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a b s t r a c t 

Large numbers of data streams are today generated in many fields. A key challenge when learning from 

such streams is the problem of concept drift. Many methods, including many prototype methods, have 

been proposed in recent years to address this problem. This paper presents a refined taxonomy of in- 

stance selection and generation methods for the classification of data streams subject to concept drift. 

The taxonomy allows discrimination among a large number of methods which pre-existing taxonomies 

for offline instance selection methods did not distinguish. This makes possible a valuable new perspec- 

tive on experimental results, and provides a framework for discussion of the concepts behind different 

algorithm-design approaches. We review a selection of modern algorithms for the purpose of illustrating 

the distinctions made by the taxonomy. We present the results of a numerical experiment which exam- 

ined the performance of a number of representative methods on both synthetic and real-world data sets 

with and without concept drift, and discuss the implications for the directions of future research in light 

of the taxonomy. On the basis of the experimental results, we are able to give recommendations for the 

experimental evaluation of algorithms which may be proposed in the future. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Storing large data sets can be problematic, especially in stream

earning, where data is continuously arriving. This issue is more

elevant than ever in an era of “big data”, where important prob-

ems involve data streams which cannot be stored in full [1,2] .

any techniques have been suggested for forming reduced refer-

nce sets for instance-based classifiers, in particular the nearest-

eighbour classifier [3,4] . However, as we argued in a previous

ontribution [5] , the taxonomy developed for describing offline al-

orithms for data editing is inadequate to describe algorithms for

treaming data. 

In summary, the offline taxonomy fails because many ap-

roaches developed for offline editing are inherently unsuitable for

treaming data. For example, in the offline case, there are meth-

ds which only add instances to the reference set, never removing

hem; methods which only remove instances from the reference

et (starting with all the training data), and never re-add them;

nd methods which both add and remove instances as they run.

hese are distinguished taxonomically as “incremental”, “decre-
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ental”, and “mixed” methods. Clearly, editing methods which can

nly add or only remove examples are unsuitable for dealing with

nbounded data streams. Only “mixed” methods can be used in

he streaming case, so the offline taxonomic distinction is useless

or the streaming case. In the streaming case, all methods now be-

ng “mixed”, the key taxonomic question of interest is the choice

f processes by which instances are added to and removed from

he reference set in response to the stream of arriving data, as it is

ere that the nature of the streaming problem forces a great dif-

erence in approach from the offline case. 

In addition to the need for editing, a second key issue with

tream learning is that data streams may typically be “non-

tationary”, that is, subject to “concept drift”. We also found pre-

iously [5] that the established taxonomy developed to describe

lgorithms designed to deal with concept drift [6] cannot sensibly

e used to classify instance-based algorithms. The existing taxon-

my in this case used separate concepts of “Data Management”

nd “Memory” which could not be applied to lazy learners, for

hich memory simply is data retention. 

This paper expands our previous study [5] on instance selec-

ion methods for drifting data streams. In addition to augmenting

nd refining the taxonomy of such methods, we carry out a nu-

erical experiment to compare the performance of some modern

lgorithms, in light of the taxonomy. The present work also gives

https://doi.org/10.1016/j.neucom.2018.01.062
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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Fig. 1. Main concept drift types illustrated schematically as if for one-dimensional data. Adapted from Gama et al. [6] . 
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2 Synonyms of prototype generation in the literature are prototype construction, 

extraction, reduction and replacement . 
greater consideration to prototype generation methods, typified by

the learning vector quantisation (LVQ) family [7] . 

Note that our study considers the various algorithmic ap-

proaches for forming a reference set from streaming data, not the

variety of instance-based classifiers which might use such a refer-

ence set. We do not compare alternative classifiers: we simply use

the nearest-neighbour (1NN) classifier. (Differences between clas-

sification rules may be taxonomically considered as for the offline

case.) 

The rest of the paper is organised as follows. The formal prob-

lem of classification of a stream subject to concept drift, and

related terminology, are introduced in Section 2 . Data-editing

methods are introduced in Section 3 . Our refined taxonomy of

instance-based methods for the concept drift problem is presented

in Section 4 . The algorithms included in the experiment, and some

other representative algorithms, are discussed in Section 5 . Our ex-

perimental set-up and results, with discussion, are presented in

Section 6 . The conclusion Section 7 contains recommendations for

future experimental practice. 

2. The concept-drift problem 

The streaming version of the classification problem is typically

posed thus: 

• One data point x ∈ R 

d is received at time t . 

• The class label of the point is not available at time t . The point

is labelled by the classifier. 

• The true label is then revealed before the next data point is

classified. 

The model can easily be altered to a batch-input form, in which

a set of N points X ⊂ R 

d is considered to arrive all at once at time

t , and all N points must be labelled before the true labels are re-

vealed and the next input batch arrives. 

“Concept drift” is the generally accepted term for change in the

probability distributions related to the problem, and the manage-

ment of this problem is essential in streaming learning [8] . Oc-

currences of concept drift have been described in terms of the

behaviour of the stream at the onset of the drift: see Fig. 1 for

an illustration of this idea. The terminology is taken from Bose

et al. [9] and Gama et al. [6] . Concept drift may be sudden, or

the underlying distribution may pass continuously and relatively

slowly through intermediate states (“incremental drift”). The orig-

inal concept may then be gone forever, or it may recur, briefly (in

“gradual drift”), or indefinitely, in which case it is called a true

“recurring concept”. In general, it is to be expected that some al-

gorithms deal better than others with certain forms of drift. For

example, algorithms which explicitly maintain a library of former

concepts have been so engineered in order to perform better when

the stream includes recurring concepts, but can only be disadvan-

taged by this apparatus when applied to a stream containing only

sudden, irrevocable concept shifts. (This approach of storing for-

mer concepts for re-use is typified by the FLORA3 algorithm [10] ,

one of the first algorithms to explicitly address recurring concepts.
t is part of the FLORA family of algorithms [11,12] , dating back to

989.) 

Whether such a collection of former concepts is maintained

r not, an algorithm for handling concept drift will have both a

earning mechanism of some sort and a forgetting mechanism of

ome sort, the latter being essential to ensure the classifier does

ot become stuck in some setting after seeing a large amount of

ata which exceeds its capacity for learning. Some methods use

xplicit change detection strategies, which allow the algorithm to

ake a suitable increase in learning and forgetting rates when a

oncept shift is detected. We refer the reader to the survey of

ama et al. [6] for a good recent review of concept-drift adapta-

ion methods. 

Concept drift is of interest to the extent that it affects adversely

he future performance of the classifier and requires action: the oc-

asional outlier or short abnormal event should simply be treated

s noise and ignored. 

. Prototype selection and generation 

One key distinction among data-editing methods must be in-

roduced before the entire taxonomy is presented. This is the dis-

inction between “prototype selection” and “prototype generation”

amilies, which have been treated very similarly in taxonomies of

heir offline members [3,4] , but which we have argued [5] need

ery different treatment in their online incarnations. 

The process of editing training data for use with the nearest-

eighbour classifier, or similar instance-based classifiers, consists

f replacing the set of training data, S , with a smaller reference

et of what are called “prototypes”. The meaning of “prototype”

epends on the approach (selection or generation) chosen for the

ata editing 2 . In prototype selection, the reduced set of prototypes,

 

′ is a subset of S (along with the labels of the objects). In proto-

ype generation, the prototypes are allowed to be different points

n the same space (or to be extended as other structures such

s hyper-rectangles or hyper-ellipses). Generated prototypes in the

riginal space can be created by various procedures for relabelling,

erging or re-positioning members of an initial subset of S , such

s by finding cluster centres. 

Prototype generation is potentially the richer of the two data-

diting approaches. In prototype generation, the entire space is

vailable for the positioning of prototypes, allowing the approxi-

ation of any classification boundary with a specified precision. If

nstead the prototypes are constrained to be chosen from the fi-

ite set of points constituting the training data, the set of possible

oundaries is correspondingly reduced. 

The learning vector quantisation (LVQ) family of methods are

xemplars of the Prototype Generation approach which are par-

icularly popular and successful in the online case. Many algo-

ithms of the LVQ type have been developed, and a taxonomy of
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3 We refer readers interested in taxonomies for change-detection to Webb 

et al. [13] . For ensembling methods we recommend the recent survey of Gomes 

et al. [14] . 
his family has been suggested [7] , in which the algorithms are

istinguished by their theoretical approach and concept of dis-

ance. However, as we previously found for prototype selection

lgorithms [5] , the taxonomy developed for offline algorithms is

o longer appropriate in the streaming case. For example, if the

ata stream may be subject to concept drift, it certainly cannot be

ssumed that the data is drawn i.i.d. from a stationary distribu-

ion; this destroys the usual approach to likelihood-maximisation

nd hence the taxonomic approach which considers this theoreti-

al basis. There is important work to be done in developing the-

retical approaches for concept drift; but for now, online algo-

ithms are heuristic and cannot be classified in terms of theoretical

pproach. 

There are two main differences between streaming LVQ algo-

ithms and offline ones. The first difference is in the initialisa-

ion process: LVQ algorithms need an initialisation step that is not

traightforward in the streaming case. Second, in the offline case,

VQ does not require a mechanism for adding/removing prototypes

ecause the number of prototypes is typically fixed in advance. It is

o be expected that new prototypes would be added to a streaming

VQ algorithm only to cope with a sudden new concept, in contrast

o a prototype selection algorithm for which the addition and re-

oval of prototypes is part of the adjustment to incremental drift

s well. Nevertheless, it may turn out that questions of the mecha-

ism for adding and removing prototypes are at least as important

or the classification of streaming LVQ algorithms as the details of

he prototype update procedure, as the choice of mechanism may

trongly affect how the algorithm behaves in the presence of con-

ept drift. 

On the prototype selection side of things, the nature of stream-

ng data renders impossible the application of many established of-

ine techniques for forming reduced reference sets. As mentioned

n the Introduction, methods which proceed in a single “direction”

y either starting with the empty set and adding prototypes to it,

r starting with the set of all training data and removing proto-

ypes from it, are not applicable to streaming data. Any algorithm

esigned to maintain an up-to-date reference set in response to an

ndefinite amount of streaming input data must necessarily have

oth a mechanism for adding new prototypes to the reference set,

nd a mechanism for removing prototypes from the reference set

even if the mechanism for prototype addition is as simple as to

dd all new examples as they come in). For this reason, our taxon-

my differs substantially from the usual taxonomy of offline data

eduction algorithms. We characterise the algorithms in terms of

rototype addition and removal mechanisms, instead of the tradi-

ional terms of condensation vs editing, increasing vs decreasing

direction”, or wrapper vs filter evaluation (for discussion of which

ee our previous contribution [5] ). 

. A taxonomy of nearest neighbour methods for streaming 

ata 

The taxonomy we present here is an augmentation and refine-

ent of that we created in our previous contribution [5] , where we

rought together the taxonomies of instance selection/generation

nd concept-drift methods for the first time. Fig. 2 shows the pro-

osed taxonomy. The shaded boxes correspond to three areas for

hich algorithms have separately been proposed: online mainte-

ance of a reference set of prototypes; ensembling of classifiers;

nd change detection. A proposed method for classifying stream-

ng data might be an algorithm for any of these three tasks, or

ight be presented as a “system” or “framework” with algorithms

or these separate areas. 
We do not seek here to develop a taxonomy of change-

etection algorithms or of ensembling methods 3 . We have there-

ore left the options in Fig. 2 for these categories as simple yes-

r-no choices, to indicate whether such algorithms are in use or

ot, although a richer description is possible and could be deemed

mportant in future taxonomic studies. The most important and

ifficult first step is to develop a taxonomy for the methods of ref-

rence set management, because reference set management is the

ore of the area: there can be no use for ensembling or change de-

ection methods without a base classifier for them to work with. 

.1. Reference set management 

The key distinction from the offline case is that concepts of

editing” or “condensing” must be replaced with a concept of

reference set management” for the streaming case. The potential

resence of concept drift requires any instance-based algorithm to

ontinue to be able to adopt new instances indefinitely; it must

herefore also have the ability to continue to remove old instances

ndefinitely. 

.1.1. Input management 

The “Input Management” category is used to make a distinc-

ion between algorithms which operate in a truly online manner

n a single new data point at a time, and those for which the data

tream is regarded as arriving in batches. This distinction is sepa-

ate from the issue of which prototypes are “remembered” and for

ow long. 

.1.2. Approach: prototype (instance) selection versus prototype 

eneration 

The distinction between these two broad families was intro-

uced in Section 3 . Prototype selection methods in our taxon-

my are classified according to the many different possibilities for

dding and, especially, removing prototypes from the reference set.

n contrast, prototype generation methods are typically thought of

s updating persistent prototypes, though a mechanism for (occa-

ionally) adding new prototypes will usually be necessary. These

ethods are therefore classified according to the prototype evo-

ution mechanism: leaf 1 corresponds to the relabelling of proto-

ypes; and leaf 2 corresponds to the repositioning of prototypes, as

or LVQ methods. However, it is not quite universally true that pro-

otype generation methods proceed by evolving prototypes; there-

ore, there is a third leaf to the prototype generation branch. It

escribes those methods which do not update their generated

rototypes, but simply add and remove them to and from the

eference set as the prototype selection methods do. (Sync-

tream [15] is the algorithm we consider which has this behaviour;

ee Section 5 .) 

.2. Change detection 

This category distinguishes between approaches which attempt

ctively to determine whether the input stream is undergoing con-

ept drift at a given time and adapt their strategy accordingly, and

hose whose adaptation is a purely passive consequence of contin-

ing to update the reference set. 

.3. Classifier management 

Ensembling of classifiers is a popular and successful technique,

hough less so for nearest-neighbour classifiers than for other clas-

ifiers such as decision trees. This is usually said to be a result of
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Fig. 2. A taxonomy of nearest-neighbour methods for streaming data. The nodes in boxes show properties that should be specified, and their values are chosen among the 

leaves of the respective sub-tree. Shaded boxes are areas for which algorithms might be developed independently. For example, an ensembling method might be developed 

which is agnostic regarding the base classifier; the base classifier could then be any classifier trained on the chosen reference set. 

Table 1 

Prototype selection methods for streaming data with concept drift, described 

within the taxonomy of Fig. 2 . 

Method Change detection Approach Data management 

PG PS 

+ −
1NN N 1 2 O 

PECS N 1 1 F 

SimC N 1 1 O 

LWF N 1 2/4 O 

COMPOSE N 1 4 B 

AES Y 1 2, 5, 6 O 

IBL-DS Y 1 2, 3, 5 O 

IBLStreams Y 1 2, 3, 5 O 

IB3 N 2 1 O 

Lu et al. Y 3 1 B 

SyncStream Y 3 1 1 O 

ILVQ N 2 O 

oiGRLVQ N 2 O 

ANNCAD ∗ N 1 O 

Notes : PG: Prototype generation: (1) Prototypes are regular grid in space; edit by 

relabelling; (2) Reposition; (3) Prototypes not evolved. PS (+) : Prototype selec- 

tion (Prototype Addition): (1) Add all; (2) Add misclassified; (3) Add by a com- 

petence criterion. PS (−) : Prototype selection (Prototype Removal): (1) Remove 

poorly predicting; (2) Remove oldest; (3) Remove a random sample; (4) Remove 

by a geometric criterion; (5) Remove if misclassified (traditional editing); (6) Re- 

move if correctly classified by many neighbours (condensing). O/B/F : Online / 

Batch / Offline ∗ Ensemble method, rather than single classifier. 
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the “stability” of nearest-neighbour methods, which makes them

less suitable than unstable methods as ensemble base methods.

However, there may be promise in ensembles of nearest-neighbour

methods whose base classifiers use different subsets of the fea-

tures [16] . 

5. Algorithms considered 

This section reviews some existing editing k NN methods for

streaming data, for the purpose of illustrating the taxonomy. We

consider this to be a representative collection, and do not claim a

comprehensive coverage of the area. Table 1 shows the proposed

classification under the new taxonomy of the algorithms reviewed

in this section. A subset of these algorithms will subsequently be

used in Section 6 for our experimental study. 
.1. Prototype selection methods 

Historically, Aha et al.’s Instance-Based Learning Algorithm IB3

as the first prototype selection technique capable of handling

oncept drift [17] . IB3 adds new instances to the reference set if

hey are misclassified by the existing reference set. For removal,

B3 uses a statistical test to determine which instances have a clas-

ification performance which is significantly poor; these are dis-

arded. 

PECS [18] takes a similar approach to IB3. The main differences,

part from the particular statistical methods, are that PECS imme-

iately includes all new examples in the prototype set, and that it

ever truly deletes examples, only inactivates them (PECS is there-

ore not strictly a streaming algorithm, although it can handle con-

ept drift). It is interesting that authors of PECS converged to this

B3-like approach, despite the algorithm being developed from the

onceptually different LWF algorithm [19] . The LWF algorithm re-

oves prototypes when they have been superseded by newer pro-

otypes in the same region of the feature space. This is the reason

or our “2/4” notation for this algorithm in Table 1 : we seek to

ndicate that the age criterion is intertwined with a geometric cri-

erion in this case, as opposed to age and geometric criteria being

eparately implemented. 

In IBL-DS [20] and IBLStreams [21] , the key mechanism for pro-

otype removal is to remove prototypes which are misclassified ac-

ording to other nearby prototypes, as in Wilson editing [22] . In

hese algorithms, if the class of a newly-arrived example is the

ame as the class of the majority of the youngest examples in that

eighbourhood, then older examples of the opposite class in that

eighbourhood are removed. There is also provision to remove pro-

otypes purely based on age, to guarantee an upper bound on the

eference set size. A mechanism to delete prototypes pseudoran-

omly is triggered when abrupt concept change is detected. 

The AES [23] algorithm is presented in terms of an extended

nalogy with endocrine systems, which turns out in practice to

ean a distance-weighted voting scheme. The location of the “cell”

reference prototype) with highest “hormone concentration” (the

um of the votes) is moved to the location of the newly-arrived ex-

mple. In our way of thinking about maintaining a reference set of

elected prototypes, this is equivalent to adding all new examples

nd deleting, upon the arrival of each new example, the example

ost strongly in agreement with its neighbours (as in traditional

ondensing). 
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5 Available at http://moa.cms.waikato.ac.nz/ . 
6 Minor changes were made to run the algorithm in the current version of MOA. 

The original code is available at: https://www- old.cs.uni- paderborn.de/fachgebiete/ 
The COMPOSE algorithm [24] is based on an idea that is math-

matically elegant, but computationally very expensive: the set of

eference prototypes for each class is thinned by removing exam-

les associated with simplices which contain the outer faces of an

-shape 4 which defines the class boundary. 

SimC [25] internally separates the reference instances of each

lass into a number of separate sets corresponding to different re-

ions of the search space. New examples are added to the nearest

uitable set, or are used to start a new set if no nearby set is suit-

ble. Poorly performing examples are removed as new examples

re added to their sets. Through this splitting of the reference set

nto multiple sub-sets with their own update criteria, SimC aims to

chieve good “spatial and temporal relevance”. 

.2. LVQ family 

Kohonen [26] developed the Learning Vector Quantization tech-

ique, a seminal example of prototype generation. Many deriva-

ive algorithms have been developed over the years, but it is only

elatively recently that LVQ-style algorithms have begun to be de-

igned for streaming applications. 

In the oiGRLVQ algorithm [27] , new examples are added to the

eference set if they are sufficiently far from any existing prototype,

ccording to the similarity measure which the algorithm uses. A

runing step removes a proportion of the prototypes in each class,

emoving those which have least often been the closest prototype

o a new exemplar. 

ILVQ [28] also adds new examples to the reference set when

hey are distant from existing elements of the reference set, and

emoves prototypes which are little-used in classification. 

.3. Non-LVQ generated-prototype methods 

ANNCAD [29] discretises the feature space into a grid, an ap-

roach whose equivalence to a nearest-instance method may not

e immediately obvious. However, the approach is equivalent to

sing the centre of each hyper-rectangular cell of the discretisation

s a generated prototype. Note, though, that ANNCAD does not per-

orm a true nearest-neighbour classification: to reduce computa-

ional demands, only those neighbours are queried which are also

earby branches in the tree structure which describes the vari-

us resolutions of the discretisation. ANNCAD is of further inter-

st as the only exemplar of an ensemble approach in our selection.

The ensembling in the case of ANNCAD is baked into the instance

andling algorithm: this is in contrast to the more common case

here a base classifier can optionally be incorporated into an en-

emble, or not.) ANNCAD uses a small ensemble of offset grids, to

itigate the problem of the neighbourhood relation being strongly

ependent on the quantisation process. 

SyncStream [15] is interesting in its use of two levels of refer-

nce set data. Strongly-performing instances are retained in one

evel; poorly-performing instances are deleted; and instances of

ediocre performance are summarised by a clustering technique

nto a smaller number of generated prototypes. Hence, SyncStream

s categorised both according to prototype selection and prototype

eneration techniques in Table 1 , and is further unusual in that

t makes use of generated prototypes but does not evolve them;

rototypes once generated are preserved until their deletion, like

elected prototypes. 

.4. Case-based reasoning family 

We include in Table 1 the “concept drift-tolerant case-base edit-

ng technique” of Lu et al. [30] , as a recent and generally applicable
4 α-shapes are a generalisation of the concept of a convex hull. 

i

xample of the “case-based reasoning” approach. This algorithm is

esigned for the concept-drift problem, and is interesting in that it

eeks to add new prototypes in areas of the feature space where

t believes concept drift to be taking place. For this algorithm, ref-

rence set management is inextricably bound up with change de-

ection. (This algorithm takes the place of certain older case-based

lgorithms with a narrow application to spam filtering which we

onsidered in our previous study [5] .) 

. Experimental comparison 

Clearly, a comprehensive experimental comparison demonstrat- 

ng the strengths and weaknesses of all categories in the proposed

axonomy is infeasible. Our present experiment serves as an illus-

ration; we are cautious of making strong claims. Nonetheless, we

elieve that this experiment can give useful insights. We may be

ble to identify traits in the taxonomy which have an effect on per-

ormance (for example, are methods which use change detection

etter/worse than methods which do not?) and we may be able to

dentify promising avenues for future research on that basis. 

We performed three sets of sub-experiments. The first uses syn-

hetic data sets, with no added noise: the results and discussion for

hese sub-experiments are given in Section 6.4.2 . The second uses

ynthetic data with various levels of noise added using a setting

n the MOA system: the results and discussion are in Section 6.4.3 .

he third uses real-world data, with concept drift introduced using

 synthetic method: the results and discussion are in Section 6.5 .

e draw our key insights from the first of these sub-experiments,

n our discussion in 6.4.2 . The principal function of the remaining

wo sub-experiments is to show that the results found in that sec-

ion do not vanish in the presence of noise or for real-world data,

hough there is some further interest in these results. 

.1. Framework 

The framework selected for the experiments was the Massive

nline Analysis (MOA) system 

5 , version 2016.04. We created our

wn, non-optimised implementation of the following algorithms:

NNCAD [29] ; PECS [18] ; IB3 [17] ; LWF [19] ; and oiGRLVQ [27] .

he algorithm IBLStreams [21] was already available in MOA 

6 . A

rapper was necessary for the adaptation of the publicly avail-

ble code of SimC 

7 [25] and SyncStream 

8 [15] to MOA. We have

ade all the implemented methods available online for general

se: https://github.com/alvarag/ConceptDriftMOA . 

.2. Algorithms and parameters 

A sliding window of 2 0 0 0 instances (with the nearest-

eighbour classifier (1NN)) was selected as the baseline method.

he list of all algorithms and parameter settings included in the

xperimental comparison is as follows: 

• 1NN: sliding window of 2 0 0 0 instances. 

• LWF: θ = 0 . 05 , β = 0 . 04 , and τ = 0 . 08 . 

• IB3: conf. accept. = 0 . 8 and conf. drop = 0 . 05 . 

• PECS: p min = 0 . 3 , p max = 0 . 7 , and β = 0 . 4 . 

• ANNCAD: ensemble size = 4 , λ = 0 . 98 , and shift = 0 . 1 . 

• SimC: default options. 
ntelligente-systeme/software/iblstreams- moa- extension.html . 
7 Available at https://www.dropbox.com/s/s2t2ogaki1x1n4w/Weka.rar?dl=0 . 
8 Available at https://github.com/kramerlab/SyncStream/ . 

https://github.com/alvarag/ConceptDriftMOA
http://moa.cms.waikato.ac.nz/
https://www-old.cs.uni-paderborn.de/fachgebiete/intelligente-systeme/software/iblstreams-moa-extension.html
https://www.dropbox.com/s/s2t2ogaki1x1n4w/Weka.rar?dl=0
https://github.com/kramerlab/SyncStream/
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Table 2 

Settings used with the MOA generators. 

Generator Seed Concept drift 

Position Width Seed 

Hyperplane (no CD) 1 – – –

Hyperplane (gradual CD) 1 25 0 0 0 1 0 0 0 5 

Hyperplane (abrupt CD) 1 25 0 0 0 1 5 

Random tree (no CD) 1 – – –

Random tree (gradual CD) 1 25 0 0 0 1 0 0 0 5 

Random tree (abrupt CD) 1 25 0 0 0 1 5 

Table 3 

Mean accuracy of the methods for the 6 sub-experiments using synthetic data 

without noise. Columns with a dash “–” in the header are for experiments with 

no concept drift. The best value of each column is highlighted in bold. 

Method Hyperplane Random tree 

– Gradual Abrupt – Gradual Abrupt 

1NN 82.98 82.01 83.00 83.99 84.22 85.07 

PECS 82.80 70.18 77.49 81.42 73.69 74.47 

SimC 76.63 75.86 76.53 78.96 76.82 77.50 

LWF 82.69 76.31 77.03 83.06 78.85 79.59 

IBLStreams 81.32 66.53 66.16 82.79 71.09 70.94 

IB3 80.27 78.46 79.74 79.48 78.54 80.31 

SyncStream 78.90 78.35 79.15 80.48 79.91 80.66 

oiGRLVQ 85.66 82.09 84.22 85.48 82.45 84.11 

ANNCAD 84.76 81.41 82.43 86.01 85.19 86.21 
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• SyncStream: “statistical analysis” strategy used 

9 ; θ = 60 . 

• IBLStreams: without adaptation of the size k of the neighbour-

hood, i.e. k = 1 always. 

• oiGRLVQ: reduction = 20% , # mini-batch = 500 . 

We have kept most of the parameter settings close to the ones

suggested by the creators of the respective algorithms, but it was

necessary to alter some of the values in order to ensure that all

of the algorithms stored a similar number of prototypes, around

2 0 0 0. The set of algorithms chosen for the experiment is necessar-

ily only representative. It is not practical to consider all instance-

based algorithms with all possible parameter values. 

6.3. Experimental setup 

The performance of the different algorithms was evaluated by

the technique known as Interleaved Test-Then-Train or Prequential :

the model is tested with each incoming example and subsequently

the new example is used for training [31] . A benefit of this com-

mon technique is that it makes maximum use of the available

data [6] . We used the sliding-window version of the Prequential

technique (with a window of width 100), as opposed to the main

alternative of using a fade factor. The accuracy statistic was cal-

culated and stored after every 100 instances: each accuracy value

recorded is the percentage of instances correctly classified in the

previous 100 instances. 

6.4. Experiments using synthetic data sets 

We wished to evaluate the behaviour of the algorithms in a

controlled setting suitable as a benchmark. For this purpose, we

used two popular [6,30] generators in MOA, with and without con-

cept drift. The key benefit of using a generator is its reproducibil-

ity: the stream can be replicated in MOA (or other software) di-

rectly. 

6.4.1. Data sets used 

All the sub-experiments involved binary classification prob-

lems. Except where noted, default options for the generators were

adopted. Only numeric attributes were used because some of the

algorithms cannot deal with nominal features. The two generators

used were: 

• Hyperplane: first used in [32] . The data stream is generated

uniformly in a unit hypercube in a d -dimensional space (each

dimension is a feature). A hyperplane is constructed to split the

data into two classes and serve as the boundary. Concept drift

is generated by varying the position of the plane with time. In

our experiments, the feature space was defined by ten numeric

attributes ( d = 10 ). 

• Random tree: the class labels are determined by means of a

decision tree prepared in advance. The tree is constructed by

choosing random attributes to split the space; a random class

label is then assigned to each leaf. The random tree was gen-

erated with five numerical attributes, and a maximum depth of

five was allowed. The same attribute may be picked more than

once in the decision process. 

Data streams of 50 0 0 0 instances were generated, with the con-

cept drift introduced in the middle. Two different types of concept

drift were tested: sudden and gradual. For the hyperplane genera-

tor, two versions of the experiment were performed: without and

with noise added to the data. Where used, noise was added di-

rectly using the option provided in the MOA framework for the Hy-

perplane generator. The experiments without noise are discussed
9 The “statistical analysis” strategy is one of two options for concept-drift detec- 

tion the authors of SyncStream propose for use with their algorithm [15] . 

t  

f  

f  

fi  
n Section 6.4.2 ; the experiments with added noise are discussed

n Section 6.4.3 . 

The configuration of the generators, including seed values, is

hown in Table 2 . 

.4.2. Hyperplane and random tree generators without noise: results 

nd discussion 

Six sub-experiments were performed for synthetic data with-

ut the addition of noise: Hyperplane with (1) no concept drift,

2) gradual change, and (3) abrupt change; and Random tree with

4) no concept drift, (5) gradual change, and (6) abrupt change.

he results for these six data streams are shown in Figs. 3 –8

espectively. Each of these figures shows accuracy as a function

f time for all nine methods. In the (a) subfigures, the accura-

ies of all methods are plotted in grey, and each method is high-

ighted in black in its own sub-plot. This view allows for an in-

tant evaluation of the success of the highlighted method. If the

lack curve runs higher than the grey curves, the method outper-

orms its competitors. The average accuracy for a method across

he whole run is shown in the bottom-left corner of its subplot.

o the right of these accuracy plots, in the (b) subfigures, we show

oxplots for each of the nine methods, showing the distribution of

he values of the accuracy statistic calculated throughout the run.

his gives further information about the stability of the methods’

erformance. 

Tables 3 and 4 show respectively the means and the medi-

ns of the methods for the 6 sub-experiments. Each column repre-

ents one sub-experiment; they are grouped by the generator used

nd distinguished by the type or absence (“–”) of concept drift. The

est value of each column is highlighted in bold. 

With these results in hand, we will now turn to address the

ossible insights we mentioned at the beginning of this section.

irst, a note of warning about the limitations on what can be in-

erred: we have so far (cf. following sections) used only artifi-

ial data generated from MOA, we restricted the number of pro-

otypes to about 2 0 0 0, and we enforced the use of the 1NN rule

or classification (in particular, no adaptation of k was allowed

or IBLStreams, which uses a variable-neighbourhood k NN classi-

cation rule by design). Any of these choices may disadvantage
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Fig. 3. Hyperplane generator: accuracy (in %) of the algorithms without concept drift. The evolution of the accuracy statistic is shown in subfigure (a), and the distribution 

of the instantaneous accuracy values for each algorithm is shown by a boxplot in subfigure (b). The average accuracy is shown in the bottom-left corner of each sub-plot in 

(a). 

Fig. 4. Hyperplane generator: accuracy (in %) of the algorithms with gradual concept drift. The average accuracy is shown in the bottom-left corner of each sub-plot in (a). 

Fig. 5. Hyperplane generator: accuracy (in %) of the algorithms with abrupt concept drift. The average accuracy is shown in the bottom-left corner of each sub-plot in (a). 
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Fig. 6. Random tree generator: accuracy (in %) of the algorithms without concept drift. The average accuracy is shown in the bottom-left corner of each sub-plot in (a). 

Fig. 7. Random tree generator: accuracy (in %) of the algorithms with gradual concept drift. The average accuracy is shown in the bottom-left corner of each sub-plot in (a). 

Fig. 8. Random tree generator: accuracy (in %) of the algorithms with abrupt concept drift. The average accuracy is shown in the bottom-left corner of each sub-plot in (a). 
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some methods. Further, none of our datasets involved recurring

concepts; hence, methods designed to detect recurring concepts

do not appear here to their best advantage. For these reasons and

more, our findings do not by any means invalidate the methods

which did not work well in our chosen setting. 
We see from the plots that PECS, LWF and IBLStreams had dif-

culties recovering from either gradual or abrupt change. This can

lternatively be seen from Tables 3 and 4 . In contrast, SimC and

yncStream showed good resilience to concept drift, but at the ex-

ense of poor overall accuracy. A combination of resilience to drift
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Table 4 

Median accuracy of the methods for the 6 sub-experiments using synthetic data 

without noise. Columns with a dash “–” in the header are for experiments with 

no concept drift. The best value of each column is highlighted in bold. 

Method Hyperplane Random tree 

– Gradual Abrupt – Gradual Abrupt 

1NN 83.00 83.00 83.10 84.00 85.20 85.40 

PECS 83.20 68.30 79.50 81.40 70.50 78.15 

SimC 77.00 76.70 76.70 79.20 77.15 77.60 

LWF 82.80 73.65 78.75 83.00 79.30 80.45 

IBLStreams 82.00 59.84 59.99 83.30 67.05 66.09 

IB3 80.70 79.70 80.40 79.90 79.40 80.10 

SyncStream 78.90 79.00 79.20 80.60 80.40 80.60 

oiGRLVQ 85.65 80.95 84.10 85.60 82.78 83.90 

ANNCAD 85.30 82.70 82.90 86.70 84.30 84.70 

Fig. 9. Scatterplot of the 9 methods in the space of median accuracies for the two 

synthetic data sets without noise. The significance of the markers is as follows: 

shape indicates whether or not the method uses explicit change detection: circle 

◦ – yes, triangle � – no; and a filled shape indicates a prototype selection method 

while an empty shape indicates a prototype generation method. The filled marker 

for SyncStream is circled to indicate that this method belongs to both the prototype 

selection and prototype generation categories. The ensemble approach, ANNCAD, is 

indicated with an asterisk. 
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nd good overall accuracy was displayed by oiGRLVQ, by ANNCAD,

nd by the benchmark method, simple windowed 1NN. 

Following previous practice [3,4] , we visualise the methods’

erformance in relation to the taxonomic properties by plotting

ach property with a different marker: see Fig. 9 . The marker

hape indicates whether or not the method uses explicit change

etection, and the filling distinguishes between prototype selec-

ion and prototype generation methods. The 9 methods are shown

n the space of x = (H g + H a ) / 2 and y = (R g + R a ) / 2 where H g is

he median accuracy of the method for the hyperplane data with

radual change (sub-experiment 2), H a is the median accuracy for

he hyperplane data with abrupt change (sub-experiment 3), and

 g and R a are the equivalents for the Random tree data (sub-

xperiments 5 and 6). 

The results from this experiment favour prototype generation

ethods. This might be said to be expected on theoretical grounds,

n that prototype generation can be seen as a generalisation of

rototype selection, in which the instances are not limited to ex-
mples of the original data set. It might also be said that meth-

ds with no explicit change detector performed well, though few

ethods with explicit change detection were considered. Further-

ore, the only ensemble-like method ANNCAD performed well,

uggesting that an ensembling of nearest neighbour classifiers for

treaming data could be an interesting research avenue. It should

e noted that ANNCAD might be at an advantage when classifying

he Random tree data, by virtue of using a tree structure internally.

owever, this is not the case for the hyperplane data, for which

NNCAD performs very nearly as strongly relative to the other al-

orithms. Conversely, it might have been thought that the hyper-

lane data would favour windowed 1NN, but it performs at least

s well on the random tree data. The particularly poor performance

f IBLStreams is most likely explained by its being particularly dis-

dvantaged by our choice to impose the use of the 1NN classifier. 

Perhaps the most exciting (though not entirely unexpected!)

nding in this paper is the excellent performance of the baseline

ethod: 1NN with a simple fixed-width sliding window. With no

oncept drift, the sliding window works on a par with the best of

he other methods. However, when concept drift occurs, the sliding

indow gives high accuracy with a low variability, as evidenced

y the boxplots in Figs. 4, 5, 7 , and 8 . It also appears as the best

ethod in Fig. 9 . 

The good performance of simple methods often raises the ques-

ion of “value for money”. Sophisticated designs are only justified if

hey demonstrably outperform the simple methods, both in terms

f accuracy and consistency. Otherwise, practitioners will not have

ufficient reason to opt for a complicated design. The humble win-

owed 1NN algorithm still poses a formidable challenge to those

ho would design new algorithms in this area, a challenge which

ust not be ignored. 

That being said, we must emphasise that our conclusions are

ased on limited experiments. We have not considered multi-class

roblems, imbalanced data sets, data sets with categorical fea-

ures, and so on. There are many possible areas in which more-

ophisticated algorithms may prove their worth! 

.4.3. Hyperplane generator with noise: results and discussion 

Real-life data sets are not perfect: outliers and noise are fre-

uently present, negatively impacting the prediction capabilities of

lassifiers [33] . Moreover, instance-based classifiers (like k NN, and

specially 1NN) are usually more sensitive to noise than other ap-

roaches. For these reasons, we performed further experiments in

hich noise was added to the synthetic data using a tool provided

n the MOA framework. The hyperplane generator was used with

arious levels of added noise: 10%, 20%, and 30%. 

Tables 5 and 6 show respectively the means and the medians

f the methods for the 9 sub-experiments (each column represents

ne sub-experiment). There is one sub-experiment for each noise

evel and, as previously, for each type of concept drift: no drift;

radual; and abrupt drift. The best value of each column is high-

ighted in bold. 

Fig. 10 shows the performance of the various classifiers in the

resence of noise, under our three concept-drift scenarios. The IB3

lgorithm immediately stands out as having the worst tolerance

o noise, with or without concept drift. On the other hand, AN-

CAD and oiGRLVQ continue their good showing from the noise-

ree case. Again, and more surprisingly in this case, windowed 1NN

utperforms many of the more sophisticated classifiers. 

.5. Real-world data sets 

For a more complete comparison of the algorithms, we have

erformed a similar set of experiments on some real-world data

ets, into which we have introduced concept drift using the

ethod proposed by Shaker and Hüllermeier [34] . 
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Table 5 

Mean accuracy of the methods for the 9 sub-experiments using synthetic data with noise . Columns with a 

dash “–” in the header are for experiments with no concept drift. The best value of each column is highlighted 

in bold. 

Method 10% noise 20% noise 30% noise 

– Gradual Abrupt – Gradual Abrupt – Gradual Abrupt 

1NN 70.96 70.38 70.83 61.84 61.52 61.76 55.34 55.20 55.19 

PECS 73.70 63.24 70.61 64.70 58.15 59.31 57.11 54.01 56.05 

SimC 67.66 66.62 67.05 60.29 59.76 60.04 55.08 54.48 54.48 

LWF 70.95 66.90 67.17 61.86 59.65 59.80 55.37 54.43 54.46 

IBLStreams 71.31 60.49 61.14 62.90 56.32 56.66 56.05 53.05 53.14 

IB3 60.22 59.79 60.10 54.53 54.32 54.31 51.59 51.54 51.51 

SyncStream 68.35 67.64 67.92 60.27 60.12 60.13 54.54 54.62 54.42 

oiGRLVQ 73.06 71.57 72.56 62.69 62.81 63.25 55.43 55.70 55.74 

ANNCAD 73.03 71.77 72.45 63.65 62.82 63.25 56.00 56.06 56.18 

Table 6 

Median accuracy of the methods for the 9 sub-experiments using synthetic data with noise . Columns with a 

dash “–” in the header are for experiments with no concept drift. The best value of each column is highlighted 

in bold. 

Method 10% noise 20% noise 30% noise 

– Gradual Abrupt – Gradual Abrupt – Gradual Abrupt 

1NN 71.00 71.00 71.10 61.90 61.70 61.70 55.30 55.40 55.30 

PECS 73.70 59.75 71.35 64.70 56.30 60.00 57.20 54.10 56.50 

SimC 67.80 67.20 67.30 60.30 60.10 60.20 54.80 54.50 54.40 

LWF 71.00 66.50 66.90 61.90 59.85 59.80 55.45 54.60 54.50 

IBLStreams 71.80 54.91 55.16 63.30 54.65 55.48 56.10 53.00 52.90 

IB3 60.25 60.00 60.10 54.40 54.30 54.40 51.55 51.70 51.60 

SyncStream 68.40 68.00 68.10 60.30 60.40 60.30 54.70 54.50 54.50 

oiGRLVQ 73.20 71.10 72.05 62.70 62.60 62.90 55.50 55.70 55.77 

ANNCAD 73.30 72.55 72.60 63.90 63.60 63.65 56.00 56.30 56.20 

Fig. 10. Accuracy of the different classifiers with and without noise on the hyperplane generator. 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Description of data sets used for experiments in Section 6.5 : 

name; number of binary and numeric features; and number of 

instances. 

Data set # attributes Size of the stream 

Binary Numeric 

Electricity 7 7 45 312 

Forest Covertype 44 10 49 514 

Poker-hand 20 5 50 0 0 0 

p  
We selected three popular data sets available on the MOA web-

page 10 : Electricity, Forest Covertype, and Poker-Hand. Each of these

has been used in several publications concerning learning from

streams [15,25,29,35,36] . These data sets are highly imbalanced,

have several classes and are relatively large. Moreover, some of

their attributes are nominal, and hence cannot be handled by all

of the algorithms in our selection. Therefore, we preprocessed the

data sets to make them suitable for the experiment: the nomi-

nal attributes were converted into sets of binary attributes, only

instances belonging to one of the two majority classes were se-

lected, and random undersampling was performed to reduce the
size of the sets. Table 7 describes the main characteristics of the 

10 Available at https://moa.cms.waikato.ac.nz/datasets/ . 

w  

s  

g  

o

rocessed data sets. In the relevant sub-experiments, concept drift

as introduced starting at the 25 0 0 0th instance, with the random

eed set to 1. As in the experiments with synthetic data sets, the

radual drift had a width of 1 0 0 0 and the abrupt drift had a width

f 1. 

https://moa.cms.waikato.ac.nz/datasets/
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Table 8 

Mean accuracy of the methods for the 9 sub-experiments on real-world data. Columns with a dash “–” in the 

header are for experiments with no concept drift. The best value of each column is highlighted in bold. 

Method Forest Covertype Electricity Poker-hand 

– Gradual Abrupt – Gradual Abrupt – Gradual Abrupt 

1NN 98.26 97.64 98.23 86.37 86.01 86.42 71.45 70.59 70.55 

PECS 96.28 95.70 96.13 82.96 83.10 83.30 74.92 74.59 74.72 

SimC 97.45 96.82 97.49 90.13 89.67 90.20 71.58 70.86 70.88 

LWF 97.66 96.94 97.65 86.32 86.27 86.69 71.92 73.25 73.51 

IBLStreams 96.97 92.12 93.12 86.67 72.80 73.42 73.88 66.78 67.05 

IB3 95.61 94.58 95.57 70.91 71.71 71.57 71.18 70.38 70.64 

SyncStream 98.13 97.55 98.13 81.35 81.07 81.33 71.59 70.39 70.36 

oiGRLVQ 96.21 95.43 96.00 72.72 72.21 72.15 68.00 65.75 66.68 

ANNCAD 96.86 96.93 97.49 77.38 81.91 82.19 75.19 73.40 73.65 

Table 9 

Median accuracy of the methods for the 9 sub-experiments on real-world data. Columns with a dash “–” in the 

header are for experiments with no concept drift. The best value of each column is highlighted in bold. 

Method Forest Covertype Electricity Poker-hand 

– Gradual Abrupt – Gradual Abrupt – Gradual Abrupt 

1NN 98.30 98.20 98.30 86.20 86.30 86.50 71.80 70.40 70.30 

PECS 96.00 95.80 95.80 83.00 83.40 83.40 74.55 74.30 74.20 

SimC 97.50 97.40 97.55 90.30 90.30 90.50 71.90 71.05 71.05 

LWF 97.70 97.30 97.60 86.30 86.60 86.80 71.80 73.40 73.95 

IBLStreams 97.45 96.90 97.15 87.30 83.80 83.90 74.30 65.55 66.45 

IB3 96.00 95.55 95.80 70.30 71.20 71.00 71.25 70.70 70.95 

SyncStream 98.20 98.10 98.20 81.80 81.62 81.80 71.90 70.60 70.60 

oiGRLVQ 97.00 96.90 96.90 75.40 72.40 73.40 67.50 64.95 66.10 

ANNCAD 97.00 97.40 97.40 77.60 82.30 82.40 75.05 73.75 73.90 
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Following Shaker and Hüllermeier [34] , a drifting stream was

reated from each processed data set along the following lines:

he original set was split, and one of the subsets is used without

hange; the drift sample is created by means of inverting the class

f the other subset. 

The results of the experiments on these data sets are summa-

ized in the Tables 8 and 9 . As for the previous tables for the ex-

eriments with synthetic data, these tables show the means and

he medians of the methods, respectively, for each of the 9 sub-

xperiments (three data sets and three configurations for each). 

For the real-world data, the question of which algorithm is best

trongly depends on the data set. The baseline windowed 1NN

lassifier was the best on Forest Covertype, and SimC was the best

n Electricity, for all three sub-experiments (with and without con-

ept drift). For the Poker-hand data set, when drift was present the

ECS classifier was the best, whereas when drift was not present

NNCAD achieved the best results. This is a remarkable contrast to

he performance of PECS on the noisy synthetic data, where PECS

as the best-performing algorithm in the absence of drift, but its

erformance strongly degraded in the presence of gradual drift.

he overall poor performance of all the methods on the poker-

and data is explained by the complex and abstract nature of the

elationship between a poker hand and its constituent cards: the

earning task in this case really calls for some sort of symbolic rule

xtraction, rather than usual type of machine-learning techniques

ased on delineating regions in a feature space. 

. Conclusion 

We have presented an augmented and refined taxonomy for

earest-neighbour methods for the classification of data streams

ubject to concept drift. A numerical experiment, interpreted in the

ight of the new taxonomy, gave the following insights. 

For the problem of classifying data streams subject to con-

ept drift, methods based on prototype generation may be a more

romising avenue for future research than further refinements
f the many prototype selection methods which have been pro-

osed. The theoretical observation that prototype generation meth-

ds draw from a richer hypothesis space than prototype selection

ethods is borne out, by our limited experiment, as greater prac-

ical performance by prototype generation algorithms: see Fig. 9 . 

We regard the strikingly strong performance of the simple win-

owed 1NN baseline method as a valuable result. We strongly rec-

mmend that experimental evaluations of streaming classification

lgorithms proposed in the future should include this simple base-

ine as a point of reference. Further, when choosing state-of-the-

rt algorithms to which to compare the performance of proposed

ew instance-based algorithms, the algorithms ANNCAD [29] and

iGRLVQ [27] might be valuable additions to the pool of standard

lgorithms. 
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