 1)

(ii) a uniform distribution spanning the interval [—b, +b] (b varies from 0.1 to 1).

We derive the theoretical error rate of an ensemble of L classifiers for a given ob-
ject x and the following combiners: majority vote, average (sum), minimum, max-
imum, and median. For comparison, we include in the list the individual classifier
error rate and the so called ‘oracle’ combiner which outputs the correct class label if
at least one of the classifiers produces the correct class label.

Recall that, for the majority vote, we first ‘harden’ the individual decisions by
assigning class label wyq if d; 1(x) > 0.5, and wy if dj1(x) < 0.5, 5 = 1,...,L.
Then the class label most represented among the L (label) outputs is chosen as the
final label for x.
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Denote by P; the output of classifier D; for class wy, that is, P; = dj1(x), and
let

P =F(P,...,P) (A2)
be the fused estimate of P(w1|x). By assumption, the posterior probability estimates
for wp are 1 — P;, 7 = 1,..., L. The same fusion method F is used to find the fused
estimate of P(ws|x),

Po=F(1-P,...,1-Pp) (A.3)

According to the assumptions, we regard the individual estimates P; as indepen-
dent, identically distributed random variables, such that P; = p 4 n;, with probabil-
ity density functions (pdf) f(y),y € R and cumulative distribution functions (cdf)
F(t),t € R. Then Py is a random variable with a pdf fp,(y) and cdf Fp (2).

For a single classifier, the average and the median fusion models w111 result in
P1 + P2 = 1. The higher of the two estimates determines the class label. The oracle
and the majority vote make decisions on the class label outputs, so P=1,P=0
for class w1, and P1 =0, P2 = 1 for class ws. Thus, it is necessary and sufficient to
have P; > 0.5 to label x in w; (the correct label). The probability of error, given x,
denoted P,, is

0.5
P. = P(error[x) = P(Py < 0.5) = F, (0.5) = fo (y)dy (A4)
0

for the single best classifier, average, median, majority vote and the oracle.

For the minimum and the maximum rules, however, the sum of the fused estimates
is not necessarily one. The class label is then decided by the maximum of Py and
152. Thus, an error will occur if I:’l < P2,7

P, = P(error|x) = P(P, < P,) (A.5)
for the minimum and the maximum.
The two distributions considered are

» Normal distribution, P, ~ N(p, o2). We denote by ®(z) the cumulative distri-
bution function of N (0, 1). Then

t —
F(t)=0 (—p) . (A.6)
o
= Uniform distribution within [p — b, p + b], that is,
0 t € (—oo,p—b);
1 ) 9 )
2% YEp—bp+bl; _
fy=q3 v U A
0, elsewhere,
1, t>p+b.
(A7)

7We note that since P and P, are continuous-valued random variables, the inequalities can be written
with or without the equal sign, that is, P; > 0.5 is equivalent to P; > 0.5, and so on.
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Clearly, using these two distributions, the estimates of the probabilities might
fall outside the interval [0,1]. We can accept this, and justify our viewpoint by the
following argument. Suppose that p is not a probability but the amount of support for
w1. The support for wy will be again 1 —p. In estimating p, we do not have to restrict
P;s within the interval [0, 1]. For example, a neural network (or any classifier for
that matter) trained by minimizing the squared error between its output and the zero-
one (class label) target function produces an estimate of the posterior probability for
that class (cf. [40]). Thus, depending on the parameters and the transition functions, a
neural network output (that approximates p) might be greater than 1 or even negative.
We take the L values (in R) and fuse them by (A.2) and (A.3) to get P, and P». The
same rule applies: w; is assigned by the ensemble if Py > P,. Then we calculate the
probability of error P, as P (151 < ]52). This calculation does not require in any way
that P;s are probabilities or are within the unit interval.

A.1.2 Individual error

Since F'p, () = F (1), the error of a single classifier for the normal distribution is

0.5 —
pe:q>< p), (A8)
o
and for the uniform distribution,
05—p+b
P, = — (A.9)

A.1.3 Minimum and maximum

These two fusion methods are considered together because, as shown in the text, they
are identical for ¢ = 2 classes and any number of classifiers L.

Substituting F = max in (A.2), the ensemble’s support for wy is P, = max;{P;}.
The support for wy is therefore Py = max;{1— P;}. A classification error will occur
if

max{P;} < max{l— P;}, (A.10)
J J
p+max{n;} < 1—p—min{y;}, (A.11)
J J
NMmax + Tmin < 1 —2p. (A.12)

The probability of error for the minimum and maximum methods is

Pe = P (nmax + Nmin < 1 — 2]9) (A.13)
= F,.(1-2p). (A.14)

where F, (t) is the cdf of the random variable S = 7max + Nmin. For the nor-

mally distributed Pjs, n; are also normally distributed with mean 0 and variance 2.
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However, we cannot assume that 7,,x and 7yi, are independent and analyze their
sum as another normally distributed variable because these are order statistics and
Nmin < Mmax. We have not attempted a solution for the normal distribution case.
For the uniform distribution, we follow an example taken from [285] where the
pdf of the midrange (Mmin + Mmax)/2 is calculated for L observations. We derive

F,.(t)tobe
Lt oq)* t e [—2b,0];

me(t)z{?(”fr ) L € [-25,0]; (A.15)
1-3(1—%)", telo,20].

Noting that ¢ = 1 — 2p is always negative,

1/1-2 L
Pe:Fm(1—2p):§( p+1>. (A.16)

A.1.4 Average (Sum)

The average combiner gives P = %Zle P;. If Py,..., Py are normally dis-

tributed and independent, then P~ N (p, %z) The probability of error for this

VL(0.5 — p)) '

case is

(A.17)

Pezp(ﬁ1<o.5):<1>< .

The calculation of P, for the case of uniform distribution is not that straightforward.
We can assume that the sum of L independent variable will results in a variable of
approximately normal distribution. The higher the L, the more accurate the approx-
imation. Knowing that the variance of the uniform distribution for P; is %, we can

assume P ~ N (p, %) Then

(A.18)

P.=P(P, <05) = <M> :

b

A.1.5 Median and majority vote

These two fusion methods are pooled because they are identical for the current set-

up (see the text). Since only two classes are considered, we restrict our choice of

L to odd numbers only. An even L is inconvenient for at least two reasons. First,

the majority vote might tie. Second, the theoretical analysis of a median which is

calculated as the average of the (L/2) and (L /2 + 1) order statistics is cumbersome.
For the median fusion method

Py =med{P,,...,P.} =p+med{ny,....,n0} = p+ 1. (A.19)
Then the probability of error is

P. = P(p+ N < 0.5) = P(, < 0.5 —p) = F,. (0.5 —p), (A.20)
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where F;, s the cdf of 7,,. From the order statistics theory [285],
L I _ _
By, ()= > ( j>Fn(t)] (1= Fy o), (A21)
. L41
JI="

where F,(t) is the cdf of n;, that is, N(0,0?) or uniform in [—b,b]. We can now
substitute the two respective cdfs, to obtain P,

= for the normal distribution

e (o) o))

. L+1
j=4t

» for the uniform distribution
0, p—0b>0.5;

P = i L—j
> ]L_ v (5) (—1’—0‘5_ +b) [1 — Qoopth +b] . otherwise.
-2 o

(A.23)
2b

The derivation of these two equations is explained below. The majority vote will
assign the wrong class label, ws, to x if at least % classifiers vote for wy. The
probability that a single classifier is wrong is given by (A.8) for the normal distribu-
tion and (A.9) for the uniform distribution. Denote this probability by Ps. Since the
classifiers are independent, the probability that at least % are wrong is calculated
by the binomial formula

L
Po= > (?) PI(1— P+, (A.24)

. L+1
=4

By substituting P; from (A.8) and (A.9), we recover equations (A.22) and (A.23) for
the normal and the uniform distribution, respectively.

A.1.6 Oracle
The probability of error for the oracle is
P, = P(all incorrect) = F(0.5)%. (A.25)
For the normal distribution
L
P—a (0'5 _p) , (A.26)
o

and for the uniform distribution

0, p—b> 0.5

P = (0.5—p+b L

(A.27)
T3 ) , otherwise.
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A.2 Selected MATLAB code

Example of the LDC combiner for the fish data

The code below generates and plots the data and the 50 linear classification bound-
aries of the random base classifiers. The LDC combiner is trained on the training
data, which consists of all points on the grid, with 20% label noise. The posterior
probabilities for class w; are calculated by line 35, using the softmax formula. The
points labeled by the ensemble as class fish (black dots) are circled. The code needs
the function £ish_data from Chapter 2, and the statistics toolbox of MATLAB for
the classify function. An example of the output is shown in Figure 5-A.1.

clear all, close all
clc

% Generate and plot the data

[T, ,labtrue] = fish data(50,0);

% Generate labels with 20% noise

[x,v,1b] = fish data(50,20); figure, hold on

plot (x(lb == 1),y (1lb == 1), 'k."', "'markers',14)

plot (x(1lb == 2),y(lb == 2),'k.", 'markers', 14, ...
'color',[0.87, 0.87, 0.87])

axis ([0 1 0 1]) % cut the figure to the unit square

axis square off % equalize and remove the axes

% Generate and plot the ensemble of linear classifiers
L = 50; % ensemble size
N = numel (x); % number of data points
[ensemble,Pl] = deal(zeros(N,L)); % pre—-allocate for speed
sc = 1; % scaling constant for the softmax function
for i = 1:L
o) rand(1l,2); % random point in the unit square
w randn(l,2); % random normal vector to the line
w0 = p x w'; $ the free term (neq)
plot ([0 11, [w0, (wO-w(l))1/w(2),'t=",...
'linewidth',1.4) % plot the linear boundary
plot(p(l),p(2),"'r.", 'markersize',15)
pause (0.03)
t =2 - ([xvy] »w' —=w0 > 0);
if mean(t == 1lb) < 0.5, t = 3-t; end % revert labels

Jo

Posteriors

ou = [x y] » w' - wO0;
% Store the estimates of the probability for class 1
Pl(:,1) = 1./(1 + exp(-ou % sc)); % softmax

end

% Find and plot the LDC combiner output
assigned_labels = classify(P1l,P1,1Db);

% (train with the noisy labels)
accuracy_LDC = mean (assigned_labels == labtrue);
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plot (x (assigned_labels==1),y(assigned_labels==1), ...

U

bo','linewidth',1.5)

title(['LDC combiner accuracy ',num2str (accuracy_LDC)])

Figure 5-A.1

MATLAB output for the LDC combiner and the fish data.
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