
Knowledge-Based Systems 85 (2015) 96–111
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Random Balance: Ensembles of variable priors classifiers for imbalanced
data
http://dx.doi.org/10.1016/j.knosys.2015.04.022
0950-7051/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: jfdpastor@ubu.es (J.F. Díez-Pastor), jjrodriguez@ubu.es

(J.J. Rodríguez), cgosorio@ubu.es (C. García-Osorio), l.i.kuncheva@bangor.ac.uk
(L.I. Kuncheva).
José F. Díez-Pastor a, Juan J. Rodríguez a,⇑, César García-Osorio a, Ludmila I. Kuncheva b

a Lenguajes y Sistemas Informáticos, Escuela Politécnica Superior, Avda de Cantabria s/n, 09006 Burgos, Spain
b School of Computer Science, Bangor University Dean Street, Bangor, Gwynedd LL57 1UT, United Kingdom

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 January 2013
Received in revised form 2 March 2015
Accepted 22 April 2015
Available online 7 May 2015

Keywords:
Classifier ensembles
Imbalanced data sets
Bagging
AdaBoost
SMOTE
Undersampling
In Machine Learning, a data set is imbalanced when the class proportions are highly skewed. Imbalanced
data sets arise routinely in many application domains and pose a challenge to traditional classifiers. We
propose a new approach to building ensembles of classifiers for two-class imbalanced data sets, called
Random Balance. Each member of the Random Balance ensemble is trained with data sampled from
the training set and augmented by artificial instances obtained using SMOTE. The novelty in the approach
is that the proportions of the classes for each ensemble member are chosen randomly. The intuition
behind the method is that the proposed diversity heuristic will ensure that the ensemble contains
classifiers that are specialized for different operating points on the ROC space, thereby leading to larger
AUC compared to other ensembles of classifiers. Experiments have been carried out to test the Random
Balance approach by itself, and also in combination with standard ensemble methods. As a result, we
propose a new ensemble creation method called RB-Boost which combines Random Balance with
AdaBoost.M2. This combination involves enforcing random class proportions in addition to instance
re-weighting. Experiments with 86 imbalanced data sets from two well known repositories demonstrate
the advantage of the Random Balance approach.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction (a) Algorithm level approaches. This category contains variants of
The class-imbalance problem occurs when there are many more
instances of some classes than others [1]. Imbalanced data sets are
common in fields such as bioinformatics (translation initiation site
(TIS) recognition in DNA sequences [2], gene recognition [3]), engi-
neering (non-destructive testing in weld flaws detection through
visual inspection [4]), finance (predicting credit card customer
churn [5]), fraud detection [6] and many more.

Bespoke methods are needed for imbalanced classes for at least
three reasons [7]. Firstly, standard classifiers are driven by
accuracy so the minority class may be ignored. Secondly, standard
classification methods operate under the assumption that the data
sample is a faithful representation of the population of interest,
which is not always the case with imbalanced problems. Finally,
the classification methods for imbalanced problems should allow
for errors coming from different classes to have different costs.

Galar et al. [8] systemize the wealth of recent techniques and
approaches into four categories:
existing classifier learning algorithms biased towards learn-
ing more accurately the minority class. Examples include
decision tree algorithms insensitive to the class sizes, like
Hellinger Distance Decision Tree (HDDT) [9], Class
Confidence Proportion Decision Tree (CCPDT) [10] and a
SVM classifier with different penalty constants for different
classes [11].

(b) Data level approaches. The main idea in this category is to
pre-process the data so as to transform the imbalanced
problem into a balanced one by manipulating the distribu-
tion of the classes. These algorithms are often used in com-
bination with ensembles of classifiers. This category can be
further subdivided into methods that increase the number
of minority class examples: Oversampling [12], SMOTE
[13], Borderline-SMOTE [14] and Safelevel-SMOTE [15]
among others; and methods that reduce the size of the
majority class, such as random undersampling, this
approach has been used both with and without replacement
[16]. These techniques can be jointly applied to increase the
size of the minority class while simultaneously decreasing
the majority class.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.04.022&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2015.04.022
mailto:jfdpastor@ubu.es
mailto:jjrodriguez@ubu.es
mailto:cgosorio@ubu.es
mailto:l.i.kuncheva@bangor.ac.uk
http://dx.doi.org/10.1016/j.knosys.2015.04.022
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111 97
(c) Cost-sensitive learning. While traditional algorithms aim at
increasing the accuracy by giving equal weights to the
examples of any class, cost-sensitive methods, such as
cost-sensitive decision trees [17] or cost-sensitive neural
networks [18], assign a different cost to each class. The best
known methods in this category are the cost-sensitive ver-
sions of AdaBoost: AdaCost [19,20], AdaC1, AdaC2 and
AdaC3 [21].

(d) Ensemble learning. Classifier ensembles have often offered
solutions to challenging problems where standard classifica-
tion methods have been insufficient. One approach for con-
structing ensembles for imbalanced data is based on using
data level approaches: each base classifier is trained with a
pre-processed data set. As data level approaches usually use
random values, the pre-processed data sets and the corre-
sponding classifiers will be different. Another strategy is based
on combining conventional ensemble methods (i.e., not speci-
fic for imbalance) with data level approaches. Examples of this
strategy are SMOTEBagging [22], SMOTEBoost [23] and
RUSBoost [24]. It is also possible to have ensembles that com-
bine classifiers obtained with different methods [25].

In general, according to [8], algorithm level and cost-sensitive
approaches are more data-dependent, whereas data level and
ensemble learning methods are more versatile.

Here we propose a new preprocessing technique that can be
used to build ensembles, for two-class imbalanced learning tasks,
based on a simple randomisation heuristic. The data for training
an ensemble member is sampled from the training data using ran-
dom class proportions. The classes are either undersampled or aug-
mented with artificial examples to make up such a sample.

The rest of the paper is structured as follows. Section 2 presents
the performance measures used in the experimental evaluation.
Section 3 briefly overviews some of the most relevant methods
in imbalanced learning, those used in the experimental study.
Section 4 explains the proposed method. In Section 5 we provide
a simulation example that tries to give some insight in why the
method works. An experimental study is reported in Section 6,
and finally, Section 7 contains our conclusions and several future
research lines.
2. Measures of performance for imbalanced data

When working with binary classification problems instances
can be labelled as positive (p) or negative (n). In binary imbalanced
data sets usually the minority class is considered positive while the
majority class is considered negative. For a prediction there are 4
possible outcomes: (a) True Positive: prediction is p and the real
label is p. (b) True Negative: prediction is n and the real label is
n. (c) False Positive: prediction is p and the real label is n. (d)
False Negative: prediction is n and the real label is p. Given a test
dataset, containing P examples of the positive class and N examples
of the negative class, TP is the number of True Positives, FP is the
number of False Positives, TN is the number of True Negatives
and FN the number of False Negatives.

The True Positive Rate (TPR), also called Sensitivity or Recall, is
defined as TP=P and False Positive Rate (FPR) is defined as FP=N.
The precision is defined as TP=ðTP þ FPÞ.

Commonly used measures of performance for imbalanced data
are the Area Under the ROC (Receiver Operation Characteristic)
curve [26], the F-Measure [27] and the Geometric Mean [28]. The
F-Measure is defined as 2� precision�recall

precisionþrecall. The Geometric Mean is

defined as
ffi
TP=P � TN=N

p
. The ROC Curve is a two-dimensional

representation of classifier performance, it is created by plotting
the TPR against the FPR for different decision thresholds. The
Area Under the ROC curve (AUC) is a way to represent the perfor-
mance of a binary classifier using a scalar.

3. Classification methods for imbalanced problems

In recent years, numerous techniques have been developed to
deal with the problem of class-imbalance datasets. This section is
a sort summary of the subset of methods tested in this article.
The methods are organized using the same classification presented
in the introduction:

� Data level approaches.
– Random Undersampling. This technique will randomly drop

some of the examples of the majority class. When it comes to
sampling without replacement, an example of the minority
class can appear only once in the sub-sampling; with
replacement, the same example can appear multiple times.

– Random oversampling [12] consists of adding exact copies of
some minority class examples. With this technique overfit-
ting is more common than in the prior technique.

– SMOTE (Synthetic Minority Over-sampling Technique [13])
although this technique has ‘‘oversampling’’ in the name, it
does not add copies of existing instances, but creates new
artificial examples using the following procedure: a member
of the minority class is selected and its k nearest neighbours
(from the minority class) are identified. One of them is ran-
domly selected. Then, the new example added to the set is a
random point in the line segment defined by the member
and its neighbour. A value of k ¼ 5 has been recommended
and is the one used in this study. This method tries to avoid
overfitting using a random procedure to create the new sam-
ples, but this can introduce noise or nonsensical samples.

� Ensemble learning. One of the keys for good performance of
ensembles is the diversity, there are several ways to inject
diversity into an ensemble, the most common is the use of sam-
pling. In Bagging [29], each base classifier is obtained from a
random sample of the training data. In AdaBoost [30] the
resampling is based on a weighted distribution, the weights
are modified depending on the correctness of the prediction
for the example given by the previous classifier. Bagging and
AdaBoost have been modified to deal with imbalanced datasets:
– SMOTEBagging [22] combines Bagging with different

amounts of SMOTE and Oversampling in each iteration, so
that the data set is completely balanced and consists of three
parts: (i) a sample with replacement of the majority class,
keeping the original size; (ii) oversampling of the minority
class; and (iii) SMOTE of the minority class. The
Oversampling percentage varies in each iteration (ranging
from 10% in the first iteration to 100% in the last.) The rest of
the positive instances are generated by the SMOTE algorithm.

– SMOTEBoost [23] and RUSBoost [24] are both modifications
of AdaBoost.M2 [30], in each iteration, besides the instance
reweighting done according to the algorithm Adaboost.M2,
SMOTE or Random undersampling is applied to the training
set of the base classifier. Boosting based ensembles tend to
perform better than bagging based ensembles, however, in
Boosting based ensembles, the base classifiers are trained
in sequence which slows down the training, and they are
more sensitive to noise. SMOTEBoost and RUSBoost are more
robust to noise because they introduce a high degree of ran-
domness by creating or deleting instances.

– Although the most popular methods are modifications or
variations of bagging or boosting, there are methods that
do not perform resampling, oversampling or undersampling
and, instead of that, they make partitions. One method

98 J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111
described in [31], which will be called ‘‘Partitioning’’ in this
paper, is similar to undersampling based ensembles, it
breaks the majority class into several disjoint partitions
and constructs several models which use one partition from
the majority class and the entire minority class.

– Most of the above methods, at the same time they increase
accuracy in minority class, they decrease overall accuracy
compared to traditional learning algorithms. Some
approaches combine both types of classifiers, one trained with
the original skewed data and other trained according one of
the previous approaches in an attempt to cope with the imbal-
ance. Reliability Based Classifier [32] trains two classifiers and
then chooses between the output of the classifier trained on
the original skewed distribution and the output of the classi-
fier trained according to a learning method addressing the
curse of imbalanced data. This decision is guided by a param-
eter whose value maximizes, on a validation set, the accuracy
and a measure designed to evaluate the performance of a clas-
sifier in imbalanced classifiers, such as the geometric mean.

4. Random Balance and RB-Boost ensembles

This section presents the main contribution of the paper. In this
section we present a new preprocessing technique called Random
Balance, this technique can be used within an ensemble to increase
the diversity and deal with imbalance. We also describe a new
ensemble method for imbalanced learning called RB-Boost
(Random Balance Boost) which is a Random Balance modification
of AdaBoost.M2. We also explain the intuition behind the method
in an aside subsection.

When dealing with imbalanced dataset the three common
data-level approaches to balancing the classes are listed below1:

� The new data set is formed by taking the entire minority class
and a random subsample from the majority class. The method
has a parameter N that is the desired percentage of instances
that belongs to the majority class in the processed dataset. For
example, consider a data set with 20 instances in the minority
class and 480 instances in the majority class. For N ¼ 40, the
desired number of instances from the majority class is 30 so that
the 20 instances of the minority class make up 40% of the data.
� The new data set is formed by adding to it
ðM=100Þ � size Minority synthetic instances of the minority
class using the SMOTE method. The amount of artificial
instances is expressed as a percentage M of the size of the
minority class, and is again a parameter of the algorithm. In
the example above, if we choose M ¼ 200, 40 examples from
the minority class will be generated through SMOTE.
� Use both undersampling and oversampling through SMOTE to

reach a desired new size of the data and proportions of the
classes within.

The problem with these data-level approaches is that the optimal
proportions depend on the data set and are hard to find, it is known
that this proportions have a substantial influence on the perfor-
mance of the classifier. The proposed method relies completely on
randomness and repetition to try to overcome this problem.

4.1. Random Balance

While preprocessing techniques are commonly used to restore
the balance of the class proportions to a given extent, Random
1 Note that although random undersampling and SMOTE are mentioned because
they are the most used techniques, more sophisticated techniques could be used
resulting in variants of the proposed method.
Balance relies on a completely random ratio. This includes the case
where the minority class is over-represented and the imbalance
ratio is inverted.

An example of the sampling procedure can be seen in Fig. 1.
Given a data set, a different data set of the same size is obtained
for each member of ensemble where the imbalance ratio is cho-
sen randomly. In this example, the initial proportions of both
classes appears on the top. Classifiers 1;2 . . . ; T are trained with
variants of this data set where the ratio between classes varies
randomly. In iteration 1, the imbalance ratio has been slightly
reduced. In iteration 2, the ratio is reversed, the size of the pre-
vious minority class exceeds the size of the previous majority
class. And in iteration 3, the minority class has become even
smaller. All these cases are possible since the procedure is
random.

The procedure is described in the pseudocode in Algorithm 1.
The fundamental step is to randomly set the new size of the major-
ity and minority classes (lines 6–7). Then SMOTE and Random
Undersampling (resampling without replacement) are used to
respectively increase or reduce the size of the classes to match
the desired size (lines 8–11 or lines 12–15 as required.).

We call this generic ensemble method Ensemble-RB. Additionally,
it can be combined with Bagging, resulting in what we call
Bagging-RB.

Pre-processing strategies can have important drawbacks.
Undersampling can throw out potentially useful data, while
SMOTE increases the size of the dataset and hence the
training time. Random-Balance maintains the size of the
training set and because it is a process which is repeated
several times, the problem of removing important examples
is reduced.
Algorithm 1. Pseudocode for the Random Balance ensemble
method.

RANDOM BALANCEX

Require: Set S of examples (x1; y1), . . ., (xm; ym) where xi 2 X
Rn and yi 2 Y ¼ f�1;þ1g (þ1: positive or minority class,
�1: negative or majority class), neighbours used in SMOTE, k

Ensure: New set S0 of examples with Random Balance
1: totalSize Sj j
2: SN fðxi; yiÞ 2 Sjyi ¼ �1g
3: SP fðxi; yiÞ 2 Sjyi ¼ þ1g
4: majoritySize SNj j
5: minoritySize SPj j
6: newMajoritySize Random integer between 2 and

totalSize-2
// Resulting classes will have at least 2 instances

7: newMinoritySize totalSize – newMajoritySize
8: if newMajoritySize < majoritySize then
9: S0 SP

10: Take a random sample of size newMajoritySize from SN ,
add the sample to S0.

11: Create newMinoritySize�minoritySize artificial
examples from SP using SMOTE, add these examples to S0.

12: else
13: S0 SN

14: Take a random sample of size newMinoritySize from SP ,
add the sample to S0.

15: Create newMajoritySize�majoritySize artificial
examples from SN using SMOTE, add these examples to S0.

16: end if
17: return S0

Fig. 1. Example of data sets used to train a Random Balance ensemble, note that the
imbalance ratio is different for each dataset (even in favor of the minority class, for
example, for the second classifier). 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

se
le

c�
on

 p
ro

ba
bi

lit
y

minority percentage

minority instances
majority instances

J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111 99
Fig. 2. Probabilities of including an instance in the transformed dataset, when the
number of instances is m ¼ 1000.
4.1.1. Instance inclusion probability

The data sets generated in Random Balance have instances from
the original training data and artificial instances. For Random
Balance, the probability of including an instance is different for
minority and majority instances. Given p positive instances and n
negative instances with m ¼ nþ p and assuming that p P 2 the
probability of including an instance of the minority class is:

Pmino ¼
1

m� 3

Xp�1

i¼2

i
p
þ
Xm�2

i¼p

1

 !
¼ 1

m� 3
m� pþ 3

2
� 1

p

� �

In the generated data set, each class has at least two instances.
Then, there are n� 3 possible sizes of the minority class in the gen-

erated data sets (from 2 to m� 2). The summation
Pp�1

i¼2
i
p is for the

cases when the number of instances in the minority class is reduced
(from p instances we randomly take i so the selection probability is

i=p), while
Pm�2

i¼p 1 is for the cases when the minority size is
increased (the selection probability is 1).

Analogously, the probability of selecting an instance of the
majority class will be:

Pmajo ¼
1

m� 3
m� nþ 3

2
� 1

n

� �
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positivie Rate

Tr
ue

 P
os

iti
vi

e
R

at
e

DATA11: hddt−credit−g.arffbag.data

10

20

30

40

50

60

70

80

90

100

Tr
ue

 P
os

iti
vi

e
R

at
e

Fig. 3. Base classifiers in the ROC Space (credit-g dataset). The color of each point repres
used for training that base classifier. Higher values (in red) represent that the imbalanc
blue/cyan) are for balanced cases, and lower values (in dark blue) the minority class has
instances than positive). (For interpretation of the references to color in this figure lege
Fig. 2 shows the probabilities of selecting an instance in the
generated data set as a function of the percentage of instances from
the minority class, for a data set with 1000 instances. The probabil-
ity of selecting an instance of the minority class decreases when
the data set is more balanced.

It can be seen that if p 6 n then Pmajo 6 Pmino; Pmino P 0:75 and
Pmajo P 0:5. For a perfectly balanced data set, the probability of
selecting an instance is a bit greater than 0.75 because there will
be at least two instances of each class. The problem of discarding
important instances of the majority class is ameliorated because
the expected number of base classifiers that are trained with a
given instance of the majority class is greater than 50%.
Moreover, some of the instances included in the data set will also
used to generate artificial instances.

4.1.2. Intuition behind the method
The ROC space is defined by FPR and TPR as x and y axes respec-

tively because there is a trade-off between this two values. A classi-
fier can be represented as a point in this space and all base classifiers
in an ensemble can be represented as a cloud of points. Fig. 3a shows
the cloud of points for a Bagging ensemble trained with the credit-g
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positivie Rate

DATA13: hddt−credit−g.arffeRB.data

10

20

30

40

50

60

70

80

90

100

ents the percentage of the instances than belong to the positive class in the dataset
e ratio has been changed in favor of the minority class, values around 50 (in light
been made even smaller (originally credit-g dataset has 2.33 times more negative

nd, the reader is referred to the web version of this article.)

Fig. 4. An unbalanced data set and examples of the classification boundaries
generated by two ensemble methods.

100 J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111
dataset, the color of each point represents the percentage of the
instances than belong to the positive class in the dataset used for
training that base classifier. It is easy to appreciate that all of the
members of the ensemble are trained with samples which vary very
slightly the proportion between classes. In contrast, Fig. 3b shows
the cloud for an ensemble of Random Balance classifiers, the large
variability in the ratio between classes in the datasets used to train
each of the base classifiers, including cases in which the positive
class becomes larger than the negative, makes the base classifiers
of the ensemble spread out over the ROC space.

In the proposed method, the base classifiers are forced to learn
different points on the ROC space and thereby expected to be more
diverse and to improve the ensemble performance (see Fig. 3).
Diversity is generally considered beneficial for ensemble methods,
including the imbalanced case [33].

4.2. RB-Boost

There are several modification of AdaBoost.M2 for imbalanced
problems. The best known of these methods is SMOTEBoost [23].

As in AdaBoost.M2, the examples of the training data have
weights that are updated according to a pseudo-loss function. For
each base classifier the weighted training data is augmented with
artificial examples generated by SMOTE.

RUSBoost [24], as SMOTEBoost, is also an AdaBoost.M2
modification, but in this case instances of the majority class are
removed using random undersampling in each iteration. No new
weights are assigned; the weights of the remaining instances are
normalized according to the new sum of weights of the data set.
The rest of the procedure is as in AdaBoost.M2 and SMOTEBoost.

Both methods apply a preprocessing technique to the data and
simultaneously alter the weights. Following this philosophy we
propose RB-Boost, whose pseudocode is described in Algorithm 2.
It is also a modification of AdaBoost.M2, in which line 3 is changed
to generate a data set according to the procedure shown in Fig. 1.
The number of instances removed by undersampling is equal to
the number of instances introduced by SMOTE. The algorithm
works as follows: for each of the T rounds (lines 2–11) a data set
S0t is generated according to the Random Balance procedure (line
3). Distribution D0t is updated, maintaining for each instance of
the original data set its associated weight and assigning a uniform
weight to the artificial examples (line 4). Then a weak learning
algorithm is trained using S0t and D0t (line 5), this classifier will give
a probability between 0 and 1 to each class.2 The pseudo-loss et of
2 In experiments, J48 classification tree with Laplace smoothing has been used as a
weak classifier. The prediction returned by the classifier is the probability calculated
taking into the instances that end in the leaf. With Laplace smoothing this is
ðai þ 1Þ=ðAþ cÞ, where ai is the number of instances of class i in the leaf, A is the total
number of instances in the leaf, and c the number of classes.
the weak classifier ht is computed according to the formula pre-
sented in line 6. The distribution D0t is updated to make the weights
associated with wrong classifications higher than the weights given
to correct classifications (line 7–9). Finally, the different classifiers
outputs are combined (line 11) taking into account their respective
bt (obtained in line 7).

Algorithm 2. Pseudocode for the RB-Boost ensemble method.
RB-BOOST

Require: Set S of examples ðx1; y1Þ, . . ., ðxm; ymÞ where xi 2 X
Rn and yi 2 Y ¼ f�1;þ1g (þ1: positive or minority class,
�1: negative or majority class),
Weak learner, weakLearn
Number of iterations, T
Number of neighbours used in SMOTE, k

Ensure: RB-Boost is built
// Initialize distribution D1

1: D1ðiÞ 1
m for i ¼ 1; . . . ;m

2: for t ¼ 1;2, . . ., T do
3: S0t RandomBalanceðS; kÞ
4: D0tðiÞ DtðjÞ if S0tðiÞ ¼ StðjÞ else 1

m, for i ¼ 1; . . . ;m
// If the example is from the sample it maintains its weight, if the

example is artificial it has the initial weight.

5: Using S0t and weights D0t , train weakLearn
ht : X� Y! ½0;1�,

6: Compute the pseudo-loss of hypothesis ht:

et ¼
X

ði;yÞ:yi –y

DtðiÞð1� htðxi; yiÞ þ htðxi; yÞÞ

7: bt et=ð1� etÞ
8: Update Dt:

Dtþ1ðiÞ DtðiÞ � b
1
2ð1þhtðxi ;yiÞ�htðxi ;yÞÞ
t

9: Normalize Dtþ1: Let Zt
P

iDtþ1ðiÞ
Dtþ1ðiÞ Dtþ1ðiÞ

Zt

10: end for

11: return hf ðxÞ ¼ arg maxy2Y
PT

t¼1 log 1
bt

� �
htðx; yÞ
5. A simulation experiment

To test-run the idea we carried out experiments with generated
data. By contrasting the Random Balance with Bagging, we intend
to gain more insight and support for our hypothesis that the
Random Balance heuristic improves diversity in a way which leads
to larger AUC.3 We generated two 2-dimensional Gaussian classes
centred at (0, 0) and (3, 3), both with identity covariance matrices.
To simulate unbalanced classes, 450 points were sampled from the
first class, and 50 points from the second class (10%). Each ensemble
was composed of 50 decision tree classifiers.4 The ensemble output
was calculated as the average of the individual outputs. An example
of the classification boundaries for the Random Balance ensemble
and the Bagging ensemble is shown in Fig. 4. To evaluate the individ-
ual and ensemble accuracies as well as the AUC, we sampled a new
data set from the same distribution and of the same size. The numer-
ical results for this illustrative example are given in Table 1.
3 The varying parameter for the ROC curve is the threshold on the class
embership probability estimated by the whole ensemble, not a particular base
assifier.
4 MATLAB’s Statistic Toolbox was used for training the decision trees and

stimating AUC.
m
cl

e

Table 1
Comparison of Random Balance and bagging ensembles.

Data sets Ensemble Individual
error

Ensemble
error

AUC

1 Simulation
(Fig. 4)

RB 0.0272 0.0180 0.9979
Bagging 0.0250 0.0220 0.9373

200 Simulations
(average values)

RB 0.0307 0.0162 0.9963
Bagging 0.0192 0.0133 0.9917

J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111 101
It can be observed that the boundary lines for the Random
Balance ensemble are more widely scattered compared to these
for the Bagging ensemble, stepping well into the region of the
majority class. Table 1 shows also the average results from 200
iterations, each iteration with freshly sampled training and testing
data. The results indicate that: (i) individual errors of the decision
trees for the ensemble-RB are larger than these for the Bagging
ensemble, (ii) RB has a higher classification error than Bagging,
and (iii) RB has a better AUC than Bagging. All differences were
found to be statistically significant (two-tailed paired t-test,
p < 0:005). This suggests that the better AUC produced by the
ensemble-RB may come at the expense of slightly reduced classifi-
cation accuracy. Since AUC is often viewed as the primary criterion
for problems with unbalanced classes, the results of this simulation
favor the ensemble-RB.

Kappa-error diagrams are often used for comparing classifier
ensembles [34,35]. Consider a testing set with N examples and
the contingency table of two classifiers, C1 and C2.
C2 correct
 C2 wrong

C1 correct
 a
 b

C1 wrong
 c
 d
5 Available at http://www.nd.edu/dial/hddt/.
6 Available at http://sci2s.ugr.es/keel/imbalanced.php.
7 Notice that several of the data sets come from data sets that were originally

multiclass, the 66 datasets have been derived from 16 original sets.
8 J48 is the Weka’s re-implementation of C4.5 [41].
9 That means that the training set is repeatedly divided into train and validation

sets to find the optimal parameter value, and then the classifier is finally built using
the complete training set.
where the table entries are the number of examples jointly classi-
fied as indicated, and aþ bþ c þ d ¼ N. Diversity between the two
classifiers is measured by j [36] as

j ¼ 2ðad� bcÞ
ðaþ bÞðbþ dÞ þ ðaþ cÞðc þ dÞ ð1Þ

Kappa is plotted on the x-axis on the diagram. Smaller kappa indi-
cates more diverse classifiers. The averaged individual error for the
pair of classifiers is

e ¼ 1
2

c þ d
N
þ bþ d

N

� �
¼ bþ c þ 2d

2N
ð2Þ

The error is plotted on the y-axis of the diagram. An ensemble with
L classifier generates a ‘‘cloud’’ of LðL� 1Þ=2 points on the
kappa-error diagram, one point for a pair of classifiers.

We calculated the centroid points of 200 RB and 200 Bagging
ensemble clouds following the simulation protocol described
above. Fig. 5 shows the kappa-error diagrams with the centroids,
200 in each subplot. The black points correspond to ensembles
whose AUC is larger than the respective AUC of the rival ensemble.
Out of the 200 ensembles, RB had larger AUC in 127 cases, which is
seen as the larger proportion of black triangles in the left subplot
compared to the proportion of black dots in the right subplot.

As expected, the ensemble-RB generates substantial diversity
compared to Bagging, which is indicated by the stretch to the left
of the set of points in the left subplot. The cloud of points is tilted,
showing that the larger diversity is paid for by larger individual
error. An interesting observation from the figure is that the black
markers (triangles and dots) are spread uniformly along the point
clouds, suggesting that there is no specific diversity–accuracy pat-
tern which is symptomatic of better AUC.
6. Experimental setup and results

Two collections of data sets were used. The HDDT collection5

contains the binary imbalanced data sets used in [37]. Table 2 shows
the characteristics of the 20 data sets in this collection.

The KEEL collection6 contains the binary imbalanced data sets
from the repository of KEEL [38]. Table 3 shows the characteristics
of the 66 data sets in this collection7.

In both tables, the first column is the name of the data set, the
second the number of examples, the third the number of attributes
and the last is the imbalance ratio (the number of instances of the
majority class for each instance of the minority class).

Many data sets in these two collections are available or are
modifications of data sets in the UCI Repository [39].

Weka [40] was used for the experiments. The ensemble size
was set to 100, for some methods this is not the exact size, but it
is the maximum, since some method have a stopping criteria. J48
was chosen as the base classifier in all ensembles.8 As recom-
mended for imbalanced data [37], it was used without pruning
and collapsing but with Laplace smoothing at the leaves. C4.5 with
this options is called C4.4 [42].

The results were obtained with a 5� 2-fold cross validation
[43]. The data set is halved in two folds. One fold is used for train-
ing and the other for testing, and then the roles of the folds are
reversed. This process is repeated five times. The results are the
averages of these ten experiments. Cross validation was stratified:
the class proportions was approximately preserved for each fold.

Given the large number of methods and variants tested, the
comparisons are divided into families. Each family includes differ-
ent types of classifier ensembles depending on the main
diversity-generating strategy. We distinguished three such fami-
lies: Data-preprocessing-only, Bagging and Boosting. The names,
abbreviations and descriptions of the methods can be found in
Tables 4–6.

The scores obtained by the proposed methods: E-RB, BAG-RB
and RB-B are shown in Table 7, the reader is encouraged to consult
the full table of results in Supplementary material. Some of the
methods obtain low result in certain datasets. The reason is that
some of the performance measures are a geometric mean (the
G-mean) and a harmonic mean (the F-measure) so the results are
biased towards the lower of the two values that are combined in
the measure. With a classifier that always predict the majority
class the accuracy will be very high (depending on the imbalance
ratio), the AUC will be 0.5 if all the instances are given the same
confidence; but for these two means the value will be 0.

We used the most common configurations of SMOTE where the
number of synthetic instances was set to 100%, 200% and 500% of
the minority class. In the variants called ESM and BAGSM, the
minority class was oversampled to match the size of the majority
class. For the undersampling ensembles, the size of the majority
class was reduced to match the size of the minority class.

In addition, optimized versions of some the ensemble methods
were tried. In the Data-preprocessing-only and the Bagging fami-
lies we included three versions: optimizing the amount of
SMOTE oversampling, optimizing the amount of Undersampling
and optimizing both simultaneously. In all these variants we used
a 5-fold internal cross-validation9 and tested 10 different amounts

http://www.nd.edu/dial/hddt/
http://sci2s.ugr.es/keel/imbalanced.php

0.7 0.75 0.8 0.85 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

kappa

er
ro

r

0.7 0.75 0.8 0.85 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

kappa

er
ro

r

Fig. 5. Kappa-error diagrams for the two ensemble methods. Black points indicate ensembles for which the AUC was larger than that for the rival method.

Table 2
Characteristics of the data sets from the HDDT collection.

Data set Examples Attributes (numeric/nominal) IR

boundary 3505 (0/175) 27.50
breast-y 286 (0/9) 2.36
cam 18,916 (0/132) 19.08
compustat 13,657 (20/0) 25.26
covtype 38,500 (10/0) 13.02
credit-g 1000 (7/13) 2.33
estate 5322 (12/0) 7.37
german-numer 1000 (24/0) 2.33
heart-v 200 (5/8) 2.92
hypo 3163 (7/18) 19.95
ism 11,180 (6/0) 42.00
letter 20,000 (16/0) 24.35
oil 937 (49/0) 21.85
optdigits 5620 (64/0) 9.14
page 5473 (10/0) 8.77
pendigits 10,992 (16/0) 8.63
phoneme 5404 (5/0) 2.41
PhosS 11,411 (480/0) 17.62
satimage 6430 (36/0) 9.29
segment 2310 (19/0) 6.00

102 J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111
of SMOTE and Undersampling, which means that the version that
optimizes both parameters simultaneously has evaluated 100 possi-
ble combinations. These amounts are expressed in terms of the dif-
ference between the majority and minority class sizes, as shown in
Fig. 6, for SMOTE, in this case, a value of 0% means not to add any
instance, a value of 100% means to create as many as necessary to
match the size of the majority. For Undersampling a value of 0%
means not to delete any instance, a value of 100% means remove
instances to match the original size of the minority class. Once
found, the parameters that maximize the AUC for a single decision
tree are used for constructing the ensemble.

The Data-preprocessing-only also includes the Partitioning (or
Random Splitting) method, described in [31]. In that work, the
ensemble size was the Imbalanced Ratio, while in this work it is
100,10 as for the other methods in this section, in order to make a fair
comparison.

The Bagging family includes the Reliability-based Balancing
(RbB) method [32]. The classifiers obtained with this method can
be seen as a mini-ensemble of two classifiers, the first one using
the original imbalanced class distribution (IC), the second one
using a classifier with balanced data (BC). In order to have
10 To achieve this size, as many partitions as necessary are created. e.g. if the
imbalance ratio is 5, the 100 classifiers are created using 20 times the partitioning
technique.
ensembles of 100 classifiers, two ensembles of 50 classifiers are
combined. The first classifier is obtained with Bagging. For the sec-
ond classifier two configurations are considered: Bagging with
SMOTE and Bagging with Undersampling. RbB uses a threshold
to determine which label return, when the reliability provided by
IC is larger than the threshold, the final label corresponds to the
label returned by IC, in the opposite case the label corresponds
to the label returned by BC. This threshold is selected for each data-
set, considering the values from 0.0 to 1.0 in steps of size 0.05, the
threshold chosen is the one for which the sum of accuracy and geo-
metric mean is maximized over a validation dataset.

The Data-preprocessing-only family includes the Random
Balance ensemble (E-RB), while Bagging family includes the combi-
nation of Bagging and Random Balance (BAG-RB).

In the Boosting family, we have compared the most popular
algorithms. For completeness, we included the standard boosting
variants AdaBoost.M1 and MultiBoost. Both were tested with
reweighting as well as with weighted resampling [44].

The main contenders in this family were the boosting variants
especially designed for unbalanced data sets: SMOTEBoost, with
three different rates of SMOTE, and RUSBoost.

The proposed method: RB-Boost was also added to the Boosting
family.

For comparison between multiple algorithms for each family
and multiple data sets we used average ranks [45]. For a given data
set, the methods are sorted from best to worst. The best method
receives rank 1, the second best receives rank 2, and so on. In case
of a tie, average ranks are assigned. For instance, if two methods tie
for the top rank, they both receive rank 1.5. Average ranks across
all data sets are then obtained.

The first question is whether there are any significant
differences between the ranks of the compared methods. The
Friedman test and the subsequent version of Iman and
Davenport [46] test were applied.

To detect pairwise differences between a designated method
and the remaining methods, we used the Hochberg test [47], which
was found to be more powerful than the Bonferroni–Dunn test
[48,49].

Table 8a shows the results of the comparison of the algorithms
of the Data-preprocessing-only family in the form of average rank-
ing calculated from the area under the curve. The second column
shows the average rank of each method. The Iman and
Davenport test gives a p-value of 6.1904e�86, which means that
it rejects the hypothesis that the compared algorithms are equiva-
lent. The last column shows the adjusted Hochberg p-value
between E-RB and the respective method of that row. An adjusted
p-value less than 0.05 means that the two methods are

Table 3
Characteristics of the data sets from the KEEL collection.

data set Examples Attributes
(numeric/nominal)

IR

abalone19 4174 (7/1) 129.44
abalone9-18 731 (7/1) 16.40
cleveland-0_vs_4 177 (13/0) 12.62
ecoli-0-1-3-7_vs_2-6 281 (7/0) 39.14
ecoli-0-1-4-6_vs_5 280 (6/0) 13.00
ecoli-0-1-4-7_vs_2-3-5-6 336 (7/0) 10.59
ecoli-0-1-4-7_vs_5-6 332 (6/0) 12.28
ecoli-0-1_vs_2-3-5 244 (7/0) 9.17
ecoli-0-1_vs_5 240 (6/0) 11.00
ecoli-0-2-3-4_vs_5 202 (7/0) 9.10
ecoli-0-2-6-7_vs_3-5 224 (7/0) 9.18
ecoli-0-3-4-6_vs_5 205 (7/0) 9.25
ecoli-0-3-4-7_vs_5-6 257 (7/0) 9.28
ecoli-0-3-4_vs_5 200 (7/0) 9.00
ecoli-0-4-6_vs_5 203 (6/0) 9.15
ecoli-0-6-7_vs_3-5 222 (7/0) 9.09
ecoli-0-6-7_vs_5 220 (6/0) 10.00
ecoli-0_vs_1 220 (7/0) 1.86
ecoli1 336 (7/0) 3.36
ecoli2 336 (7/0) 5.46
ecoli3 336 (7/0) 8.60
ecoli4 336 (7/0) 15.80
glass-0-1-2-3_vs_4-5-6 214 (9/0) 3.20
glass-0-1-4-6_vs_2 205 (9/0) 11.06
glass-0-1-5_vs_2 172 (9/0) 9.12
glass-0-1-6_vs_2 192 (9/0) 10.29
glass-0-1-6_vs_5 184 (9/0) 19.44
glass-0-4_vs_5 92 (9/0) 9.22
glass-0-6_vs_5 108 (9/0) 11.00
glass0 214 (9/0) 2.06
glass1 214 (9/0) 1.82
glass2 214 (9/0) 11.59
glass4 214 (9/0) 15.46
glass5 214 (9/0) 22.78
glass6 214 (9/0) 6.38
haberman 306 (3/0) 2.78
iris0 150 (4/0) 2.00
led7digit-0-2-4-5-6-7-8-9_vs_1 443 (7/0) 10.97
new-thyroid1 215 (5/0) 5.14
new-thyroid2 215 (5/0) 5.14
page-blocks-1-3_vs_4 472 (10/0) 15.86
page-blocks0 5472 (10/0) 8.79
pima 768 (8/0) 1.87
segment0 2308 (19/0) 6.02
shuttle-c0-vs-c4 1829 (9/0) 13.87
shuttle-c2-vs-c4 129 (9/0) 20.50
vehicle0 846 (18/0) 3.25
vehicle1 846 (18/0) 2.90
vehicle2 846 (18/0) 2.88
vehicle3 846 (18/0) 2.99
vowel0 988 (13/0) 9.98
wisconsin 683 (9/0) 1.86
yeast-0-2-5-6_vs_3-7-8-9 1004 (8/0) 9.14
yeast-0-2-5-7-9_vs_3-6-8 1004 (8/0) 9.14
yeast-0-3-5-9_vs_7-8 506 (8/0) 9.12
yeast-0-5-6-7-9_vs_4 528 (8/0) 9.35
yeast-1-2-8-9_vs_7 947 (8/0) 30.57
yeast-1-4-5-8_vs_7 693 (8/0) 22.10
yeast-1_vs_7 459 (7/0) 14.30
yeast-2_vs_4 514 (8/0) 9.08
yeast-2_vs_8 482 (8/0) 23.10
yeast1 1484 (8/0) 2.46
yeast3 1484 (8/0) 8.10
yeast4 1484 (8/0) 28.10
yeast5 1484 (8/0) 32.73
yeast6 1484 (8/0) 41.40

J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111 103
significantly different with a significance of a ¼ 0:05. The table
shows that the Random Balance ensemble (E-RB) has a demonstra-
bly better AUC than all the other ensembles in this family.

Table 8b shows the average ranks for the Bagging family calcu-
lated using the same measure. With p-value of 8.1240e�56, the
Iman and Davenport test discards the hypothesis of equivalence
between the algorithms. The combination of Bagging with the pro-
posed method obtains the best ranking and also presents signifi-
cant differences with the other methods.

Table 8c shows the average ranks for the Boosting family. With
p-value of 1.0638e�37 the Iman and Davenport test discards the
hypothesis of equivalence. The proposed algorithm RB-Boost takes
the top spot for the AUC criterion, and there are significant differ-
ences with all other algorithms, except RUSBoost, which occupies
the second position (adjusted Hochberg’s p-value of 0.10634).

Table 9a shows the average ranks for the data-processing
according to the F-Measure. In this case the Iman and Davenport
test gives a p-value of 2.3794e�44, so the compared algorithms
are not equivalent. The Random Balance ensemble gets the best
ranking, but this time there are no statistically significant differ-
ences with the next three algorithms.

Table 9b shows the average ranks for the Bagging family accord-
ing to the F-Measure. The Iman and Davenport test discards the
hypothesis of equivalence between the algorithms with p-value
of 1.2896e�23. The proposed method obtains the second highest
ranking, but there are no significant differences from the first
method.

Finally, Table 9c shows the average ranks for the Boosting fam-
ily. With p-value of 6.912e�11 the Iman and Davenport test dis-
cards the hypothesis of equivalence between the algorithms. The
proposed algorithm has the best place in the ranking with signifi-
cant differences with all remaining algorithms in this family.

Fig. 7 shows scatter plots with the average ranks for the three
families of methods. The best methods according to the AUC
appear at the left, and the best methods according to the
F-Measure appear at the bottom.

Similar patterns appear in the left and center plots:

� In the case of data processing family, ensembles which only use
Random Undersampling (ERUS, ERUSR and EPart) obtain the
three worst results for the F-Measure but according to the
AUC criterion they are much better, only surpassed by E-RB.
� The ensembles that apply only SMOTE (ESM/100/200/500,

EopS) are grouped into a cluster and methods that combine bag-
ging and SMOTE (BAGSM/100/200/500, BAGopS) are grouped
into another cluster.
� The proposed method appears far ahead of the other methods

on the AUC criterion and is the best or the second best on the
F-Measure criterion.

The right plot, showing the Boosting family, reveals that the
methods are much closer to the diagonal line where the ranks
for the AUC and the F-Measure are identical. The proposed method
RB-Boost is located at a considerable distance from the other meth-
ods on both axes, which indicates its advantage.

Table 10 shows the rankings of the three families according to
the geometric mean. The proposed methods get the best positions
in the data processing and bagging families, in both cases signifi-
cantly according to Hochberg’s Test. But it gets the third position
in the Boosting family ranking.

Although accuracy is not usually considered an adequate per-
formance measure for imbalanced data, for the sake of complete-
ness, Table 11 shows the average ranks for the considered
ensemble methods according to this measure. As it could be
expected, the methods that do not consider imbalance (i.e.,
Bagging, AdaBoost and MultiBoost) have the top ranks for their
respective families. .

In this paper we have used several different measures to evalu-
ate the performance of various methods. Some measures such as
AUC, F-Measure and Geometric Mean are specific to unbalanced
datasets, while accuracy is not specific to unbalanced. A combined
average rank has been calculated to show the overall performance

Table 4
Algorithms used in the experimental study: data-processing family.

Data-processing-only based ensembles

Abbr. Method Details

ESM100 Ensemble, SMOTE = 100% Amount of SMOTE in each iteration equal to 100% size of the minority class
ESM200 Ensemble, SMOTE = 200% Amount of SMOTE in each iteration equal to 200% size of the minority class
ESM500 Ensemble, SMOTE = 500% Amount of SMOTE in each iteration equal to 500% size of the minority class
ESM Ensemble, SMOTE SMOTE in each iteration until 50% of the data belongs to minority class
ERUS Ensemble, RUS Random Undersampling in each iteration until 50% of the data belongs to minority class
E�RUSR Ensemble, RUS with replacement Random Undersampling with replacement in each iteration until 50% of the data belongs to minority class
E�Part Ensemble, Partitioning Build balanced training sets by splitting the majority class into subsets.
EopS Ensemble, optimized SMOTE Amount of SMOTE selected by cross validation
EopU Ensemble, optimized Undersampling Amount of Random Undersampling selected by cross validation
EopB Ensemble, optimized Both Amounts of SMOTE and Undersampling selected by cross validation
E-RB Ensemble, Random Balance Random Balance in each iteration

Table 5
Algorithms used in the experimental study: bagging family.

Bagging based ensembles

Abbr. Method Details

SMBAG SMOTEBagging
BAG Bagging
BAGSM100 Bagging, SMOTE = 100% Amount of SMOTE in each iteration equal to 100% size of the minority class
BAGSM200 Bagging, SMOTE = 200% Amount of SMOTE in each iteration equal to 200% size of the minority class
BAGSM500 Bagging, SMOTE = 500% Amount of SMOTE in each iteration equal to 500% size of the minority class
BAGSM Bagging, SMOTE SMOTE in each iteration until 50% of the data belongs to minority class
BAGRUS Bagging, RUS Random Undersampling in each iteration until 50% of the data belongs to minority class
R�bB:IC+BAGSM Reliability-based Balancing with

SMOTE
Miniensemble formed by Bagging and Bagging+SMOTE in each iteration until 50% of the data belongs to
minority class

R�bB:IC+BAGRUS Reliability-based Balancing with
UnderSampling

Miniensemble formed by Bagging and Bagging+Random Undersampling in each iteration until 50% of the
data belongs to minority class

BAGopS Bagging, optimized SMOTE Amount of SMOTE selected by cross validation
BAGopU Bagging, optimized Undersampling Amount of Random Undersampling selected by cross validation
BAGopB Bagging, optimized Both Amounts of SMOTE and Undersampling selected by cross validation
BAG-RB Bagging, Random Balance Random Balance in each iteration

Table 6
Algorithms used in the experimental study: Boosting family.

Boosting based ensembles

Abbr. Method Details

AdaM1W AdaBoost.M1 using reweighting
AdaM1S AdaBoost.M1 using resampling
MultiW MultiBoost using reweighting Number of subcommittees = 10
MultiS MultiBoost using resampling Number of subcommittees = 10
SB100 SMOTEBoost, SMOTE = 100% Amount of SMOTE in each iteration equal to 100% size of the minority class
SB200 SMOTEBoost, SMOTE = 200% Amount of SMOTE in each iteration equal to 200% size of the minority class
SB500 SMOTEBoost, SMOTE = 500% Amount of SMOTE in each iteration equal to 500% size of the minority class
RUSB RUSBoost Random Undersampling in each iteration until 50% of the data belongs to minority class
RB-B RB-Boost Random Balance in each iteration

104 J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111
of the four measures. This time the average rank for each method is
the average of their average ranks for each measure. Table 12
shows the average ranks for the considered ensemble methods
according to the combination of measures. In all families, the pro-
posed method obtains the best position. In this case it is not appro-
priate to apply any test to detect equivalence between methods or
pairwise differences because the values are not independent, for
each dataset-algorithm pair there are several values (one per
measure).

After comparing the methods within their own families, we per-
formed a comparison between the methods that have achieved
first place in their respective rankings.
Table 13 shows the average ranks for the best methods in each
family, calculated for each different measure. With p-values of
8.113e�6 and 0.04933 the Iman and Davenport test discards the
hypothesis of equivalence between the algorithms in AUC and
F-Measure. By contrast a p-value of 0.91474, in the case of ranking
calculated with the best methods according to their geometric
means, indicates that there is not significant differences between
methods, RUSBoost obtains the top position but it is equivalent
to the next two methods.

In the ranking calculated from the AUC, the best position is for
Bagging-RB, which shows significant differences with Ensemble-RB.
In the ranking calculated with the F-Measure, the best position is

Table 7
Scores of the proposed methods according to de AUC, F-Measure and geometric mean.

Dataset AUC F-Measure Geometric mean

E-RB BAG-RB RB-B E-RB BAG-RB RB-B E-RB BAG-RB RB-B

hddt_boundary 0.6748 0.6945 0.7085 0.1421 0.1132 0.0388 0.3552 0.2730 0.1320
hddt_breast-y 0.6414 0.6460 0.6223 0.4417 0.4496 0.4023 0.5805 0.5872 0.5454
hddt_cam 0.7277 0.7631 0.7665 0.1922 0.1916 0.1356 0.3715 0.3610 0.2916
hddt_compustat 0.9072 0.9107 0.9320 0.3404 0.3632 0.4538 0.7924 0.7780 0.5965
hddt_covtype 0.9933 0.9934 0.9959 0.8517 0.8586 0.9055 0.9587 0.9555 0.9439
hddt_credit-g 0.7508 0.7695 0.7546 0.5536 0.5790 0.5173 0.6723 0.6941 0.6334
hddt_estate 0.6239 0.6239 0.6138 0.2425 0.2373 0.0813 0.5320 0.5266 0.2176
hddt_german-numer 0.7750 0.7856 0.7626 0.5819 0.6002 0.5334 0.6965 0.7134 0.6438
hddt_heart-v 0.6907 0.7067 0.7056 0.4250 0.4350 0.4107 0.5822 0.5871 0.5617
hddt_hypo 0.9911 0.9905 0.9925 0.8685 0.8793 0.8863 0.9610 0.9635 0.9432
hddt_ism 0.9394 0.9421 0.9130 0.5359 0.5660 0.6804 0.8860 0.8836 0.8308
hddt_letter 0.9990 0.9994 0.9999 0.9569 0.9618 0.9768 0.9747 0.9719 0.9779
hddt_oil 0.9128 0.9201 0.9281 0.4510 0.5254 0.5504 0.7642 0.7454 0.6679
hddt_optdigits 0.9986 0.9980 0.9999 0.9793 0.9811 0.9925 0.9901 0.9902 0.9937
hddt_page 0.9918 0.9918 0.9911 0.8498 0.8568 0.8792 0.9581 0.9569 0.9340
hddt_pendigits 0.9995 0.9996 1.0000 0.9725 0.9775 0.9892 0.9859 0.9869 0.9921
hddt_phoneme 0.9339 0.9379 0.9502 0.7837 0.7905 0.8149 0.8636 0.8663 0.8675
hddt_PhosS 0.7183 0.7502 0.7276 0.1753 0.1204 0.0045 0.3432 0.2598 0.0300
hddt_satimage 0.9513 0.9517 0.9620 0.6354 0.6427 0.6916 0.8513 0.8440 0.7929
hddt_segment 0.9991 0.9989 0.9999 0.9727 0.9753 0.9912 0.9873 0.9880 0.9932
keel_abalone19 0.7427 0.7685 0.7154 0.0535 0.0607 0.0284 0.4729 0.3001 0.1099
keel_abalone9-18 0.7919 0.8081 0.8070 0.3077 0.3487 0.3769 0.6512 0.6237 0.5716
keel_cleveland-0_vs_4 0.9377 0.9539 0.9572 0.5551 0.6396 0.5681 0.7246 0.7622 0.6754
keel_ecoli-0-1-3-7_vs_2-6 0.9278 0.9321 0.9204 0.6382 0.6226 0.5110 0.8256 0.7971 0.6880
keel_ecoli-0-1-4-6_vs_5 0.9654 0.9637 0.9892 0.6883 0.7310 0.8031 0.8336 0.8442 0.8912
keel_ecoli-0-1-4-7_vs_2-3 0.9308 0.9333 0.9325 0.6390 0.6721 0.6978 0.8355 0.8236 0.8243
keel_ecoli-0-1-4-7_vs_5-6 0.9521 0.9603 0.9668 0.7227 0.7195 0.8016 0.8634 0.8359 0.8635
keel_ecoli-0-1_vs_2-3-5 0.9480 0.9507 0.9495 0.6878 0.7247 0.7508 0.8726 0.8763 0.8544
keel_ecoli-0-1_vs_5 0.9579 0.9709 0.9853 0.6755 0.7272 0.7602 0.8287 0.8547 0.8506
keel_ecoli-0-2-3-4_vs_5 0.9690 0.9729 0.9833 0.6741 0.7135 0.7529 0.8717 0.8830 0.8746
keel_ecoli-0-2-6-7_vs_3-5 0.9261 0.9285 0.9305 0.7111 0.7537 0.7589 0.8573 0.8636 0.8553
keel_ecoli-0-3-4-6_vs_5 0.9568 0.9667 0.9789 0.7124 0.7425 0.7791 0.8683 0.8700 0.8841
keel_ecoli-0-3-4-7_vs_5-6 0.9474 0.9497 0.9622 0.7236 0.7103 0.7983 0.8718 0.8405 0.8706
keel_ecoli-0-3-4_vs_5 0.9619 0.9671 0.9815 0.7103 0.7475 0.7433 0.8441 0.8495 0.8495
keel_ecoli-0-4-6_vs_5 0.9677 0.9721 0.9840 0.7450 0.7638 0.7453 0.8824 0.8804 0.8254
keel_ecoli-0-6-7_vs_3-5 0.9213 0.9346 0.9237 0.6796 0.7124 0.6996 0.8402 0.8405 0.8059
keel_ecoli-0-6-7_vs_5 0.9541 0.9610 0.9612 0.7534 0.7614 0.8079 0.9023 0.9034 0.8953
keel_ecoli-0_vs_1 0.9954 0.9925 0.9909 0.9765 0.9728 0.9691 0.9814 0.9793 0.9771
keel_ecoli1 0.9543 0.9573 0.9456 0.7876 0.7847 0.7650 0.8936 0.8886 0.8538
keel_ecoli2 0.9429 0.9473 0.9639 0.7915 0.7910 0.8128 0.8825 0.8839 0.8694
keel_ecoli3 0.9391 0.9379 0.9209 0.6214 0.6174 0.5567 0.8574 0.8519 0.7162
keel_ecoli4 0.9630 0.9724 0.9855 0.6585 0.6947 0.7911 0.8196 0.8385 0.8860
keel_glass-0-1-2-3_vs_4–5 0.9724 0.9747 0.9767 0.8412 0.8508 0.8363 0.9135 0.9183 0.8867
keel_glass-0-1-4-6_vs_2 0.7662 0.7510 0.7737 0.2970 0.3398 0.2646 0.5575 0.5606 0.4106
keel_glass-0-1-5_vs_2 0.7551 0.7466 0.7489 0.3464 0.2671 0.2688 0.6330 0.4768 0.4377
keel_glass-0-1-6_vs_2 0.7335 0.7148 0.7582 0.2650 0.2425 0.1841 0.5334 0.4649 0.3315
keel_glass-0-1-6_vs_5 0.9948 0.9938 0.9909 0.7913 0.7882 0.6867 0.9856 0.9756 0.8161
keel_glass-0-4_vs_5 0.9957 0.9964 0.9956 0.9505 0.9505 0.8519 0.9939 0.9939 0.9185
keel_glass-0-6_vs_5 0.9843 0.9837 0.9907 0.8946 0.8946 0.7988 0.9493 0.9493 0.8719
keel_glass0 0.8593 0.8694 0.8833 0.7216 0.7206 0.7172 0.7976 0.7967 0.7868
keel_glass1 0.8146 0.8264 0.8592 0.6354 0.6791 0.6997 0.7105 0.7466 0.7602
keel_glass2 0.8214 0.8020 0.7502 0.2984 0.2500 0.2469 0.6008 0.5043 0.3848
keel_glass4 0.9117 0.9322 0.9628 0.4748 0.5512 0.5128 0.7349 0.7836 0.6551
keel_glass5 0.9922 0.9905 0.9864 0.7606 0.7571 0.6602 0.9759 0.9754 0.7761
keel_glass6 0.9530 0.9602 0.9565 0.8239 0.8423 0.8551 0.9167 0.9235 0.9109
keel_haberman 0.7090 0.7130 0.6735 0.5002 0.4943 0.3409 0.6518 0.6454 0.4957
keel_iris0 1.0000 1.0000 1.0000 0.9813 0.9813 0.9813 0.9816 0.9816 0.9816
keel_led7digit-0-2-4-5-6- 0.9577 0.9605 0.9653 0.7541 0.7779 0.7667 0.8925 0.8960 0.8714
keel_new-thyroid1 0.9936 0.9949 0.9971 0.9077 0.9124 0.9270 0.9413 0.9494 0.9546
keel_new-thyroid2 0.9950 0.9953 0.9983 0.8960 0.8993 0.9455 0.9482 0.9420 0.9637
keel_page-blocks-1-3_vs_4 0.9997 0.9995 0.9998 0.9284 0.9271 0.9610 0.9700 0.9698 0.9837
keel_page-blocks0 0.9913 0.9912 0.9904 0.8455 0.8530 0.8692 0.9519 0.9537 0.9302
keel_pima 0.8185 0.8214 0.8018 0.6654 0.6721 0.6225 0.7387 0.7451 0.7025
keel_segment0 0.9983 0.9986 0.9999 0.9683 0.9700 0.9881 0.9847 0.9847 0.9919
keel_shuttle-c0-vs-c4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
keel_shuttle-c2-vs-c4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
keel_vehicle0 0.9885 0.9896 0.9958 0.8803 0.8803 0.9335 0.9391 0.9394 0.9588
keel_vehicle1 0.8452 0.8510 0.8511 0.6243 0.6197 0.5608 0.7643 0.7541 0.6830
keel_vehicle2 0.9936 0.9945 0.9981 0.9329 0.9404 0.9665 0.9653 0.9665 0.9772
keel_vehicle3 0.8478 0.8475 0.8458 0.6162 0.6140 0.5442 0.7626 0.7524 0.6647
keel_vowel0 0.9965 0.9965 0.9997 0.8733 0.8787 0.9697 0.9623 0.9681 0.9817
keel_wisconsin 0.9921 0.9924 0.9931 0.9521 0.9501 0.9526 0.9661 0.9635 0.9646
keel_yeast-0-2-5-6_vs_3-7 0.8449 0.8533 0.8427 0.5531 0.5957 0.5896 0.7745 0.7731 0.7195
keel_yeast-0-2-5-7-9_vs_3 0.9483 0.9444 0.9436 0.7434 0.7775 0.8049 0.8956 0.9022 0.8799

(continued on next page)

J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111 105

Table 7 (continued)

Dataset AUC F-Measure Geometric mean

E-RB BAG-RB RB-B E-RB BAG-RB RB-B E-RB BAG-RB RB-B

keel_yeast-0-3-5-9_vs_7-8 0.7573 0.7638 0.7565 0.3717 0.3869 0.3635 0.6575 0.6694 0.5319
keel_yeast-0-5-6-7-9_vs_4 0.8931 0.8963 0.8795 0.4982 0.5246 0.4876 0.7714 0.7433 0.6452
keel_yeast-1-2-8-9_vs_7 0.7373 0.7592 0.7477 0.1868 0.1785 0.2663 0.6400 0.4947 0.4452
keel_yeast-1-4-5-8_vs_7 0.6477 0.6617 0.6655 0.1644 0.1565 0.1135 0.5561 0.4222 0.2365
keel_yeast-1_vs_7 0.8096 0.8184 0.8059 0.3310 0.3350 0.3824 0.6851 0.6455 0.5663
keel_yeast-2_vs_4 0.9799 0.9799 0.9705 0.7149 0.7292 0.7514 0.9104 0.9070 0.8547
keel_yeast-2_vs_8 0.8167 0.8204 0.8216 0.4098 0.5572 0.5942 0.7089 0.7286 0.7238
keel_yeast1 0.7949 0.7992 0.7768 0.5920 0.6027 0.5309 0.7107 0.7212 0.6461
keel_yeast3 0.9741 0.9745 0.9641 0.7788 0.7811 0.7649 0.9320 0.9294 0.8603
keel_yeast4 0.9335 0.9381 0.9148 0.3336 0.3884 0.3790 0.8075 0.8055 0.5807
keel_yeast5 0.9897 0.9901 0.9766 0.7311 0.7269 0.6899 0.9461 0.9391 0.8438
keel_yeast6 0.9137 0.9168 0.8965 0.3685 0.4575 0.4997 0.7823 0.7869 0.6878

Fig. 6. The figure shows how to interpret the parameters used for SMOTE and
Undersampling. These parameters can be thought of as a percentage of the
difference of class sizes. For SMOTE, in this case, a value of 50% (a in the figure)
indicates that the number of artificial instances to be created are the 50% of the
number needed to match the size of the majority class. For Undersampling a value
of 70% (b in the figure) indicates that the number of removed instances in the
majority class will be 30% of the size of the difference.

Table 8
Average ranks (AUC).

Algorithm Average rank p-Hochberg

(a) Data-processing family
E-RB 2.2674
ERUSR 3.8256 0.0021
EPart 4.1337 4.4869e�004
ERUS 4.4767 3.7599e�005
EopB 5.5930 1.9442e�010
ESM200 6.7442 4.3307e�018
ESM500 7.0291 2.8543e�020
ESM100 7.1861 1.6549e�021
EopU 7.6744 9.0344e�026
ESM 8.2674 1.6612e�031
EopS 8.8023 3.4537e�037

(b) Bagging family
BAG-RB 3.0930
BAGopB 5.9302 1.7768e�006
BAGSM500 6.0465 1.3180e�006
BAGSM200 6.1456 8.2646e�007
BAGSM100 6.3081 2.4709e�007
BAGRUS 6.3256 2.4709e�007
BAGopS 6.4826 6.8877e�008
BAGSM 6.5058 6.3800e�008
BAGopU 6.6977 1.0265e�008
SMBAG 8.3663 6.0674e�018
BAG 8.5233 6.0521e�019
RbB:IC+BAGSM 10.1919 6.8898e�032
RbB:IC+BAGRUS 10.3837 1.4618e�033

(c) Boosting family
RB-B 2.9884
RUSB 3.6628 0.10634
SB200 4.4419 0.00100
SB500 4.5116 7.9490e�004
SB100 4.8139 4.9417e�005
MultiS 4.9128 2.0338e�005
AdaM1S 6.0407 1.6196e�012
MultiW 6.1977 1.0754e�013
AdaM1W 7.4302 1.6253e�025

106 J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111
for RB-Boost. In this case, despite the p-value given by the Iman and
Davenport test, the post hoc Hochberg test found no significant dif-
ferences between the methods at a ¼ 0:05; the p-value of
Hochberg between the first ranking method and the last one is
0.05954. The method which obtains the best rank according to
accuracy is Multiboost with resampling, but we emphasize that
accuracy is not the best measure to evaluate classification methods
in imbalanced dataset. And finally, the method that obtains the
best average ranking considering all measures is one of the pro-
posed methods: Random Balance Boost (RB-B).

6.1. Fusion rules

The outputs of the classifiers in an ensemble can be combined in
several ways [50]. For Ensemble-RB and Bagging-RB, the outputs
are combined using the simple average of probabilities. For
RB-Boost, the outputs are combined using a weighted average (line
11 in Fig. 2), because it is the method used in AdaBoost.M2 and its
variants for imbalance (RUSBoost, SMOTEBoost).

This section considers other combination methods for
Ensemble-RB and Bagging-RB: majority voting and product of
probabilities. Tables 14 and 15 show the average ranks for the con-
sidered fusion rules. Iman and Davenport Test discards the hypoth-
esis of equivalence between the algorithms in all cases.
Ensemble-RB and Bagging-RB show the same behavior: for AUC
the order of fusion rules is average, product and majority voting,
while for F-Measure the order is majority voting, average and prod-
uct. When comparing the best method with the remaining meth-
ods, the adjusted p-values for Hochberg’s procedure are small
(<0.015). Hence, which fusion rule is used gives significant
differences.
6.2. Base classifiers

Decision trees are usually used as base classifiers, since they are
simple and fast to compute, and they are unstable (small variations
in the training set can result in different trees and different
predictions), which contributes to the diversity of the ensemble.
This section considers the performance of the proposed ensemble
methods with other two base classifiers: nearest neighbour
(1-NN) and SVM with Gaussian kernel. Due to the high computa-
tional cost of SVM classifiers, the size of all ensembles used in
the comparison of this section was set to 50.

Table 9
Average ranks (F-Measure).

Algorithm Average rank p-Hochberg

(a) Data-processing family
E-RB 4.0639
ESM200 4.3023 0.6374
ESM500 4.3954 0.6374
ESM100 4.7674 0.4928
EopB 5.5116 0.0168
ESM 5.7326 0.0049
EopS 5.9070 0.0016
EopU 6.7790 5.5677e�007
ERUS 7.9419 1.4066e�013
EPart 7.9535 1.3225e�013
ERUSR 8.6454 1.3278e�018

(b) Bagging family
BAGSM500 5.3081
BAG-RB 5.5930 0.6315
BAGSM200 5.6686 0.6315
BAGSM 5.9651 0.6315
BAGopS 6.3023 0.3765
BAGSM100 6.4302 0.2942
RbB:IC+BAGSM 6.7791 0.0796
RbB:IC+BAGRUS 7.1977 0.0103
SMBAG 7.2035 0.0103
BAGopB 7.2616 0.0090
BAGopU 8.5639 4.2025e�007
BAG 8.7849 5.2748e�008
BAGRUS 9.9419 7.2984e�014

(c) Boosting family
RB-B 3.3372
RUSB 4.5639 0.00331
AdaM1S 4.6337 0.00331
SB500 4.7326 0.00250
MultiS 4.9942 2.9049e�004
SB200 5.2267 3.0287e�005
SB100 5.6919 1.0318e�007
AdaM1W 5.7733 3.8116e�008
MultiW 6.0465 6.9931e�010

Table 10
Average ranks (geometric mean).

Algorithm Average rank p-Hochberg

(a) Data-processing family
E-RB 3.3779
ERUS 3.7500 4.6192e�001
EPart 3.9767 4.6192e�001
ERUSR 4.3488 1.6470e�001
EopB 5.2442 8.9737e�004
ESM 6.4070 1.0563e�008
ESM500 6.5116 3.4791e�009
ESM200 7.8140 1.2430e�017
EopU 7.8372 9.4328e�018
EopS 8.2093 1.1410e�020
ESM100 8.5233 2.6149e�023

(b) Bagging family
BAG-RB 3.2326
BAGRUS 4.1686 1.1500e�001
SMBAG 4.7267 2.3746e�002
BAGopB 5.3837 8.7661e�004
BAGSM 5.8430 4.4210e�005
BAGSM500 6.0640 9.3268e�006
BAGSM200 7.6570 5.6084e�013
BAGopU 7.6686 5.6084e�013
BAGopS 7.7791 1.5418e�013
RbB:IC+BAGRUS 8.3081 1.1445e�016
BAGSM100 8.9942 2.9739e�021
RbB:IC+BAGSM 9.3547 7.1062e�024
BAG 11.8198 2.6359e�046

(c) Boosting family
RUSB 2.0872
SB500 3.5233 5.8489e�004
RB-B 3.6686 3.0550e�004
SB200 4.7384 6.5421e�010
AdaM1S 5.4709 2.1606e�015
SB100 5.5756 3.3363e�016
MultiS 5.9477 1.4294e�019
AdaM1W 6.5872 3.1635e�026
MultiW 7.4012 3.4831e�036

J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111 107
Tables 16–18 show the average ranks for, respectively,
Ensemble-RB, Bagging-RB and RB-Boost. These tables show, for
AUC and F-Measure, the average ranks of the three considered base
classifiers with the corresponding ensemble methods. Decision
trees work better in these ensembles than the other two consid-
ered alternatives: in all the ranks, decision trees have the top posi-
tion. The differences are larger for AUC than for F-Measure.
Fig. 7. Average ranks for the ensemble metho
6.3. Ensemble size

In all the previous experiments the ensemble size was 100. This
section considers the effect of the ensemble size in the perfor-
mance. Fig. 8 shows the performance as a function of the ensemble
size. The ensemble sizes vary from 5 to 100 in steps of size 5. The
top two plots show the average value of the performance measure
(AUC or F-Measure) across all the data sets, for Ensemble-RB,
Bagging-RB and RB-Boost. As usual with ensembles, the perfor-
mance improves with size, but the improvements are smaller as
ds, according to te AUC and F-Measure.

Table 11
Average ranks for the considered ensemble methods, obtained from the accuracies.

Algorithm Rank

Data-level family
ESM100 2.4826
ESM200 3.4593
EopS 4.2326
ESM500 4.7500
E-RB 5.0407
ESM 5.2267
EopB 6.0000
EopU 6.1570
EPart 9.1512
RUS 9.2209
ERUSR 10.2791

Bagging family
BAG 3.5233
BAGSM100 3.9942
RbB:IC+BAGSM 4.6221
BAGSM200 5.1337
BAGopS 5.3198
RbB:IC+BAGRUS 6.3314
BAGSM500 6.6337
BAGSM 6.9128
BAG-RB 8.3721
BAGopU 8.7151
SMBAG 9.4884
BAGopB 9.5116
BAGRUS 12.4419

(c) Boosting family
MultiS 3.3314
AdaS 3.4826
MultiW 3.8430
RB-B 4.1337
AdaW 4.2093
SB100 6.0174
SB200 6.3023
RUSB 6.6337
SB500 7.0465

Table 12
Average ranks (combined).

Algorithm Average rank

(a) Data-processing family
E-RB 3.6948
ESM200 5.5828
EopB 5.5858
ESM500 5.6744
ESM100 5.7427
EPart 6.3009
RUS 6.3503
ESM 6.4113
ERUSR 6.7645
EopS 6.7820
EopU 7.1105

(b) Bagging family
BAG-RB 5.0727
BAGSM500 6.0131
BAGSM200 6.1512
BAGSM 6.3067
BAGSM100 6.4346
BAGopS 6.4695
BAGopB 7.0218
SMBAG 7.4462
RbB:IC+BAGSM 7.7384
BAGopU 7.9113
RbB:IC+BAGRUS 8.0552
BAG 8.1599
BAGRUS 8.2195

(c) Boosting family
RB-B 3.5320
RUSB 4.2369

Table 12 (continued)

Algorithm Average rank

MultiS 4.7965
AdaS 4.9070
SB500 4.9535
SB200 5.1773
SB100 5.5247
MultiW 5.8721
AdaW 6.0000

Table 13
Average ranks (best algorithms).

Algorithm Average rank p-Hochberg

(a) AUC
BAG-RB 1.76163
RB-B 1.82558 0.67494
E-RB 2.41279 0.00004

(b) F-Measure
RB-B 1.88372
BAGSM500 1.90116 0.90894
E-RB 2.21512 0.05954

(c) G-Mean
RUSB 1.9651
E-RB 2.0058 7.8957e�001
BAG-RB 2.0291 7.8957e�001

Algorithm Average rank

(d) Accuracy
MultiS 1.6395
BAG 1.7209
ESM100 2.6395

(e) Combined
RB-B 1.8488
BAG-RB 1.8532
E-RB 2.2980

Table 14
Average ranks for ensemble-RB fusion rules.

Algorithm Average rank p-Hochberg

(a) AUC
Average 1.08721
Product 1.95349 1.34e�8
Majority voting 2.9593 2.43e�34

(b) F-Measure
Majority voting 1.49419
Average 1.94186 3.33e�003
Product 2.56395 4.60e�012

108 J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111
the size grows. The bottom two plots shows the performance but
using average ranks instead of the mean across all the data sets.
For each method, 20 sizes are considered ð5;10;15; . . . ;100Þ, and
the average ranks are computed for them. The values are in the
interval [1,20], and smaller values represent better performance.
The average ranks are better as the ensemble size increases.

Fig. 9 shows six plots, each one compares a pair of methods
across the considered ensemble sizes. Each plot shows, as a func-
tion of the ensemble size, the percentage of data sets with the best
performance in terms of AUC (left plots) or F-Measure (right plots).
The selected pairs are the two methods with best average ranks in
each family (Tables 8 and 9).

Table 15
Average ranks for bagging-RB fusion rules.

Algorithm Average rank p-Hochberg

(a) AUC
Average 1.11047
Product 1.91860 1.16e�007
Majority Voting 2.97093 6.23e�034

(b) F-Measure
Majority Voting 1.56395
Average 1.94186 0.01321
Product 2.49419 2.12e�009

Table 16
Average ranks of base classifiers for ensemble-RB.

Algorithm Average rank p-Hochberg

(a) AUC
J48 1.74419
1-NN 2.04070 0.0519
SVM 2.21512 0.0040

(b) F-Measure
J48 1.63953
1-NN 1.88953 0.1011
SVM 2.47093 9.97e�008

Table 17
Average ranks of base classifiers for Bagging-RB.

Algorithm Average rank p-Hochberg

(a) AUC
J48 1.72674
1-NN 2.05233 0.0328
SVM 2.22093 0.0024

(b) F-Measure
J48 1.72674
1-NN 1.91279 0.2225
SVM 2.36047 6.49e�005

Table 18
Average ranks of base classifiers for RB-boost.

Algorithm Average rank p-Hochberg

(a) AUC
J48 1.27326
SVM 2.17442 3.44e-009
1-NN 2.55233 9.94e-017

(b) F-Measure
J48 1.89535
1-NN 2.01744 0.4234
SVM 2.08721 0.4167

J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111 109
According to the AUC, the methods based on RB have a percent-
age of victories around 70%. In the left center plot, when comparing
Bagging-RB with BAGopB (Bagging with the amount of SMOTE and
Undersampling selected by cross validation), the initial percentage
is smaller but it increases to greater values with the ensemble size.
Fig. 8. Performance measures as a
For the F-Measure (right plots), Ensemble-RB and Bagging-RB
are not better than the corresponding pairs (ESM200 and
BAG500), this was expected as in Tables 8 and 9 the differences
for the considered pairs were not significant. When comparing
RB-Boost with RUSBoost the difference is greater, although it
decreases with the ensemble size.
function of the ensemble size.

Fig. 9. Comparison of methods as a function of the ensemble size.

110 J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111
7. Conclusion

We propose a new preprocessing technique adequate to balance
datasets within ensemble methods: Random Balance, based on the
idea of varying randomly the proportions of the classes, and
applied it to design a new ensemble method: RB-Boost. In addition
to boosting the AUC, this intuitive heuristic bypasses the need to
tune the sensitive class proportion parameter, common to most
methods for imbalanced classification.

Despite their simplicity, the two proposed methods have
proved competitive when compared with other state-of-the-art
ensembles, including those specifically devised for imbalanced
data classification.

There are several future research lines:

� Study the performance of Random Balance in presence of sev-
eral data intrinsic characteristics which have been proven to
have a strong influence on imbalanced classification [51,52].
Some of these problems are overlapping [53], noisy examples
[54], small disjuncts [55] or borderline examples [56]. On sev-
eral occasions these problems have been addressed with pre-
processing techniques, these techniques could be combined
using the same strategy that Random Balance uses to combine
SMOTE and undersampling resulting in new methods. For
example, the resampling strategy CBO [57] has been used suc-
cessfully with small disjuncts; cleaning techniques such as
ENN [58] or CNN [59] have been used with noisy datasets;
and variants of SMOTE, such as, Safe-Level-SMOTE [15] or
SPIDER [60] with borderline examples.
� Extend the ideas in this article to multiple-class unbalanced

problems.
� Test other combinations of classifiers beyond the average or the

weighted average.
Acknowledgments

This work was partially supported by the Project
TIN2011-24046 of the Spanish Ministry of Economy and
Competitiveness. We wish to thank the developers of Weka [40],
the KEEL Experimental Analysis Framework [38] and the donors
of the different data sets.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.knosys.2015.04.
022.

References

[1] N. Chawla, N. Japkowicz, A. Kotcz, Editorial: special issue on learning from
imbalanced data sets, ACM SIGKDD Explor. Newslett. 6 (1) (2004) 1–6.

[2] N. García-Pedrajas, J. Pérez-Rodríguez, M.D. García-Pedrajas, D. Ortiz-Boyer, C.
Fyfe, Class imbalance methods for translation initiation site recognition in dna
sequences, Knowl.-Based Syst. 25 (1) (2012) 22–34.

[3] R. Batuwita, V. Palade, microPred: Effective classification of pre-miRNAs for
human miRNA gene prediction, Bioinformatics 25 (8) (2009) 989–995.

[4] T.W. Liao, Classification of weld flaws with imbalanced class data, Expert Syst.
Appl. 35 (3) (2008) 1041–1052, http://dx.doi.org/10.1016/j.eswa.2007.08.044.

[5] D. Anil Kumar, V. Ravi, Predicting credit card customer churn in banks using
data mining, Int. J. Data Anal. Techn. Strat. 1 (1) (2008) 4–28.

[6] C. Phua, D. Alahakoon, V. Lee, Minority report in fraud detection: classification
of skewed data, ACM SIGKDD Explor. Newslett. 6 (1) (2004) 50–59.

[7] S. Visa, A. Ralescu, Issues in mining imbalanced data sets – a review paper, in:
Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive
Science Conference, 2005, pp. 67–73.

[8] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F. Herrera, A review on
ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-
based approaches, IEEE Trans. Syst. Man Cybern., Part C: Appl. Rev. 42 (4)
(2012) 463–484, http://dx.doi.org/10.1109/TSMCC.2011.2161285.

http://dx.doi.org/10.1016/j.knosys.2015.04.022
http://dx.doi.org/10.1016/j.knosys.2015.04.022
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0005
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0005
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0010
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0010
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0010
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0015
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0015
http://dx.doi.org/10.1016/j.eswa.2007.08.044
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0025
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0025
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0030
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0030
http://dx.doi.org/10.1109/TSMCC.2011.2161285

J.F. Díez-Pastor et al. / Knowledge-Based Systems 85 (2015) 96–111 111
[9] D.A. Cieslak, N.V. Chawla, Learning decision trees for unbalanced data, in:
Proceedings of the 2008 European Conference on Machine Learning and
Knowledge Discovery in Databases – Part I, ECML PKDD ’08, Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 241–256, http://dx.doi.org/10.1007/978-3-540-
87479-9_34.

[10] W. Liu, S. Chawla, D.A. Cieslak, N.V. Chawla, A robust decision tree algorithm
for imbalanced data sets, in: Proceedings of the SIAM International Conference
on Data Mining, SDM 2010, 2010, pp. 766–777.

[11] K. Veropoulos, C. Campbell, N. Cristianini, Controlling the sensitivity of support
vector machines, in: Proceedings of the International Joint Conference on AI,
1999, pp. 55–60.

[12] G. Batista, R. Prati, M. Monard, A study of the behavior of several methods for
balancing machine learning training data, ACM SIGKDD Explor. Newslett. 6 (1)
(2004) 20–29.

[13] N. Chawla, K. Bowyer, L. Hall, W. Kegelmeyer, Smote: synthetic minority over-
sampling technique, J. Artif. Intell. Res. 16 (2002) 321–357.

[14] H. Han, W. Wang, B. Mao, Borderline-smote: a new over-sampling method in
imbalanced data sets learning, in: 2005 International Conference on Intelligent
Computing (ICIC05), Lecture Notes on Computer Science, vol. 3644, Springer-
Verlag, 2005, pp. 878–887.

[15] C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Safe-level-smote: safe-
level-synthetic minority over-sampling technique for handling the class
imbalanced problem, in: Pacific-Asia Conference on Knowledge Discovery
and Data Mining(PAKDD09), Lecture Notes on Computer Science, vol. 5476,
Springer-Verlag, 2009, pp. 475–482.

[16] R. Barandela, R. Valdovinos, J. Sánchez, New applications of ensembles of
classifiers, Pattern Anal. Appl. 6 (3) (2003) 245–256.

[17] C. Ling, V. Sheng, Q. Yang, Test strategies for cost-sensitive decision trees, IEEE
Trans. Knowl. Data Eng. 18 (8) (2006) 1055–1067.

[18] M. Kukar, I. Kononenko, Cost-sensitive learning with neural networks, in:
Proceedings of the 13th European Conference on Artificial Intelligence (ECAI-
98), Citeseer, 1998, pp. 445–449.

[19] W. Fan, S.J. Stolfo, J. Zhang, P.K. Chan, AdaCost: misclassification cost-sensitive
boosting, in: Proceedings of the Sixteenth International Conference on
Machine Learning, ICML ’99, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1999, pp. 97–105.

[20] M. Joshi, V. Kumar, R. Agarwal, Evaluating boosting algorithms to classify rare
classes: comparison and improvements, in: Proceedings IEEE International
Conference on Data Mining, 2001, ICDM 2001, IEEE, 2001, pp. 257–264.

[21] Y. Sun, M. Kamel, A. Wong, Y. Wang, Cost-sensitive boosting for classification
of imbalanced data, Pattern Recogn. 40 (2007) 3358–3378.

[22] S. Wang, X. Yao, Diversity analysis on imbalanced data sets by using ensemble
models, in: IEEE Symposium Series on Computational Intelligence and Data
Mining (IEEE CIDM 2009), 2009, pp. 324–331.

[23] N. Chawla, A. Lazarevic, L. Hall, K. Bowyer, Smoteboost: improving prediction
of the minority class in boosting, in: 7th European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD 2003), 2003, pp.
107–119.

[24] C. Seiffert, T. Khoshgoftaar, J. Van Hulse, A. Napolitano, Rusboost: a hybrid
approach to alleviating class imbalance, IEEE Trans. Syst. Man Cybern., Part A:
Syst. Hum. 40 (1) (2010) 185–197.

[25] S.B. Kotsiantis, P.E. Pintelas, Mixture of expert agents for handling imbalanced
data sets, Ann. Math. Comput. Teleinform. 1 (1) (2003) 46–55.

[26] T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett. 27 (8) (2006)
861–874.

[27] C. Van Rijsbergen, Information Retrieval, Butterworth, 1979.
[28] M. Kubat, Matwin, Addressing the curse of imbalanced training sets: one-sided

selection, in: Proceedings of the 14th International Conference on Machine
Learning, 1997, pp. 179–186.

[29] L. Breiman, Bagging predictors, Mach. Learn. 24 (1996) 123–140.
[30] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in:

Machine Learning, Proceedings of the Thirteenth International Conference
(ICML ’96), Bari, Italy, July 3–6, 1996, 1996, pp. 148–156.

[31] M. Molinara, M. Ricamato, F. Tortorella, Facing imbalanced classes through
aggregation of classifiers, in: 14th International Conference on Image Analysis
and Processing, 2007, ICIAP 2007, IEEE, 2007, pp. 43–48.

[32] P. Soda, A multi-objective optimisation approach for class imbalance learning,
Pattern Recogn. 44 (8) (2011) 1801–1810.

[33] S. Wang, X. Yao, Relationships between diversity of classification ensembles
and single-class performance measures, IEEE Trans. Knowl. Data Eng. 25 (1)
(2013) 206–219.
[34] D.D. Margineantu, T.G. Dietterich, Pruning adaptive boosting, in: Proceedings
of the Fourteenth International Conference on Machine Learning (ICML 1997),
1997, pp. 211–218.

[35] L. Kuncheva, A bound on kappa-error diagrams for analysis of classifier
ensembles, IEEE Trans. Knowl. Data Eng. (99) (2011) 1, http://dx.doi.org/
10.1109/TKDE.2011.234.

[36] J.L. Fleiss, Statistical Methods for Rates and Proportions, Wiley Series in
Probability and Mathematical Statistics. Applied Probability and Statistics,
John Wiley & Sons, 1981.

[37] D.A. Cieslak, T.R. Hoens, N.V. Chawla, W.P. Kegelmeyer, Hellinger distance
decision trees are robust and skew-insensitive, Data Min. Knowl. Discov. 24 (1)
(2012) 136–158, http://dx.doi.org/10.1007/s10618-011-0222-1.

[38] J. Alcala-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, F.
Herrera, Keel data-mining software tool: data set repository and integration of
algorithms and experimental analysis framework, J. Multple-Valued Logic Soft
Comput. 17 (2–3) (2011) 255–287.

[39] A. Frank, A. Asuncion, UCI machine learning repository, 2010. <http://archive.
ics.uci.edu/ml>.

[40] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The weka
data mining software: an update, SIGKDD Explor. Newsl. 11 (1) (2009) 10–18,
http://dx.doi.org/10.1145/1656274.1656278.

[41] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauffman, 1993.
[42] F. Provost, P. Domingos, Tree induction for probability-based ranking, Mach.

Learn. 52 (3) (2003) 199–215.
[43] T. Dietterich, Approximate statistical tests for comparing supervised

classification learning algorithms, Neural Comput. 10 (7) (1998) 1895–1923.
[44] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning

and an application to boosting, J. Comput. Syst. Sci. 55 (1) (1997) 119–139.
[45] J. Demsar, Statistical comparisons of classifiers over multiple data sets, J. Mach.

Learn. Res. 7 (2006) 1–30.
[46] R. Iman, J. Davenport, Approximations of the critical region of the fbietkan

statistic, Commun. Stat.-Theory Methods 9 (6) (1980) 571–595.
[47] Y. Hochberg, A sharper Bonferroni procedure for multiple tests of significance,

Biometrika 75 (1988) 800–803.
[48] O. Dunn, Multiple comparisons among means, J. Am. Stat. Assoc. 56 (1961) 52–

64.
[49] S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of non-

parametric tests for analyzing the evolutionary algorithms’ behaviour: a case
study on the CEC’2005 special session on real parameter optimization, J.
Heuristics 15 (6) (2009) 617–644.

[50] L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, Wiley
Interscience, 2004.

[51] V. López, A. Fernández, S. García, V. Palade, F. Herrera, An insight into
classification with imbalanced data: Empirical results and current trends on
using data intrinsic characteristics, Inform. Sci. 250 (0) (2013) 113–141, http://
dx.doi.org/10.1016/j.ins.2013.07.007. <http://www.sciencedirect.com/science/
article/pii/S0020025513005124>.

[52] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng.
21 (9) (2009), http://dx.doi.org/10.1109/TKDE.2008.239.

[53] J. Stefanowski, Overlapping, rare examples and class decomposition in
learning classifiers from imbalanced data, in: Emerging Paradigms in
Machine Learning, Springer, 2013, pp. 277–306.

[54] C.E. Brodley, M.A. Friedl, Identifying mislabeled training data, J. Artif. Intell.
Res. 11 (1999) 131–167.

[55] G.M. Weiss, The impact of small disjuncts on classifier learning, in: Data
Mining, Springer, 2010, pp. 193–226.

[56] K. Napierała, J. Stefanowski, S. Wilk, Learning from imbalanced data in
presence of noisy and borderline examples, in: Rough Sets and Current Trends
in Computing, Springer, 2010, pp. 158–167.

[57] T. Jo, N. Japkowicz, Class imbalances versus small disjuncts, ACM SIGKDD
Explor. Newslett. 6 (1) (2004) 40–49.

[58] D. Wilson, Asymptotic properties of nearest neighbor rules using edited data,
IEEE Trans. Syst. Man Cybern. 2 (3) (1972) 408–421.

[59] K. Gowda, G. Krishna, The condensed nearest neighbor rule using the concept
of mutual nearest neighborhood (corresp.), IEEE Trans. Inform. Theory 25 (4)
(1979) 488–490.

[60] J. Stefanowski, S. Wilk, Selective pre-processing of imbalanced data for
improving classification performance, in: Data Warehousing and Knowledge
Discovery, Springer, 2008, pp. 283–292.

http://dx.doi.org/10.1007/978-3-540-87479-9_34
http://dx.doi.org/10.1007/978-3-540-87479-9_34
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0060
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0060
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0060
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0065
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0065
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0070
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0070
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0070
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0070
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0070
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0075
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0075
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0075
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0075
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0075
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0075
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0080
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0080
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0085
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0085
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0095
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0095
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0095
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0095
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0095
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0100
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0100
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0100
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0100
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0105
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0105
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0120
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0120
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0120
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0125
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0125
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0130
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0130
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0135
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0135
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0145
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0155
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0155
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0155
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0155
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0160
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0160
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0165
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0165
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0165
http://dx.doi.org/10.1109/TKDE.2011.234
http://dx.doi.org/10.1109/TKDE.2011.234
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0180
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0180
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0180
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0180
http://dx.doi.org/10.1007/s10618-011-0222-1
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0190
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0190
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0190
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0190
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1145/1656274.1656278
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0205
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0205
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0210
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0210
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0215
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0215
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0220
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0220
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0225
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0225
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0230
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0230
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0235
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0235
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0240
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0240
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0245
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0245
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0245
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0245
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0250
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0250
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0250
http://dx.doi.org/10.1016/j.ins.2013.07.007
http://dx.doi.org/10.1016/j.ins.2013.07.007
http://www.sciencedirect.com/science/article/pii/S0020025513005124
http://www.sciencedirect.com/science/article/pii/S0020025513005124
http://dx.doi.org/10.1109/TKDE.2008.239
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0265
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0265
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0265
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0265
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0270
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0270
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0275
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0275
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0275
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0280
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0280
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0280
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0280
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0285
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0285
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0290
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0290
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0295
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0295
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0295
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0300
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0300
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0300
http://refhub.elsevier.com/S0950-7051(15)00172-0/h0300

	Random Balance: Ensembles of variable priors classifiers for imbalanced data
	1 Introduction
	2 Measures of performance for imbalanced data
	3 Classification methods for imbalanced problems
	4 Random Balance and RB-Boost ensembles
	4.1 Random Balance
	4.1.1 Instance inclusion probability
	4.1.2 Intuition behind the method

	4.2 RB-Boost

	5 A simulation experiment
	6 Experimental setup and results
	6.1 Fusion rules
	6.2 Base classifiers
	6.3 Ensemble size

	7 Conclusion
	Acknowledgments
	Appendix A Supplementary material
	References

