
342 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 3, MARCH 2014

Occlusion Handling via Random Subspace
Classifiers for Human Detection

Javier Marín, David Vázquez, Antonio M. López, Jaume Amores, and Ludmila I. Kuncheva

Abstract—This paper describes a general method to address
partial occlusions for human detection in still images. The
random subspace method (RSM) is chosen for building a classi-
fier ensemble robust against partial occlusions. The component
classifiers are chosen on the basis of their individual and
combined performance. The main contribution of this work
lies in our approach’s capability to improve the detection rate
when partial occlusions are present without compromising the
detection performance on non occluded data. In contrast to
many recent approaches, we propose a method which does not
require manual labeling of body parts, defining any semantic
spatial components, or using additional data coming from motion
or stereo. Moreover, the method can be easily extended to
other object classes. The experiments are performed on three
large datasets: the INRIA person dataset, the Daimler Multicue
dataset, and a new challenging dataset, called PobleSec, in which
a considerable number of targets are partially occluded. The
different approaches are evaluated at the classification and de-
tection levels for both partially occluded and non-occluded data.
The experimental results show that our detector outperforms
state-of-the-art approaches in the presence of partial occlusions,
while offering performance and reliability similar to those of the
holistic approach on non-occluded data. The datasets used in our
experiments have been made publicly available for benchmarking
purposes.

Index Terms—Ensemble, human detection, partial occlusions,
random subspace classifiers.

I. Introduction

Vision-based human detection plays a relevant role in many
applications related to robot sensing, surveillance, home au-
tomation and driver assistance. Detecting humans is a chal-
lenging task due to major difficulties coming from the wide
variability of the target, such as the shape, clothing or pose;
and the external factors, such as the scenario, illumination, and
partial occlusions [1]–[4].

Most promising methods of the state-of-the-art rely on
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discriminative learning paradigms. Along this line, researchers
have been mostly working on two different issues: extracting
features [5]–[9], and classification through machine learning
algorithms [5], [6], [10]–[13]. State-of-the-art approaches can
be divided into two groups: holistic, which rely on detecting
the target as a whole, and part-based, which combine the
detection of different parts of the body (head, torso, arms,
legs, etc.). Holistic methods offer robustness with respect to
illumination, background and texture changes, whereas part-
based methods are advantageous for different poses [3]. In all
cases, the presence of partial occlusions causes a significant
degradation of performance, even for part-based methods
which are supposed to be robust in that respect [3].

As expected, detection in the presence of partial occlusions
has sparked significant interest [7], [14]–[18]. For instance,
an accident in which a vehicle hits a pedestrian is likely to
occur when the pedestrian is not in full view to the driver,
e.g., when it appears from behind a parked car. Captured in
a sequence of images, several frames prior to the accident
will contain a partially occluded human figure. Therefore,
accurate detection in the presence of partial occlusion is
of paramount importance when building driver assistance
systems.

Current methods for handling occlusion lack generalization,
either because additional information is required (coming from
manual annotations of the parts or from other sensors), or
they are tied to a specific object class [7], [15], [16], [18].
Therefore, our aim is to introduce a general method for
automatic, accurate and robust detection of human figures in
the presence of partial occlusion.

Image windows framing partially occluded persons tend to
be misclassified due to the fact that, given the descriptor of the
whole window, the features corresponding to the occluded ar-
eas can be interpreted by the classifier as noise or background.
Accordingly we argue that an appropriate solution for these
situations is to apply classifiers trained on regions less likely
to be occluded. More specifically, we propose to learn the
different regions of the window by using random subspace
classifiers [19], and subsequently find the optimal ensemble
through a bespoke selection strategy.

The proposed approach brings several benefits: 1) the ap-
proach is generic, therefore applicable to any class of objects;
2) as the random subspace classifiers are trained in the original
space, no further feature extraction is required; 3) the detection
is done on monocular intensity images, unlike other methods
for which stereo and motion information are mandatory [16];
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and 4) during training, we only require a subset of images
with and without partial occlusion; other detection methods
require delineation of the occluded area.

Following our previous work [20], here we use a virtual-
world based dataset with the occlusion labelling available
by design. We also introduce a new real world dataset with
occluded pedestrians for testing.

The remainder of this paper is organized as follows.
Section II introduces the related work. Section III presents
the method from a generic point of view. Section IV, presents
a particular implementation for human detection. Section V,
relates the design followed in our experiments. In Section VI,
we validate and discuss our method. Finally, Section VII draws
the main conclusions and future work.

II. Related Work

Dollar et al. [3] evaluated state-of-the-art detectors under
occlusions, and demonstrated that both holistic and part-
based methods have similar unsatisfactory performance. This
is attributed to the fact that these methods are not specifically
designed for handling occlusions.

Very few methods from the literature handle occlusions
explicitly. Dai et al. [14] propose a part-based method for face
and car detection. The method consists of a set of substructure-
detectors, each of which is composed of detectors related to the
different parts of the object. The disadvantage of this method
is that the different parts of the object need to be manually
labeled in the training dataset, in particular, eight parts for face
detection and seven parts for cars.

A general approach based on the response of different
part detectors and a whole-object segmentation process is
introduced in [15]. The method requires a hierarchical object-
parts design with eleven components making up the head, the
torso and the legs. The edge pixels of the object that positively
contribute to the part detectors are extracted and used together
with the part detector responses to obtain a joint likelihood of
multiple objects. In this joint likelihood an occlusion reasoning
is applied. In case of finding any inter-object occlusions, the
occluded parts are ignored. The main drawback of this method
is that it requires a manual spatial alignment of the objects,
which has to be adapted to each object class. In addition, it
requires a special camera set-up in which the camera has to
look down on the ground-plane.

Wang et al. [7] propose a new scheme to handle occlusions.
More concretely, the response at a local level of the histograms
of oriented gradients (HOG) [6] descriptor is used to determine
whether or not such local region contains a human figure.
Then, by segmenting the binary responses over the whole
window, the algorithm infers the possible occlusion. If the
segmentation process does not lead to a consistent positive or
negative response for the entire window, an upper/lower-body
classifier is applied. The drawback of this method is that it
makes use of a pre-defined spatial layout that characterizes a
pedestrian but not any other object class.

A mixture of experts for handling partial occlusion is
presented in [16]. The component layout the authors use
is composed by three overlapped regions: head, torso and

legs. Then, during the classification process, expert weights
are computed to focus on the unoccluded region through a
segmentation process applied to the depth and motion images.
While the authors demonstrate the robustness of their method
against partial occlusions, the drawback of this approach is
that it requires both stereo vision and motion information,
which limits its applicability if we do not have this additional
information. Furthermore, the method is based on a pre-
defined spatial layout that is characteristic of the pedestrian,
which limits its applicability for other classes of objects.

Gao et al. [17] tackle occlusions by identifying and using
in the training process, cells of pixels that belong to the
object in the bounding box. This method outputs not just the
detection, but also the inferred segmentation. However, this
method requires the tedious task of manual labeling all the
cells that belong to the object in the training set.

Girshick et al. [18] propose an extension of the deformable
part-based detector [11] with occlusion handling. Specifically,
the method tries to place the different body parts over the
window. Then, if some of the parts are not matched, the
method tries to fit in their designated place occluding objects
learned from the data. The obvious inconvenience of such
an approach is the need of learning the objects that occlude
the target. Besides, to extend the method to other classes, a
different occlusion reasoning has to be defined.

Here we propose a method for detecting human figures
in still images, which can handle occlusion automatically.
Manual annotation or defining specific parts/regions of the
window are not needed. Our method is based on an ensemble
of random subspace classifiers obtained through a selection
process. It is worth mentioning that, as the random subspace
classifiers use the original feature space, there is no additional
feature extraction cost. Similar to [7] and [16], the proposed
approach uses a segmentation process to find the unoccluded
part of a candidate-window. An ensemble is applied only in
uncertain cases. In particular, the proposed method generalizes
the inference process presented in [7] by extending it to
multiple descriptors.

III. Occlusion Handling Method

A. Proposal Outline

We present a general method for handling partial occlusions
(Fig. 1). In such a design, the window is described by a
block-based feature vector. The resulting feature vector is
evaluated by the holistic classifier. If the confidence given by
the holistic classifier falls into an ambiguous range [Fig. 1(a)],
then an occlusion inference process is applied by using the
block responses. Finally, if the inference process determines
that there is a partial occlusion [Fig. 1(b)], an ensemble
classifies the window. Otherwise, the final output is given by
the holistic classifier. Notice that, in order to obtain a more
accurate decision, we apply the ensemble only when partial
occlusion is suspected. In the following, we explain in detail
the components shown in Fig. 1.

B. Block Representation

Our detection system relies on using a block-based repre-
sentation, one of the most successful descriptor types in use
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Fig. 1. Occlusion handling scheme. From left to right, the steps for classifying a window.

Fig. 2. Block-based representation. From left to right, the original input,
then the division into blocks (note that Blocks can overlap), and finally, the
feature descriptor.

today [3]. A well-known example of such descriptor is the
HOG in [7], although many other examples [21], [22] exist.
In Section IV we explain our specific choice for this paper.
Fig. 2 illustrates the idea of this type of representation, where
the window descriptor x ∈ Rn is defined as the concatenation
of the features extracted from every predefined block Bi,
i ∈ {1, . . . , m}. A block is a fixed subregion of the window as
shown in Fig. 2. Our method also allows the blocks to overlap.
The descriptor is denoted as x = (B1, . . . , Bm)T .

The feature vector x is passed to a holistic classifier H

H : Rn −→ (−∞, +∞)

x �−→ H(x)
(1)

where the feature space dimension, n, is n = m · q, being q

the number of features per block.
The higher the value returned by the function H, the higher

the confidence that there is a pedestrian in the given window.
Note that the function H can be any classifier that returns
a continuous-valued output, for example, a hyperplane learnt
with an SVM.

C. Occlusion Inference and Posterior Reasoning

In order to detect if there is a partially occluded human
figure in the image, we make use of a procedure similar to
the one by Wang et al. [7]. First, we determine whether the

score of the holistic classifier is ambiguous. For example,
the response from an SVM classifier can be perceived as
ambiguous if it is close to 0. When the output is ambiguous,
an occlusion inference process is applied. This is based on the
responses obtained from the features computed in each block.
In particular, for every block Bi, i ∈ {1, . . . , m} we define a
local classifier hi

hi : Rq −→ (−∞, +∞)

Bi �−→ h(Bi)
(2)

where the classifier hi takes as input the i-th block Bi of the
window, and provides as output the likelihood that the block Bi

is part of the pedestrian or, otherwise, is part of an occluding
object or background.

The algorithm for the occlusion inference and the posterior
reasoning is described in Alg. 1. For each block Bi we obtain
a discrete label si by thresholding the local response hi(Bi)
( 1). The discrete label si indicates whether the block Bi is
part of the pedestrian (si = 1) or is part of an occluding object
or background (si = −1). Once we have determined this for
all the blocks, we can define a binary map as illustrated in
Fig. 3, and then apply a segmentation algorithm on this binary
map. The objective of applying segmentation is to remove
spurious responses and to obtain spatially coherent regions.
As a result of this segmentation, we obtain spatially coherent
block labels s′

i (Fig. 3), and we can determine if there is
actually an occlusion or not.

In Algorithm 1, (s1, . . . , sm) represents the binary image
given by the sign of the local responses (h1(B1), . . . , hm(Bm)),
being si ∈ {−1, 1}, ∀i ∈ {1, . . . , m}. After obtaining the local
responses si, the algorithm returns (s′

1, . . . , s′
m) as the result of

applying a segmentation process over the binary image, where
again s′

i ∈ {−1, 1} ∀i. Finally, the algorithm returns a Boolean
confirming whether there is a partial occlusion depending
on the responses. More concretely, if all the responses s′

i

are negative, we interpret that such window only contains
background. If the responses are all positive, then we consider
that there is a pedestrian with no occlusions. Finally, if there
are both, positive and negative values, we consider that there
is a partial occlusion (Fig. 3).
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Algorithm 1: The occlusion inference and posterior rea-
soning [Fig. 1(b)] pseudo-code.

Input: B1, . . . , Bm

Output: Found partial occlusion
Procedure:
foreach i ∈ 1, . . . , m do

Calculate hi(Bi);
si := sign(hi(Bi));

end
(s′

1, . . . , s′
m) := seg(s1, . . . , sm);

if | ∑ s′
i| �= m then

return true;// There are occluded blocks

else
return false;// Pedestrian or Background

end

D. Ensemble of Local Classifiers

In general, partial occlusions can vary considerably in terms
of shape and size; hence a flexible model is needed. We
propose an adapted random subspace method (RSM) [19],
[23] for this task. In particular, we propose to use classifiers
trained on random locally distributed blocks; the collection
of such classifiers is subsequently browsed to find an optimal
combination. Our adapted RSM is introduced below (Fig. 4).

1) Block-based Random Subspace Classifiers: Given I =
{1, . . . , m} the set of block indices, in the k-th iteration we
generate a random subset Jk of indices, where Jk ⊂ I. This
selection process is carried on until we obtain T different
subsets of indices J1, . . . , JT . The k-th subset Jk contains mk

indices, where this number can vary across different iterations.
Given the k-th subset Jk = {jk

1, ..., j
k
mk

}, we define a sub-
space formed with the blocks indexed by Jk : {Bjk

1
, ..., Bjk

mk
}.

For each subspace, we train an individual classifier gk. Thus,
the decision function of each base classifier of the ensemble
can be expressed as a composition of functions

Rm·q Pk−→ Rmk ·q gk−→ (−∞, +∞)

x =

⎛
⎜⎝

B1
...
Bm

⎞
⎟⎠ �−→

⎛
⎜⎝

Bjk
1

...
Bjk

mk

⎞
⎟⎠ �−→ (gk ◦ Pk)(x)

(3)
where Pk denotes the projection from the original space to the
subspace defined by Jk, and gk the corresponding classifier
trained in such subspace. For simplicity of notation, from now
on, we will use gk instead of (gk ◦ Pk).

The resulting algorithm for the random subspace classifiers
generation is described in Alg. 2, where D is the training
set, xj denotes the j-th sample and lj its respective label.
Given the Jk indices we apply a segmentation algorithm to
the binary image (r1, . . . , rm), where ri = 1 if the i-th block
forms part of Jk, and ri = −1 otherwise (Fig. 5 left image).
The segmentation is intended, again, as a means of obtaining
spatial coherence in the selected blocks (Fig. 5 right image).

Fig. 3. Occlusion inference and posterior reasoning. From left to right, the
initial map formed by the local responses si; in the middle, the output after
segmentation, s′i; at the right, the three inference outputs.

As a result of this segmentation process we obtain a new
binary image from which we construct a new set J ′

k. In
particular, let r′

i be the binary value of the i-th block after
segmentation, then we define J ′

k = {i : r′
i = 1}, i.e., the set of

blocks that are positive in the segmented binary map (Fig. 5
right image). Then, if the binary image (r′

1, . . . , r′
m) obtained

after applying segmentation has all its values set to one (the
resulting classifier would be the holistic classifier), to -1 (no
subspace can be defined) or J ′

k ∈ J (which means that we
have already trained a classifier in the subspace defined by
J ′

k) we discard this set. Otherwise, we train a classifier in the
set Dk defined by the projection P ′

k, which is characterized by
the indices in J ′

k.
Note that, in the original RSM a fixed number of features

are randomly selected from the original space, i.e., all the
subspaces have the same dimension. In our case, the dimension
mk may differ from one random subspace to the next as mk =
|J ′

k|. This way, the classifiers are trained in areas with different
sizes.

Algorithm 2 is used for generating g1, . . . , gT trained on
random blocks. Based on that, we obtain our final ensemble
through the selection strategy described below.

2) Classifier Selection (N-Best Strategy): The accuracy
of gk, k ∈ {1, . . . , T } in our ensemble depends on the
discriminative strength of the local region where this classifier
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Algorithm 2: Our random subspace classifiers pseudo-
code.

Input: Training dataset D = {(xj, lj)|1 ≤ j ≤ n}, T
Output: g1, . . . , gT

Procedure:
I := {1, . . . , m};
J := {∅};
k := 1;
while k ≤ T do

Randomly select a subset Jk ⊂ I with Jk �= ∅;
Given Jk generate the according (r1, . . . , rm);
(r′

1, . . . , r′
m):=seg(r1, . . . , rm);

Obtain J ′
k from (r′

1, . . . , r′
m);

if | ∑ r′
i| �= m ∧ J ′

k /∈ J then
Train gk in Dk = {(P ′

k(xj), lj)|1 ≤ j ≤ n};
J := J ∪ {J ′

k};
k := k + 1;

end
end

Fig. 4. Training of the adapted random subspace method for handling partial
occlusion.

is applied. In order to filter out the less accurate classifiers, our
system uses the N-best algorithm [24]. A validation set is used
(Section V-A) to select a subset of classifiers which work best
when combined. For this purpose, the algorithm first sorts the
classifiers by their individual performance on the validation
set and evaluates how many best classifiers form the optimal
ensemble. The single best classifier is considered first. Then an
ensemble is formed by the first and the second classifiers and
evaluated on the validation set. The third classifier is added,
and the ensemble evaluated again, and so on. We apply a
weighted average for calculating the final decision, in which
weights are related to the individual performances (4). The
ensemble with the highest accuracy is selected among the
nested ensembles. One of the most important advantages of
this strategy is its linear order of complexity regarding the
number of evaluations. For an ensemble of T classifiers, we
need T individual evaluations plus T −1 combined evaluations,
giving complexity O(T ). Besides, during the evaluations it is
not necessary to re-compute the features.

3) Final Ensemble: Given x and the classifiers gk selected
after the N-best strategy, the combined decision can be finally

Fig. 5. Adapted random block selection. On the left, the initial randomly
selected blocks (in white), and on the right the blocks selected after applying
segmentation to obtain spatially coherent regions.

expressed as

E (x) =
∑
k∈S

ωkgk(x) (4)

where S is the set of the classifier indices that form the optimal
ensemble, with |S| ≤ T , and ωk their corresponding weights.
We derive ωk using the validation set described in Section
V-A.

Combining holistic and part classifier responses is a com-
mon technique used in part-based approaches [7], [11]. In
our case, if the score given by the ensemble is not confident
enough (i.e., the score is smaller than a fixed threshold th),
we combine both scores. More precisely, we apply a linear
combination between them

C (x) = αH (x) + (1 − α)E (x) (5)

where α weights the scores of both classifiers. In Section V-D
we describe how to obtain the best parameters for our method.

IV. Human Detection with Occlusion Handling

In the previous section, we presented a general method
to handle partial occlusions for object detection. In order to
illustrate and validate our approach, in this section we describe
in detail a particular instantiation of our method for the class
of humans. In order to apply our method to pedestrians, we
make use of both linear SVMs and HOG descriptors, which
have been proven to provide excellent results for this object
class. In addition to HOG descriptor, we also test our system
using the combination of the HOG and the local binary pattern
(LBP) descriptor [25], which has recently been proposed in
[7] for human detection. In the following we explain very
briefly each of these components. Given a training dataset
D, the linear SVM finds the optimal hyperplane that divides
the space between positive and negative samples. Thus, given
a new input x ∈ Rn, the decision function of the holistic
classifier can be defined as

H(x) = β + wT · x

where w is the weighting vector, and β is the constant bias
of the learnt hyperplane. Motivated by its success, we also
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propose to use the linear SVM as the learning algorithm for
the base classifiers described in Section III-D.

The HOG descriptor was proposed in [6] for human de-
tection. Since then, the descriptor has grown in popularity
due to its success. These features are now widely used in
object recognition and detection. They describe the body shape
through a dense extraction of local gradients in the window.
Usually, each region of the window is divided into overlapping
blocks where each block is composed of cells. A histogram
of oriented gradients is computed for each cell. The final
descriptor is the concatenation of all the blocks’ features in the
window. The LBP descriptor proposed first by in [25] has been
successfully used in face recognition and human detection
[7], [26], [27]. These features encode texture information.
In order to compute the cell-structured LBP descriptor, the
window is divided into overlapping cells. Then, each pixel
contained in a cell is labelled with the binary number obtained
by thresholding its value to its neighbour pixel values. Later,
for each cell a histogram is built using all the binary values
obtained in the previous step. Finally, the cell-structured LBP
is the result of concatenating all the histograms of binary
patterns in such window. The HOG-LBP is the concatenation
of both descriptors, HOG and LBP. These two descriptors
complement each other, as they combine shape and texture
information. Besides, this combination has been proven to
outperform the original HOG descriptor [3]. Note that in our
case, we interpret every cell LBP as a block, thus a block
HOG-LBP represents the concatenated block HOG and the cell
LBP computed in the same region. Following the formulation
proposed in [7], the constant bias β can be distributed to each
block Bi by using the training data [(10) in [7]]. This technique
allows the possibility to rewrite the decision function of the
whole linear SVM as a summation of classification results.
Then, using this formulation we can define the local classifiers
described in the previous Section III-C as

hi(Bi) = βi + wT
i · Bi

where wi and βi are the corresponding weights and distributed
bias for each block Bi, respectively. By defining the local
classifiers this way, no additional training per block is required.
Moreover, when computing the holistic classifier, the local
classifiers are implicitly computed, which means that there
is no extra cost.

In this paper, instead of just using HOG features to infer
whether there is a partial occlusion [7], we extend the process
to rely on both, HOG and LBP features. Thus, the response
of each hi is given by all the features computed in the same
block i. As in [7], the segmentation method used in our
implementation is based on the mean shift algorithm [28],
whose libraries are publicly available1. The mean shift weights
are set to wi = |hi(Bi)|.

V. Experimental Design

In this section, we outline the setup followed in our exper-
iments. We describe in detail the different datasets used, as

1http://coewww.rutgers.edu/riul/research/code/EDISON/index.html

well as the procedure conducted during the training and the
testing phases. As explained in Section III-D2, as part of our
training procedure we make use of a hold out validation set.
In order to obtain this validation set we propose the use of
virtual pedestrians, a sample of which is shown in Fig. 7. The
Daimler multicue dataset, published recently [16], is proposed
for evaluating the different approaches at the classification
level. The INRIA person dataset [6], in which almost none
of the pedestrians are occluded, is used to assess the detectors
under no occlusions. To evaluate the detector under partially
occluded data, we compiled a new dataset, called PobleSec, in
which a significant number of partially occluded pedestrians
are annotated.

A. Validation dataset

For the validation stage, we need partially occluded data
where only the bounding box of the entire object needs to
be specified. Recently, the use of synthetic data in computer
vision has grown in popularity [20], [29]–[31] due to their
multiple advantages (no manual annotation is required, easy
generation of more samples, the possibility of reproducing
difficult scenarios, etc.). In this paper, we generate a validation
set of partially occluded pedestrians needed in the training
process (Fig. 4). In particular, using the same game engine
as in our previous work [20], we built a scenario with 50
different human models (Fig. 6), and created four different
variations by introducing illumination, texture and object
changes. Afterwards, we recorded 40 video sequences with
a freely moving virtual camera, and extracted only positive
examples in which humans were partially occluded (Fig. 7).
For validating the classifiers learnt in the INRIA dataset
we extracted humans whose bounding boxes were at least
96 pixels tall (around 8000 positive samples in total), and
for the classifiers learnt in the Daimler dataset, bounding
boxes of height 72 pixels or more (over 12000 examples).
negative images (without humans) were extracted from the
same scenario with its different variations. Note that real data
with the corresponding label (partially/non-occluded) could
also be used in the classifier selection. For the classifiers
learnt in the INRIA and the Daimler datasets, we rescaled
the extracted humans to the same sizes, i.e., 64 × 128 and
48 × 96, respectively.

B. Datasets

1) INRIA person dataset: This dataset was proposed in
[6], and it is still one of the most widely used datasets in
human detection. The data is already divided into training and
testing subsets. The annotations are provided for the original
positive images (those containing pedestrians). The images
come from a personal digital image collection, and pedestrians
are shown in different poses against a variety of backgrounds
(indoors, urban, rural) in which people are normally standing
or walking. Examples and counterexamples in the training set
are normalized to 64 × 128 pixels, in which pedestrians are
downscaled to a height of 96 pixels (a margin of 16 pixels is
added around them). We use the INRIA training set for training
the classifiers and the testing set to evaluate the detectors under
no occlusions (Table I for more detail).
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TABLE I

Comparison of The Different Pedestrian Datasets. The Number

of Humans Shown are The Total Number of Labeled Ones
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INRIA 1208 – 614 1218 566 – – 288 453
Daimler 6514 32465 – – 3201 620 16235 – –
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Fig. 6. Virtual scenario.

2) Daimler multi-cue dataset: In 2010, Enzweiler et al.
[16] published a new dataset, also divided into training and
testing parts (Table I). We used the same partition of the data in
our experiment. Two different evaluations at the classification
level are done, one assessing the classifiers against partially
occluded pedestrians, and the other one only using non-
occluded pedestrians. For each labelled pedestrian, Enzweiler
et al. [16] generated additional samples by geometric jittering.
The provided images were captured from a vehicle-mounted
calibrated stereo camera rig (grayscale) in an urban environ-
ment. The authors also supply the stereo and flow images
corresponding to each sample. Only cropped examples and
counterexamples are provided, which have a resolution of
48 × 96 pixels and a margin of 12 pixels around each side.
Nonpedestrian samples contain a bias toward more difficult
patterns in terms of shape, which means that hard negative
examples are also provided.

3) PobleSec dataset: In order to evaluate the different
approaches under partial occlusions at per-image level, we
have created a new challenging dataset, called PobleSec. We
captured 327 positive images with a digital camera with a
resolution of 640×480. The images have been taken in urban
scenarios in Barcelona and both non-occluded and partially
occluded pedestrians are annotated. PobleSec dataset has a
similar number of labelled pedestrians to the Daimler partially
occluded dataset. The details of the datasets used in the
training and testing stages are shown in Table I.

C. Implementation details

Following the same procedure as Dalal et al. [6], we train
the holistic classifier by simply feeding the linear SVM with
the positive samples and ten random negative samples per
negative image. Once the classifier is trained, we run the
detector over the training negative images keeping all the
false positive samples (also named hard negatives). Later,
we retrain the classifier by using the initial and new hard
negatives. For the upper/lower-body classifiers used in Wang’s
method and for the random subspace classifiers, the initial
training is done by using the samples obtained at the first
bootstrapping step in the holistic training. Next, we conduct
an additional bootstrapping for each one of them (using only
the corresponding dimensions). The holistic classifier is also
retrained. This means that all the classifiers undergo a second
bootstrapping phase.

The training with both INRIA and Daimler data is per-
formed using only intensity images. For the different classifiers
trained in the Daimler dataset, no additional bootstrapping is
done, as positive and negative cropped samples are already
provided. In our experiments we use the original size of
the windows (in contrast to [16], where the windows were
scaled to 36 × 84 pixels with six pixels of margin for their
specific component layout). Observe that in this paper we only
focus on handling occlusion based on features extracted from
intensity, so there is no need to follow their specific layout.
We implemented Wang’s method using both HOG and HOG-
LBP descriptors following the same procedure as originally
proposed [7].

In our implementation, the HOG descriptor of each window
consists of 7 × 15 blocks with a spatial shift of six pixels for
the Daimler data, and eight pixels for the INRIA data. This
leads to overlapping blocks for both data sets. Each block
is divided into 2 × 2 cells of a fixed number of pixels. We
applied 6 × 6 cells for the Daimler data and 8 × 8 cells for
the INRIA data. The histogram of oriented gradients with 12
and nine orientation bins were computed, respectively. The
HOG feature vector is normalised using a L2 HYS norm.
For the LBP descriptor, we compute cell structures using
the same block HOG size with the same spatial shift. This
means that both descriptors are computed in the same region.
The L1-sqrt norm is applied for the normalization. In order
to remove the aliasing effect when scaling the images (in the
training procedure and the detection evaluation), we incorpo-
rate a bilinear interpolation.

D. Training methodology

Different methodologies have been proposed in the literature
to conduct the validation stage. Following [32], we use the
hold-out protocol (H-method). It has low-computational cost
and high reliability for large data sets, and is reproducible
when training and testing data are specified. We divided the
validation set into halves, one for estimating the individual
performance of each base classifier, and the other for evalu-
ating the N-best ensemble (Sect. III-D). The human images
were randomly split between the two halves.

In Table II we show the best parameters found by using our
virtual dataset for both occlusion handling methods (Wang’s
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Fig. 7. Partially occluded humans under different types of occlusions included in the validation set.

Fig. 8. Per-window evaluation on Daimler Non Occluded dataset of the three
different methods. (a) Evaluation using HOG features. (b) Evaluation using
HOG-LBP features. In parenthesis the log-average miss rate between 10−4

and 10−1.

Fig. 9. Classification comparison on Daimler Partially Occluded dataset.
(a) Evaluation of the different methods using HOG features. (b) Performance
curves of the methods using HOG-LBP. In parenthesis the log-average miss
rate between 10−4 and 10−1.
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Fig. 10. Detection curves on the INRIA testing dataset. (a) Evaluation of the
different methods on the test set using HOG features. (b) Performance curves
of the approaches using HOG-LBP features. In parenthesis the log-average
miss rate between 10−1 and 100.

TABLE II

Best Parameters For Wang’s Method And Our Method

α th Ambiguous range
Wang et al. [7] 0.7 1.5 [−2, 1]

Our method 0.3 2 [−2, 1]

approach and our approach). In particular, we found the best
values for: the ambiguous range defined in Section III-A
[Fig. 1(a)]; the weights wk, the classifier score threshold th,
and the weight α defined in Section III-D3; the minimum and
maximum random subspace dimensions used in our adapted
RSM (15 and 90 blocks, respectively); and the MeanShift
parameters.

E. Performance Evaluation

We evaluate the classification rate (per window) and the
detection rate (per image). A trade-off between missed de-
tections and false positive detections is sought, per window
(FPPW), and per image (FPPI), respectively. The curves plot-
ting miss-detection rate versus false positive rate are a special
case of ROC curves, in which the x-axis (false positives) is
logarithmically scaled.

The classification system assigns a continuous-valued output
to each input window related to the likelihood that the window
contains a human. The detection system, on the other hand,
employs a sliding window for different scales through a
HOG/HOG-LBP features pyramid. The sliding window can
be defined as a triple (�x, �y, �s), in which the first two
parameters denote the spatial stride, and the third parameter is
the scale step. In our case, the triple was (8, 8, 1.2). Thus, for
each image a group of detections is returned with their respec-
tive confidences. Later, a verification refinement is conducted
to prune several detections of the same pedestrian through a
confidence based nonmaximum suppression process. In our
case, we follow the PASCAL VOC criterion [33] for object
detection classes. Detections are considered as a true positive
if they achieve an overlap ratio ≥ 0.5 with the corresponding
pedestrian bounding box, and only one detection per object is
interpreted as such, the rest are considered as false positives.

Similarly to [3], instead of using a single point on the curve
to compare the performances, we compute the log-average
miss rate at nine points on the curve equally distributed over
the logarithmic x-axis. Both evaluation methodologies (per
window and per image) are frequently used comparing de-
tection methods. In object detection, the per-image evaluation
tends to be the standard evaluation methodology [34] because
the main concern in real applications is the performance at the
detection level.

For the experiments performed in the PobleSec dataset, we
consider those labels mandatory in which the pedestrian are
completely inside the frame, partially occluded and at least 96
pixels tall. Analogous to [3], we normalize all bounding boxes
to have a width of 0.41 times the height during the per-image
evaluation. For each classifier gk, k ∈ {1, . . . , T } described in
Sec. III-D, its respective weight wk is set to be proportional
to the log-average classification rate between 10−4 and 10−1

FPPW. The weights wk are normalized to sum to one.

VI. Results

In this section we describe and discuss the experimental
results. Two state-of-the-art methods are compared with our
approach, the holistic method and Wang’s one with partial
occlusion handling. To prove its viability, our approach should
be tested for partially occluded as well as nonoccluded data.

A. Per Window

Fig. 8 shows the results on the Daimler non occluded dataset
at per-window level. As can be seen in Fig. 8 (a), the perfor-
mances using HOG features between our approach and the
holistic approach are similar (around one percentage point in
log-average between performances). Wang’s method, instead,
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Fig. 11. Per-image curves generated on the PobleSec dataset. (a) Evaluation
of the different methods on the test set using HOG features. (b) Three different
curves using HOG-LBP features. In parenthesis the log-average miss rate
between 10−1 and 100.

shows a higher miss rate at low false positive per window. In
Fig. 8 (b) we show the performances of the extended HOG-
LBP methods. Again, the performances of our approach and
the holistic approach are almost equivalent, which corroborates
the HOG results. However, Wang’s method, like when using
HOG features alone, has a higher miss rate at low false positive
per window.

In Fig. 9, we show the curves for the three different
methods using HOG and HOG-LBP features on the Daimler
Partially Occluded dataset. Fig. 9 (a) shows that, for HOG,
Wang’s approach is two percentage points better than the
holistic approach, whereas our approach was five percentage
points better. Fig. 9 (b) shows that both methods with explicit
handling of occlusion outperform the baseline approach in the
HOG-LBP feature space.

Fig. 12. Heat-maps of which features (blocks) are used in each of our final
ensembles. For each block in the window, the figure shows a score (color)
equal to the number of classifiers that use the block. From left to right, the
heat-maps corresponding to the 48×96 classifiers using HOG and HOGLBP,
and the 64 × 128 ones using HOG and HOGLBP, respectively.

B. Per Image

In Fig. 10 we show the per-image evaluation using HOG
and HOG-LBP on the INRIA testing dataset. Both sub-figures
indicate that the occlusion handling does not degrade the
performance of the classifier for either the method in [7] or
our method compared to the holistic approach.

Fig. 11 shows the detection curves on the PobleSec dataset
using both HOG and HOG-LBP features. Only partially
occluded humans were used in this evaluation as described
earlier. The holistic method fails for both HOG and HOG-LBP
features. The best performance is demonstrated by our method
for both feature spaces. When using the HOG descriptor,
our approach outperforms the holistic approach by seven
percentage points on average, and Wang’s method by four
percentage points. When using the HOG-LBP descriptor our
approach outperforms the holistic method by nine percentage
points and the method in [7] by six percentage points. In
contrast to the other methods, our extended HOG-LBP based
approach outperforms the HOG based one.

In Figs. 13 and 14 we show a qualitative comparison
between the different approaches at one FPPI using HOG
and HOG-LBP descriptors. As can be seen, in both cases,
the holistic approach is able to detect certain pedestrians
which are partially occluded. However, it does not detect those
with a higher level of occlusion. Both occlusion handling
methods exhibit better performance by detecting cases missed
by the holistic approach. Our approach manages to detect
true positives where both other methods fail. This can be
seen, for example, in the third and fifth columns of frames in
both figures. When both methods have the same true positive
detections, Wang’s method tends to introduce more false
detections, as seen in the second column of frames in Fig. 13.

C. Discussion

After having presented and analyzed the results, we dis-
cuss here the points where the proposed framework shows
a performance superior to both the holistic [6] and Wang’s
method [7]. As we have seen, both Wang’s method and ours
provide a significantly better performance than the holistic
method when there are partial occlusions. This is due to the
fact that the holistic method makes use of all the features in
the window, including those ones that correspond to occluded
parts. The latter features add noise to the classifier’s decision,
and significantly reduce the performance of the holistic method
(Fig. 11). In contrast, both Wang’s method and our method
focus only on the nonoccluded regions of the window. This
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Fig. 13. Per-image results at one FPPI using HOG features. Top row, the detections using the holistic detector without occlusion handling. Middle row, the
detections using Wang’s detector. Bottom row, the detections using our method.

fact makes these methods more robust when we have partial
occlusions, as shown in Fig. 11. Now let us discuss the
difference in performance between our method and Wang’s
method in the presence of partial occlusions, and explain the
technical reasons why our method performs better in this
case. Wang’s method divides the window into two disjoint
regions (upper/lower), therefore, destroying the relationship
between features from the two parts. However, this relationship
might be important for handling different types of partial
occlusions. In contrast, our classifier model consists in an
ensemble obtained through a selection process under which a
large number of classifiers responsible for differently shaped
parts of the window is used (Fig. 12). Therefore, in our method
the relationship between features from different parts of the
window is maintained, in contrast with Wang’s method. The
model obtained with our method is more complete leading
to a higher accuracy. Based on the score of the classifier
for each individual block, Wang’s method selects the part of
the window (upper or lower) that contains a lower number
of occluded blocks. The drawback of this method is that,
many times, the individual blocks are not very informative,
and therefore the score obtained for these blocks is noisy.
This leads to a poor part selection if we use Wang’s method.
Contrastingly, in our method the selection is based on per-
formance statistics over a validation data set which contains
only partially occluded samples. This drives our method in
finding and using, collectively, regions in the window that are
frequently nonoccluded. Finally, let us discuss the performance
of the three methods (our method, Wang’s method and the
holistic one) in the situation where there are no occlusions.
In this case, the three methods perform similarly (Fig. 10).
The conceptual reason why this happens is that both Wang’s
method and our method only handle the cases inferred as par-
tial occluded targets. The rest of the windows are evaluated by

the holistic method. This common design brings comparable
performance to the holistic method for nonoccluded targets
and a significant improvement against partial occluded ones.
In Fig. 12 we show four different heat-maps. Each one of
them indicates which features (blocks) are actually used in
each of our final ensembles (read figure’s caption for more
details). On one hand, the uneven shading in all the heat-maps
shows that features from all parts of the window are present
in the ensemble, be it only in a small number of classifiers.
This fact demonstrates one of the advantages of our method
described above, which consists of preserving and drawing
upon relationships between features in the whole window.
On the other hand, the large blue area in the bottom half of
the window shows that the lower part is rarely useful (also
supported by the study performed in [3]). These circumstances
together with the results shown in this section highlight the
benefit of relying on a supervised statistical learning of the
type of occlusions that a given class typically undergoes, i.e.,
in opposition to making a specific hard assumption about such
occlusions (e.g., upper/lower selection).

VII. Conclusion and Future Work

In this work, we presented a general approach for human
detection in still images with the presence of partial occlu-
sion. The method was based on a modified random subspace
classifier ensemble. The method can be easily extended to
other objects, and allows to incorporate other block-based
descriptors. Two of the most acclaimed descriptors in the
literature of the pedestrian detection—HOG and HOG-LBP—
were implemented. The linear SVM was used as the base
classifier. We evaluated our approach on two large datasets,
INRIA and Daimler. The INRIA data is considered a standard
benchmark for human detection. We designed and release for
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Fig. 14. Per-image results at one FPPI using HOGLBP features. Top row, the detections using the holistic detector without occlusion handling. Middle row,
the detections using Wang’s method. Bottom row, the detections using our method.

public use a new challenging dataset called PobleSec. The
virtual-reality dataset for per-image detection is also released
for public use. Both per-window and per-image evaluations
have shown that the proposed approach works on a par with
the holistic approach when no occlusions are present and
outperforms both holistic and Wang’s approaches for detection
of partially occluded pedestrian images.

As future work, we plan on adding new descriptors, using
new kernels (through embedding techniques), and applying our
method to other objects.
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[30] D. Vázquez, A. M. López, D. Ponsa, and J. Marín, “Virtual worlds and
active learning for human detection,” in Proc. ICMI, Alicante, Spain,
2011, pp. 393–400.

[31] B. Kuneva, A. Torralba, and W. T. Freeman, “Evaluation of image
features using a photorealistic virtual world,” in Proc. ICCV, Barcelona,
Spain, 2011, pp. 2282–2289 .

[32] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms.
New York, NY, USA: Wiley-Interscience, 2004.

[33] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A.
Zisserman, “The 2005 PASCAL visual object classes challenge,” Int.
J. Comput. Vision, vol. 88, no. 2, pp. 303–338, Jun. 2010.

[34] J. Ponce, T. L. Berg, M. Everingham, D. Forsyth, M. Hebert, S. Lazeb-
nik, M. Marszałek, C. Schmid, C. Russell, A. Torralba, C. Williams,
J. Zhang, and A. Zisserman, “Dataset issues in object recognition,” in
Towards Category-Level Object Recognition. Berlin, Germany: Springer,
2006, pp. 29–48.

Javier Marín received the B.Sc. degree and the
Postgraduate Certificate in Education in mathematics
from the Universitat de les Illes Balears, Palma,
Balearic Islands, Spain, in 2007 and 2008, respec-
tively. He received the M.Sc. degree in computer
vision and artificial intelligence from the Computer
Vision Center, Universitat Autònoma de Barcelona
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