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Abstract. Classical approaches for network traffic classification are based on
port analysis and packet inspection. Recent studies indicate that ketweor
tocols can be recognised more accurately using the flow statistics of the TCP
connection. We propose a classifier selection ensemble for a fastcanchte
verification of network protocols. Using the requested port numbecldssifier
selector directs the decision to an ensemble member responsible for this po
The chosen ensemble member ramifies the decision further using tinepatg
tern” of the first four packets. Finally, a decision tree classifier labeldlthe

as ‘accepted’ or ‘rejected’ using the sizes of the first four packéts.ensemble

has modular architecture which allows further modules to be individuaityeda

and added. The classifiers were cross-tested using designated tiamioingst-

ing data of network traffic traces from three institutions. The results shatv th
accuracy need not be sacrificed for speed of classification, anthéhatotocol
classification is robust from one network to another.

1 Introduction

Network traffic classification is important for ensuring tityaof service (QoS), se-
curity, optimal priority assignment, and general trafficragement. Fast and accurate
catching of an inadequate application protocol is impeeatihen security is concerned.
Ideally, a smart firewall would block such protocols at thariset. The basic traffic unit
we consider in this paper is termedlaw. We define a flow as a bi-directional ordered
sequence of packets with the same IP addresses and TCP purérsu A flow is either
accepted by the classifier as one of the valid protocols ecte§l as unknown or known
but non-allowed. Usually, to label a flow, the informationatifpackets is needed. For
this information to be extracted, the flow must have entenechetwork, so the classi-
fication would come when it may be too late to decline service.

The main approaches to traffic classification are port-hgsedoad-based and sta-
tistical.

Theport-basedapproach uses the assumption that each port is associdtednei
protocol [13]. The protocol classification is made simplyrbegding the port number.
However, this method is not suitable for networks with dymaport allocation. For
such networks an undesiralglpplicationmay be directed through a port conventionally



associated with an acceptable application. Thus the fiket#n of applications cannot
be done from the port number only.

Passing a non-allowed protocol through an accepted portatsaybe a result of
malicious activity. Another problem with the port-basegrgach is that it will not
prevent ‘tunnelling’, i.e., protocoX embedded within and disguised as protokgl
whereY an accepted protocol for the network whi¥emight not be [3, 5].

Thepayload-basedapproach looks at the content of the packets [15]. The pobtoc
verification is more accurate but requires more computatiogsources. An adverse
issue associated with the payload-based approach isdétettee privacy of the content.
Also, when the traffic is encrypted the approach will not wi@k

The statistical approach takes characteristics of the flow as the inputffesite.g.,
number of packets; their length; minimum, maximum and ayetangth, etc. Various
statistical classifiers have been tried on the extractadrfes, e.g., Bayesian networks
[1], Support Vector Machines [12], Gaussian Mixture Moitgjland Decision Trees
[6]. Statistical tests such as goodness ofit,and Kolmogorov-Smirnov have also
been tried [7] to single out anomalies such as incidentskgfpe application within
an htt p protocol. Extracting discriminative features is a majocus of the works
on statistical traffic classification [1, 12]. It is worth ingg that most of the statistical
approaches proposed so far [1, 6, 16] need to be retrained thkenumber of allowed
protocols varies.

The main problem of both the payload-based and the stalistfproaches is that
traffic flows can only be classified once they have passedghrtie system completely.
This limits their applicability for online classificationyway, it has been recently
shown that accurate classification can be achieved usigdlomkizes and the directions
of the first few packets of the TCP connection [2, 6].

The requirement for operational speed brings in the idedaskdierselectionen-
semble where only one of a set of ‘experts’ has to make a decj&il]. The ensemble
consists of member classifiers (experts) and an ‘oracl¢’ahthorises one of the clas-
sifiers to pass its decision as the ensemble decision. Tleéearay have pre-defined
regions of competence for the classifiers [14] or dynamjcallocated regions [17].
With dynamic competence allocation the suggested labelthéobject of interest
are further analysed using past data. The classifier wheskgted label has been most
accurate for the neighbourhoodofs chosen to produce the ensemble decision. While
dynamic allocation has been found to be very successfudgitires that all ensemble
members classifyx. Besides, past data needs to be stored and searched th&nigg.
we are aiming at a fast classification, we propose to use gfiaetl competence re-
gions and train a bespoke classifier for each region. We gemmuse the port number
(pretend protocol name) as the oracle determining the megid competence. The di-
rections and sizes of the first four packets of the TCP flowlsa tised as the features
in a further 2-stage classifier. The features and the modutdnitecture were chosen
so that the classification is both fast and accurate, and netules can be trained and
added to the system without re-training any already trapeetl

The rest of the paper is organised as follows. Section 2 ibescthe proposed sys-
tem and Section 3 shows the experimental results. Our csiodsiand future plans are
given in Section 4.



2 A Classifier Selection Ensemble for Network Traffic
Classification

We propose the following classifier selection ensemblehEact number has a classi-
fier trained to verify that the traffic through that port falls the expected protocol. Thus
the classifier selector only checks the port number andtdithe flow to the respective
classifier. If the port number is not one of the pre-definedrseflow is rejected.

2.1 The Features

Following [1],[6] and [7], we propose to use only the first fqaackets and record the
following features:

— x9, the pretend name of the flow guessed from the port number;

— x1, 29, T3, 24, the directions of the first four packets, € {0, 1}, where0 means
that the packet is transferred from server to client, Brfdom client to server;

- s1, S2, 83, S4, the payload sizes of the first four packets, wherare positive inte-
gers. As in [6], we leave off packets without payload becdheg are mostly used
to exchange connection state information.

The generic architecture of the classifier ensemble is slioWwigure 1.

The Oracle The Selected Classifier
| |
Port # [ 4 Signs 4 Sizes [
Pretend name— Sign Payload size—— Accepted
filter | filter classifier | |
[ [
Rejected Rejected Rejected
(Pretend name) (Signs) (Payload sizes)

Fig. 1. The generic classifier ensemble architecture. Only the selected ensamabiber is
shown. Each ensemble member is implemented as a cascade classifstaigies.

2.2 Classifier selector: The pretend name

The port information is often neglected in classifying netivtraffic flow [6]. In this
study we use this information in two ways. First, we label akrnown all flows whose
port number (pretend name) does not appear in a pre-s&distnd, the pretend name
is used to branch out the classification to a bespoke clas3ifies partitions the feature
space on the value af), thereby reducing a multi-class problem to a two-classlprab
match versus mismatch of the pretend name.



2.3 Ensemble classifier — Stage 1: Sign filter

To illustrate the consecutive steps of the system designseeawdata set consisting of
network traffic traces at the University of Brescia, Italy.[Bhe data set is divided into

training (58 478 instances) and testing (75 163 instandé®.known protocols in the

training data arepop3, snt p, htt p, msn, ft p andBi t Torr ent . The testing data

contains an additional class named ‘unknown’. Table 1 steosisnmary of the training

data.

Table 1. Summary of the network traffic data (training) from the University ofdgie, Italy

Signs Protocol and port number
pop3 ftp sntp men BitTorr http

1234 110 21 251863 6881 80
0000 0 138 16 O 0 3
0001 1 75 55 0 0 0
0010 21 216 543 O 0 0
0011 0 O 4 0 1 0
0100 749 21 604 1 0 0
0101 18823584518186 0 1 0
0110 17 1 18 0 1 0
0111 0 O 1 0 0 0
1000 0O O 0 328 23 5348
1001 0 O 0 30 520 240
1010 0O O 0 660 3609 826
1011 0O O 0o 4 753 12
1100 0 O 0 1 8 427
1101 0O O 0O O 87 76
1110 0O O 0 O 9 108
1111 0 O 0 O 45 23

The table shows that groups of protocols can be distingdislyethe signs of the
first four packets. For example, protocaotsn (1863),Bi t Tor r ent (6881) anchtt p
(80) hardly ever begin with a packet from sever to client € 0). The 7 exceptions in
the table (out of 13 144 flows) may be thought of as recordirgiakes. The distribution
of the data suggests that the four signs can be used to filteteoy quickly protocols
that clearly do not match their pretend name. This consstthie second stage of the
cascade classifier, called the sign filter. A rejection thoédp,. is chosen next. The
occurrences if each protocol (a column in Table 1) are scalddrm a probability
distribution across the 16 sigh combinations. All valuethviikelihood less than the
chosen threshold are treated as outliers. Thus for eachqmipthere are “impossible”
sign combinations which make up the filter for that pretench@aFor example, with
thresholdp, = 0.02, the “allowed” combination of signs for thiet t p protocol (80)
are1000, 1001, 1010, and1100. All other protocols will be rejected by the sign filter.



2.4 Ensemble classifier — Stage 2: Decision tree classifieiing payload sizes

A separate classifier is trained for each sign combinatiahphsses through the sign
filter. For example, consider a protocol with pretend ngoe3 (110) and sign pat-
tern 0100. Figure 2 shows a scatterplot of the data of network traffices from the
Lawrence Berkeley National Laboratory (LBNL) with sign gah 0100. The data
points frompop3 form a distinctive oblong cluster, away from the ‘+'—shapzds-
ter of the other protocols with the same sign pattérn.
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Fig. 2. Scatterplot of the LBNL training data with sign pattért00 in the plane spanned by the
first two size features;; andss.

Figure 3, on the other hand, displays the same scatterpltiddraining data from
the University of Brescia (UNIBS) and the Cooperative Asatian for Internet Data
Analysis (CAIDA). Thef t p protocol is also shown because it is present in these two
data sets.

The figures show that:

1. Protocolgpop3 andf t p are very close to one another. To build a good classifier,
both protocols should be present in the training data.

2. The classes have intricate irregular shapes (UNIBS and&Alata) which sug-
gests that a decision tree classifier may fare well for thidlem.

3. The class ‘other’ is different from one data set to anothlee geometrical configu-
ration of this class will depend on what protocols are aampt the network. Note
that clasg t p in Figure 3 is, in fact, part of class ‘other’.

4. Curiously, even the same clag®3) has different appearances for the three dif-
ferent networks. This means that an ensemble has to bedraide&idually for
each network. Hence an ensemble trained on the UNIBS dateothe expected
to be overly accurate on LBNL and CAIDA data, and vice versa.

% Since the payload size is a discrete variable, multiple points may share lothraies z, y).
A small random noise is added to all data so that the points move slightly aff in a random
way. This will create an impression of the density of the data.
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Fig. 3. Scatterplot of the UNIBS and CAIDA training data with sign pattet®0 in the plane
spanned by the first two size featuresandss.

Our ensemble differs from the stereotype in that a flow canldesiied as “unac-
cepted” at each stage: the combiner (classifier selecta)sign filter and the decision
tree classifier. This speeds up the decision process, whiafiportant for online traffic

classification.

3 Experimental Evaluation

A summary of the content of the three data sets used in thiy sLgiven in Table 2.

Table 2. Protocols and number of flows in the three data sets

UNIBS CAIDA LBNL

Protocol Port Training Testing Training Testing Training  Testing
pop3 110 19611 19940 9591 2386 1172 1426
sntp 25 19427 19480 11831 20722 20825 1304
http 80 7063 4928 5930 12459 81984 38228

ftp 21 6296 14458 1652 16202 - -

Bi t Torrent 6881 5057 7412 - - - -

msn 1863 1024 1033 - - - -

net bi 0s-ssn 139 - - 4575 10113 - -
htt ps 443 - - 25427 7896 18013 3283

ons 4662 - - - - 1716 2491

i map4 993 - - - - 7677 422

other - 7912 - 1423 - 4584

For the experimental evaluation we chose the three pratdbak are common to
all three data setéit t p, snt p andpop3. A pilot experimental study on the UNIBS
training data, using Weka [8], reinforced our choice of tieeigion tree classifier. Fur-



ther to that, we carried out the following sets of experirsgwhereA, B, C refer to the
three protocols and, b, ¢ refer to the three data sets:

(1). Train a classifier for a protocol with pretend naeising training data set. To
do this, assume that all flows have pretend nahs® as to form a training data set with
class labelsA’ and ‘other’. Identify the sign patterns relevant for proddb A. Filter the
data for each sign pattern. Using this data, train a decis@nclassifier to distinguish
between the two classes.

(2). Test the classifier on testing data detsdc.

(3). Repeat steps (1) and (2) for protocslsaandC

In this imaginary scenario, all traffic takes the pretendhtitg of the protocol in
question. In reality, the likelihood of class ‘other’ wilekmuch smaller. Therefore the
classification accuracy achieved in the experiments is sifpéstic estimate of the ac-
curacy expected during operation. Because of the specifiererental set-up, a direct
comparison with classification accuracies obtained elsesvimay be misleading.

The cross-data classification accuracies are shown in Bable

Table 3. Classification accuracy of the ensemble member classifiers (crsg-aiaing and test-
ing).

pop3 snt p http
| [UNIBS|LBNL [CAIDA|[JUNIBS|LBNL[CAIDA|[JUNIBS|LBNL [CAIDA |
UNIBS] 95.69[99.32] 75.57 ][] 98.75]99.01] 96.67 |[[ 97.93]88.14] 97.75
LBNL | 78.99/99.11] 76.53||[ 81.46|99.17 95.39 ||| 99.29[95.49| 94.78
CAIDA| 83.42|99.21] 99.83|[ 80.44]99.34] 99.54 ||| 98.50[93.68| 97.94

Figure 4 gives the plot of Sensitivity versus $pecificity for the protocgbop3.*
The different markers correspond to the sources of theitigtata. Two of the anoma-
lies with a substantial slip in the classification accuraeyiadicated. The reasons for
the inadequate classification can be illustrated with thairis in Figures 2 and 3. The
presentation of thpop3 protocol is very different from one network to another. In ad
dition, the classification gbop3 is further impaired by its similarity tbt p. The two
marked points are for ensembles trained on UNIBS and LBNLtastéd on CAIDA.
Thepop3 protocol have similar appearance in the UNIBS and LBNL dathadiffer-
ent, more scattered, appearance in the CAIDA data (Figubg)3Thus the ensembles
trained on UNIBS and LBNL data are ill-equipped to classifg version ofpop3 in
CAIDA.

Figure 5 plots Sensitivity versus-ISpecificity for protocolsnt p andht t p. There
are two inaccurate classifiers fent p. This time the mismatch is between thet p
traffic in the UNIBS and LBNL data. The two points that lie @ogo the diagonal line
in subplot (a) are the cross-testing UNIBS-LBNL and LBNL-IBS.

4 Sensitivity is the proportion of positives detected out of all positivesggriion correctly ver-
ified protocols). Specificity is the proportion of true positives out of alsitied as positives
(proportion of true protocols out of all non-rejected protocols).
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Fig. 4. Sensitivity-Specificity plot for protocopop3. The markers indicate the training data
source.

The experimental results show that the ensemble membeesdwuracies com-
parable to those in the state-of-the-art literature orfitrafassification [1, 6, 15]. The
high accuracy of the cross-data experiment, with a few ei@ep discussed earlier,
indicates that the statistical approach to traffic classifon is robust across networks,
so universal solutions can be sought. This reflects the fattthe network protocols
have standard definitions, and the features we are usingoaedfacted by differences
in network configurations, traffic intensity or delays.

4 Conclusion

We propose a classifier selection ensemble for network draéfrification. upon re-
ceiving the first four packets of a flow, the classifier seleclicects the decision to
an ensemble member based upon the requested port numbeta$siger responsible
for this port number ramifies the decision further using thigri pattern” of the four
packets. A decision tree classifier labels the flow as ‘aecBmir ‘rejected’. The ‘ac-
cepted’ class is the protocol conventionally associated thie requested port number.
The flow can be classed as ‘rejected’ at every stage of therbieelassification: the
oracle rejects non-allowed port requests, the sign filjects flows whose sign patterns
are highly unlikely, and, finally, the decision tree classifs responsible for the fine dis-
crimination based on the sizes of the first four packets. $\tlooking at the payloads,
it is difficult to detect “tunnelling” behaviours where anagtepted protocol is wrapped
and carried within an accepted one. In our system, tunigettiay pass through the port
and the sign filters but then land as an outlier in the spackepayload sizes. Our
system is expected to reject the protocol at this final stage.
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Fig. 5. Sensitivity versus 4 Specificity for protocolsnt p andht t p.

The classifiers were cross-tested using designated tgaanid testing data of net-
work traffic traces from three institutions: UNIBS, LBNL a@@\IDA. The results show
the robustness of the statistical approach to traffic diaation.

While the ensemble accuracy is comparable to that reportétkititerature [1, 6,
15] the proposed ensemble has the following advantages:

— Compared to classifiers that use the whole flow, our protesdfication is quick, as
the sequence of decisions is based on the port number andr¢lostiahs and sizes of
the first four packets of a flow. Should operational speed jtét;rthe ensemble can be
used online; a flow can be stopped before the applicatioroisagsed by the network.
— The proposed ensemble needs only two parameters. Firsipsiechoose a threshold
for selecting the valid sign patterns (Here we used 2%. gt giatterns with likelihood
higher than the threshold will merit separate decision tlassifiers. Flows with un-
likely sign patterns are rejected.) The second parametéeitevel of pruning for the
decision tree classifiers.

— The structure of the ensemble is modular. Classifiers caralmed and added without
disturbing the rest of the ensemble. For example, if a newjpimrs the list of allowed
ports, an ensemble member can be trained separately fqudhisAlso, if the traffic
changes, e.g., by allowing a new application through antiegigrotocol, and an un-
likely sign pattern starts appearing more often, a sepatassifier can be trained for
this sign pattern and added to the ensemble.

One interesting future research direction comes from thetfat network traffic
changes by definition, and so would the class descriptia€pted’ and ‘rejected’)
[10]. To respond to these changes, the ensemble should therfuteveloped so as to
cope with concept drift. Moreover, we are planning to impéetour protocol verifica-
tion system in an online platform such as the one describgf].in
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