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Abstract

The advent of real-time fMRI pattern classifica-
tion opens many avenues for interactive self-regulation
where the brain’s response is better modelled by multi-
variate, rather than univariate techniques. Here we test
three on-line linear classifiers, applied to a real fMRI
dataset, collected as part of an experiment on the corti-
cal response to emotional stimuli. We propose a random
subspace ensemble as a fast and more accurate alter-
native to component classifiers. The on-line linear dis-
criminant classifier (O-LDC) was found to be a better
base classifier than the on-line versions of the percep-
tron and the balanced winnow.

1. Introduction

Classification of functional magnetic resonance
imaging (fMRI) data has allowed the neuroimaging
community to uncover discriminating patterns of neu-
ral activity that define independent ‘thought processes’.
This approach has led to an increase in the understand-
ing of the organisation of the functional architecture of
the human brain. However, due to the large number of
voxels in a typical fMRI scan, the classifier is presented
with a massive feature set. Coupled with a relatively
small training sample, fMRI classification has a chal-
lenging feature-to-instance ratio in the order of 5000:1.

Various classifier models have been used for fMRI
classification. Linear classifiers are popular due to their
speed and accuracy, including the Support Vector Ma-
chine (SVM) classifier with linear kernel [11]. Clas-
sifier ensembles are deemed to be more accurate than
individual classifiers [5]. The Random Subspace en-
semble (RS) is a popular classifier ensemble whereby
ensemble members are trained on feature subsets rather

than the entire feature set [2]. The ensemble decision is
based on majority voting. RS ensembles are particularly
suitable for datasets with a large feature-to-instance ra-
tio as they reduce the dimensionality of the feature set
and create diversity while retaining the number of in-
stances for training. It has been shown that RS ensem-
bles work well for fMRI data [8, 9].

While off-line fMRI analysis provides valuable in-
sights into the neural activity associated with discrete
tasks, many approaches would benefit from fast and
accurate on-line classification. Real-time feedback al-
lows for intervention and correction in cases of techni-
cal failure, poor task performance or excessive motion
during the experiment [14]. Real time feedback also
creates opportunities for experiments involving self-
regulation and neurofeedback via a brain-computer in-
terface [3, 14].

Real time classification of fMRI data poses new
challenges. The number of training instances is further
reduced and the classifier must be capable of working
within a tight time constraint. The SVM remains a pop-
ular choice of classifier for real-time classification of
fMRI data [10]. Closely related to the SVM is the Rel-
evance Vector Machine (RVM), which is also popular
for real time fMRI classification [3, 4]. For real-time
classification, the classifier is required to work on-line,
processing data points sequentially, analysing one fMRI
brain scan at a time.

On-line classifiers are required to exhibit any time
learning and not demand further memory as time pro-
gresses. Alongside SVM and RVM, simpler linear clas-
sifiers are capable of providing fast and accurate results.

We consider three on-line linear classifier models:
the on-line linear discriminant classifier (O-LDC) [6],
Rosenblatt’s perceptron and the balanced winnow [12].
We propose to use RS ensembles for the three classifiers
and compare the performance of individual and the en-



semble classifiers on a real fMRI data set.

2. On-line linear classifiers

In on-line classification every data point is classified
as it becomes available, and its true class label is recov-
ered immediately after that. The classifier is updated by
adding this point to the training set, and recalculating
the parameters. Here we use error-driven versions of
the three on-line linear classifiers: perceptron, balanced
winnow and O-LDC. This means that the coefficients
of the linear functions are only updated if the incoming
data point is misclassified by the current classifier.

Perceptron. The perceptron first initialises coeffi-
cients w = [w0, . . . , wn]

T as small random numbers.
A learning parameter η is also defined. The learn-
ing parameter corresponds to the ‘readiness to learn’ of
the algorithm, and defines the weighting of new data
points compared to past data. Assuming N data points
have been presented to the classifier, denote the next
data point as xN+1 ∈ ℜn with true label yN+1, un-
available at the time of classification. The data point
is augmented, z = [1 xTN+1]

T , where the first ele-
ment, 1, multiplies the bias coefficient w0. The data
point is then classified by the ‘current’ classifier. The
predicted label (+1 or −1) for xN+1 is calculated by
ypredicted = sign

(
zTw

)
, where sign(a) = 1 if a ≥ 0

and sign(a) = −1 if a < 0. If the data point is misclas-
sified, that is, ypredicted ̸= yN+1, then the weight vector
is updated as w← w− η z ypredicted.

Balanced Winnow. The balanced winnow is similar
in design to the perceptron, however it has two sets of
weights, a positive set w+ and a negative set w−. Both
sets of weights are initialised as positive random num-
bers, and a learning rate β is chosen. The predicted label
for xN+1 is ypredicted = sign

(
zT (w+ − w−)

)
. Fol-

lowing a misclassification, the n+1 weights of the bal-
anced winnow are updated by w+

i ← β−(yN+1)×ziw+
i

and w−
i ← β(yN+1)×ziw−

i , i = 0, 1, . . . , n.

On-line linear discriminant classifier. The on-line
linear discriminant classifier (O-LDC) is an adaptation
of the linear discriminant classifier. Denote by P (i)

the prior probabilities for class i, µ(i) and Σ are the
mean and covariance matrix. The discriminant func-
tions gi(x) are calculated as

gi(x) = lnP (i) − 1

2
µ(i)TΣ−1µ(i) + µ(i)TΣ−1x,

and x is assigned the label corresponding to the largest
gi(x). For the on-line version of this classifier, the

means and inverse covariance matrix require updating
after each data point.

Let c be the total number of classes and m(i)
Ni

be the
estimate of the mean for class i, where Ni is the number
of points from class i thus far. The update for the mean
of class k is calculated as

m(k)
Nk+1 =

1

Nk + 1

(
Nkm(k)

Nk
+ xN+1

)
.

The inverse covariance matrix for class k is updated as

S−1
N+1 =

N + 1

N

(
S−1
N −

S−1
N z zT S−1

N
N(Nk+1)

Nk
+ zT S−1

N z

)
,

where z = x−m(i)
Nk+1. The prior probabilities estimated

as P (i)
N = Ni/N are also updated [1, 6].

Random subspace ensembles. In general, when per-
forming classification, the more features that are avail-
able, the better the resulting classifier. It is however pos-
sible to ‘over fit’ the classifier on the training set. Fea-
tures may also be irrelevant or redundant, offering very
little to the classification. The high feature-to-instance
ratio of fMRI data emphasises this problem.

A good ensemble should be made up of diverse clas-
sifiers. The Random Subspace method generates di-
verse classifiers by training each ensemble member on
a different feature subset. Define X = [x1, . . . , xn]

T to
be the set of n features (voxels). To create an RS ensem-
ble, we randomly select L feature subsets of size M by
drawing without replacement from a uniform distribu-
tion over X. These subsets make up the feature sets for
the L classifiers. Each of the L classifiers are trained on
the respective M features and a final ensemble decision
is made by majority vote.

There are many benefits to RS ensembles for fMRI
data. Reducing the number of features per classifier
reduces the likelihood of over fitting. Also, the algo-
rithm is computationally inexpensive due to the reduced
number of features per ensemble member. RS ensem-
bles have been shown to perform well for off-line fMRI
data [8, 9], however they have not yet been applied to
streaming fMRI data.

3. Material and methods

We use a dataset collected at the School of Psychol-
ogy, Bangor University, which forms part of a study on
perception of emotional pictures. The subject was pre-
sented with a series of ‘emotionally charged’ images in
a block type design. Each block consisted of pictures
corresponding to a single emotional valence type, either



positive, negative or neutral. The resulting data set con-
sists of 204 volume images taken at time steps (TRs) of
1.5s. To reduce the number of irrelevant features we ap-
ply a grey matter voxel mask to each functional image,
reducing the number of voxels (features) from 83072 to
33274. As an additional preprocessing step advocated
in fMRI literature, we apply a t-test and select the 2000
‘most relevant’ voxels according to the p-values. The
data is then split into two sets. The ‘training’ data T
consists of those TRs taken from the first positive and
negative blocks of images. TRs corresponding to neu-
tral images or the fixation period are not included in T .
The streaming data used for on-line training comprises
of all TRs from the end of T onwards.

For each base classifier (perceptron, balanced win-
now and O-LDC) we train an off-line (batch) version
on T , using class labels 1 and 2 to correspond to neg-
ative and positive stimuli respectively. This may corre-
spond with an initialisation period in an fMRI experi-
ment. After this initial training period, we present the
online data points one at a time. The ‘current’ classifier
is tested on the data point; if the data point is misclas-
sified then the classifier is updated.The experiment is
repeated using classifier ensembles rather than individ-
ual classifiers. For the classifier ensembles we choose
L = 11 and M = 1000 (based on the M = n/2 recom-
mendation [7]).

Kappa-error diagrams are now an accepted tool for
comparing classifier ensembles [13]. The x-axis of the
diagram is the diversity of the ensemble, κ. Lower val-
ues of κ indicate more diverse ensembles. The y-axis
shows the individual error rates of the classifiers. Each
pair of classifiers in the ensemble generates one point
on the diagram. Ensembles whose ‘clouds’ of points
are situated closer to the bottom left corner of the dia-
gram are usually more accurate.

4. Results

We calculate the cumulative error at each TR. These
error progressions for the individual classifiers and RS
ensembles are illustrated in Figure 1 (a) and (b) respec-
tively.

The O-LDC outperforms the other classifiers both
individually and as an ensemble . The perceptron comes
second whilst the balanced winnow yields the worst re-
sults. The error progression for the perceptron appears
to start at zero as the perceptron correctly classifies the
intial TRs, but accuracy drops over time. The final cu-
mulative errors are summarised in Table 1. The RS en-
sembles all perform better than their individual counter-
parts, with the O-LDC performing better than either the
perceptron or balanced winnow, both individually, and

as an ensemble.

Table 1. Final errors for individual classi-
fiers and classifier ensembles.

LDC Perceptron Winnow
Individual classifier 0.0929 0.1214 0.1786
Classifier ensemble 0.0571 0.0857 0.1714

0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

kappa

E
rr

or

 

 

LDC
Perceptron
Winnow

Figure 2. Trajectory of means of kappa er-
ror diagrams.

For each TR we calculate the kappa error diagrams
for the three ensembles. To demonstrate how the kappa-
error diagrams progress with time, we calculate the
mean of the three clouds at each TR. Figure 2 plots
the trajectories of these means. The endpoint is indi-
cated with a marker. The initial high diversity of the
perceptron may explain its early accuracy. This diver-
sity decreases over time. The trajectory of the O-LDC
ensemble shows improving diversity and accuracy over
time. For the individual O-LDC and O-LDC ensem-
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Figure 3. Design matrix highlighting oc-
currence of individual and ensemble er-
rors.

ble we were interested to find when the errors occurred.
Figure 3 shows the ‘design matrix’ which is the valence
of the stimuli; peaks correspond to positive emotion and
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(a) individual classifiers (b) ensemble classifiers

Figure 1. Cumulative error progression.

valleys to negative emotion. Neutral and fixation TRs
are marked by grey vertical stripes. The class labels
for the TRs in these stripes are undetermined (neither
positive nor negative but a transition between the two
states). Errors by the individual classifier are marked
by red dots whilst black x’s mark errors made by the
ensemble. For both classifiers errors are predominantly
made in the first half of the experiment. This shows how
the classifiers improve over time. Fewer errors occur
at maximum valence (peaks and valleys); those that do
occur are early in training. It can be seen that ensemble
errors occur less frequently and stop earlier than errors
arising from the use of the individual O-LDC.

5. Conclusion

Our experiments show that the random subspace en-
semble performs better than the individual online linear
classifiers. Across both the individual and ensemble ex-
periments, the on-line linear discriminant classifier (O-
LDC) outperformed both the perceptron and balanced
winnow. As a linear classifier, the O-LDC is fast to train
and has demonstrated accurate results making it the best
choice, of the methods tested here, for use in real-time
pattern classification studies of the human brain. Fu-
ture work includes comparing the results of the O-LDC
ensemble with other classifier ensembles for fMRI data.
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