Occlusion Handling via Random Subspace Classifiers for Human Detection

Javier Marín, David Vázquez, Antonio M. López, Jaume Amores, and Ludmila I. Kuncheva

Abstract—This paper describes a general method to address partial occlusions for human detection in still images. The random subspace method (RSM) is chosen for building a classifier ensemble robust against partial occlusions. The component classifiers are chosen on the basis of their individual and combined performance. The main contribution of this work lies in our approach's capability to improve the detection rate when partial occlusions are present without compromising the detection performance on non occluded data. In contrast to many recent approaches, we propose a method which does not require manual labeling of body parts, defining any semantic spatial components, or using additional data coming from motion or stereo. Moreover, the method can be easily extended to other object classes. The experiments are performed on three large datasets: the INRIA person dataset, the Daimler Multicue dataset, and a new challenging dataset, called PobleSec, in which a considerable number of targets are partially occluded. The different approaches are evaluated at the classification and detection levels for both partially occluded and non-occluded data. The experimental results show that our detector outperforms state-of-the-art approaches in the presence of partial occlusions, while offering performance and reliability similar to those of the holistic approach on non-occluded data. The datasets used in our experiments have been made publicly available for benchmarking purposes.

Index Terms—Ensemble, human detection, partial occlusions, random subspace classifiers.

I. INTRODUCTION

Vision-based human detection plays a relevant role in many applications related to robot sensing, surveillance, home automation and driver assistance. Detecting humans is a challenging task due to major difficulties coming from the wide variability of the target, such as the shape, clothing or pose; and the external factors, such as the scenario, illumination, and partial occlusions [1]–[4].

Most promising methods of the state-of-the-art rely on

J. Marín, D. Vázquez, A. M. López, and J. Amores are with the Universitat Autònoma de Barcelona, Bellaterra 08193, Spain (e-mail: jmarin@cvc.uab.es; dvazquez@cvc.uab.es; antonio@cvc.uab.es; jaume@cvc.uab.es).

L. I. Kuncheva is with the University of Bangor, Bangor Gwynedd LL57 2DG, U.K (e-mail: 1.i.kuncheva@bangor.ac.uk).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2013.2255271

discriminative learning paradigms. Along this line, researchers have been mostly working on two different issues: extracting features [5]–[9], and classification through machine learning algorithms [5], [6], [10]–[13]. State-of-the-art approaches can be divided into two groups: holistic, which rely on detecting the target as a whole, and part-based, which combine the detection of different parts of the body (head, torso, arms, legs, etc.). Holistic methods offer robustness with respect to illumination, background and texture changes, whereas partbased methods are advantageous for different poses [3]. In all cases, the presence of partial occlusions causes a significant degradation of performance, even for part-based methods which are supposed to be robust in that respect [3].

As expected, detection in the presence of partial occlusions has sparked significant interest [7], [14]–[18]. For instance, an accident in which a vehicle hits a pedestrian is likely to occur when the pedestrian is not in full view to the driver, e.g., when it appears from behind a parked car. Captured in a sequence of images, several frames prior to the accident will contain a partially occluded human figure. Therefore, accurate detection in the presence of partial occlusion is of paramount importance when building driver assistance systems.

Current methods for handling occlusion lack generalization, either because additional information is required (coming from manual annotations of the parts or from other sensors), or they are tied to a specific object class [7], [15], [16], [18]. Therefore, our aim is to introduce a general method for automatic, accurate and robust detection of human figures in the presence of partial occlusion.

Image windows framing partially occluded persons tend to be misclassified due to the fact that, given the descriptor of the whole window, the features corresponding to the occluded areas can be interpreted by the classifier as noise or background. Accordingly we argue that an appropriate solution for these situations is to apply classifiers trained on regions less likely to be occluded. More specifically, we propose to learn the different regions of the window by using random subspace classifiers [19], and subsequently find the optimal ensemble through a bespoke selection strategy.

The proposed approach brings several benefits: 1) the approach is generic, therefore applicable to any class of objects; 2) as the random subspace classifiers are trained in the original space, no further feature extraction is required; 3) the detection is done on monocular intensity images, unlike other methods for which stereo and motion information are mandatory [16];

2168-2267 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Manuscript received June 02, 2012; revised October 29, 2012; accepted March 12, 2013. Date of publication May 6, 2013; date of current version February 12, 2014. This work was supported in part by Spanish MICINN projects Consolider Ingenio 2010: MIPRCV (CSD200700018), TRA2011-29454-C03-01, TIN2011-29494-C03-02, the Ramón y Cajal fellowship RYC-2008-03789, and Javier Marín's FPI Grant BES-2008-007582. This paper was recommended by Associate Editor K.-S. Hwang.

and 4) during training, we only require a subset of images with and without partial occlusion; other detection methods require delineation of the occluded area.

Following our previous work [20], here we use a virtualworld based dataset with the occlusion labelling available by design. We also introduce a new real world dataset with occluded pedestrians for testing.

The remainder of this paper is organized as follows. Section II introduces the related work. Section III presents the method from a generic point of view. Section IV, presents a particular implementation for human detection. Section V, relates the design followed in our experiments. In Section VI, we validate and discuss our method. Finally, Section VII draws the main conclusions and future work.

II. RELATED WORK

Dollar *et al.* [3] evaluated state-of-the-art detectors under occlusions, and demonstrated that both holistic and partbased methods have similar unsatisfactory performance. This is attributed to the fact that these methods are not specifically designed for handling occlusions.

Very few methods from the literature handle occlusions explicitly. Dai *et al.* [14] propose a part-based method for face and car detection. The method consists of a set of substructuredetectors, each of which is composed of detectors related to the different parts of the object. The disadvantage of this method is that the different parts of the object need to be manually labeled in the training dataset, in particular, eight parts for face detection and seven parts for cars.

A general approach based on the response of different part detectors and a whole-object segmentation process is introduced in [15]. The method requires a hierarchical objectparts design with eleven components making up the head, the torso and the legs. The edge pixels of the object that positively contribute to the part detectors are extracted and used together with the part detector responses to obtain a joint likelihood of multiple objects. In this joint likelihood an occlusion reasoning is applied. In case of finding any inter-object occlusions, the occluded parts are ignored. The main drawback of this method is that it requires a manual spatial alignment of the objects, which has to be adapted to each object class. In addition, it requires a special camera set-up in which the camera has to look down on the ground-plane.

Wang *et al.* [7] propose a new scheme to handle occlusions. More concretely, the response at a local level of the histograms of oriented gradients (HOG) [6] descriptor is used to determine whether or not such local region contains a human figure. Then, by segmenting the binary responses over the whole window, the algorithm infers the possible occlusion. If the segmentation process does not lead to a consistent positive or negative response for the entire window, an upper/lower-body classifier is applied. The drawback of this method is that it makes use of a pre-defined spatial layout that characterizes a pedestrian but not any other object class.

A mixture of experts for handling partial occlusion is presented in [16]. The component layout the authors use is composed by three overlapped regions: head, torso and legs. Then, during the classification process, expert weights are computed to focus on the unoccluded region through a segmentation process applied to the depth and motion images. While the authors demonstrate the robustness of their method against partial occlusions, the drawback of this approach is that it requires both stereo vision and motion information, which limits its applicability if we do not have this additional information. Furthermore, the method is based on a predefined spatial layout that is characteristic of the pedestrian, which limits its applicability for other classes of objects.

Gao *et al.* [17] tackle occlusions by identifying and using in the training process, cells of pixels that belong to the object in the bounding box. This method outputs not just the detection, but also the inferred segmentation. However, this method requires the tedious task of manual labeling all the cells that belong to the object in the training set.

Girshick *et al.* [18] propose an extension of the deformable part-based detector [11] with occlusion handling. Specifically, the method tries to place the different body parts over the window. Then, if some of the parts are not matched, the method tries to fit in their designated place occluding objects learned from the data. The obvious inconvenience of such an approach is the need of learning the objects that occlude the target. Besides, to extend the method to other classes, a different occlusion reasoning has to be defined.

Here we propose a method for detecting human figures in still images, which can handle occlusion automatically. Manual annotation or defining specific parts/regions of the window are not needed. Our method is based on an ensemble of random subspace classifiers obtained through a selection process. It is worth mentioning that, as the random subspace classifiers use the original feature space, there is no additional feature extraction cost. Similar to [7] and [16], the proposed approach uses a segmentation process to find the unoccluded part of a candidate-window. An ensemble is applied only in uncertain cases. In particular, the proposed method generalizes the inference process presented in [7] by extending it to multiple descriptors.

III. OCCLUSION HANDLING METHOD

A. Proposal Outline

We present a general method for handling partial occlusions (Fig. 1). In such a design, the window is described by a block-based feature vector. The resulting feature vector is evaluated by the holistic classifier. If the confidence given by the holistic classifier falls into an ambiguous range [Fig. 1(a)], then an occlusion inference process is applied by using the block responses. Finally, if the inference process determines that there is a partial occlusion [Fig. 1(b)], an ensemble classifier the window. Otherwise, the final output is given by the holistic classifier. Notice that, in order to obtain a more accurate decision, we apply the ensemble only when partial occlusion is suspected. In the following, we explain in detail the components shown in Fig. 1.

B. Block Representation

Our detection system relies on using a block-based representation, one of the most successful descriptor types in use

Fig. 1. Occlusion handling scheme. From left to right, the steps for classifying a window.

Fig. 2. Block-based representation. From left to right, the original input, then the division into blocks (note that Blocks can overlap), and finally, the feature descriptor.

today [3]. A well-known example of such descriptor is the HOG in [7], although many other examples [21], [22] exist. In Section IV we explain our specific choice for this paper. Fig. 2 illustrates the idea of this type of representation, where the window descriptor $\mathbf{x} \in \mathbf{R}^n$ is defined as the concatenation of the features extracted from every predefined block \mathbf{B}_i , $i \in \{1, ..., m\}$. A block is a fixed subregion of the window as shown in Fig. 2. Our method also allows the blocks to overlap. The descriptor is denoted as $\mathbf{x} = (\mathbf{B}_1, ..., \mathbf{B}_m)^T$.

The feature vector \mathbf{x} is passed to a holistic classifier H

$$\begin{array}{cccc} H: & \mathbf{R}^n & \longrightarrow & (-\infty, +\infty) \\ & & \mathbf{x} & \longmapsto & H(\mathbf{x}) \end{array}$$

where the feature space dimension, n, is $n = m \cdot q$, being q the number of features per block.

The higher the value returned by the function H, the higher the confidence that there is a pedestrian in the given window. Note that the function H can be any classifier that returns a continuous-valued output, for example, a hyperplane learnt with an SVM.

C. Occlusion Inference and Posterior Reasoning

In order to detect if there is a partially occluded human figure in the image, we make use of a procedure similar to the one by Wang *et al.* [7]. First, we determine whether the

score of the holistic classifier is ambiguous. For example, the response from an SVM classifier can be perceived as ambiguous if it is close to 0. When the output is ambiguous, an occlusion inference process is applied. This is based on the responses obtained from the features computed in each block. In particular, for every block B_i , $i \in \{1, ..., m\}$ we define a local classifier h_i

$$\begin{array}{rcl} h_i: & \mathbf{R}^q & \longrightarrow & (-\infty, +\infty) \\ & & & \mathbf{B}_i & \longmapsto & h(\mathbf{B}_i) \end{array}$$

where the classifier h_i takes as input the *i*-th block \mathbf{B}_i of the window, and provides as output the likelihood that the block \mathbf{B}_i is part of the pedestrian or, otherwise, is part of an occluding object or background.

The algorithm for the occlusion inference and the posterior reasoning is described in Alg. 1. For each block \mathbf{B}_i we obtain a discrete label s_i by thresholding the local response $h_i(\mathbf{B}_i)$ (1). The discrete label s_i indicates whether the block \mathbf{B}_i is part of the pedestrian ($s_i = 1$) or is part of an occluding object or background ($s_i = -1$). Once we have determined this for all the blocks, we can define a binary map as illustrated in Fig. 3, and then apply a segmentation algorithm on this binary map. The objective of applying segmentation is to remove spurious responses and to obtain spatially coherent regions. As a result of this segmentation, we obtain spatially coherent block labels s'_i (Fig. 3), and we can determine if there is actually an occlusion or not.

In Algorithm 1, (s_1, \ldots, s_m) represents the binary image given by the sign of the local responses $(h_1(\mathbf{B}_1), \ldots, h_m(\mathbf{B}_m))$, being $s_i \in \{-1, 1\}, \forall i \in \{1, \ldots, m\}$. After obtaining the local responses s_i , the algorithm returns (s'_1, \ldots, s'_m) as the result of applying a segmentation process over the binary image, where again $s'_i \in \{-1, 1\} \forall i$. Finally, the algorithm returns a Boolean confirming whether there is a partial occlusion depending on the responses. More concretely, if all the responses s'_i are negative, we interpret that such window only contains background. If the responses are all positive, then we consider that there is a pedestrian with no occlusions. Finally, if there are both, positive and negative values, we consider that there is a partial occlusion (Fig. 3).

Algorithm	1: The	occlusion	inference	and	posterior	rea-
soning [Fig	(. 1(b)]	pseudo-coo	le.			

Input: $\mathbf{B}_1, \ldots, \mathbf{B}_m$
Output: Found partial occlusion
Procedure:
foreach $i \in 1, \ldots, m$ do
Calculate $h_i(\mathbf{B}_i)$;
$s_i := sign(h_i(\mathbf{B}_i));$
end
$(s'_1,\ldots,s'_m) := \operatorname{seg}(s_1,\ldots,s_m);$
if $ \sum s'_i \neq m$ then
return true;// There are occluded blocks
else
return false;// Pedestrian or Background
end

D. Ensemble of Local Classifiers

In general, partial occlusions can vary considerably in terms of shape and size; hence a flexible model is needed. We propose an adapted random subspace method (RSM) [19], [23] for this task. In particular, we propose to use classifiers trained on random locally distributed blocks; the collection of such classifiers is subsequently browsed to find an optimal combination. Our adapted RSM is introduced below (Fig. 4).

1) Block-based Random Subspace Classifiers: Given $I = \{1, ..., m\}$ the set of block indices, in the *k*-th iteration we generate a random subset J_k of indices, where $J_k \subset I$. This selection process is carried on until we obtain *T* different subsets of indices $J_1, ..., J_T$. The *k*-th subset J_k contains m_k indices, where this number can vary across different iterations.

Given the *k*-th subset $J_k = \{j_1^k, ..., j_{m_k}^k\}$, we define a subspace formed with the blocks indexed by $J_k : \{B_{j_1^k}, ..., B_{j_{m_k}^k}\}$. For each subspace, we train an individual classifier g_k . Thus, the decision function of each base classifier of the ensemble can be expressed as a composition of functions

$$\mathbf{R}^{m \cdot q} \xrightarrow{P_k} \mathbf{R}^{m_k \cdot q} \xrightarrow{g_k} (-\infty, +\infty)$$
$$\mathbf{x} = \begin{pmatrix} \mathbf{B}_1 \\ \vdots \\ \mathbf{B}_m \end{pmatrix} \longmapsto \begin{pmatrix} \mathbf{B}_{j_1^k} \\ \vdots \\ \mathbf{B}_{j_{m_k}^k} \end{pmatrix} \longmapsto (g_k \circ P_k)(\mathbf{x})$$

where P_k denotes the projection from the original space to the subspace defined by J_k , and g_k the corresponding classifier trained in such subspace. For simplicity of notation, from now on, we will use g_k instead of $(g_k \circ P_k)$.

(3)

The resulting algorithm for the random subspace classifiers generation is described in Alg. 2, where *D* is the training set, \mathbf{x}_j denotes the *j*-th sample and l_j its respective label. Given the J_k indices we apply a segmentation algorithm to the binary image (r_1, \ldots, r_m) , where $r_i = 1$ if the *i*-th block forms part of J_k , and $r_i = -1$ otherwise (Fig. 5 left image). The segmentation is intended, again, as a means of obtaining spatial coherence in the selected blocks (Fig. 5 right image).

Fig. 3. Occlusion inference and posterior reasoning. From left to right, the initial map formed by the local responses s_i ; in the middle, the output after segmentation, s'_i ; at the right, the three inference outputs.

As a result of this segmentation process we obtain a new binary image from which we construct a new set J'_k . In particular, let r'_i be the binary value of the *i*-th block after segmentation, then we define $J'_k = \{i : r'_i = 1\}$, *i.e.*, the set of blocks that are positive in the segmented binary map (Fig. 5 right image). Then, if the binary image (r'_1, \ldots, r'_m) obtained after applying segmentation has all its values set to one (the resulting classifier would be the holistic classifier), to -1 (no subspace can be defined) or $J'_k \in \mathcal{J}$ (which means that we have already trained a classifier in the subspace defined by J'_k) we discard this set. Otherwise, we train a classifier in the set D_k defined by the projection P'_k , which is characterized by the indices in J'_k .

Note that, in the original RSM a fixed number of features are randomly selected from the original space, *i.e.*, all the subspaces have the same dimension. In our case, the dimension m_k may differ from one random subspace to the next as $m_k = |J'_k|$. This way, the classifiers are trained in areas with different sizes.

Algorithm 2 is used for generating g_1, \ldots, g_T trained on random blocks. Based on that, we obtain our final ensemble through the selection strategy described below.

2) Classifier Selection (N-Best Strategy): The accuracy of g_k , $k \in \{1, ..., T\}$ in our ensemble depends on the discriminative strength of the local region where this classifier

Algorithm 2: Our random subspace classifiers pseudo-code.

Input: Training dataset $D = \{(\mathbf{x}_i, l_i) | 1 \le j \le n\}, T$ **Output**: $g_1, ..., g_T$ **Procedure:** $I := \{1, \ldots, m\};$ $\mathcal{J} := \{\emptyset\};$ k := 1;while k < T do Randomly select a subset $J_k \subset I$ with $J_k \neq \emptyset$; Given J_k generate the according (r_1, \ldots, r_m) ; $(r'_1, \ldots, r'_m) := seg(r_1, \ldots, r_m);$ Obtain J'_{k} from $(r'_{1}, ..., r'_{m})$; if $|\sum r'_i| \neq m \land J'_k \notin \mathcal{J}$ then Train g_k in $D_k = \{(P'_k(\mathbf{x}_j), l_j) | 1 \le j \le n\};$ $\mathcal{J} := \mathcal{J} \cup \{J'_k\};$ k := k + 1;end end

Fig. 4. Training of the adapted random subspace method for handling partial occlusion.

is applied. In order to filter out the less accurate classifiers, our system uses the N-best algorithm [24]. A validation set is used (Section V-A) to select a subset of classifiers which work best when combined. For this purpose, the algorithm first sorts the classifiers by their individual performance on the validation set and evaluates how many best classifiers form the optimal ensemble. The single best classifier is considered first. Then an ensemble is formed by the first and the second classifiers and evaluated on the validation set. The third classifier is added, and the ensemble evaluated again, and so on. We apply a weighted average for calculating the final decision, in which weights are related to the individual performances (4). The ensemble with the highest accuracy is selected among the nested ensembles. One of the most important advantages of this strategy is its linear order of complexity regarding the number of evaluations. For an ensemble of T classifiers, we need T individual evaluations plus T-1 combined evaluations, giving complexity $\mathcal{O}(T)$. Besides, during the evaluations it is not necessary to re-compute the features.

3) *Final Ensemble:* Given **x** and the classifiers g_k selected after the *N*-best strategy, the combined decision can be finally

Fig. 5. Adapted random block selection. On the left, the initial randomly selected blocks (in white), and on the right the blocks selected after applying segmentation to obtain spatially coherent regions.

expressed as

$$E(\mathbf{x}) = \sum_{k \in S} \omega_k g_k(\mathbf{x}) \tag{4}$$

where *S* is the set of the classifier indices that form the optimal ensemble, with $|S| \leq T$, and ω_k their corresponding weights. We derive ω_k using the validation set described in Section V-A.

Combining holistic and part classifier responses is a common technique used in part-based approaches [7], [11]. In our case, if the score given by the ensemble is not confident enough (*i.e.*, the score is smaller than a fixed threshold th), we combine both scores. More precisely, we apply a linear combination between them

$$C(\mathbf{x}) = \alpha H(\mathbf{x}) + (1 - \alpha)E(\mathbf{x})$$
(5)

where α weights the scores of both classifiers. In Section V-D we describe how to obtain the best parameters for our method.

IV. HUMAN DETECTION WITH OCCLUSION HANDLING

In the previous section, we presented a general method to handle partial occlusions for object detection. In order to illustrate and validate our approach, in this section we describe in detail a particular instantiation of our method for the class of humans. In order to apply our method to pedestrians, we make use of both linear SVMs and HOG descriptors, which have been proven to provide excellent results for this object class. In addition to HOG descriptor, we also test our system using the combination of the HOG and the local binary pattern (LBP) descriptor [25], which has recently been proposed in [7] for human detection. In the following we explain very briefly each of these components. Given a training dataset D, the linear SVM finds the optimal hyperplane that divides the space between positive and negative samples. Thus, given a new input $\mathbf{x} \in \mathbf{R}^n$, the decision function of the holistic classifier can be defined as

$$H(\mathbf{x}) = \boldsymbol{\beta} + \mathbf{w}^T \cdot \mathbf{x}$$

where **w** is the weighting vector, and β is the constant bias of the learnt hyperplane. Motivated by its success, we also

propose to use the linear SVM as the learning algorithm for the base classifiers described in Section III-D.

The HOG descriptor was proposed in [6] for human detection. Since then, the descriptor has grown in popularity due to its success. These features are now widely used in object recognition and detection. They describe the body shape through a dense extraction of local gradients in the window. Usually, each region of the window is divided into overlapping blocks where each block is composed of cells. A histogram of oriented gradients is computed for each cell. The final descriptor is the concatenation of all the blocks' features in the window. The LBP descriptor proposed first by in [25] has been successfully used in face recognition and human detection [7], [26], [27]. These features encode texture information. In order to compute the cell-structured LBP descriptor, the window is divided into overlapping cells. Then, each pixel contained in a cell is labelled with the binary number obtained by thresholding its value to its neighbour pixel values. Later, for each cell a histogram is built using all the binary values obtained in the previous step. Finally, the cell-structured LBP is the result of concatenating all the histograms of binary patterns in such window. The HOG-LBP is the concatenation of both descriptors, HOG and LBP. These two descriptors complement each other, as they combine shape and texture information. Besides, this combination has been proven to outperform the original HOG descriptor [3]. Note that in our case, we interpret every cell LBP as a block, thus a block HOG-LBP represents the concatenated block HOG and the cell LBP computed in the same region. Following the formulation proposed in [7], the constant bias β can be distributed to each block \mathbf{B}_i by using the training data [(10) in [7]]. This technique allows the possibility to rewrite the decision function of the whole linear SVM as a summation of classification results. Then, using this formulation we can define the local classifiers described in the previous Section III-C as

$$h_i(\mathbf{B}_i) = \beta_i + \mathbf{w}_i^T \cdot \mathbf{B}_i$$

where \mathbf{w}_i and β_i are the corresponding weights and distributed bias for each block \mathbf{B}_i , respectively. By defining the local classifiers this way, no additional training per block is required. Moreover, when computing the holistic classifier, the local classifiers are implicitly computed, which means that there is no extra cost.

In this paper, instead of just using HOG features to infer whether there is a partial occlusion [7], we extend the process to rely on both, HOG and LBP features. Thus, the response of each h_i is given by all the features computed in the same block *i*. As in [7], the segmentation method used in our implementation is based on the mean shift algorithm [28], whose libraries are publicly available¹. The mean shift weights are set to $w_i = |h_i(\mathbf{B}_i)|$.

V. EXPERIMENTAL DESIGN

In this section, we outline the setup followed in our experiments. We describe in detail the different datasets used, as well as the procedure conducted during the training and the testing phases. As explained in Section III-D2, as part of our training procedure we make use of a hold out validation set. In order to obtain this validation set we propose the use of virtual pedestrians, a sample of which is shown in Fig. 7. The Daimler multicue dataset, published recently [16], is proposed for evaluating the different approaches at the classification level. The INRIA person dataset [6], in which almost none of the pedestrians are occluded, is used to assess the detectors under no occlusions. To evaluate the detector under partially occluded data, we compiled a new dataset, called *PobleSec*, in which a significant number of partially occluded pedestrians are annotated.

A. Validation dataset

For the validation stage, we need partially occluded data where only the bounding box of the entire object needs to be specified. Recently, the use of synthetic data in computer vision has grown in popularity [20], [29]-[31] due to their multiple advantages (no manual annotation is required, easy generation of more samples, the possibility of reproducing difficult scenarios, etc.). In this paper, we generate a validation set of partially occluded pedestrians needed in the training process (Fig. 4). In particular, using the same game engine as in our previous work [20], we built a scenario with 50 different human models (Fig. 6), and created four different variations by introducing illumination, texture and object changes. Afterwards, we recorded 40 video sequences with a freely moving virtual camera, and extracted only positive examples in which humans were partially occluded (Fig. 7). For validating the classifiers learnt in the INRIA dataset we extracted humans whose bounding boxes were at least 96 pixels tall (around 8000 positive samples in total), and for the classifiers learnt in the Daimler dataset, bounding boxes of height 72 pixels or more (over 12000 examples). negative images (without humans) were extracted from the same scenario with its different variations. Note that real data with the corresponding label (partially/non-occluded) could also be used in the classifier selection. For the classifiers learnt in the INRIA and the Daimler datasets, we rescaled the extracted humans to the same sizes, *i.e.*, 64×128 and 48×96 , respectively.

B. Datasets

1) *INRIA person dataset:* This dataset was proposed in [6], and it is still one of the most widely used datasets in human detection. The data is already divided into training and testing subsets. The annotations are provided for the original positive images (those containing pedestrians). The images come from a personal digital image collection, and pedestrians are shown in different poses against a variety of backgrounds (indoors, urban, rural) in which people are normally standing or walking. Examples and counterexamples in the training set are normalized to 64×128 pixels, in which pedestrians are downscaled to a height of 96 pixels (a margin of 16 pixels is added around them). We use the INRIA training set for training the classifiers and the testing set to evaluate the detectors under no occlusions (Table I for more detail).

¹http://coewww.rutgers.edu/riul/research/code/EDISON/index.html

TABLE I Comparison of The Different Pedestrian Datasets. The Number of Humans Shown are The Total Number of Labeled Ones

	Training			Testing					
	# pedestrians	# non pedestrians	# pos. images	# neg. images	# non-occluded pedestrians	<pre># partially occluded pedestrians</pre>	# non pedestrians	# pos. images	# neg. images
INRIA	1208	-	614	1218	566	-	-	288	453
Daimler	6514	32465	-	-	3201	620	16235	-	-
PobleSec	-	-	-	-	-	577	-	327	-

Fig. 6. Virtual scenario.

2) Daimler multi-cue dataset: In 2010, Enzweiler et al. [16] published a new dataset, also divided into training and testing parts (Table I). We used the same partition of the data in our experiment. Two different evaluations at the classification level are done, one assessing the classifiers against partially occluded pedestrians, and the other one only using nonoccluded pedestrians. For each labelled pedestrian, Enzweiler et al. [16] generated additional samples by geometric jittering. The provided images were captured from a vehicle-mounted calibrated stereo camera rig (grayscale) in an urban environment. The authors also supply the stereo and flow images corresponding to each sample. Only cropped examples and counterexamples are provided, which have a resolution of 48×96 pixels and a margin of 12 pixels around each side. Nonpedestrian samples contain a bias toward more difficult patterns in terms of shape, which means that hard negative examples are also provided.

3) PobleSec dataset: In order to evaluate the different approaches under partial occlusions at per-image level, we have created a new challenging dataset, called *PobleSec*. We captured 327 positive images with a digital camera with a resolution of 640×480 . The images have been taken in urban scenarios in Barcelona and both non-occluded and partially occluded pedestrians are annotated. *PobleSec* dataset has a similar number of labelled pedestrians to the Daimler partially occluded dataset. The details of the datasets used in the training and testing stages are shown in Table I.

C. Implementation details

Following the same procedure as Dalal *et al.* [6], we train the holistic classifier by simply feeding the linear SVM with the positive samples and ten random negative samples per negative image. Once the classifier is trained, we run the detector over the training negative images keeping all the false positive samples (also named hard negatives). Later, we retrain the classifier by using the initial and new hard negatives. For the upper/lower-body classifiers used in Wang's method and for the random subspace classifiers, the initial training is done by using the samples obtained at the first bootstrapping step in the holistic training. Next, we conduct an additional bootstrapping for each one of them (using only the corresponding dimensions). The holistic classifier is also retrained. This means that all the classifiers undergo a second bootstrapping phase.

The training with both INRIA and Daimler data is performed using only intensity images. For the different classifiers trained in the Daimler dataset, no additional bootstrapping is done, as positive and negative cropped samples are already provided. In our experiments we use the original size of the windows (in contrast to [16], where the windows were scaled to 36×84 pixels with six pixels of margin for their specific component layout). Observe that in this paper we only focus on handling occlusion based on features extracted from intensity, so there is no need to follow their specific layout. We implemented Wang's method using both HOG and HOG-LBP descriptors following the same procedure as originally proposed [7].

In our implementation, the HOG descriptor of each window consists of 7×15 blocks with a spatial shift of six pixels for the Daimler data, and eight pixels for the INRIA data. This leads to overlapping blocks for both data sets. Each block is divided into 2×2 cells of a fixed number of pixels. We applied 6×6 cells for the Daimler data and 8×8 cells for the INRIA data. The histogram of oriented gradients with 12 and nine orientation bins were computed, respectively. The HOG feature vector is normalised using a L2 HYS norm. For the LBP descriptor, we compute cell structures using the same block HOG size with the same spatial shift. This means that both descriptors are computed in the same region. The L1-sqrt norm is applied for the normalization. In order to remove the aliasing effect when scaling the images (in the training procedure and the detection evaluation), we incorporate a bilinear interpolation.

D. Training methodology

Different methodologies have been proposed in the literature to conduct the validation stage. Following [32], we use the hold-out protocol (H-method). It has low-computational cost and high reliability for large data sets, and is reproducible when training and testing data are specified. We divided the validation set into halves, one for estimating the individual performance of each base classifier, and the other for evaluating the *N*-best ensemble (Sect. III-D). The human images were randomly split between the two halves.

In Table II we show the best parameters found by using our virtual dataset for both occlusion handling methods (Wang's

Fig. 7. Partially occluded humans under different types of occlusions included in the validation set.

Fig. 8. Per-window evaluation on Daimler Non Occluded dataset of the three different methods. (a) Evaluation using HOG features. (b) Evaluation using HOG-LBP features. In parenthesis the log-average miss rate between 10^{-4} and 10^{-1} .

Fig. 9. Classification comparison on Daimler Partially Occluded dataset. (a) Evaluation of the different methods using HOG features. (b) Performance curves of the methods using HOG-LBP. In parenthesis the log-average miss rate between 10^{-4} and 10^{-1} .

Fig. 10. Detection curves on the INRIA testing dataset. (a) Evaluation of the different methods on the test set using HOG features. (b) Performance curves of the approaches using HOG-LBP features. In parenthesis the log-average miss rate between 10^{-1} and 10^{0} .

TABLE II BEST PARAMETERS FOR WANG'S METHOD AND OUR METHOD

	α	th	Ambiguous range
Wang et al. [7]	0.7	1.5	[-2, 1]
Our method	0.3	2	[-2, 1]

approach and our approach). In particular, we found the best values for: the ambiguous range defined in Section III-A [Fig. 1(a)]; the weights w_k , the classifier score threshold *th*, and the weight α defined in Section III-D3; the minimum and maximum random subspace dimensions used in our adapted RSM (15 and 90 blocks, respectively); and the MeanShift parameters.

E. Performance Evaluation

We evaluate the classification rate (per window) and the detection rate (per image). A trade-off between missed detections and false positive detections is sought, per window (FPPW), and per image (FPPI), respectively. The curves plotting miss-detection rate versus false positive rate are a special case of ROC curves, in which the *x*-axis (false positives) is logarithmically scaled.

The classification system assigns a continuous-valued output to each input window related to the likelihood that the window contains a human. The detection system, on the other hand, employs a sliding window for different scales through a HOG/HOG-LBP features pyramid. The sliding window can be defined as a triple $(\Delta_x, \Delta_y, \Delta_s)$, in which the first two parameters denote the spatial stride, and the third parameter is the scale step. In our case, the triple was (8, 8, 1.2). Thus, for each image a group of detections is returned with their respective confidences. Later, a verification refinement is conducted to prune several detections of the same pedestrian through a confidence based nonmaximum suppression process. In our case, we follow the PASCAL VOC criterion [33] for object detection classes. Detections are considered as a true positive if they achieve an overlap ratio ≥ 0.5 with the corresponding pedestrian bounding box, and only one detection per object is interpreted as such, the rest are considered as false positives.

Similarly to [3], instead of using a single point on the curve to compare the performances, we compute the log-average miss rate at nine points on the curve equally distributed over the logarithmic x-axis. Both evaluation methodologies (per window and per image) are frequently used comparing detection methods. In object detection, the per-image evaluation tends to be the standard evaluation methodology [34] because the main concern in real applications is the performance at the detection level.

For the experiments performed in the *PobleSec* dataset, we consider those labels mandatory in which the pedestrian are completely inside the frame, partially occluded and at least 96 pixels tall. Analogous to [3], we normalize all bounding boxes to have a width of 0.41 times the height during the per-image evaluation. For each classifier g_k , $k \in \{1, ..., T\}$ described in Sec. III-D, its respective weight w_k is set to be proportional to the log-average classification rate between 10^{-4} and 10^{-1} FPPW. The weights w_k are normalized to sum to one.

VI. RESULTS

In this section we describe and discuss the experimental results. Two state-of-the-art methods are compared with our approach, the holistic method and Wang's one with partial occlusion handling. To prove its viability, our approach should be tested for partially occluded as well as nonoccluded data.

A. Per Window

Fig. 8 shows the results on the Daimler non occluded dataset at per-window level. As can be seen in Fig. 8 (a), the performances using HOG features between our approach and the holistic approach are similar (around one percentage point in log-average between performances). Wang's method, instead,

Fig. 11. Per-image curves generated on the *PobleSec* dataset. (a) Evaluation of the different methods on the test set using HOG features. (b) Three different curves using HOG-LBP features. In parenthesis the log-average miss rate between 10^{-1} and 10^{0} .

shows a higher miss rate at low false positive per window. In Fig. 8 (b) we show the performances of the extended HOG-LBP methods. Again, the performances of our approach and the holistic approach are almost equivalent, which corroborates the HOG results. However, Wang's method, like when using HOG features alone, has a higher miss rate at low false positive per window.

In Fig. 9, we show the curves for the three different methods using HOG and HOG-LBP features on the Daimler Partially Occluded dataset. Fig. 9 (a) shows that, for HOG, Wang's approach is two percentage points better than the holistic approach, whereas our approach was five percentage points better. Fig. 9 (b) shows that both methods with explicit handling of occlusion outperform the baseline approach in the HOG-LBP feature space.

Fig. 12. Heat-maps of which features (blocks) are used in each of our final ensembles. For each block in the window, the figure shows a score (color) equal to the number of classifiers that use the block. From left to right, the heat-maps corresponding to the 48×96 classifiers using HOG and HOGLBP, and the 64×128 ones using HOG and HOGLBP, respectively.

B. Per Image

In Fig. 10 we show the per-image evaluation using HOG and HOG-LBP on the INRIA testing dataset. Both sub-figures indicate that the occlusion handling does not degrade the performance of the classifier for either the method in [7] or our method compared to the holistic approach.

Fig. 11 shows the detection curves on the *PobleSec* dataset using both HOG and HOG-LBP features. Only partially occluded humans were used in this evaluation as described earlier. The holistic method fails for both HOG and HOG-LBP features. The best performance is demonstrated by our method for both feature spaces. When using the HOG descriptor, our approach outperforms the holistic approach by seven percentage points on average, and Wang's method by four percentage points. When using the HOG-LBP descriptor our approach outperforms the holistic method by nine percentage points and the method in [7] by six percentage points. In contrast to the other methods, our extended HOG-LBP based approach outperforms the HOG based one.

In Figs. 13 and 14 we show a qualitative comparison between the different approaches at one FPPI using HOG and HOG-LBP descriptors. As can be seen, in both cases, the holistic approach is able to detect certain pedestrians which are partially occluded. However, it does not detect those with a higher level of occlusion. Both occlusion handling methods exhibit better performance by detecting cases missed by the holistic approach. Our approach manages to detect true positives where both other methods fail. This can be seen, for example, in the third and fifth columns of frames in both figures. When both methods have the same true positive detections, Wang's method tends to introduce more false detections, as seen in the second column of frames in Fig. 13.

C. Discussion

After having presented and analyzed the results, we discuss here the points where the proposed framework shows a performance superior to both the holistic [6] and Wang's method [7]. As we have seen, both Wang's method and ours provide a significantly better performance than the holistic method when there are partial occlusions. This is due to the fact that the holistic method makes use of all the features in the window, including those ones that correspond to occluded parts. The latter features add noise to the classifier's decision, and significantly reduce the performance of the holistic method (Fig. 11). In contrast, both Wang's method and our method focus only on the nonoccluded regions of the window. This

Fig. 13. Per-image results at one FPPI using HOG features. Top row, the detections using the holistic detector without occlusion handling. Middle row, the detections using Wang's detector. Bottom row, the detections using our method.

fact makes these methods more robust when we have partial occlusions, as shown in Fig. 11. Now let us discuss the difference in performance between our method and Wang's method in the presence of partial occlusions, and explain the technical reasons why our method performs better in this case. Wang's method divides the window into two disjoint regions (upper/lower), therefore, destroying the relationship between features from the two parts. However, this relationship might be important for handling different types of partial occlusions. In contrast, our classifier model consists in an ensemble obtained through a selection process under which a large number of classifiers responsible for differently shaped parts of the window is used (Fig. 12). Therefore, in our method the relationship between features from different parts of the window is maintained, in contrast with Wang's method. The model obtained with our method is more complete leading to a higher accuracy. Based on the score of the classifier for each individual block, Wang's method selects the part of the window (upper or lower) that contains a lower number of occluded blocks. The drawback of this method is that, many times, the individual blocks are not very informative, and therefore the score obtained for these blocks is noisy. This leads to a poor part selection if we use Wang's method. Contrastingly, in our method the selection is based on performance statistics over a validation data set which contains only partially occluded samples. This drives our method in finding and using, collectively, regions in the window that are frequently nonoccluded. Finally, let us discuss the performance of the three methods (our method, Wang's method and the holistic one) in the situation where there are no occlusions. In this case, the three methods perform similarly (Fig. 10). The conceptual reason why this happens is that both Wang's method and our method only handle the cases inferred as partial occluded targets. The rest of the windows are evaluated by

the holistic method. This common design brings comparable performance to the holistic method for nonoccluded targets and a significant improvement against partial occluded ones. In Fig. 12 we show four different heat-maps. Each one of them indicates which features (blocks) are actually used in each of our final ensembles (read figure's caption for more details). On one hand, the uneven shading in all the heat-maps shows that features from all parts of the window are present in the ensemble, be it only in a small number of classifiers. This fact demonstrates one of the advantages of our method described above, which consists of preserving and drawing upon relationships between features in the whole window. On the other hand, the large blue area in the bottom half of the window shows that the lower part is rarely useful (also supported by the study performed in [3]). These circumstances together with the results shown in this section highlight the benefit of relying on a supervised statistical learning of the type of occlusions that a given class typically undergoes, i.e., in opposition to making a specific hard assumption about such occlusions (e.g., upper/lower selection).

VII. CONCLUSION AND FUTURE WORK

In this work, we presented a general approach for human detection in still images with the presence of partial occlusion. The method was based on a modified random subspace classifier ensemble. The method can be easily extended to other objects, and allows to incorporate other block-based descriptors. Two of the most acclaimed descriptors in the literature of the pedestrian detection—HOG and HOG-LBP— were implemented. The linear SVM was used as the base classifier. We evaluated our approach on two large datasets, INRIA and Daimler. The INRIA data is considered a standard benchmark for human detection. We designed and release for

Fig. 14. Per-image results at one FPPI using HOGLBP features. Top row, the detections using the holistic detector without occlusion handling. Middle row, the detections using Wang's method. Bottom row, the detections using our method.

public use a new challenging dataset called *PobleSec*. The virtual-reality dataset for per-image detection is also released for public use. Both per-window and per-image evaluations have shown that the proposed approach works on a par with the holistic approach when no occlusions are present and outperforms both holistic and Wang's approaches for detection of partially occluded pedestrian images.

As future work, we plan on adding new descriptors, using new kernels (through embedding techniques), and applying our method to other objects.

REFERENCES

- M. Enzweiler and D. Gavrila, "Monocular pedestrian detection: Survey and experiments," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 31, no. 12, pp. 2179–2195, 2009.
- [2] D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf, "Survey of pedestrian detection for advanced driver assistance systems," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 32, no. 7, pp. 1239–1258, Jul. 2010.
- [3] P. Dollár, C. Wojek, B. Schiele, and P. Perona, "Pedestrian detection: An evaluation of the state of the art," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 34, no. 4, pp. 743–761, Apr. 2012.
- [4] Z. Lin and L. Davis, "Shape-based human detection and segmentation via hierarchical part-template matching," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 32, no. 4, pp. 604–618, Apr. 2010.
- [5] P. Viola and M. Jones, "Robust real-time face detection," Int. J. Comput. Vision, vol. 57, no. 2, pp. 137–154, Jul. 2004.
- [6] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in *Proc. CVPR*, San Diego, CA, USA, 2005, pp. 886–893.
- [7] X. Wang, T. Han, and S. Yan, "An HOG–LBP human detector with partial occlusion handling," in *Proc. ICCV*, Kyoto, Japan, 2009, pp. 32–39.
- [8] S. Walk, N. Majer, K. Schindler, and B. Schiele, "New features and insights for pedestrian detection," in *Proc. CVPR*, San Francisco, CA, USA, 2010, pp. 1030–1037.
- [9] Y. Pang, H. Yan, Y. Yuan, and K. Wang, "Robust CoHOG feature extraction in human-centered image/video management system," *IEEE Syst. Man Cybern. B, Cybern.*, vol. 42, no. 2, pp. 458–468, Apr. 2012.

- [10] S. Maji, A. Berg, and J. Malik, "Classification using intersection kernel support vector machines is efficient," in *Proc. CVPR*, Anchorage, Alaska, USA, 2008, pp. 1–8.
- [11] P. Felzenszwalb, D. McAllester, and D. Ramanan, "A discriminatively trained, multiscale, deformable part model," in *Proc. CVPR*, Anchorage, AK, USA, 2008, pp. 1–8.
- [12] Y. Xu, X. Cao, and H. Qiao, "An efficient tree classifier ensemble-based approach for pedestrian detection," *IEEE Syst. Man Cybern. B, Cybern.*, vol. 41, no. 1, pp. 107–117, Feb. 2011.
- [13] Y. Xu, D. Xu, S. Lin, T. X. Han, X. Cao, and X. Li, "Detection of sudden pedestrian crossing for driving assistance systems," *IEEE Syst. Man Cybern. B, Cybern.*, vol. 42, no. 3, pp. 729 - 739, Jun. 2012.
- [14] S. Dai, M. Yang, Y. Wu, and A. Katsaggelos, "Detector ensemble," in *Proc. CVPR*, Minneapolis, Minnesota, USA, 2007, pp. 1–8.
- [15] B. Wu and R. Nevatia, "Detection and segmentation of multiple, partially occluded objects by grouping, merging, assigning part detector responses," *Int. J. Comput. Vision*, vol. 82, no. 2, pp. 185–204, Apr. 2009.
- [16] B. S. M. Enzweiler, A. Eigenstetter and D. M. Gavrila, "Multi-cue pedestrian classification with partial occlusion handling," in *Proc. CVPR*, San Francisco, CA, USA, 2010, pp. 990–997.
- [17] T. Gao, B. Packer, and D. Koller, "A segmentation-aware object detection model with occlusion handling," in *Proc. CVPR*, Colorado Springs, CO, USA, 2011, pp. 1361–1368.
- [18] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester, "Object detection with grammar models," in *Proc. NIPS*, Granada, Spain, 2011, pp. 442–450.
- [19] T. K. Ho, "The random subspace method for constructing decision forests," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 20, no. 8, pp. 832–844, Aug. 1998.
- [20] J. Marín, D. Vázquez, D. Gerónimo, and A. M. López, "Learning appearance in virtual scenarios for pedestrian detection," in *Proc. CVPR*, San Francisco, CA, USA, 2010, pp. 137–144.
- [21] O. Tuzel, F. Porikli, and P. Meer, "Pedestrian detection via classification on Riemannian Manifold," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 30, no. 10, pp. 1713–1727, Oct. 2008.
- [22] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis, "Human detection using partial least squares analysis," in *Proc. ICCV*, 2009, pp. 24–31.
- [23] L. I. Kuncheva, J. J. Rodriguez, C. O. Plumpton, D. E. J. Linden, and S. J. Johnston, "Random subspace ensembles for fMRI classification," *IEEE Trans. Med. Imaging*, vol. 29, no. 2, pp. 531–542, Feb. 2010.
- [24] D. Partridge and W. B. Yates, "Engineering multiversion neural-net systems," *Neural Comput.*, vol. 8, no. 4, pp. 869–893, May. 1995.

- [25] T. Ojala, M. Pietikäinen, and D. Harwood, "A comparative study of texture measures with classification based on featured distributions," *Pattern Recognit.*, vol. 29, no. 1, pp. 51–59, Jan. 1996.
- [26] T. Ahonen, A. Hadid, and M. Pietikäinen, "Face description with local binary patterns: Application to face recognition," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 28, no. 12, pp. 2037–2041, Dec. 2006.
- [27] Y. Yu, J. Zhang, Y. Huang, S. Zheng, W. Ren, K. Huang, and T. Tan, "Object detection by context and boosted HOG-LBP," in *Proc. PASCAL Visual Object Challenge Workshop, Proc. Eur. Conf. Comput. Vision*, Crete, Greece, 2011.
- [28] D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 24, no. 5, pp. 603–619, May. 2002.
- [29] L. Pishchulin, A. Jain, C. Wojek, M. Andriluka, T. Thormaehlen, and B. Schiele, "Learning people detection models from few training samples," in *Proc. CVPR*, 2011, pp. 1473–1480.
- [30] D. Vázquez, A. M. López, D. Ponsa, and J. Marín, "Virtual worlds and active learning for human detection," in *Proc. ICMI*, Alicante, Spain, 2011, pp. 393–400.
- [31] B. Kuneva, A. Torralba, and W. T. Freeman, "Evaluation of image features using a photorealistic virtual world," in *Proc. ICCV*, Barcelona, Spain, 2011, pp. 2282–2289.
- [32] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. New York, NY, USA: Wiley-Interscience, 2004.
- [33] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, "The 2005 PASCAL visual object classes challenge," *Int. J. Comput. Vision*, vol. 88, no. 2, pp. 303–338, Jun. 2010.
- [34] J. Ponce, T. L. Berg, M. Everingham, D. Forsyth, M. Hebert, S. Lazebnik, M. Marszałek, C. Schmid, C. Russell, A. Torralba, C. Williams, J. Zhang, and A. Zisserman, "Dataset issues in object recognition," in *Towards Category-Level Object Recognition*. Berlin, Germany: Springer, 2006, pp. 29–48.

Javier Marín received the B.Sc. degree and the Postgraduate Certificate in Education in mathematics from the Universitat de les Illes Balears, Palma, Balearic Islands, Spain, in 2007 and 2008, respectively. He received the M.Sc. degree in computer vision and artificial intelligence from the Computer Vision Center, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain, in 2009. The focus of his thesis was exploring the viability of using virtual data for training pedestrian detectors.

Currently, he is an active member of the Advanced Driver Assistance Systems Group, and an Assistant Professor teaching software engineering at the Computer Science Department, UAB. During the Ph.D. degree, he has done two internships, the first in 2011 at the Pattern group, Bangor University, Bangor, U.K, and the second one, in 2012 at the Mobile Multimedia Processing group, Aachen University, Aachen, Germany. His current research interests include pedestrian detection, virtual worlds, classifier ensembles, and specially random subspace methods.

David Vázquez received the B.Sc. degrees in computer science (software engineering) from Universidade da Coruña, A Coruña, Spain, in 2006 with stages at the Universidad Autónoma de Madrid, Madrid, Spain, and the Universidad Rey Juan Carlos, Madrid, Spain where he performed his final project on face recognition. In 2008 he received the B.Sc. degree in computer science from the Universitat Autônoma de Barcelona (UAB), Bellaterra, Spain, where his final project was on person and car detection in intelligent video surveillance systems for

Davantis, Madrid, Spain. He received the M.Sc. degree in computer vision and artificial intelligence at the Computer Vision Center, UAB, in 2009. His M.Sc. thesis was on the study of the effect of the distance in pedestrian detection. Currently, he is pursuing the Ph.D. degree in informatics at the CVC, UAB. He has done a stage at Daimler A.G. Stuttgart, Germany. He is an active member of the Advanced Driver Assistance Systems and an Assistant Professor at the Computer Science Department, UAB. His current research interests include pedestrian detection, virtual worlds, domain adaptation and active learning.

Antonio M. López received the B.Sc. degree in computer science from the Universitat Politècnica de Catalunya, Cataluña, Spain, in 1992, and the M.Sc. and Ph.D. degrees in image processing and artificial intelligence from the Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain in 1994, and 2000, respectively.

Since 1992, he has been giving lectures in the Department of Computer Science, UAB, where he is currently an Associate Professor. In 1996, he participated in the foundation of the Computer Vision

Center, UAB, where he held different institutional responsibilities, and is currently the head of the research group on Advanced Driver Assistance Systems by computer vision. He has been responsible for public and private projects, and is a co-author of more than 100 papers, all in the field of computer vision.

Jaume Amores received the Ph.D. degree from the Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain, in 2006.

He has held positions in the Computer Vision Center, UAB, and in the Institut National de Recherche en Informatique et en Automatique Rocquencourt, Paris. Currently, he holds a Ramon y Cajal fellowship as part of the Advanced Driver Assistance Systems Group. His current research interests include machine learning and pattern recognition, object recognition and detection, and medical imaging.

Ludmila Kuncheva received the M.Sc. degree from the Technical University of Sofia, Sofia, Bulgaria, in 1982, and the Ph.D. degree from the Bulgarian Academy of Sciences, Sofia, Bulgaria, in 1987. Until 1997 she worked at the Central Laboratory of Biomedical Engineering, Bulgarian Academy of Sciences.

She is currently a Professor at the School of Computer Science, Bangor University, Bangor, U.K. She has published two books and above 200 scientific papers. Her current research interests include pattern

recognition and classification, machine learning, and classifier ensembles. Dr. Kuncheva is a Fellow of the International Association for Pattern Recognition. She is also the recipient of two Best Paper Awards (IEEE Transactions on SMC, 2002, and IEEE Transactions on Fuzzy Systems, 2006).