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Via Claudio, 21 I-80125 Napoli, Italy

{francesco.grg,carlosan}@unina.it
2 School of Computer Science, University of Bangor, UK

l.i.kuncheva@bangor.ac.uk

Abstract. Classical approaches for network traffic classification are based on
port analysis and packet inspection. Recent studies indicate that network pro-
tocols can be recognised more accurately using the flow statistics of the TCP
connection. We propose a classifier selection ensemble for a fast and accurate
verification of network protocols. Using the requested port number, theclassifier
selector directs the decision to an ensemble member responsible for this port.
The chosen ensemble member ramifies the decision further using the “sign pat-
tern” of the first four packets. Finally, a decision tree classifier labels theflow
as ‘accepted’ or ‘rejected’ using the sizes of the first four packets. The ensemble
has modular architecture which allows further modules to be individually trained
and added. The classifiers were cross-tested using designated trainingand test-
ing data of network traffic traces from three institutions. The results show that
accuracy need not be sacrificed for speed of classification, and thatthe protocol
classification is robust from one network to another.

1 Introduction

Network traffic classification is important for ensuring quality of service (QoS), se-
curity, optimal priority assignment, and general traffic management. Fast and accurate
catching of an inadequate application protocol is imperative when security is concerned.
Ideally, a smart firewall would block such protocols at theironset. The basic traffic unit
we consider in this paper is termed aflow. We define a flow as a bi-directional ordered
sequence of packets with the same IP addresses and TCP port numbers. A flow is either
accepted by the classifier as one of the valid protocols or rejected as unknown or known
but non-allowed. Usually, to label a flow, the information ofall packets is needed. For
this information to be extracted, the flow must have entered the network, so the classi-
fication would come when it may be too late to decline service.

The main approaches to traffic classification are port-based, payload-based and sta-
tistical.

Theport-basedapproach uses the assumption that each port is associated with one
protocol [13]. The protocol classification is made simply byreading the port number.
However, this method is not suitable for networks with dynamic port allocation. For
such networks an undesirableapplicationmay be directed through a port conventionally



associated with an acceptable application. Thus the classification of applications cannot
be done from the port number only.

Passing a non-allowed protocol through an accepted port mayalso be a result of
malicious activity. Another problem with the port-based approach is that it will not
prevent ‘tunnelling’, i.e., protocolX embedded within and disguised as protocolY ,
whereY an accepted protocol for the network whileX might not be [3, 5].

Thepayload-basedapproach looks at the content of the packets [15]. The protocol
verification is more accurate but requires more computational resources. An adverse
issue associated with the payload-based approach is related to the privacy of the content.
Also, when the traffic is encrypted the approach will not work[9].

Thestatistical approach takes characteristics of the flow as the input features, e.g.,
number of packets; their length; minimum, maximum and average length, etc. Various
statistical classifiers have been tried on the extracted features, e.g., Bayesian networks
[1], Support Vector Machines [12], Gaussian Mixture Modelling and Decision Trees
[6]. Statistical tests such as goodness of fit,χ2 and Kolmogorov-Smirnov have also
been tried [7] to single out anomalies such as incidents ofskype application within
an http protocol. Extracting discriminative features is a major focus of the works
on statistical traffic classification [1, 12]. It is worth noting that most of the statistical
approaches proposed so far [1, 6, 16] need to be retrained when the number of allowed
protocols varies.

The main problem of both the payload-based and the statistical approaches is that
traffic flows can only be classified once they have passed through the system completely.
This limits their applicability for online classification.Anyway, it has been recently
shown that accurate classification can be achieved using only the sizes and the directions
of the first few packets of the TCP connection [2, 6].

The requirement for operational speed brings in the idea of classifierselectionen-
semble where only one of a set of ‘experts’ has to make a decision [11]. The ensemble
consists of member classifiers (experts) and an ‘oracle’ that authorises one of the clas-
sifiers to pass its decision as the ensemble decision. The oracle may have pre-defined
regions of competence for the classifiers [14] or dynamically allocated regions [17].
With dynamic competence allocation the suggested labels for the object of interestx
are further analysed using past data. The classifier whose predicted label has been most
accurate for the neighbourhood ofx is chosen to produce the ensemble decision. While
dynamic allocation has been found to be very successful, it requires that all ensemble
members classifyx. Besides, past data needs to be stored and searched through.Since
we are aiming at a fast classification, we propose to use pre-defined competence re-
gions and train a bespoke classifier for each region. We propose to use the port number
(pretend protocol name) as the oracle determining the regions of competence. The di-
rections and sizes of the first four packets of the TCP flow are then used as the features
in a further 2-stage classifier. The features and the modulararchitecture were chosen
so that the classification is both fast and accurate, and new modules can be trained and
added to the system without re-training any already trainedpart.

The rest of the paper is organised as follows. Section 2 describes the proposed sys-
tem and Section 3 shows the experimental results. Our conclusions and future plans are
given in Section 4.



2 A Classifier Selection Ensemble for Network Traffic
Classification

We propose the following classifier selection ensemble. Each port number has a classi-
fier trained to verify that the traffic through that port follows the expected protocol. Thus
the classifier selector only checks the port number and directs the flow to the respective
classifier. If the port number is not one of the pre-defined setthe flow is rejected.

2.1 The Features

Following [1],[6] and [7], we propose to use only the first four packets and record the
following features:

– x0, the pretend name of the flow guessed from the port number;
– x1, x2, x3, x4, the directions of the first four packets,xi ∈ {0, 1}, where0 means

that the packet is transferred from server to client, and1, from client to server;
– s1, s2, s3, s4, the payload sizes of the first four packets, wheresi are positive inte-

gers. As in [6], we leave off packets without payload becausethey are mostly used
to exchange connection state information.

The generic architecture of the classifier ensemble is shownin Figure 1.
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Fig. 1. The generic classifier ensemble architecture. Only the selected ensemblemember is
shown. Each ensemble member is implemented as a cascade classifier with2 stages.

2.2 Classifier selector: The pretend name

The port information is often neglected in classifying network traffic flow [6]. In this
study we use this information in two ways. First, we label as unknown all flows whose
port number (pretend name) does not appear in a pre-set list.Second, the pretend name
is used to branch out the classification to a bespoke classifier. This partitions the feature
space on the value ofx0, thereby reducing a multi-class problem to a two-class problem:
match versus mismatch of the pretend name.



2.3 Ensemble classifier – Stage 1: Sign filter

To illustrate the consecutive steps of the system design we use a data set consisting of
network traffic traces at the University of Brescia, Italy [6]. The data set is divided into
training (58 478 instances) and testing (75 163 instances).The known protocols in the
training data are:pop3, smtp, http, msn, ftp andBitTorrent. The testing data
contains an additional class named ‘unknown’. Table 1 showsa summary of the training
data.

Table 1.Summary of the network traffic data (training) from the University of Brescia, Italy

Signs Protocol and port number
pop3 ftp smtp msn BitTorr http

1 2 3 4 110 21 25 1863 6881 80
0 0 0 0 0 138 16 0 0 3
0 0 0 1 1 75 55 0 0 0
0 0 1 0 21 216 543 0 0 0
0 0 1 1 0 0 4 0 1 0
0 1 0 0 749 21 604 1 0 0
0 1 0 1 18823 5845 18186 0 1 0
0 1 1 0 17 1 18 0 1 0
0 1 1 1 0 0 1 0 0 0
1 0 0 0 0 0 0 328 23 5348
1 0 0 1 0 0 0 30 520 240
1 0 1 0 0 0 0 660 3609 826
1 0 1 1 0 0 0 4 753 12
1 1 0 0 0 0 0 1 8 427
1 1 0 1 0 0 0 0 87 76
1 1 1 0 0 0 0 0 9 108
1 1 1 1 0 0 0 0 45 23

The table shows that groups of protocols can be distinguished by the signs of the
first four packets. For example, protocolsmsn (1863),BitTorrent (6881) andhttp
(80) hardly ever begin with a packet from sever to client (x1 = 0). The 7 exceptions in
the table (out of 13 144 flows) may be thought of as recording mistakes. The distribution
of the data suggests that the four signs can be used to filter out very quickly protocols
that clearly do not match their pretend name. This constitutes the second stage of the
cascade classifier, called the sign filter. A rejection threshold pr is chosen next. The
occurrences if each protocol (a column in Table 1) are scaledto form a probability
distribution across the 16 sign combinations. All values with likelihood less than the
chosen threshold are treated as outliers. Thus for each protocol, there are “impossible”
sign combinations which make up the filter for that pretend name. For example, with
thresholdpr = 0.02, the “allowed” combination of signs for thehttp protocol (80)
are1000, 1001, 1010, and1100. All other protocols will be rejected by the sign filter.



2.4 Ensemble classifier – Stage 2: Decision tree classifier using payload sizes

A separate classifier is trained for each sign combination that passes through the sign
filter. For example, consider a protocol with pretend namepop3 (110) and sign pat-
tern 0100. Figure 2 shows a scatterplot of the data of network traffic traces from the
Lawrence Berkeley National Laboratory (LBNL) with sign pattern 0100. The data
points frompop3 form a distinctive oblong cluster, away from the ‘+’–shapedclus-
ter of the other protocols with the same sign pattern.3
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Fig. 2. Scatterplot of the LBNL training data with sign pattern0100 in the plane spanned by the
first two size features,s1 ands2.

Figure 3, on the other hand, displays the same scatterplot for the training data from
the University of Brescia (UNIBS) and the Cooperative Association for Internet Data
Analysis (CAIDA). Theftp protocol is also shown because it is present in these two
data sets.

The figures show that:

1. Protocolspop3 andftp are very close to one another. To build a good classifier,
both protocols should be present in the training data.

2. The classes have intricate irregular shapes (UNIBS and CAIDA data) which sug-
gests that a decision tree classifier may fare well for this problem.

3. The class ‘other’ is different from one data set to another. The geometrical configu-
ration of this class will depend on what protocols are accepted in the network. Note
that classftp in Figure 3 is, in fact, part of class ‘other’.

4. Curiously, even the same class (pop3) has different appearances for the three dif-
ferent networks. This means that an ensemble has to be trained individually for
each network. Hence an ensemble trained on the UNIBS data cannot be expected
to be overly accurate on LBNL and CAIDA data, and vice versa.

3 Since the payload size is a discrete variable, multiple points may share both coordinates(x, y).
A small random noise is added to all data so that the points move slightly off(x, y) in a random
way. This will create an impression of the density of the data.
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Fig. 3. Scatterplot of the UNIBS and CAIDA training data with sign pattern0100 in the plane
spanned by the first two size features,s1 ands2.

Our ensemble differs from the stereotype in that a flow can be classified as “unac-
cepted” at each stage: the combiner (classifier selector), the sign filter and the decision
tree classifier. This speeds up the decision process, which is important for online traffic
classification.

3 Experimental Evaluation

A summary of the content of the three data sets used in this study is given in Table 2.

Table 2.Protocols and number of flows in the three data sets

UNIBS CAIDA LBNL
Protocol Port Training Testing Training Testing Training Testing
pop3 110 19611 19940 9591 2386 1172 1426
smtp 25 19427 19480 11831 20722 20825 1304
http 80 7063 4928 5930 12459 81984 38228
ftp 21 6296 14458 1652 16202 – –

BitTorrent 6881 5057 7412 – – – –
msn 1863 1024 1033 – – – –

netbios-ssn 139 – – 4575 10113 – –
https 443 – – 25427 7896 18013 3283
oms 4662 – – – – 1716 2491

imap4 993 – – – – 7677 422
other – 7912 – 1423 – 4584

For the experimental evaluation we chose the three protocols that are common to
all three data sets,http, smtp andpop3. A pilot experimental study on the UNIBS
training data, using Weka [8], reinforced our choice of the decision tree classifier. Fur-



ther to that, we carried out the following sets of experiments, whereA,B,C refer to the
three protocols anda, b, c refer to the three data sets:

(1). Train a classifier for a protocol with pretend nameA using training data seta. To
do this, assume that all flows have pretend nameA so as to form a training data set with
class labels ‘A’ and ‘other’. Identify the sign patterns relevant for protocol A. Filter the
data for each sign pattern. Using this data, train a decisiontree classifier to distinguish
between the two classes.

(2). Test the classifier on testing data setsb andc.

(3). Repeat steps (1) and (2) for protocolsB andC

In this imaginary scenario, all traffic takes the pretend identity of the protocol in
question. In reality, the likelihood of class ‘other’ will be much smaller. Therefore the
classification accuracy achieved in the experiments is a pessimistic estimate of the ac-
curacy expected during operation. Because of the specific experimental set-up, a direct
comparison with classification accuracies obtained elsewhere may be misleading.

The cross-data classification accuracies are shown in Table3.

Table 3.Classification accuracy of the ensemble member classifiers (cross-data training and test-
ing).

pop3 smtp http
UNIBS LBNL CAIDA

UNIBS 95.69 99.32 75.57
LBNL 78.99 99.11 76.53
CAIDA 83.42 99.21 99.83

UNIBS LBNL CAIDA

98.75 99.01 96.67
81.46 99.17 95.39
80.44 99.34 99.54

UNIBS LBNL CAIDA

97.93 88.14 97.75
99.29 95.49 94.78
98.50 93.68 97.94

Figure 4 gives the plot of Sensitivity versus 1−Specificity for the protocolpop3.4

The different markers correspond to the sources of the training data. Two of the anoma-
lies with a substantial slip in the classification accuracy are indicated. The reasons for
the inadequate classification can be illustrated with the findings in Figures 2 and 3. The
presentation of thepop3 protocol is very different from one network to another. In ad-
dition, the classification ofpop3 is further impaired by its similarity toftp. The two
marked points are for ensembles trained on UNIBS and LBNL andtested on CAIDA.
Thepop3 protocol have similar appearance in the UNIBS and LBNL data and a differ-
ent, more scattered, appearance in the CAIDA data (Figure 3 (b)). Thus the ensembles
trained on UNIBS and LBNL data are ill-equipped to classify the version ofpop3 in
CAIDA.

Figure 5 plots Sensitivity versus 1−Specificity for protocolssmtp andhttp. There
are two inaccurate classifiers forsmtp. This time the mismatch is between thesmtp
traffic in the UNIBS and LBNL data. The two points that lie closer to the diagonal line
in subplot (a) are the cross-testing UNIBS-LBNL and LBNL-UNIBS.

4 Sensitivity is the proportion of positives detected out of all positives (proportion correctly ver-
ified protocols). Specificity is the proportion of true positives out of all classified as positives
(proportion of true protocols out of all non-rejected protocols).
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Fig. 4. Sensitivity-Specificity plot for protocolpop3. The markers indicate the training data
source.

The experimental results show that the ensemble members have accuracies com-
parable to those in the state-of-the-art literature on traffic classification [1, 6, 15]. The
high accuracy of the cross-data experiment, with a few exceptions discussed earlier,
indicates that the statistical approach to traffic classification is robust across networks,
so universal solutions can be sought. This reflects the fact that the network protocols
have standard definitions, and the features we are using are not affected by differences
in network configurations, traffic intensity or delays.

4 Conclusion

We propose a classifier selection ensemble for network traffic verification. upon re-
ceiving the first four packets of a flow, the classifier selector directs the decision to
an ensemble member based upon the requested port number. Theclassifier responsible
for this port number ramifies the decision further using the “sign pattern” of the four
packets. A decision tree classifier labels the flow as ‘accepted’ or ‘rejected’. The ‘ac-
cepted’ class is the protocol conventionally associated with the requested port number.
The flow can be classed as ‘rejected’ at every stage of the ensemble classification: the
oracle rejects non-allowed port requests, the sign filter rejects flows whose sign patterns
are highly unlikely, and, finally, the decision tree classifier is responsible for the fine dis-
crimination based on the sizes of the first four packets. Without looking at the payloads,
it is difficult to detect “tunnelling” behaviours where an unaccepted protocol is wrapped
and carried within an accepted one. In our system, tunnelling may pass through the port
and the sign filters but then land as an outlier in the space of the payload sizes. Our
system is expected to reject the protocol at this final stage.
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Fig. 5.Sensitivity versus 1−Specificity for protocolssmtp andhttp.

The classifiers were cross-tested using designated training and testing data of net-
work traffic traces from three institutions: UNIBS, LBNL andCAIDA. The results show
the robustness of the statistical approach to traffic classification.

While the ensemble accuracy is comparable to that reported inthe literature [1, 6,
15] the proposed ensemble has the following advantages:

– Compared to classifiers that use the whole flow, our protocolverification is quick, as
the sequence of decisions is based on the port number and the directions and sizes of
the first four packets of a flow. Should operational speed permit it, the ensemble can be
used online; a flow can be stopped before the application is processed by the network.
– The proposed ensemble needs only two parameters. First, wemust choose a threshold
for selecting the valid sign patterns (Here we used 2%. All sign patterns with likelihood
higher than the threshold will merit separate decision treeclassifiers. Flows with un-
likely sign patterns are rejected.) The second parameter isthe level of pruning for the
decision tree classifiers.
– The structure of the ensemble is modular. Classifiers can betrained and added without
disturbing the rest of the ensemble. For example, if a new port joins the list of allowed
ports, an ensemble member can be trained separately for thisport. Also, if the traffic
changes, e.g., by allowing a new application through an existing protocol, and an un-
likely sign pattern starts appearing more often, a separateclassifier can be trained for
this sign pattern and added to the ensemble.

One interesting future research direction comes from the fact that network traffic
changes by definition, and so would the class descriptions (‘accepted’ and ‘rejected’)
[10]. To respond to these changes, the ensemble should be further developed so as to
cope with concept drift. Moreover, we are planning to implement our protocol verifica-
tion system in an online platform such as the one described in[4].
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4. A. Dainotti, W. de Donato, A. Pescapè, and G. Ventre. Tie: a community-oriented traffic
classification platform. Technical Report TR-DIS-10-2008, Dipartimento di Informatica e
Sistemistica, University of Napoli Federico II, 2008.

5. M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli. Detection of encrypted tunnels across
network boundaries. InProc. IEEE International Conference on Communications ICC ’08,
pages 1738–1744, 19–23 May 2008.

6. A. Este, F. Gargiulo, F. Gringoli, L. Salgarelli, and C. Sansone. Pattern recognition ap-
proaches for classifying ip flows. In N. da Vitoria Lobo, T. Kasparis, F. Roli, J.T.-Y Kwok,
M. Georgiopoulos, G.C. Anagnostopoulos, and M. Loog, editors,SSPR/SPR, volume 5342
of Lecture Notes in Computer Science, pages 885–895. Springer, 2008.

7. E.P. Freire, A. Ziviani, and R.M. Salles. On metrics to distinguish skype flows from http
traffic. InProc. Latin American Network Operations and Management Symposium LANOMS
2007, pages 57–66, 2007.

8. S.R. Garner. Weka: The waikato environment for knowledge analysis. InProc. of the New
Zealand Computer Science Research Students Conference, pages 57–64, 1995.

9. R. Holanda Filho, M.F. Fontenelle do Carmo, J. Maia, and G.P. Siqueira. An internet traf-
fic classification methodology based on statistical discriminators. InProc. IEEE Network
Operations and Management Symposium NOMS 2008, pages 907–910, 2008.

10. L.I. Kuncheva. Classifier ensembles for changing environments. In F. Roli, J. Kittler, and
T. Windeatt, editors,Multiple Classifier Systems, volume 3077 ofLecture Notes in Computer
Science, pages 1–15. Springer, 2004.

11. L.I. Kuncheva.Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience,
2004.

12. Z. Li, R. Yuan, and X. Guan. Traffic classification - towards accurate real time network
applications. InHCI (4), pages 67–76, 2007.

13. D. Moore, K. Keys, R. Koga, E. Lagache, and K. C. Claffy. Thecoralreef software suite as
a tool for system and network administrators. InLISA ’01: Proceedings of the 15th USENIX
conference on System administration, pages 133–144, Berkeley, CA, USA, 2001. USENIX
Association.

14. L. A. Rastrigin and R. H. Erenstein.Method of Collective Recognition. Energoizdat,
Moscow, 1981. (In Russian).

15. F. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Monclus. Lightweight, payload-based
traffic classification: An experimental evaluation. InProc. IEEE International Conference
on Communications ICC ’08, pages 5869–5875, 2008.

16. N. Williams, S. Zander, and G. Armitage. A preliminary performancecomparison of five
machine learning algorithms for practical ip traffic flow classification.SIGCOMM Comput.
Commun. Rev., 36(5):5–16, 2006.

17. K. Woods, W.P. Kegelmeyer, and K.W. Bowyer. Combination of multiple classifiers using
local accuracy estimates.IEEE Trans. Pattern Anal. Mach. Intell., 19(4):405–410, 1997.


