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a b s t r a c t

Random Balance strategy (RandBal) has been recently proposed for constructing classifier ensembles
for imbalanced, two-class data sets. In RandBal, each base classifier is trained with a sample of
the data with a random class prevalence, independent of the a priori distribution. Hence, for each
sample, one of the classes will be undersampled while the other will be oversampled. RandBal
can be applied on its own or can be combined with any other ensemble method. One particularly
successful variant is RandBalBoost which integrates Random Balance and boosting. Encouraged by the
success of RandBal, this work proposes two approaches which extend RandBal to multiclass imbalance
problems. Multiclass imbalance implies that at least two classes have substantially different proportion
of instances. In the first approach proposed here, termed Multiple Random Balance (MultiRandBal),
we deal with all classes simultaneously. The training data for each base classifier are sampled with
random class proportions. The second approach we propose decomposes the multiclass problem into
two-class problems using one-vs-one or one-vs-all, and builds an ensemble of RandBal ensembles.
We call the two versions of the second approach OVO-RandBal and OVA-RandBal, respectively. These
two approaches were chosen because they are the most straightforward extensions of RandBal
for multiple classes. Our main objective is to evaluate both approaches for multiclass imbalanced
problems. To this end, an experiment was carried out with 52 multiclass data sets. The results
suggest that both MultiRandBal, and OVO/OVA-RandBal are viable extensions of the original two-class
RandBal. Collectively, they consistently outperform acclaimed state-of-the art methods for multiclass
imbalanced problems.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In classification tasks, a data set is imbalanced when the class
proportions are substantially different [1–6]. Originally, the main
objective in classification was to have models with good accuracy,
but in an imbalanced data set, the accuracy can be good when
the instances in the minority classes are seldom predicted or
even ignored. In many imbalanced problems, such as diagnosis,
fault and fraud detection, it is particularly important to correctly
predict the minority instances. Hence, classification methods that
were designed without taking into account the imbalance, as is
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the case with standard methods, may have difficulties with this
type of data.

Many approaches have been proposed for dealing with im-
balanced data sets, mostly focused on two-class problems, with
much less attention to the multiclass case [2,7]. Examples of mul-
ticlass imbalance problems include protein classification [8,9],
welding flaws classification [10], fault diagnosis of gearboxes [11],
paediatric brain tumours [12], hyperspectral image classification
[13], text categorization [14], and activity recognition [15].

Branco et al. [2] group the imbalance learning approaches into
four categories: data pre-processing, special-purpose learning,
prediction post-processing and hybrid. This categorization is also
applicable to the multiclass case. The data pre-processing ap-
proaches usually change the training data distribution so that any
standard method for constructing classifiers can be used there-
after, and the distribution change biases the classifier towards
favouring the prediction of chosen classes. The special-purpose
learning approaches adapt existing algorithms to deal adequately
with imbalanced data. In the prediction post-processing category,
a standard classifier is constructed using the original training
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Table 1
Methods for imbalanced multiclass classification. The properties of the methods are marked with ✓. If a method was used both with and without a property, we
use (✓).
Method References Undersampling Oversampling One-vs-all One-vs-one Ensemble Bagging Boosting Cost sensitive

KSMOTE [16] (✓) ✓ ✓ ✓
SCUT, SMOTE and cluster-based undersampling [17] ✓ ✓
MDO, Mahalanobis based oversampling [18–20] ✓ (✓) (✓)
SMOM, synthetic oversampling for multiclass [21] ✓ (✓) (✓)
Hellinger distance decision trees [22] (✓)
Dynamic sampling for multilayer perceptrons [23] ✓ ✓
Deep MLPs for imbalance [24]
AdaC2.M1, cost-sensitive boosting [25] ✓ ✓ ✓
Cost sensitive OVO ensemble [26] ✓ ✓ ✓
Cost-Sensitive neural networks with binarization [27] ✓ ✓
OVA with hybrid sampling [9] ✓ ✓ ✓ ✓
OVO fuzzy rough set [28] ✓
Binarization with over/undersampling [29] (✓) (✓) (✓) (✓)
Instance weighting (cost-sensitive) [29] (✓) (✓) ✓
UnderBagging [30,31] ✓ (✓) ✓ ✓
SMOTEBagging [31,32] ✓ (✓) ✓ ✓
RUSBoost [31,33] ✓ (✓) ✓ ✓
SMOTEBoost [31,34] ✓ (✓) ✓ ✓
SMOTE+AdaBoost [31] ✓ (✓) ✓ ✓
EasyEnsemble [31,35,36] ✓ (✓) ✓ ✓
Binarization with boosting and oversampling [37] ✓ ✓ ✓ ✓
Diversified ECOC [38] ✓
RAMOBoost [23,39] ✓ ✓ ✓
AdaBoost.NC [29,31,36,40] (✓) (✓) (✓) (✓) ✓ ✓
Probability threshold Bagging [41] ✓ ✓
Dynamic ensemble selection [36] ✓ ✓
Multiclass Roughly Balanced Bagging [41,42] (✓) (✓) ✓ ✓

data, and the predictions given by the classifier are subsequently
modified according to the data imbalance. Hybrid methods com-
bine approaches of the previous categories.

An alternative grouping of the imbalance learning approaches
into four levels is proposed by Galar et al. [31,43]: data level, al-
gorithm level, cost-sensitive learning level and ensemble learning
level. The first two levels correspond to the first two categories
proposed in [2]. In the cost-sensitive learning group [44], er-
rors have different costs depending on the actual and predicted
classes, and the objective is to minimize the cost instead of maxi-
mize the accuracy. For imbalanced data, greater cost is assigned to
errors where a minority class instance is predicted as belonging to
the majority class. At the ensemble level, methods for construct-
ing classifiers ensembles [45] are combined with approaches for
imbalance learning. When constructing the ensemble, approaches
from other categories can be applied, such as changing the class
distributions or using cost-sensitive learning.

Random Balance [46] (RandBal) is an ensemble data-
preprocessing strategy. The class proportion is chosen randomly
for each classifier. Such an approach would be unsuitable for a
standalone classifier, but very useful for a classifier which is a
part of an ensemble. One of the requirements for constructing
successful ensembles is that the member classifiers are diverse;
the other is that they are accurate. Changing class distributions
contributes to the diversity.

Random Balance Boost (RandBalBoost) [46] is a hybrid method
which combines RandBal with AdaBoost [47]. It is a hybrid
method because the data pre-processing approach of Random
Balance is combined with a special-purpose modification of Ad-
aBoost.

RandBal was originally proposed for binary tasks. Here we
extend this approach to multiple classes. The multiclass task is
more complex than the binary task [7,48], starting with the choice
of performance measures. In multiclass problems, it is possible
to have several minority classes, several majority classes or both.
One class can be simultaneously in minority, balanced, and in
majority with respect to other classes. The purpose in imbalanced
binary tasks is to improve the performance with respect to the
minority class without harming too much the performance with

respect to the majority class. Usually the class of interest is the
minority class, and high accuracy in recognizing its instances is
paramount. In multiclass imbalanced problems, it is not so clear
to what extent one class should be preferred to another.

The two main approaches to extending a two-class classifier
model to multiple classes are: (1) modify the model to accom-
modate more than two classes, and (2) run the model for pairs
of classes and combine the decisions of the individual classifiers.
The second approach is further subdivided depending on how
the pairs of classes are formed: one-versus-one, one-versus-all,
error-correcting output codes (ECOC) and more [49,50]. In this
study we extend RandBal using both approaches and compare the
proposed variants on 52 data sets with the aim of determining
whether its good results for binary problems are maintained
when considering multiclass problems.

The rest of the paper is organized as follows. Section 2 reviews
current approaches for classification of imbalanced multiclass
data sets. Section 3 shows the extension of the Random Balance
method to the multiclass case. Our experimental set-up is pre-
sented in Section 4, while the results are shown in Section 5.
Finally, Section 6 offers some concluding remarks and possible
future works.

2. Multiclass imbalanced classification

This section presents state-of-the-art approaches for classifica-
tion of imbalanced data sets with more than two classes. They are
divided into groups although many approaches can be included
in several groups. Fernández et al. [7] offer a detailed review on
the subject. Table 1 shows some properties of these approaches.
Some of these properties are marked as optional because the cor-
responding methods have been used in the included references
both with and without the property. For instance in KSMOTE
undersampling can be used in some cases.

Data level. Data-preprocessing approaches for multiclass imbal-
anced problems have been considered by many authors [16,17,
19,20] and [21].

KSMOTE was proposed by Prachuabsupakij and Soonthorn-
phisaj [16]. It uses k-means clustering to divide the instances into
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two clusters, and subsequently create data subsets with various
(non-random) proportions. KSMOTE was compared to Random
Forest, SMOTE, one-vs-all (OVA), one-vs-one (OVO), OVA with
SMOTE and OVO with SMOTE. KSMOTE and OVO with SMOTE
achieved the best results in the experiment.

SCUT is a hybrid sampling method proposed by Agarwal
et al. [17] for balancing the examples in multiclass data sets. The
minority classes are oversampled generating synthetic examples
with SMOTE while the majority classes are undersampled using
clustering. SCUT was compared to SMOTE and random undersam-
pling, using decision trees, support vector machines, naïve Bayes
and nearest neighbour as classifiers. Although there was no clear
preference of one sampling method over another, SCUT was found
suitable for domains where the number of classes is high and the
levels of imbalance vary considerably.

Abdi and Hashemi proposed an oversampling technique in-
spired by the Mahalanobis distance [19], MDO. The artificially
generated examples for a chosen minority class have the same
Mahalanobis distance from the class mean as the other examples
from this class. In this way, the covariance structure of the data in
minority classes is preserved. The method compared favourably
to other oversampling methods (random oversampling, SMOTE,
Borderline-SMOTE [51], and ADASYN [52]), using decision trees,
nearest neighbour, and rules as classifiers trained with balanced
data sets (synthetic examples for each class are generated until
they have as many examples as the most frequent class). An
adaptive variant of MDO is proposed by Yang et al. [20]: the
method is adapted to mixed-type data sets. The class distribution
is partially balanced and the method used to generate synthetic
instances is optimized.

A variant of SMOTE for multiclass, SMOM, is proposed by
Zhu et al. [21]. As in SMOTE, synthetic instances are obtained
from real instances. An instance is selected randomly and one of
its neighbours is selected randomly, but in SMOM the selection
is based on weights given to the neighbours; safer neighbour
directions are more likely to be selected. The weights’ purpose is
to avoid over generalization. The weights are based on the class
distribution of the instances in the neighbourhood of the line that
connects the instance with its neighbour.

Sáez et al. [48] found that oversampling benefits from distin-
guishing between four example types: safe examples, borderline
examples, rare examples and outliers. The type of an example
depends on the classes of the examples in its neighbourhood.
The authors investigated the effect of oversampling of different
configurations of example types. They found that the best con-
figuration is data dependent. Configurations that were reported
to be successful in general are characterized by leaving safe
examples intact, e.g., processing only the rare examples or only
the borderline examples.

Algorithm level. Publications reporting methods adapted to mul-
ticlass imbalance are [22,23] and [24].

Decision trees for multiclass imbalance problems are consid-
ered in [22]. A multiclass splitting criterion is proposed, based
on Hellinger distance. The results of these trees are better than
for standard decision trees, but they are outperformed by OVA or
ECOC of decision trees. Nevertheless, a single tree is faster and
more comprehensible.

A dynamic sampling method was proposed for the multilayer
perceptron (MLP) neural network [23]. The sampling is integrated
within the training process. For each epoch of the training pro-
cess, each example is assigned a probability of being used to
update the model: examples misclassified by the current model
are given probability of one, whereas the probability for correctly
classified examples depends on the confidence of the model in
its prediction, and on the prior probability of the class of the ex-
ample. Using 20 multiclass imbalanced data sets, the method was

compared to preprocessing methods (random undersampling and
oversampling), a method akin to active learning (examples with
the smallest difference between the two highest neurons outputs
are used to update the model), three representative cost-sensitive
methods, and a method based on boosting (RAMOBoost [39]).
Better results were reported with the dynamic sampling on most
data sets.

Another approach based on MLPs is proposed by Díaz-Vico
et al. [24]. These MLPs are large, fully connected and also can be
deep. They use ReLU activations, softmax outputs and categorical
cross-entropy loss.

Cost-sensitive. Cost-sensitive approaches have also been proposed
[25–27].

A cost-sensitive boosting algorithm for multiple classes,
AdaC2.M1, is developed in [25]. As cost matrices usually are not
available, a genetic algorithm is used to search the cost for each
class.

Cost sensitive one-vs-one ensembles are proposed by Kraw
czyk [26]. The binary problems are solved with a cost sensitive
neural network with a moving threshold. The outputs of the
classifiers are scaled with a cost function. For each pair of classes,
the costs are obtained automatically from the ROC curve.

Cost sensitive back propagation neural networks are combined
with one-vs-one in the work by Zhang et al. [27]. The output
of the nodes in the final layer are altered using a threshold
moving method. Several aggregation strategies are used for com-
bining the binary classifiers, including the dynamic selection of
competent classifiers. In one-vs-one, a binary classifier is non-
competent for the instances of classes that were not used to train
the classifier.

Binarization. Approaches based on decomposition of the problem
into binary problems have also been developed in the past [9,29],
as well as more recently [28,31].

One-vs-all is combined with oversampling and undersampling
in the work by Zhao et al. [9]. Different classifiers are obtained
using different sets of features and combined in an ensemble with
majority vote.

The use of decomposition techniques for multiclass imbal-
anced data sets is analysed by Fernández et al. [29]. These tech-
niques are applied with undersampling, oversampling or cost-
sensitive learning, for all classifier models: decision trees, support
vector machines, and nearest neighbours. Specific methods for
multiclass imbalance, not based on decomposition, such as Ad-
aBoost.NC are also included in the analysis. The best global results
were obtained with the one-vs-one decomposition when used
either with oversampling or with the cost-sensitive learning.

Vluymans et al. combine the one-vs-one decomposition with
classifiers based on fuzzy rough set theory [28]. An adaptive
weighting scheme based on the imbalance ratio of the pair of
classes is used for setting the binary classifiers. The predictions of
the binary classifiers are combined with a dynamic aggregation
method that takes into account the classes affinity (based on
fuzzy rough approximation operators) of the testing instances.

Zhang et al. [31] analyse the use of the one-vs-one decompo-
sition in the context of multiclass imbalanced problems. One-vs-
one is deemed more adequate than one-vs-all because the latter
introduces an artificial class imbalance. The ensemble methods
used in the comparison were: UnderBagging [30], SMOTEBag-
ging [32], RUSBoost [33], SMOTEBoost, SMOTE+AdaBoost, and
EasyEnsemble [35]. Moreover, AdaBoost.NC [40] was included in
the comparisons as an ensemble method not based on binary
decompositions. Decision trees, neural networks and SVMs were
used as base classifiers. Based on their experimental study, the
authors recommended SMOTE+AdaBoost and EasyEnsemble with
OVO.
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The performance of some ensemble methods in multiclass
imbalanced problems is studied in [40]. The authors propose
to use AdaBoost.NC (a variant of AdaBoost based on Negative
Correlation [53]) trained with oversampled data. This method is
compared with AdaBoost (in three versions: without resampling,
with random oversampling, and with random undersampling)
and with SMOTEBoost [34], both using decision trees as the base
classifiers. The two ensemble methods were also used with the
one-vs-all decomposition method. It was reported that the chosen
decomposition did not provide any advantage over using the
ensemble methods without decomposition.

A method termed ‘‘binarization with boosting and oversam-
pling’’ is proposed by Sen et al. [37]. The binary problems are
obtained with one-vs-all. Only the misclassified instances by the
previous base classifiers are oversampled. The method is also
used for semi-supervised classification. The base classifiers in-
clude neural networks, decision trees, nearest neighbours, sup-
port vector machines and random forest.

In ECOC [49] each class in the binary problems contains several
classes of the original problem. That is, those binary classifiers
discriminate between two sets of classes. In Diversified ECOC [38],
the predictions of the binary classifiers are combined minimiz-
ing a weighted loss favouring the minority classes. It is also
an ensemble method because, for each binary problem, several
methods are used to train classifiers and the best method is
selected. Hence, the selected binary classifiers may have been
obtained with different methods.

Ensemble methods. Ensemble methods for multiclass imbalance
problems have recently come to the fore [36,42].

An alternative to rebalancing the data is to build the classifiers
using the original imbalanced data and then apply thresholds to
the continuous outputs. This approach is used with Bagging in
the work by Collell et al. [41]. The thresholds are set equal to
the prior probabilities of the respective classes, although for some
performance measurements there could be better settings.

The use of dynamic ensemble selection has also been con-
sidered [36]. Only a subset of the classifiers in the ensemble is
used for predicting the class of each instance. As in RandBal, the
base classifiers are trained with data sets obtained with under
and oversampling. These data sets are balanced, but their size
is random.1 For selecting the classifiers in the ensemble, the
performances of the base classifiers for the nearest neighbours
of the instance to classify is used.

Roughly Balanced Bagging [54] is a variant of Bagging for two-
class imbalanced data. In the generated data sets, the number
of instances of the minority class is the same as for the original
training data. For the majority class, the number of instances of
the majority class is obtained according to the negative binomial
distribution with a probability for both classes of 0.5. Then, dif-
ferent samples will have different number of instances, but on
average the number of instances of the majority class will be
equal to that number for the minority class. Roughly Balanced
Bagging has been extended to the multiclass case [42]. The num-
ber of instances of each class is obtained using the binomial
distribution, with the same probability for all the classes. Then, on
average the number of instances of each class will be the same,
but in different samples the values will be different. With respect
to the sample sizes, the authors propose two approaches. In the
oversampling approach, the sample size is equal to the original
training set size. In the undersampling approach, the sample size
is the size of the minority class multiplied by the number of
classes. In both approaches there will be over and undersampling,
but one of them is predominant.

1 In fact, they also use the term random balance, although for balanced data
sets of different sizes.

For ensemble methods, one scarcely used strategy is to train
the base classifiers with different class proportions. We set to
demonstrate in this paper that the use of this strategy, as is done
in RandBal, could be advantageous for multiclass imbalanced
problems.

Software. There are a few software packages specific for imbal-
anced classification. Imbalanced-learn2 [55] is an open-source
python library. It includes methods for undersampling, oversam-
pling, combinations of oversampling and undersampling, as well
as and ensemble learning methods. Several of the implemented
methods support multiclass problems.

Multi-Imbalance3 [56] is an open-source package,
implemented in MATLAB and Octave, for multiclass imbalanced
classification. It includes variants of OVO, OVA, ECOC, AdaBoost,
decision trees, etc.

3. Random balance ensembles for multiclass imbalanced prob-
lems

In the Random Balance ensemble method [46] for two-class
imbalanced problems, the classifiers are trained on samples of the
original training data, as it is done in other ensemble methods,
such as Bagging [57]. The difference is that, in Random Balance,
the proportions of the classes are assigned randomly for each
classifier’s training data, regardless of the priors in the original
training data. In particular, given a data set with n instances, the
transformed data set has also n instances, where the number of
instances of one of the classes is a random integer k drawn from
the interval [2, n−2], and the remaining n−k instances are from
the other class. Let C1 be the class requiring k instances in the
sample, and n1 = |C1| be the number of available instances of
C1. If k < n1, the k instances are obtained by undersampling,
otherwise, by oversampling. Among the many undersampling
and oversampling methods, we choose the following ones: for
undersampling, a random sample without replacement is taken.
For oversampling, all the instances of the class are included and
the necessary number of artificial instances is generated with
SMOTE [58].

3.1. MultiRandBal (proposed extension #1)

RandBal can be extended to multiple classes by modifying the
method itself. Examples of such extensions are rather frequent in
machine learning, as illustrated by the multiclass extensions of
the (originally two-class) boosting and support vector machines.

Algorithm 1 shows the pseudo-code for the proposed Random
Balance sampling method for multiclass imbalanced problems. A
weight is assigned to each class, randomly drawn from a uniform
distribution over the interval [0, 1]. The weights are scaled to
sum 1, and indicate the proportion of examples in the trans-
formed data set that will be sampled from the respective class.
A minimum of two instances are required for each class. Occa-
sionally, this may lead to the resulting data set having a few
more instances than the original data set. Algorithm 2 shows
the pseudo-code for the proposed Random Balance ensemble
method for multiclass imbalanced problems (MultiRandBal). It
simply builds each base classifier with a data set obtained with a
sample obtained with Random Balance.

The transformed data set is used to train a base classifier. The
prediction of classifier t in relation to class ωi for an input x,
denoted Dt,i(x) (t = 1, . . . , L, i = 1, . . . , c) can be in the form of

2 https://github.com/scikit-learn-contrib/imbalanced-learn, http://imbalanced
-learn.org/
3 https://github.com/chongshengzhang/Multi_Imbalance
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Table 2
Characteristics of the data sets (#E: examples, #N: numeric features, #D: discrete features, #C: classes, IR: imbalance ratio). IR is defined as the number of examples
of the greatest class divided by the number of examples of the smallest class.
Data set Source #E #N #D #C IR Examples of each class (descending order)

annealing USC 898 31 0 5 85.500 684 99 67 40 8
arrhythmia USC 452 262 0 13 122.500 245 50 44 25 22 15 15 13 9 5 4 3 2
audiology-std USC 196 59 0 18 23.500 47 45 21 20 18 8 8 4 4 4 3 2 2 2 2 2 2 2
autos KEEL 159 15 10 6 16.000 48 46 29 20 13 3
balance KEEL 625 4 0 3 5.878 288 288 49
cardiotocography-10classes USC 2126 21 0 10 10.925 579 384 332 252 197 107 81 72 69 53
cardiotocography-3classes USC 2126 21 0 3 9.403 1655 295 176
car PWR 1728 0 6 4 18.615 1210 384 69 65
chess-krvk USC 28056 6 0 18 168.630 4553 4194 3597 2854 2796 2166 1985 1712 1433 683 592 471 390 246 198 81 78 27
cleveland PWR 297 13 0 5 12.308 160 54 35 35 13
contraceptive KEEL 1473 6 3 3 1.889 629 511 333
dermatology KEEL 366 34 0 6 5.600 112 72 61 52 49 20
ecoli KEEL 336 7 0 8 71.500 143 77 52 35 20 5 2 2
energy-y1 USC 768 8 0 3 2.628 360 271 137
energy-y2 USC 768 8 0 3 2.026 383 196 189
flags USC 194 28 0 8 15.000 60 40 36 27 15 8 4 4
flare PWR 1066 0 11 6 7.698 331 239 211 147 95 43
glass KEEL 214 9 0 6 8.444 76 70 29 17 13 9
hayes-roth KEEL 132 4 0 3 1.700 51 51 30
heart-cleveland USC 303 13 0 5 12.615 164 55 36 35 13
heart-switzerland USC 123 12 0 5 9.600 48 32 30 8 5
heart-va USC 200 12 0 5 5.600 56 51 42 41 10
led7digit PWR 500 7 0 10 1.541 57 57 53 52 52 51 49 47 45 37
lenses USC 24 4 0 3 3.750 15 5 4
low-res-spect USC 531 100 0 9 138.000 276 103 90 39 7 6 6 2 2
lymphography KEEL 148 3 15 4 40.500 81 61 4 2
molec-biol-splice USC 3190 60 0 3 2.158 1655 768 767
new-thyroid KEEL 215 5 0 3 5.000 150 35 30
nursery USC 12960 8 0 5 2160.000 4320 4266 4044 328 2
oocytes-merluccius-states-2f USC 1022 25 0 3 11.508 702 259 61
oocytes-trisopterus-states-5b USC 912 32 0 3 37.500 525 373 14
pageblocks KEEL 548 10 0 5 164.000 492 33 12 8 3
penbased KEEL 1100 16 0 10 1.095 115 115 114 114 114 106 106 106 105 105
pittsburg-bridges-MATERIAL USC 106 7 0 3 7.182 79 16 11
pittsburg-bridges-REL-L USC 103 7 0 3 3.533 53 35 15
pittsburg-bridges-SPAN USC 92 7 0 3 2.182 48 22 22
pittsburg-bridges-TYPE USC 105 7 0 6 4.400 44 16 13 11 11 10
post-operative PWR 87 0 8 3 62.000 62 24 1
primary-tumour USC 330 17 0 15 14.000 84 39 29 28 24 24 20 16 14 14 10 9 7 6 6
shuttle KEEL 2175 9 0 5 853.000 1706 338 123 6 2
soybean USC 683 35 0 18 11.500 92 91 91 88 44 44 36 20 20 20 20 20 20 20 20 15 14 8
statlog-landsat USC 6435 36 0 6 2.449 1533 1508 1358 707 703 626
statlog-shuttle USC 58000 9 0 7 4558.600 45586 8903 3267 171 50 13 10
steel-plates USC 1941 27 0 7 12.236 673 402 391 190 158 72 55
thyroid KEEL 720 21 0 3 39.176 666 37 17
vehicle PWR 846 18 0 4 1.095 218 217 212 199
vertebral-column-3classes USC 310 6 0 3 2.500 150 100 60
wall-following USC 5456 24 0 4 6.723 2205 2097 826 328
wine KEEL 178 13 0 3 1.479 71 59 48
winequality-red PWR 1599 11 0 6 68.100 681 638 199 53 18 10
yeast KEEL 1484 8 0 10 92.600 463 429 244 163 51 44 35 30 20 5
zoo PWR 101 0 16 7 10.250 41 20 13 10 8 5 4

Table 3
Ensemble methods included in the experimental study.

Multiclass strategy

Ensemble method Direct One-vs-all One-vs-one

Existing
(1) SMOTEBagging (i) SMOTEBagging (ii) OVA-SMOTEBagging (iii) OVO-SMOTEBagging
(2) Roughly Balanced Bagging (iv) OverMultiRoughBalBag (vi) OVA-RoughBalBag (vii) OVO-RoughBalBag

(v) UnderMultiRoughBalBag
(3) EasyEnsemble – (viii) OVA-EasyEnsemble (ix) OVO-EasyEnsemble
(4) SMOTE+AdaBoost – (x) OVA-SMOTE+AdaBoost (xi) OVO-SMOTE+AdaBoost
(5) RUSBoost – (xii) OVA-RUSBoost (xiii) OVO-RUSBoost
(6) AdaBoost.NC (xiv) AdaBoost.NC (xv) OVA-AdaBoost.NC (xvi) OVO-AdaBoost.NC

Proposed
(7) Random Balance (xvii) MultiRandBal (vxiii) OVA-RandBal (xix) OVO-RandBal
(8) Bagging Random Balance (xx) BagMultiRandBal (xxi) OVA-BagRandBal (xxii) OVO-BagRandBal
(9) Random Balance Boost (xxiii) MultiRandBalBoost (xxiv) OVA-RandBalBoost (xxv) OVO-RandBalBoost

an estimate of the posterior probability P(ωi|x) or a binary index
containing 1 if ωi is the predicted class, and 0, otherwise. The

predictions could be combined using any method [45]; currently
the average method is used, as shown in Algorithm 2.
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Algorithm 1: Random Balance sampling method for Multiclass problems.
Input: A training set S = {(x1, y1), . . . , (xn, yn)} where xi ∈ X, yi ∈ Y = {ω1, . . . , ωc}

Output: Data set S ′
for i← 1, . . . , c do

Si ← {(xj, yj)|(xj, yj) ∈ S, yj = ωi} // all examples from class ωi
ni ← |Si| // number of examples of class ωi

for i← 1, . . . , c do
wi ← random-value(0, 1) // weight of class ωi

w←
∑c

i=1 wi
S ′ ← ∅ // new data set
for i← 1, . . . , c do

n′i ← max
([
nwi

w

]
, 2
)

// new number of examples of ωi, at least 2
if n′i ≤ ni then

S ′ ← S ′ ∪ undersample(Si, n′i)
else

S ′ ← S ′ ∪ Si ∪ oversample(Si, n′i − ni)

Algorithm 2: Random Balance ensemble method for Multiclass problems (MultiRandBal).
Input: A training set S = {(x1, y1), . . . , (xn, yn)} where xi ∈ X, yi ∈ Y = {ω1, . . . , ωc}, ensemble size L, base learner.
Output: Ensemble E
for t ← 1, . . . , L do

S ′ ← random-balance(S)
Dt ← build-classifier(S ′)

E ←
⋃L

t=1 Dt // the estimate of P(ωi|x) is Ei(x) = 1
L

∑L
t=1 Dt,i(x)

Note that the only parameter of MultiRandBal is the ensemble
size. It is expected that greater values will give better results, but
the improvement decreases quickly with increasing the ensemble
size. On the other hand, in order to tune the performance for a
specific data set, some parameters could be introduced such as
a maximum imbalance ratio allowed for each randomly sampled
distribution. Restrictions related to the true prior probabilities or
chosen misclassification costs can also be imposed on the values
w1, . . . , wc .

The Random Balance ensemble method can be combined with
any ensemble method: its base learner can be chosen to suit
the particular ensemble or can be an ensemble method itself.
For example, the combination of Bagging with Random Balance
is included in the experiment later on: the ensemble size for
Bagging is 100 and its base classifier is Random Balance with
ensemble size 1. Then the 100 base classifiers are trained on
bootstrap samples from data with different class probabilities.

Random Balance ensembles can also be combined with boost-
ing methods. MultiRandBalBoost is based on AdaBoost.M2 (as
SMOTEBoost and RUSBoost). In each boosting iteration, a data set
is obtained using the Random Balance sampling method and the
obtained sampled is used to build the classifier.

3.2. OVO-RandBal and OVA-RandBal (proposed extension #2)

RandBal can be straightforwardly extended to multiclass prob-
lems by using decomposition techniques, such as one-vs-one
(OVO) and one-vs-all (OVA).

In the OVO decomposition, all pairs of classes are formed and
a classifier is built for each pair. Thus, if there are c classes in
the data, the ensemble consists of c(c − 1)/2 classifiers. Each
classifier votes for one of the classes it has been trained on. In
the classical version of OVO, the resultant label is obtained by
the majority vote. In Weka, ensemble probabilities are calculated
from the votes. The standard two-class RandBal sampling heuristic
of random class proportions is applied for creating the data for
each classifier.

OVA creates c binary classifiers where each classifier is paired
with all the remaining classes. Again, the two-class RandBal sam-
pling is applied to the designated class and the set of the remain-
ing c − 1 classes regarded as one compound class. In doing so,
some small classes may be completely wiped out in some of the
training data.

For example, suppose that there are three classes, c1, c2, and
c3, with proportions 0.75, 0.20 and 0.05, respectively. Consider
the binary classifier distinguishing between c2 and {c1, c3}. Sup-
pose that we generated random proportions whereby class c2 is
sampled with proportion 0.9, and class {c1, c3} with proportion
0.1. The probability that class c3 will not be chosen in 1 draw is
1−0.1×0.05 = 0.9950. If we sample 100 objects independently
and with replacement, the chance that class c3 will be completely
missing from the sample is quite high, (1 − 0.1 × 0.05)100 =
0.6058. This effect is undesirable because the vote of this classifier
in favour of {c1, c3} will count towards both classes but, in reality,
one of the classes would not have contributed to the training.
This situation with OVA is possible with other sampling methods
too, but OVA-RandBal is particularly vulnerable to it due to the
random proportions.

4. Experimental set-up

This section presents the experiments and their results. The
purpose of the experiment is to evaluate the performance of the
two extensions of RandBal for multiclass imbalanced problems.

The distinctive feature of RandBal is that the base classifiers
are trained with different class proportions. The expected ef-
fect is that the base classifiers will be more diverse, but on
the other hand these arbitrarily induced (im)balance will likely
harm their individual performance. The main question is whether
the reduced performance of the base classifiers will translate
into a superior ensemble performance owing to the much richer
diversity.

First, the data sets are introduced in Section 4.1. The perfor-
mance measures are described in Section 4.2. The methods and
their settings are listed in Section 4.3.
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Table 4
Average ranks. Rows for methods with Random Balance are highlighted with blue tex and grey background.

Accuracy

Method Rank pHochberg

OVA-RandBalBoost 4.2115
OVA-BagRandBal 6.3077 0.146430
MultiRandBalBoost 6.4904 0.146430
OVO-RandBalBoost 6.7212 0.146430
OVA-SMOTE+AdaBoost 7.7500 0.056902
OVA-SMOTEBagging 8.2019 0.028495
OVA-RandBal 9.1635 0.003611
OVA-RUSBoost 9.3365 0.002689
OVO-SMOTE+AdaBoost 9.4135 0.002507
BagMultiRandBal 10.3846 0.000171
OVO-BagRandBal 10.8077 0.000049
OVO-SMOTEBagging 12.0865 0.000001
OVO-RandBal 12.3077 0.000000
SMOTEBagging 13.6923 0.000000
OVA-EasyEnsemble 13.6923 0.000000
OVO-RUSBoost 14.2115 0.000000
MultiRandBal 14.9231 0.000000
OverMultiRoughBalBag 15.9904 0.000000
OVA-RoughBalBag 16.4808 0.000000
OVO-EasyEnsemble 18.7308 0.000000
UnderMultiRoughBalBag 19.2308 0.000000
OVA-AdaBoost.NC 20.0192 0.000000
OVO-RoughBalBag 20.8173 0.000000
AdaBoost.NC 21.7019 0.000000
OVO-AdaBoost.NC 22.3269 0.000000

Kappa

Method Rank pHochberg

OVA-RandBalBoost 5.4808
MultiRandBalBoost 6.9615 0.304935
OVA-BagRandBal 7.1538 0.304935
OVO-RandBalBoost 7.7885 0.304935
OVA-SMOTEBagging 8.4423 0.160751
OVA-RandBal 9.1346 0.056795
OVA-SMOTE+AdaBoost 9.2692 0.052032
OVA-RUSBoost 9.5000 0.037515
OVO-SMOTE+AdaBoost 9.6538 0.030703
BagMultiRandBal 9.7308 0.029114
OVO-BagRandBal 11.9038 0.000086
OVO-RandBal 12.2115 0.000034
OVA-EasyEnsemble 12.5000 0.000014
OVO-SMOTEBagging 12.5962 0.000011
SMOTEBagging 13.6923 0.000000
MultiRandBal 14.0769 0.000000
OVO-RUSBoost 14.1538 0.000000
OverMultiRoughBalBag 14.9615 0.000000
OVA-RoughBalBag 15.3462 0.000000
OVO-EasyEnsemble 17.8269 0.000000
UnderMultiRoughBalBag 18.0577 0.000000
OVO-RoughBalBag 19.8846 0.000000
OVA-AdaBoost.NC 20.9808 0.000000
AdaBoost.NC 21.3654 0.000000
OVO-AdaBoost.NC 22.3269 0.000000

All measures

Method Rank

OVA-RandBalBoost 7.9952
MultiRandBalBoost 8.1314
BagMultiRandBal 9.1282
OVA-BagRandBal 9.5769
OVA-RandBal 9.9808
OVO-RandBalBoost 10.1314
OVA-SMOTEBagging 10.2179
OVA-RUSBoost 10.3830
MultiRandBal 11.2115
OVA-SMOTE+AdaBoost 11.6330
OVO-RandBal 12.0913
OverMultiRoughBalBag 12.4824
OVO-SMOTE+AdaBoost 12.5641
OVA-EasyEnsemble 12.7276
SMOTEBagging 12.8189
OVO-SMOTEBagging 13.1538
OVA-RoughBalBag 13.6699
OVO-BagRandBal 14.0481
UnderMultiRoughBalBag 14.4311
OVO-RUSBoost 15.3462
OVO-EasyEnsemble 15.6154
OVO-RoughBalBag 17.3029
AdaBoost.NC 18.9840
OVA-AdaBoost.NC 20.1811
OVO-AdaBoost.NC 21.1939

G-mean

Method Rank pHochberg

MultiRandBal 9.0769
OverMultiRoughBalBag 9.9615 0.539956
UnderMultiRoughBalBag 10.6827 0.531838
OVO-EasyEnsemble 11.0385 0.522446
OVA-RUSBoost 11.0577 0.522446
OVA-EasyEnsemble 11.1154 0.522446
MultiRandBalBoost 11.2596 0.522446
BagMultiRandBal 11.3654 0.522446
OVO-RandBal 11.3942 0.522446
OVA-RoughBalBag 11.5000 0.522446
OVA-RandBal 11.5288 0.522446
OVA-SMOTEBagging 11.9519 0.510253
OVA-RandBalBoost 11.9519 0.510253
SMOTEBagging 12.0673 0.497694
OVO-RoughBalBag 12.5769 0.214394
OVO-SMOTE+AdaBoost 13.3365 0.047489
OVO-RandBalBoost 13.6635 0.023756
OVO-SMOTEBagging 13.8173 0.017384
OVA-SMOTE+AdaBoost 14.2981 0.005358
AdaBoost.NC 14.3750 0.004597
OVA-BagRandBal 14.4615 0.003821
OVO-RUSBoost 16.4423 0.000007
OVO-BagRandBal 17.4423 0.000000
OVO-AdaBoost.NC 18.1442 0.000000
OVA-AdaBoost.NC 20.4904 0.000000

average-Accuracy

Method Rank pHochberg

MultiRandBal 8.6154
BagMultiRandBal 8.7885 0.904553
OverMultiRoughBalBag 9.8077 0.817546
MultiRandBalBoost 10.2692 0.755611
OVO-RandBal 10.7885 0.528729
OVA-SMOTEBagging 10.8462 0.528729
OVA-RandBal 10.8462 0.528729
UnderMultiRoughBalBag 11.2308 0.489912
OVA-EasyEnsemble 11.3269 0.482383
OVA-RandBalBoost 11.5000 0.410943
OVA-RUSBoost 11.7500 0.298764
OVA-RoughBalBag 11.8269 0.286880
OVO-EasyEnsemble 12.1538 0.170706
SMOTEBagging 12.2500 0.153371
OVO-RandBalBoost 12.6346 0.075030
OVA-BagRandBal 12.7692 0.060056
OVO-SMOTEBagging 13.6346 0.008100
OVO-SMOTE+AdaBoost 13.6538 0.008100
OVA-SMOTE+AdaBoost 14.7500 0.000384
OVO-RoughBalBag 15.3077 0.000067
OVO-RUSBoost 15.5385 0.000032
OVO-BagRandBal 16.5577 0.000001
AdaBoost.NC 16.6154 0.000001
OVO-AdaBoost.NC 20.4038 0.000000
OVA-AdaBoost.NC 21.1346 0.000000

F-measure

Method Rank pHochberg

MultiRandBalBoost 6.8077
OVA-RandBalBoost 7.3077 0.729034
BagMultiRandBal 8.9231 0.285525
OVA-SMOTEBagging 8.9808 0.285525
OVO-RandBalBoost 9.1154 0.285525
OVA-RandBal 9.6923 0.228301
OVA-RUSBoost 9.7692 0.228301
OVA-SMOTE+AdaBoost 9.9808 0.195458
OVA-BagRandBal 10.1731 0.157771
OVO-SMOTE+AdaBoost 10.3846 0.118854
OVO-RandBal 11.6731 0.007494
MultiRandBal 11.8269 0.005569
OVO-SMOTEBagging 12.0192 0.003665
SMOTEBagging 12.5000 0.001043
OverMultiRoughBalBag 12.7500 0.000537
OVA-EasyEnsemble 13.9231 0.000012
OVO-BagRandBal 14.3269 0.000003
OVA-RoughBalBag 15.0769 0.000000
OVO-RUSBoost 15.0962 0.000000
UnderMultiRoughBalBag 16.2115 0.000000
OVO-EasyEnsemble 16.9615 0.000000
OVO-RoughBalBag 18.5385 0.000000
AdaBoost.NC 19.9231 0.000000
OVA-AdaBoost.NC 21.1731 0.000000
OVO-AdaBoost.NC 21.8654 0.000000

MAUC

Method Rank pHochberg

BagMultiRandBal 5.5769
OVA-BagRandBal 6.5962 0.480099
MultiRandBalBoost 7.0000 0.480099
OVA-RandBalBoost 7.5192 0.480099
MultiRandBal 8.7500 0.111690
OVA-RandBal 9.5192 0.031541
OVO-RandBalBoost 10.8654 0.001490
OVA-RUSBoost 10.8846 0.001490
UnderMultiRoughBalBag 11.1731 0.000846
OverMultiRoughBalBag 11.4231 0.000460
OVA-RoughBalBag 11.7885 0.000168
SMOTEBagging 12.7115 0.000008
OVA-SMOTEBagging 12.8846 0.000005
OVO-BagRandBal 13.2500 0.000001
OVA-SMOTE+AdaBoost 13.7500 0.000000
OVA-EasyEnsemble 13.8077 0.000000
OVO-RandBal 14.1731 0.000000
OVO-SMOTEBagging 14.7692 0.000000
OVO-RUSBoost 16.6346 0.000000
OVO-RoughBalBag 16.6923 0.000000
OVO-EasyEnsemble 16.9808 0.000000
OVA-AdaBoost.NC 17.2885 0.000000
OVO-SMOTE+AdaBoost 18.9423 0.000000
AdaBoost.NC 19.9231 0.000000
OVO-AdaBoost.NC 22.0962 0.000000

4.1. Data sets

Table 2 summarizes the characteristics of the data sets. These
data sets were sourced from three repositories:

• KEEL data set repository [59]; we chose the data sets in the

category ‘‘multiple class imbalanced problems’’.
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Table 5
Average ranks for the Bagging-based ensemble methods. Rows for methods with Random Balance are highlighted.

Accuracy

Method Rank pHochberg

OVA-BagRandBal 2.1442
OVA-SMOTEBagging 3.0192 0.140581
BagMultiRandBal 4.0673 0.002401
OVO-BagRandBal 4.5000 0.000218
OVO-SMOTEBagging 4.8365 0.000023
SMOTEBagging 5.4038 0.000000
OverMultiRoughBalBag 6.8173 0.000000
OVA-RoughBalBag 7.0000 0.000000
UnderMultiRoughBalBag 8.2596 0.000000
OVO-RoughBalBag 8.9519 0.000000

Kappa

Method Rank pHochberg

OVA-BagRandBal 2.5192
OVA-SMOTEBagging 3.2308 0.230785
BagMultiRandBal 3.8654 0.046765
OVO-BagRandBal 4.9423 0.000135
OVO-SMOTEBagging 5.1538 0.000036
SMOTEBagging 5.5577 0.000002
OverMultiRoughBalBag 6.4808 0.000000
OVA-RoughBalBag 6.6731 0.000000
UnderMultiRoughBalBag 7.8846 0.000000
OVO-RoughBalBag 8.6923 0.000000

All measures

Method Rank

BagMultiRandBal 3.7772
OVA-BagRandBal 3.9936
OVA-SMOTEBagging 4.3157
OverMultiRoughBalBag 5.4567
SMOTEBagging 5.4856
OVO-SMOTEBagging 5.7404
OVA-RoughBalBag 6.0144
OVO-BagRandBal 6.1619
UnderMultiRoughBalBag 6.4503
OVO-RoughBalBag 7.6042

G-mean

Method Rank pHochberg

OverMultiRoughBalBag 4.1346
BagMultiRandBal 4.7885 0.270820
UnderMultiRoughBalBag 4.8654 0.270820
OVA-SMOTEBagging 5.0865 0.270820
OVA-RoughBalBag 5.1442 0.270820
SMOTEBagging 5.2596 0.270820
OVO-RoughBalBag 5.4808 0.140295
OVO-SMOTEBagging 6.2404 0.002733
OVA-BagRandBal 6.2596 0.002733
OVO-BagRandBal 7.7404 0.000000

average-Accuracy

Method Rank pHochberg

BagMultiRandBal 3.8462
OverMultiRoughBalBag 4.2500 0.496417
OVA-SMOTEBagging 4.8846 0.160608
UnderMultiRoughBalBag 5.1923 0.070148
OVA-RoughBalBag 5.2308 0.070148
SMOTEBagging 5.5385 0.021853
OVA-BagRandBal 5.8077 0.005729
OVO-SMOTEBagging 6.1731 0.000623
OVO-RoughBalBag 6.5769 0.000034
OVO-BagRandBal 7.5000 0.000000

F-measure

Method Rank pHochberg

BagMultiRandBal 3.5192
OVA-SMOTEBagging 3.5577 0.948353
OVA-BagRandBal 4.1923 0.513956
OVO-SMOTEBagging 5.0769 0.026118
SMOTEBagging 5.1731 0.021390
OverMultiRoughBalBag 5.5769 0.002647
OVO-BagRandBal 6.1346 0.000064
OVA-RoughBalBag 6.5192 0.000003
UnderMultiRoughBalBag 7.2115 0.000000
OVO-RoughBalBag 8.0385 0.000000

MAUC

Method Rank pHochberg

BagMultiRandBal 2.5769
OVA-BagRandBal 3.0385 0.436982
UnderMultiRoughBalBag 5.2885 0.000005
OverMultiRoughBalBag 5.4808 0.000001
OVA-RoughBalBag 5.5192 0.000001
SMOTEBagging 5.9808 0.000000
OVA-SMOTEBagging 6.1154 0.000000
OVO-BagRandBal 6.1538 0.000000
OVO-SMOTEBagging 6.9615 0.000000

• The data sets used in [48]. We refer to this repository4
as PWR after the host university (Wrocław University of
Science and Technology, Poland).
• The data sets used in [60]; we chose the multiclass data

sets with an imbalance ratio of at least 2.0. We refer to this
repository5 as USC after the host university (University of
Santiago de Compostela, Spain).

Many of the data sets in the three repositories are versions of
data sets originally stored in the UCI Machine Learning Reposi-
tory [61].

4.2. Measures

Following the literature on imbalance learning, we adopt the
following classifier performance measures adapted to accommo-
date multiclass problems.

The Precision and Recall for class ωi are defined as:

Precisioni =
TPi

TPi + FPi
Recalli =

TPi

TPi + FNi
,

where TPi is the number of true positives (examples of class
ωi which are classified correctly), FPi is the number of false
positives (examples that are wrongly assigned to class ωi) and FNi
is the number of false negatives (examples of class ωi assigned to
another class).

Overall accuracy is included in our experiment, as it is the
most used measure in multiclass classification, although we note
that it should be used with caution. Very high values of this mea-
sure can be deceiving because such values may result from always

4 The repository is available at http://www.kssk.pwr.edu.pl/krawczyk/multi-
over.
5 The repository is available at http://persoal.citius.usc.es/manuel.fernandez.

delgado/papers/jmlr/.

predicting the majority classes and ignoring minority classes of
interest. The accuracy is calculated as

Accuracy =
1
n

c∑
i=1

TPi

where c is the number of classes and n the number of examples.
Being less sensitive to the class distributions than accuracy,

Kappa (κ) has been used for multiclass classification [50].

Kappa =
n
∑c

i=1 TPi − ABC
n2 − ABC

where ABC (agreement by chance) is
∑c

i=1 (TPi + FPi) (TPi + FNi).
G-mean [25,40] is the geometric mean of the recall values of

all the classes.

G-mean =

(
c∏

i=1

Recalli

)1/c

The average accuracy [31] is the arithmetic mean of the recall
values of all the classes.

average-Accuracy =
1
c

c∑
i=1

Recalli

The F-measure [11] for a class is the harmonic mean of its
Precision and Recall. For multiclass data sets the arithmetic mean
of the F-measure values of all the classes is used.

F-measure =
1
c

c∑
i=1

2 · Recalli · Precisioni

Recalli + Precisioni

MAUC [19,40,62] is the average AUC (Area Under the ROC
Curve) of all pairs of classes.

MAUC =
1

c(c − 1)

c∑
i,j=1
i̸=j

AUC(i, j)

http://www.kssk.pwr.edu.pl/krawczyk/multi-over
http://www.kssk.pwr.edu.pl/krawczyk/multi-over
http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/
http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/
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Table 6
Average ranks for the Boosting-based ensemble methods. Rows for methods with Random Balance are highlighted.

Accuracy

Method Rank pHochberg

OVA-RandBalBoost 2.3462
MultiRandBalBoost 3.7500 0.047107
OVO-RandBalBoost 3.8365 0.047107
OVA-SMOTE+AdaBoost 4.4423 0.009098
OVO-SMOTE+AdaBoost 5.0769 0.000450
OVA-RUSBoost 5.2885 0.000158
OVA-EasyEnsemble 6.9519 0.000000
OVO-RUSBoost 7.3365 0.000000
OVO-EasyEnsemble 9.0385 0.000000
OVA-AdaBoost.NC 9.2692 0.000000
AdaBoost.NC 10.1250 0.000000
OVO-AdaBoost.NC 10.5385 0.000000

Kappa

Method Rank pHochberg

OVA-RandBalBoost 2.8654
MultiRandBalBoost 3.8077 0.182655
OVO-RandBalBoost 4.1346 0.145319
OVA-SMOTE+AdaBoost 5.0962 0.004819
OVA-RUSBoost 5.1346 0.004819
OVO-SMOTE+AdaBoost 5.1731 0.004819
OVA-EasyEnsemble 6.2885 0.000008
OVO-RUSBoost 7.1346 0.000000
OVO-EasyEnsemble 8.4231 0.000000
OVA-AdaBoost.NC 9.5769 0.000000
AdaBoost.NC 9.8654 0.000000
OVO-AdaBoost.NC 10.5000 0.000000

All measures

Method Rank

OVA-RandBalBoost 3.8141
MultiRandBalBoost 3.9936
OVO-RandBalBoost 4.9439
OVA-RUSBoost 5.0817
OVA-SMOTE+AdaBoost 5.7019
OVO-SMOTE+AdaBoost 6.0673
OVA-EasyEnsemble 6.1474
OVO-RUSBoost 7.1747
OVO-EasyEnsemble 7.3782
AdaBoost.NC 8.6554
OVA-AdaBoost.NC 9.2051
OVO-AdaBoost.NC 9.8365

G-mean

Method Rank pHochberg

OVA-RUSBoost 5.0481
MultiRandBalBoost 5.0962 0.945793
OVA-EasyEnsemble 5.3558 0.945793
OVO-EasyEnsemble 5.4038 0.945793
OVA-RandBalBoost 5.6538 0.945793
OVO-SMOTE+AdaBoost 6.2500 0.445865
OVO-RandBalBoost 6.4231 0.310980
AdaBoost.NC 6.6346 0.173960
OVA-SMOTE+AdaBoost 6.8269 0.095046
OVO-RUSBoost 7.4423 0.006384
OVO-AdaBoost.NC 8.3462 0.000031
OVA-AdaBoost.NC 9.5192 0.000000

average-Accuracy

Method Rank pHochberg

MultiRandBalBoost 4.5192
OVA-RandBalBoost 5.0962 0.414562
OVA-RUSBoost 5.1346 0.414562
OVA-EasyEnsemble 5.2885 0.414562
OVO-RandBalBoost 5.7500 0.327036
OVO-EasyEnsemble 5.8462 0.302897
OVO-SMOTE+AdaBoost 6.2500 0.086268
OVO-RUSBoost 6.7692 0.010239
OVA-SMOTE+AdaBoost 6.8846 0.006579
AdaBoost.NC 7.3654 0.000513
OVO-AdaBoost.NC 9.3462 0.000000
OVA-AdaBoost.NC 9.7500 0.000000

F-measure

Method Rank pHochberg

MultiRandBalBoost 3.6731
OVA-RandBalBoost 3.6923 0.978303
OVO-RandBalBoost 4.7115 0.283879
OVA-RUSBoost 4.9231 0.231300
OVA-SMOTE+AdaBoost 5.0769 0.188427
OVO-SMOTE+AdaBoost 5.2115 0.147884
OVA-EasyEnsemble 6.7885 0.000063
OVO-RUSBoost 7.1346 0.000007
OVO-EasyEnsemble 8.0769 0.000000
AdaBoost.NC 9.0000 0.000000
OVA-AdaBoost.NC 9.6346 0.000000
OVO-AdaBoost.NC 10.0769 0.000000

MAUC

Method Rank pHochberg

MultiRandBalBoost 3.1154
OVA-RandBalBoost 3.2308 0.870378
OVO-RandBalBoost 4.8077 0.033397
OVA-RUSBoost 4.9615 0.027095
OVA-SMOTE+AdaBoost 5.8846 0.000360
OVA-EasyEnsemble 6.2115 0.000060
OVO-RUSBoost 7.2308 0.000000
OVA-AdaBoost.NC 7.4808 0.000000
OVO-EasyEnsemble 7.4808 0.000000
OVO-SMOTE+AdaBoost 8.4423 0.000000
AdaBoost.NC 8.9423 0.000000
OVO-AdaBoost.NC 10.2115 0.000000

where AUC(i, j) is the area under the curve for the pair of classes
i and j.

4.3. Methods and settings

The experiments were performed using Weka [63]. The set-
tings for the considered methods were the defaults in Weka,
unless otherwise specified

The results were obtained with a 25 × 2-fold stratified cross
validation. Using two-fold cross validation ensures that there will
be at least one instance of each class in each fold, provided that
there is more than one instance in the original data set. Weka’s
implementation of SMOTE uses 5 neighbours by default and for
nominal attributes it uses Value Distance Metric (VDM).

Average ranks [64,65] were used to compare the methods
across the different data sets. For each data set, the methods are
sorted from best to worst. The best method receives a rank of 1,
the second best method receives a rank of 2, and so on. If there
are ties, average values are assigned (e.g., if four methods achieve
the top spot, each method will be assigned a rank of 2.5). The
average ranks were calculated across the data sets. Adjusted p-
values from Hochberg procedure [65,66] were used to determine
the significance of the rank differences.

The methods were also compared using the Bayesian Signed-
Rank Test [67], the Bayesian equivalent of the Wilcoxon signed-
rank test. For this test, the value of the region of practical equiv-
alence (rope) was set to 0.01 for all the performance measures.
Two classifiers are considered equivalent if the difference in their
performance is smaller than this ‘‘rope’’. The test gives three
probabilities: 1) one method is better than the other, (2) vice
versa, or (3) they are in the ‘‘rope’’.

Table 3 shows the methods included in the comparison. The
proposed variants are listed in the bottom part of the table. The
alternative methods included in the comparison are all ensemble
methods, because RandBal is an ensemble approach in itself.

The one-vs-one implementation in Weka uses the binary out-
puts from the member classifiers, Dt,i ∈ {0, 1},

∑
i Dt,i = 1, t =

1, . . . , L, to calculate the ensemble probabilities Ei(x). The prob-
ability that x comes from class ωi is estimated as the proportion
of votes for ωi among the L member classifiers. This option was
changed, using the probability outputs Dt,i ∈ [0, 1],

∑
i Dt,i = 1,

t = 1, . . . , L. This change affects mainly the MAUC measure.
The two decomposition techniques were combined with the

considered ensemble methods. Ensemble size was fixed at L =
100. Decision trees (J48, based on C4.5 [68]) were chosen as
the base classifier. They were used without pruning because this
option usually gives better results with ensembles as they are
more unstable than pruned trees [45]. Moreover, in imbalanced
data sets, pruning can make the prediction of minority classes less
likely.

Nine methods specifically designed or adapted for multiclass
imbalanced problems were chosen for our study, as explained
below.

(1) SMOTEBagging [32] was included. It can handle multi-
class imbalance by design. Thus, decomposition techniques may
not be needed. To examine the extent of improvement offered
by such techniques, we included in our experiment SMOTEBag-
ging with and without them. This gives rise to three compet-
ing methods: (i) SMOTEBagging, (ii) OVA-SMOTEBagging, and
(iii) OVO-SMOTEBagging.

(2) Roughly Balanced Bagging was included using the decom-
position techniques and the two extensions for the multiclass



10 J.J. Rodríguez, J.-F. Díez-Pastor, Á. Arnaiz-González et al. / Knowledge-Based Systems 193 (2020) 105434

Table 7
Pair-wise method comparison. Each cell shows the number of data sets where the method in the column has a better score on the measure of the
subtable than the method of the row. Cells background colours are used to represent their values, the better methods have lighter rows and darker
columns.

case proposed in [42]. In the undersampling approach, the ex-
pected number of instances of each class is the minority class
size. In [42] the data sets with less than 5 instances in some class
were modified removing those classes. In this experiment, instead
of modifying the data sets, a minimum size of 5 was enforced.
Then, 4 competing methods were obtained: (iv) OverMultiRough-
BalBag, (v) UnderMultiRoughBalBag, (vi) OVA-RoughBalBag and
(vii) OVO-RoughBalBag.

(3) EasyEnsemble [35] and (4) SMOTE+AdaBoost were in-
cluded as ensemble methods because they achieved best re-
sults when combined with one-vs-one (OVO), in [31]. AdaBoost
was used with resampling [69] instead of reweighting, as this
choice, typically, gives better results. The base classifier is not
trained directly with the weighted instances, but with a sam-
ple from the instances. For EasyEnsemble, 10 data sets were

constructed by undersampling the majority class, and for each
data set, AdaBoost was trained with 10 base classifiers, hence
the final ensemble also contained 100 classifiers. These meth-
ods are applied to multiclass data through the decomposition
techniques, contributing 4 competing methods in our experi-
ment: (viii) OVA-EasyEnsemble, (ix) OVO-EasyEnsemble, (x) OVA-
SMOTE+AdaBoost, and (xi) OVO-SMOTE+AdaBoost.

(5) RUSBoost [33] was also included with the two decomposi-
tion techniques, giving rise to two competing methods (xii) OVA-
RUSBoost and (xiii) OVO-RUSBoost.

(6) AdaBoost.NC [40] presented in Section 2, was trained
with an oversampled data set, as recommended by its authors.
A fully balanced data set was created by padding the smallest
classes with artificial examples. As AdaBoost.NC handles imbal-
anced multiclass data sets by design, it was included with and
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Table 8
Pair-wise method comparison. Each cell shows the number of statistically significant wins across the 52 data sets of the method of the column
against the method of the row.

without the decomposition techniques. This gives rise to three
competing methods: (xiv) AdaBoost.NC, (xv) OVA-AdaBoost.NC,
and (xvi) OVO-AdaBoost.NC.

(7) Random Balance was used as an ensemble method by itself
(giving rise to three competing methods: (xvii) MultiRandBal,
(xviii) OVA-RandBal, and (xix) OVO-RandBal), but also in combi-
nation with (8) Bagging (hence, (xx) BagMultiRandBal, (xxi) OVA-
BagRandBal, and (xxii) OVO-BagRandBal).

Finally, (9) RandBalBoost combines the Random Balance strat-
egy with Boosting, in a similar way as is done in SMOTEBoost [34]
and RUSBoost [33]. In each iteration of Boosting, the pre-
processing technique (e.g., Random Balance, SMOTE, random un-
dersampling) is applied and the obtained data set is used to
train the base classifier. This combination can be used with or
without the two decomposition techniques, which completes

the set of 25 competing methods with (xxiii) MultiRandBalBoost
(xxiv) OVA-RandBalBoost and (xxv) OVO-RandBalBoost.

The 25 competing methods can be divided into two groups:
ones which use Random Balance, and ones which do not. Our
hypothesis is that the methods which use Random Balance will
fare better than the other group.

5. Results

Table 4 shows the ranks of the 25 methods for the six chosen
performance measures.6 The ranks are averaged across the 52
data sets, and, for each measure, the methods are sorted by
average rank, from best to worst. The rows with methods which
use Random Balance are shaded in all the tables.

6 The full set of results is available in the supplementary material.
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Fig. 1. Stacked bar chart of the ensemble methods’ ranks according to the six measures, with and without Random Balance.

Table 9
Comparison of OVA and OVO for the different ensemble methods and performance measures. Each entry in the table shows the number of data sets where OVA is
better followed by the number where OVO is better. The second row for each performance measure shows in how many data sets the differences are significant.
Measure SMOTEBagging RoughBalBag EasyEnsemble SMOTE+AdaBoost RUSBoost AdaBoost.NC RandBal BagRandBal RandBalBoost SUM
Accuracy 40/12 46/6 48/4 29/23 37/15 44/8 38/14 45/7 37/15 364/104

4/0 11/0 6/1 1/1 8/0 3/0 5/0 7/0 3/0 48/2
Kappa 38/14 45/7 44/8 26/26 39/13 42/10 39/13 33/9 37/15 343/115

3/0 9/0 6/1 1/1 7/0 3/0 4/0 6/0 4/0 43/2
G-mean 26/19 22/23 22/21 19/26 31/13 17/28 21/24 29/14 32/13 219/181

1/0 1/2 0/2 0/1 3/0 1/2 1/1 3/1 2/1 12/10
average- 31/21 34/18 28/24 22/30 34/18 25/27 27/25 37/13 34/18 272/194
Accuracy 2/0 2/2 0/1 1/1 2/0 3/3 2/1 8/1 3/1 23/10
F-measure 34/18 37/15 40/12 27/25 38/14 34/18 34/18 40/12 37/15 321/147

2/0 7/1 5/1 1/1 6/1 2/2 3/0 6/0 4/0 36/6
MAUC 32/20 41/11 36/16 43/9 39/13 45/7 35/17 37/9 39/13 347/115

4/1 8/0 5/1 8/1 12/0 14/0 8/0 7/0 7/0 73/3
SUM 201/104 225/80 218/85 166/139 218/86 207/98 194/111 221/64 216/89

16/1 38/5 22/7 12/6 38/1 26/7 23/2 37/2 23/2

OVA-RandBalBoost has the top rank for Accuracy and Kappa;
MultiRandBal is the best for G-mean and average-Accuracy; Mul-
tiRandBalBoost is the best for F-measure; and BagMultiRandBal is
the best for MAUC.

The ensemble methods with top ranks and without Random
Balance turned out to be OVA-SMOTE+ AdaBoost for Accuracy,
OVA-SMOTEBagging for Kappa and F-measure, OverMultiRough-
BalBag for G-mean and average-Accuracy, and OVA-RUSBoost for
MAUC. In general, for a given ensemble method, its combination
with OVA and OVO have similar average ranks.

In several data sets, as shown in the supplementary material
tables, the value for G-mean is zero for all the methods. The
cause is that some particularly small classes are never correctly
predicted. Some of these data sets have classes with only two
instances, so one instance is always included in the training set
(through stratified sampling) while the other is left in the testing
set.

Table 4 also shows the average ranks.7 obtained when using
the six performance measures together That is, the rank for the
method is averaged across the six measures. The top six ranks

7 The adjusted p-values are not included because the results of the different
measures are not independent.

are for methods with Random Balance, the first three are OVA-
RandBalBoost, MultiRandBalBoost and BagMultiRandBal. Among
the methods which do not apply Random Balance, the top two
are OVA-SMOTEBagging and OVA-RUSBoost.

Table 5 also shows the average ranks, but only for the Bagging-
based ensemble methods. Table 6 shows the average ranks for
the Boosting-based ensemble methods. For both groups of meth-
ods and measures the method with top rank is a method with
Random Balance, with the only exception of G-mean. In these
measures the differences among the ranks methods are smaller
than for other measures.

As a visual summary of the average ranks, Fig. 1 shows a
stacked bar chart of the ensemble methods’ ranks according to
the six measures, with and without Random Balance. The bars
in the left subplot are noticeably lower than the bars in the
right subplot, which demonstrates the overall lower ranks of the
ensemble methods using Random Balance.

Fig. 2 shows the ranks as boxplots. The statistics are calculated
across the 52 data sets. The average rank for all methods spans
the interval from 1 to 25. The order of the methods is from
Table 4, for the subtable with all measures. The boxplots for
the methods with Random Balance are coloured in grey. The
advantage of the methods with Random Balance is evident from
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Fig. 2. Boxplots for the ranks. The start and end of the box are the first and third quartiles, the band inside the box is the median. The boxplots for the methods
with Random Balance are coloured in grey.
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Fig. 3. Scatterplot of the points for the 52 data sets for the 6 measures.

Table 10
Average ranks for the MAUC measures. On the right side it is indicated if the
method uses OVA or OVO.

the positioning of their boxes towards the left edge, indicating
lower ranks.

Scatterplots of the points for the 52 data sets for the 6 mea-
sures are shown in Fig. 3. The x-coordinate of a point is the
average of the measure for all methods which do not use Random
Balance for the corresponding data set, and the y-axis is the
average of the measure for the methods which do use Random
Balance. If the methods with and without Random Balance would

give the same value of a measure for a given data set, the point
would lie on the diagonal shown in the plot. The figure shows
that all measures apart from the Geometric mean clearly favour
the ensemble methods which use Random Balance.

Table 7 shows pair-wise comparisons of the 25 methods. The
value in cell (i, j) is the number of data sets where method j has
a better result than method i. Table 8 has the same structure
and appearance as Table 7, but this time the value in cell (i, j)
is the statistically significant wins of method j against method i,
according to the corrected resampled t-test statistic [70]. For all the
measures, in Tables 7 and 8 methods with Random Balance have
more favourable results.

Table 9 compares the decomposition techniques for the differ-
ent ensemble methods. The differences between OVA and OVO
are more clearly visible here than in the tables with the average
ranks. Our experiment showed that, in general, OVA dominates
OVO. From the ensemble methods, the greatest differences are
for BagRandBal and RoughBalBag, while the smallest differences
are for SMOTE+AdaBoost (with the exception of MAUC). Among
the performance measures, accuracy and MAUC favours OVA with
a largest difference, while G-mean and average-Accuracy show
more balanced scores for the two decomposition techniques.

5.1. Decomposition of MAUC

MAUC is calculated as the averaged AUC from all pairs of
classes. A pair of classes can be divided in three groups: (1) both
classes are majority classes, (2) both are minority, and (3) one
class is majority and the other minority. The average AUC can be
calculated using only the pairs of each group, resulting in three
measures: MAUC-Maj, MAUC-Min and MAUC-Imb. It is possible
that some of the groups may be empty. For imbalanced data with
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Fig. 4. Scatter plots for the MAUC measures. Each dot in a plot is for one data set. The plots show the regression and diagonal lines.

Fig. 5. Posteriors for the Bayesian sign-rank tests, from Accuracy.

only one big class, MAUC-Maj will be empty; for data with only
one small class, MAUC-Min will be empty. For those cases we
assign a value of 0.5.

Table 10 shows the average ranks for these different ver-
sions of MAUC. The order of the methods for the average ranks
according to MAUC and MAUC-Imb are very similar.

Fig. 4 shows scatter plots for the MAUCmeasures, representing
each data set as a dot, for eight methods. These methods were
selected from the top positions in the subtables of Table 4, four
with Random Balance and the other four without. MAUC-Imb is
the most similar to MAUC. For MAUC-Min, in the majority of the
cases its value is smaller than the value of MAUC. For MAUC-Maj
and MAUC-Min there are several data sets where there are not
pair of classes in the corresponding group, so there are several
dots with a value of 0.5 for that measure.

Given that MAUC is the average of the AUC for each pair of
classes, it may seem that OVO is more adequate than OVA because
it also works with pairs of classes. Nevertheless, the MAUC is
not directly calculated from the binary classifiers of class pairs.
The predictions of the binary classifiers are combined thereby
obtaining a probability for each class. Then, these probabilities are
used to calculate the MAUC. When combining the probabilities
of the binary classifiers, one issue is that many of the binary
classifiers will be necessarily wrong, because they discriminate
between two classes and the actual class can be another one.
Hence, the probabilities assigned by OVO are not reliable. For
other performance measures the results can be good as long as
the correct class has the greatest probability, but for MAUC the
probabilities assigned to all the classes are considered.
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Fig. 6. Posteriors for the Bayesian sign-rank tests, from Kappa.

Fig. 7. Posteriors for the Bayesian sign-rank tests, from G-mean.

5.2. Bayesian tests

Tables 11 and 12 show the results from the Bayesian signed-
rank tests. From all the pairs of methods, the tables only show

a subset, the selected set of eight methods compared with all
the rest. For all the measures, from the eight selected methods,
the method with most favourable results in the test is one with
Random Balance. Moreover, for all the measures, one of the
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Fig. 8. Posteriors for the Bayesian sign-rank tests, from average-Accuracy.

Fig. 9. Posteriors for the Bayesian sign-rank tests, from F-measure.

four selected methods with Random Balance its probability of

being better than the other method is greater or equal than the

probability of being worse.

Figures from 5 to 10 show the posteriors for the Bayesian sign-
rank tests. In these triangles [67], the bottom-left and bottom-
right regions correspond to the case where one method is better
than the other or vice versa. The top region represents the case
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Fig. 10. Posteriors for the Bayesian sign-rank tests, from MAUC.

Fig. 11. Diversity-performance diagrams. Each red dot is for a data set, the average value is marked with a blue star (⋆).

where the ‘‘rope’’ is more probable. For each measure, the four se-
lected methods with Random Balance are compared with the four
selected methods without Random Balance. Thus, there are 4 × 4
triangles for each measure. Methods with Random Balance are in
the rows while methods without are in the columns. The bottom
left region of the triangles are for the case where the method
with Random Balance is better. For all the measures, there is a
method with Random Balance for which its four triangles (in a
row) have their points clouds closer to the left than to the right
of the triangle. On the other hand, for all the measures, there is

not a method without Random Balance for which its four triangles
(in a column) have their points closer to the right than to the left.

5.3. Diversity

The advantage of some ensemble methods can be due to
the additional diversity in the base classifiers. There are several
measures of diversity [45], one of which is Kappa. When this
measure is used as a performance measure, the predicted classes
are compared to the actual classes. When Kappa is used for
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Table 11
Probabilities for the comparisons of classifiers, obtained using the Bayesian signed-rank test. The three probabilities in each cell are for: column method
is better / ‘‘rope’’ / row method is better. Continues on Table 12.

measuring diversity between a pair of base classifiers, the overall
diversity measure is the average of the pair-wise values of Kappa
from all the pairs. Smaller values of Kappa indicate that the base
classifiers are more diverse.

When using binarization techniques, different base classifiers
predict different binary classes. We compute the diversity of

a classifier with binarization as the average of the diversities

of the ensembles for the binarized problems. Hence, diversities

of multiclass ensembles and binarized ensembles may not be

commensurable.
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Table 12
Continued from Table 11. Probabilities for the comparisons of classifiers, obtained using the Bayesian signed-rank test. The three probabilities in each
cell are for: column method is better / ‘‘rope’’ / row method is better.

Table 13 shows the average ranks for diversity. In general,
Boosting-methods are more diverse than Bagging-based meth-
ods. This is consistent with the usual behaviour of Boosting and
Bagging. For Random Balance, it can be observed that the three
methods with RandBalBoost have more diversity than the three

methods with BagRandBal, while these are more diverse than the
three methods with RandBal.

Fig. 11 shows diversity-performance diagrams, for some of the
performance measures and the selected methods. The number of
points in the scatter plots is the number of data sets. For this
measure of diversity, smaller values indicate greater diversity.
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Table 13
Average ranks for diversity.

All methods

Method Rank pHochberg
OVA-RandBalBoost 3.0962
OVA-RUSBoost 3.8077 0.622035
OVA-SMOTE+AdaBoost 4.1346 0.622035
MultiRandBalBoost 4.7885 0.622035
OVO-RandBalBoost 7.2788 0.015029
OVO-SMOTE+AdaBoost 7.8846 0.004541
UnderMultiRoughBalBag 9.2308 0.000128
OVO-BagRandBal 10.0962 0.000009
OVA-BagRandBal 10.1731 0.000008
BagMultiRandBal 11.2788 0.000000
OVO-RUSBoost 11.9231 0.000000
AdaBoost.NC 12.2885 0.000000
OVA-RoughBalBag 13.1635 0.000000
OVO-RoughBalBag 14.0385 0.000000
OVA-AdaBoost.NC 14.7115 0.000000
OVA-RandBal 15.6923 0.000000
MultiRandBal 16.2692 0.000000
OVO-RandBal 16.4808 0.000000
OVO-AdaBoost.NC 17.6058 0.000000
OVO-EasyEnsemble 18.0769 0.000000
OverMultiRoughBalBag 18.3846 0.000000
OVA-EasyEnsemble 18.8077 0.000000
OVO-SMOTEBagging 21.3846 0.000000
SMOTEBagging 22.0577 0.000000
OVA-SMOTEBagging 22.3462 0.000000

Bagging-based methods

Method Rank pHochberg
UnderMultiRoughBalBag 2.8462
OVA-BagRandBal 3.0385 0.746033
OVO-BagRandBal 3.1154 0.746033
BagMultiRandBal 3.5962 0.619646
OVA-RoughBalBag 4.6346 0.010380
OVO-RoughBalBag 5.0962 0.000755
OverMultiRoughBalBag 6.9038 0.000000
OVO-SMOTEBagging 8.1923 0.000000
OVA-SMOTEBagging 8.7885 0.000000
SMOTEBagging 8.7885 0.000000

Boosting-based methods

Method Rank pHochberg
OVA-RandBalBoost 2.5577
OVA-RUSBoost 2.7500 0.785650
OVA-SMOTE+AdaBoost 3.6731 0.229411
MultiRandBalBoost 4.2500 0.050095
OVO-RandBalBoost 5.2308 0.000627
OVO-SMOTE+AdaBoost 5.8462 0.000017
OVO-RUSBoost 7.2885 0.000000
AdaBoost.NC 8.0192 0.000000
OVA-AdaBoost.NC 8.9615 0.000000
OVO-EasyEnsemble 9.5192 0.000000
OVA-EasyEnsemble 9.6923 0.000000
OVO-AdaBoost.NC 10.2115 0.000000

Table 14
Computation times.

Training

Method Rank Mean Median

UnderMultiRoughBalBag 1.0769 0.3228 0.0235
OverMultiRoughBalBag 3.0000 1.7727 0.1130
OVO-RoughBalBag 4.1731 2.0518 0.1485
OVA-RoughBalBag 4.5865 1.6500 0.1443
BagMultiRandBal 7.8558 12.1139 0.2723
OVA-EasyEnsemble 7.9519 1.9849 0.2492
AdaBoost.NC 8.1635 5.3272 0.3094
OVO-EasyEnsemble 8.1827 2.4865 0.3008
MultiRandBal 8.8077 12.2611 0.2954
OVO-AdaBoost.NC 8.9327 5.0472 0.3447
OVO-RUSBoost 9.5673 3.8526 0.3849
OVO-SMOTE+AdaBoost 10.5192 6.6301 0.3842
OVA-RUSBoost 11.8846 4.5546 0.4046
OVA-AdaBoost.NC 15.0962 14.3957 0.7015
OVA-SMOTE+AdaBoost 15.7500 18.3408 0.7124
MultiRandBalBoost 16.2500 54.0495 0.8855
SMOTEBagging 17.3654 92.0993 1.2384
OVO-BagRandBal 17.5673 95.4519 1.2389
OVO-RandBal 18.5962 94.2196 1.2863
OVO-SMOTEBagging 19.0962 109.2916 1.5082
OVO-RandBalBoost 19.7788 102.4023 1.3174
OVA-BagRandBal 21.3077 151.0985 1.6867
OVA-RandBal 21.9038 155.7964 1.8384
OVA-SMOTEBagging 23.4327 141.5879 2.6467
OVA-RandBalBoost 24.1538 185.4796 2.2729

Test

Method Rank Mean Median

UnderMultiRoughBalBag 2.2885 0.0593 0.0061
BagMultiRandBal 3.6923 0.1173 0.0084
AdaBoost.NC 3.7500 0.1008 0.0074
MultiRandBal 3.8654 0.1083 0.0090
OverMultiRoughBalBag 5.0192 0.1164 0.0091
SMOTEBagging 8.8365 0.2127 0.0153
OVA-AdaBoost.NC 8.9423 0.5456 0.0135
OVO-AdaBoost.NC 10.4423 3.4941 0.0165
OVA-RoughBalBag 11.7596 0.4485 0.0177
OVA-BagRandBal 12.4038 0.4597 0.0173
MultiRandBalBoost 12.4904 0.2521 0.0185
OVA-RandBal 13.6058 0.4420 0.0188
OVA-SMOTE+AdaBoost 13.8654 0.7452 0.0220
OVA-EasyEnsemble 14.5192 0.5248 0.0214
OVO-SMOTE+AdaBoost 15.0481 4.6956 0.0243
OVA-SMOTEBagging 15.2308 0.4615 0.0205
OVO-RoughBalBag 16.4615 3.9608 0.0340
OVA-RUSBoost 17.4712 0.4961 0.0262
OVO-BagRandBal 17.5481 3.6663 0.0381
OVO-RandBal 17.7404 3.9682 0.0348
OVO-EasyEnsemble 17.8462 4.4325 0.0313
OVO-SMOTEBagging 18.3077 3.4955 0.0390
OVA-RandBalBoost 19.1538 0.7518 0.0271
OVO-RandBalBoost 22.2308 4.5419 0.0459
OVO-RUSBoost 22.4808 4.6437 0.0512

Hence, more diverse classifiers are at the left. It can be seen that
methods based on boosting have more diverse classifiers.

5.4. Computation time

Table 14 summarizes running times. The values of mean times
across all the data sets depend heavily on a few data sets with
much higher times, so the median times and average ranks are
also shown. Methods that use Random Balance with binariza-
tion techniques are among the slowest, but they are comparable
to other methods that use SMOTE such as SMOTEBagging. For
Random Balance without binarization techniques, times are more
competitive.

6. Conclusion and future work

This study extends the Random Balance ensemble method to
multiclass problems. We explored two extension routes. First, the
original idea of abandoning the prior probabilities estimated from
the class proportions, and sampling with randomly generated
priors, is applied directly from 2 to c classes. Second, still using
the random priors for two classes, we propose to decompose
the c-class problem into a binary problem. The decomposition
techniques which we adopted here are one-vs-one (OVO) and
one-vs-all (OVA). Analysing six performance measures over a di-
verse collection of 52 data sets, we found that the configurations
with Random Balance give better results than configurations that
use state-of-the-art ensemble methods such as SMOTEBagging,
RoughBalBag, SMOTE+AdaBoost, EasyEnsemble, RUSBoost and
AdaBoost.NC with OVO and OVA.
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The configurations with best results were OVA-RandBalBoost,
MultiRandBalBoost, BagMultiRandBal and MultiRandBal. The last
two have the advantage of being more efficient, as they are not
based on building binary classifiers. Moreover, all the classifiers
in the ensemble can be built in parallel, as the construction of one
classifier does not depend on the results of others, as it happens
with boosting. The use of OVA has been previously considered
not advisable for multiclass imbalance learning [16,31] because
in the decomposed binary problems, imbalance is artificially cre-
ated (a balanced multiclass problem is solved through several
imbalanced binary problems) or further increased. Our results, for
both methods with and without Random Balance, contradict this
advice. Table 9 suggests that using OVA in the context of Random
Balance is more advantageous than using OVO, especially when
the performance measure of choice is MAUC or if BaggingRandBal
is adopted.

Random Balance ensembles are based on undersampling and
oversampling. We chose here random undersampling and over-
sampling with SMOTE. More advanced approaches, such as
ADASYN [52], evolutionary undersampling [71], cluster-based
undersampling [17], ROSE [72], SMOTE-IPF [73], SMOM [21] could
further improve the results of Random Balance.

We also chose the most widely-used decomposition tech-
niques for multiclass problems: OVA and OVO. More advanced
approaches could be considered. The classifiers obtained with
OVA or OVO can be combined in different ways, such as DRCW-
OVO [74], DRCW-ASEG [75] or the methods proposed in [76].
There are other approaches different from OVA and OVO, such
as Error Correcting Output Codes [38,49]. Dynamic ensemble
selection [36] could also be applied with ensembles generated
with Random Balance.

The results of ensemble methods depend on the method used
to build the base classifiers. In this work, decision trees have
been used, since they are very commonly used in ensembles.
The proposed methods could be tested with other base clas-
sifiers. In particular, we could try classifiers with good results
in recent comparisons [77], such as Extreme Learning Machine
(ELM) or Sparse Representation based Classification (SRC). More-
over the proposed methods can be used with heterogeneous
base classifiers as this approach has been reported to give good
results [38].

The proposed RandBal extensions can be included in
Imbalanced-learn [55] or Multi-Imbalance [56]. Also, they can
be applied to ensemble methods that are not specifically de-
signed for imbalance, for example, Stochastic Gradient Boosting
Trees [77,78].

CRediT authorship contribution statement

Juan J. Rodríguez: Conceptualization, Methodology, Software,
Formal analysis, Investigation, Data curation, Writing - original
draft, Writing - review & editing, Visualization, Supervision, Fund-
ing acquisition. José-Francisco Díez-Pastor: Conceptualization,
Methodology, Software, Investigation, Writing - review & editing.
Álvar Arnaiz-González: Methodology, Investigation, Data cura-
tion, Writing - review & editing. Ludmila I. Kuncheva: Conceptu-
alization, Methodology, Writing - review & editing, Visualization,
Supervision.

Acknowledgements

This work was supported by the Ministerio de Economía y
Competitividad[http://dx.doi.org/10.13039/501100003329] of the
Spanish Government through project TIN2015-67534-P (MINECO/
FEDER, UE) and the Junta de Castilla y León through project
BU085P17 (JCyL/FEDER, UE); both cofinanced from European
Union FEDER funds.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.knosys.2019.105434.

References

[1] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data
Eng. 21 (9) (2009) 1263–1284, http://dx.doi.org/10.1109/tkde.2008.239.

[2] P. Branco, L. Torgo, R.P. Ribeiro, A survey of predictive modeling on
imbalanced domains, ACM Comput. Surv. 49 (2) (2016) http://dx.doi.org/
10.1145/2907070.

[3] B. Krawczyk, Learning from imbalanced data: open challenges and future
directions, Prog. Artif. Intell. 5 (4) (2016) 221–232, http://dx.doi.org/10.
1007/s13748-016-0094-0.

[4] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, G. Bing,
Learning from class-imbalanced data: Review of methods and applica-
tions, Expert Syst. Appl. 73 (2017) 220–239, http://dx.doi.org/10.1016/
j.eswa.2016.12.035, URL http://www.sciencedirect.com/science/article/pii/
S0957417416307175.

[5] A. Fernández, S. García, M. Galar, R.C. Prati, B. Krawczyk, F. Herrera,
Learning from Imbalanced Data Sets, Springer, 2018, http://dx.doi.org/10.
1007/978-3-319-98074-4.

[6] J. Sun, H. Li, H. Fujita, B. Fu, W. Ai, Class-imbalanced dynamic financial dis-
tress prediction based on Adaboost-SVM ensemble combined with SMOTE
and time weighting, Inf. Fusion 54 (2020) 128–144, http://dx.doi.org/
10.1016/j.inffus.2019.07.006, URL http://www.sciencedirect.com/science/
article/pii/S156625351830856X.

[7] A. Fernández, S. García, M. Galar, R.C. Prati, B. Krawczyk, F. Herrera, Im-
balanced classification with multiple classes, in: Learning from Imbalanced
Data Sets, Springer International Publishing, Cham, 2018, pp. 197–226,
http://dx.doi.org/10.1007/978-3-319-98074-4_8.

[8] A.C. Tan, D. Gilbert, Y. Deville, Multi-class protein fold classification using
a new ensemble machine learning approach, in: Genome informatics. In-
ternational Conference on Genome Informatics, vol. 14, 2003, pp. 206–217,
URL http://view.ncbi.nlm.nih.gov/pubmed/15706535.

[9] X.-M. Zhao, X. Li, L. Chen, K. Aihara, Protein classification with imbalanced
data, Proteins 70 (4) (2008) 1125–1132, http://dx.doi.org/10.1002/prot.
21870.

[10] T.W. Liao, Classification of weld flaws with imbalanced class data,
Expert Syst. Appl. 35 (3) (2008) 1041–1052, http://dx.doi.org/10.1016/
j.eswa.2007.08.044, URL http://www.sciencedirect.com/science/article/pii/
S0957417407003223.

[11] P. Santos, J. Maudes, A. Bustillo, Identifying maximum imbalance in
datasets for fault diagnosis of gearboxes, J. Intell. Manuf. 29 (2) (2018)
333–351, http://dx.doi.org/10.1007/s10845-015-1110-0.

[12] N. Zarinabad, M.P. Wilson, S.K. Gill, K.A. Manias, N.P. Davies, A.C. Peet,
Multiclass imbalance learning: Improving classification of pediatric brain
tumors from magnetic resonance spectroscopy, Magn. Reson. Med. 77 (6)
(2017) 2114–2124, http://dx.doi.org/10.1002/mrm.26318.

[13] T. Sun, L. Jiao, J. Feng, F. Liu, X. Zhang, Imbalanced hyperspectral image
classification based on maximum margin, IEEE Geosci. Remote Sens. Lett.
12 (3) (2015) 522–526, http://dx.doi.org/10.1109/LGRS.2014.2349272.

[14] P. Pramokchon, P. Piamsa-nga, Reducing effects of class imbalance distribu-
tion in multi-class text categorization, in: Recent Advances in Information
and Communication Technology, Springer, 2014, pp. 263–272.

[15] B. Fergani, et al., A new multi-class WSVM classification to imbalanced
human activity dataset, J. Comput. 9 (7) (2014) 1560–1565.

[16] W. Prachuabsupakij, N. Soonthornphisaj, Clustering and combined sam-
pling approaches for multi-class imbalanced data classification, in: D. Zeng
(Ed.), Advances in Information Technology and Industry Applications, in:
Lecture Notes in Electrical Engineering, vol. 136, Springer Berlin Hei-
delberg, 2012, pp. 717–724, http://dx.doi.org/10.1007/978-3-642-26001-
8_91.

[17] A. Agrawal, H.L. Viktor, E. Paquet, SCUT: Multi-class imbalanced data
classification using SMOTE and cluster-based undersampling, in: 2015
7th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management, IC3K, vol. 01, 2015, pp. 226–234.

[18] L. Abdi, S. Hashemi, To combat multi-class imbalanced problems by means
of over-sampling and boosting techniques, Soft Comput. 19 (12) (2015)
3369–3385, http://dx.doi.org/10.1007/s00500-014-1291-z.

[19] L. Abdi, S. Hashemi, To combat multi-class imbalanced problems by means
of over-sampling techniques, IEEE Trans. Knowl. Data Eng. 28 (1) (2016)
238–251, http://dx.doi.org/10.1109/TKDE.2015.2458858.

[20] X. Yang, Q. Kuang, W. Zhang, G. Zhang, AMDO: An over-sampling technique
for multi-class imbalanced problems, IEEE Trans. Knowl. Data Eng. 30 (9)
(2018) 1672–1685, http://dx.doi.org/10.1109/TKDE.2017.2761347.

https://doi.org/10.1016/j.knosys.2019.105434
http://dx.doi.org/10.1109/tkde.2008.239
http://dx.doi.org/10.1145/2907070
http://dx.doi.org/10.1145/2907070
http://dx.doi.org/10.1145/2907070
http://dx.doi.org/10.1007/s13748-016-0094-0
http://dx.doi.org/10.1007/s13748-016-0094-0
http://dx.doi.org/10.1007/s13748-016-0094-0
http://dx.doi.org/10.1016/j.eswa.2016.12.035
http://dx.doi.org/10.1016/j.eswa.2016.12.035
http://dx.doi.org/10.1016/j.eswa.2016.12.035
http://www.sciencedirect.com/science/article/pii/S0957417416307175
http://www.sciencedirect.com/science/article/pii/S0957417416307175
http://www.sciencedirect.com/science/article/pii/S0957417416307175
http://dx.doi.org/10.1007/978-3-319-98074-4
http://dx.doi.org/10.1007/978-3-319-98074-4
http://dx.doi.org/10.1007/978-3-319-98074-4
http://dx.doi.org/10.1016/j.inffus.2019.07.006
http://dx.doi.org/10.1016/j.inffus.2019.07.006
http://dx.doi.org/10.1016/j.inffus.2019.07.006
http://www.sciencedirect.com/science/article/pii/S156625351830856X
http://www.sciencedirect.com/science/article/pii/S156625351830856X
http://www.sciencedirect.com/science/article/pii/S156625351830856X
http://dx.doi.org/10.1007/978-3-319-98074-4_8
http://view.ncbi.nlm.nih.gov/pubmed/15706535
http://dx.doi.org/10.1002/prot.21870
http://dx.doi.org/10.1002/prot.21870
http://dx.doi.org/10.1002/prot.21870
http://dx.doi.org/10.1016/j.eswa.2007.08.044
http://dx.doi.org/10.1016/j.eswa.2007.08.044
http://dx.doi.org/10.1016/j.eswa.2007.08.044
http://www.sciencedirect.com/science/article/pii/S0957417407003223
http://www.sciencedirect.com/science/article/pii/S0957417407003223
http://www.sciencedirect.com/science/article/pii/S0957417407003223
http://dx.doi.org/10.1007/s10845-015-1110-0
http://dx.doi.org/10.1002/mrm.26318
http://dx.doi.org/10.1109/LGRS.2014.2349272
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb14
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb14
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb14
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb14
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb14
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb15
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb15
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb15
http://dx.doi.org/10.1007/978-3-642-26001-8_91
http://dx.doi.org/10.1007/978-3-642-26001-8_91
http://dx.doi.org/10.1007/978-3-642-26001-8_91
http://dx.doi.org/10.1007/s00500-014-1291-z
http://dx.doi.org/10.1109/TKDE.2015.2458858
http://dx.doi.org/10.1109/TKDE.2017.2761347


J.J. Rodríguez, J.-F. Díez-Pastor, Á. Arnaiz-González et al. / Knowledge-Based Systems 193 (2020) 105434 23

[21] T. Zhu, Y. Lin, Y. Liu, Synthetic minority oversampling technique for multi-
class imbalance problems, Pattern Recognit. 72 (2017) 327–340, http://dx.
doi.org/10.1016/j.patcog.2017.07.024, URL http://www.sciencedirect.com/
science/article/pii/S0031320317302947.

[22] T.R. Hoens, Q. Qian, N.V. Chawla, Z.-H. Zhou, Building decision trees for the
multi-class imbalance problem, in: Pacific-Asia Conference on Knowledge
Discovery and Data Mining, Springer, 2012, pp. 122–134.

[23] M. Lin, K. Tang, X. Yao, Dynamic sampling approach to training neural
networks for multiclass imbalance classification, IEEE Trans. Neural Netw.
Learn. Syst. 24 (4) (2013) 647–660, http://dx.doi.org/10.1109/TNNLS.2012.
2228231.

[24] D. Díaz-Vico, A.R. Figueiras-Vidal, J.R. Dorronsoro, Deep MLPs for imbal-
anced classification, in: 2018 International Joint Conference on Neural
Networks, IJCNN, IEEE, 2018, pp. 1–7.

[25] Y. Sun, M.S. Kamel, Y. Wang, Boosting for learning multiple classes with
imbalanced class distribution, in: Sixth International Conference on Data
Mining, ICDM’06, IEEE, 2006, pp. 592–602.

[26] B. Krawczyk, Cost-sensitive one-vs-one ensemble for multi-class im-
balanced data, in: Neural Networks, IJCNN, 2016 International Joint
Conference on, IEEE, 2016, pp. 2447–2452.

[27] Z.-L. Zhang, X.-G. Luo, S. García, F. Herrera, Cost-sensitive back-propagation
neural networks with binarization techniques in addressing multi-class
problems and non-competent classifiers, Appl. Soft Comput. 56 (2017)
357–367.

[28] S. Vluymans, A. Fernández, Y. Saeys, C. Cornelis, F. Herrera, Dynamic
affinity-based classification of multi-class imbalanced data with one-
versus-one decomposition: a fuzzy rough set approach, Knowl. Inf. Syst.
56 (1) (2018) 55–84.

[29] A. Fernández, V. López, M. Galar, M.J. del Jesus, F. Herrera, Analysing the
classification of imbalanced data-sets with multiple classes: Binarization
techniques and ad-hoc approaches, Knowl.-Based Syst. 42 (2013) 97–110,
http://dx.doi.org/10.1016/j.knosys.2013.01.018.

[30] R. Barandela, R. Valdovinos, J. Sánchez, New applications of ensembles of
classifiers, Pattern Anal. Appl. 6 (3) (2003) 245–256, http://dx.doi.org/10.
1007/s10044-003-0192-z.

[31] Z. Zhang, B. Krawczyk, S. García, A. Rosales-Pérez, F. Herrera, Empowering
one-vs-one decomposition with ensemble learning for multi-class imbal-
anced data, Knowl.-Based Syst. 106 (2016) 251–263, http://dx.doi.org/10.
1016/j.knosys.2016.05.048.

[32] S. Wang, X. Yao, Diversity analysis on imbalanced data sets by using
ensemble models, in: Computational Intelligence and Data Mining, 2009.
CIDM’09. IEEE Symposium on, IEEE, 2009, pp. 324–331.

[33] C. Seiffert, T. Khoshgoftaar, J. Van Hulse, A. Napolitano, RUSBoost: A hybrid
approach to alleviating class imbalance, IEEE Trans. Syst. Man Cybern. A
40 (1) (2010) 185–197.

[34] N. Chawla, A. Lazarevic, L. Hall, K. Bowyer, SMOTEBoost: Improving
prediction of the minority class in boosting, in: 7th European Conference
on Principles and Practice of Knowledge Discovery in Databases, PKDD
2003, Cavtat Dubrovnik, 2003, pp. 107–119.

[35] X.Y. Liu, J. Wu, Z.H. Zhou, Exploratory undersampling for class-imbalance
learning, IEEE Trans. Syst. Man Cybern. B 39 (2) (2009) 539–550, http:
//dx.doi.org/10.1109/TSMCB.2008.2007853.

[36] S. García, Z.-L. Zhang, A. Altalhi, S. Alshomrani, F. Herrera, Dynamic
ensemble selection for multi-class imbalanced datasets, Inform. Sci. 445–
446 (2018) 22–37, http://dx.doi.org/10.1016/j.ins.2018.03.002, URL http:
//www.sciencedirect.com/science/article/pii/S0020025518301725.

[37] A. Sen, M.M. Islam, K. Murase, X. Yao, Binarization with boosting and
oversampling for multiclass classification, IEEE Trans. Cybern. 46 (5) (2016)
1078–1091.

[38] J. Bi, C. Zhang, An empirical comparison on state-of-the-art multi-class
imbalance learning algorithms and a new diversified ensemble learning
scheme, Knowl.-Based Syst. 158 (2018) 81–93, http://dx.doi.org/10.1016/j.
knosys.2018.05.037, URL http://www.sciencedirect.com/science/article/pii/
S095070511830282X.

[39] S. Chen, H. He, E.A. Garcia, RAMOBoost: ranked minority oversampling in
boosting, IEEE Trans. Neural Netw. 21 (10) (2010) 1624–1642.

[40] S. Wang, X. Yao, Multiclass imbalance problems: Analysis and potential
solutions, IEEE Trans. Syst. Man Cybern. B 42 (4) (2012) 1119–1130,
http://dx.doi.org/10.1109/TSMCB.2012.2187280.

[41] G. Collell, D. Prelec, K.R. Patil, A simple plug-in bagging ensemble based
on threshold-moving for classifying binary and multiclass imbalanced
data, Neurocomputing 275 (2018) 330–340, http://dx.doi.org/10.1016/
j.neucom.2017.08.035, URL http://www.sciencedirect.com/science/article/
pii/S092523121731456X.

[42] M. Lango, J. Stefanowski, Multi-class and feature selection extensions of
roughly balanced bagging for imbalanced data, J. Intell. Inf. Syst. 50 (1)
(2018) 97–127, http://dx.doi.org/10.1007/s10844-017-0446-7.

[43] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F. Herrera, A review
on ensembles for the class imbalance problem: Bagging-, boosting-, and
hybrid-based approaches, IEEE Trans. Syst. Man Cybern. C 42 (4) (2012)
463–484, http://dx.doi.org/10.1109/TSMCC.2011.2161285.

[44] Z.-H. Zhou, X.-Y. Liu, On multi-class cost-sensitive learning, Comput. Intell.
26 (3) (2010) 232–257.

[45] L.I. Kuncheva, Combining Pattern Classifiers. Methods and Algorithms,
second ed., John Wiley and Sons, 2014.

[46] J.F. Díez-Pastor, J.J. Rodríguez, C. García-Osorio, L.I. Kuncheva, Random
balance: Ensembles of variable priors classifiers for imbalanced data,
Knowl.-Based Syst. 85 (2015) 96–111, http://dx.doi.org/10.1016/j.knosys.
2015.04.022.

[47] R.E. Schapire, The boosting approach to machine learning: An overview,
in: Nonlinear Estimation and Classification, Springer, 2003, pp. 149–171.

[48] J.A. Sáez, B. Krawczyk, M. Woźniak, Analyzing the oversampling of different
classes and types of examples in multi-class imbalanced datasets, Pattern
Recognit. 57 (2016) 164–178, http://dx.doi.org/10.1016/j.patcog.2016.03.
012.

[49] O. Pujol, P. Radeva, J. Vitria, Discriminant ECOC: A heuristic method for
application dependent design of error correcting output codes, IEEE Trans.
Pattern Anal. Mach. Intell. 28 (6) (2006) 1007–1012.

[50] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, F. Herrera, An overview
of ensemble methods for binary classifiers in multi-class problems: Exper-
imental study on one-vs-one and one-vs-all schemes, Pattern Recognit. 44
(8) (2011) 1761–1776, http://dx.doi.org/10.1016/j.patcog.2011.01.017.

[51] H. Han, W.-Y. Wang, B.-H. Mao, Borderline-SMOTE: A new over-sampling
method in imbalanced data sets learning, in: D.-S. Huang, X.-P. Zhang, G.-B.
Huang (Eds.), Advances in Intelligent Computing: International Conference
on Intelligent Computing, ICIC 2005, Hefei, China, August 23-26, 2005,
Proceedings, Part I, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005,
pp. 878–887, http://dx.doi.org/10.1007/11538059_91.

[52] H. He, Y. Bai, E.A. Garcia, S. Li, ADASYN: Adaptive synthetic sampling
approach for imbalanced learning, in: 2008 IEEE International Joint Con-
ference on Neural Networks, IEEE World Congress on Computational
Intelligence, 2008, pp. 1322–1328, http://dx.doi.org/10.1109/IJCNN.2008.
4633969.

[53] Y. Liu, X. Yao, Simultaneous training of negatively correlated neural
networks in an ensemble, IEEE Trans. Syst. Man Cybern. B 29 (6) (1999)
716–725, http://dx.doi.org/10.1109/3477.809027.

[54] S. Hido, H. Kashima, Y. Takahashi, Roughly balanced bagging for
imbalanced data, Stat. Anal. Data Min. 2 (5–6) (2009) 412–426.

[55] G. Lemaître, F. Nogueira, C.K. Aridas, Imbalanced-learn: A Python toolbox to
tackle the curse of imbalanced datasets in machine learning, J. Mach. Learn.
Res. 18 (17) (2017) 1–5, URL http://jmlr.org/papers/v18/16-365.html.

[56] C. Zhang, J. Bi, S. Xu, E. Ramentol, G. Fan, B. Qiao, H. Fujita, Multi-
imbalance: An open-source software for multi-class imbalance learn-
ing, Knowl.-Based Syst. 174 (2019) 137–143, http://dx.doi.org/10.1016/j.
knosys.2019.03.001, URL http://www.sciencedirect.com/science/article/pii/
S0950705119301042.

[57] L. Breiman, Bagging predictors, Mach. Learn. 26 (2) (1996) 123–140.
[58] N. Chawla, K. Bowyer, L. Hall, W. Kegelmeyer, SMOTE: Synthetic minority

over-sampling technique, J. Artificial Intelligence Res. 16 (2002) 321–357.
[59] J. Alcala-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, F.

Herrera, Keel data-mining software tool: Data set repository and integra-
tion of algorithms and experimental analysis framework, J. Mult.-Valued
Logic Soft Comput. 17 (2–3) (2011) 255–287.

[60] M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, Do we need
hundreds of classifiers to solve real world classification problems? J. Mach.
Learn. Res. 15 (2014) 3133–3181.

[61] D. Dheeru, E. Karra Taniskidou, UCI machine learning repository, University
of California, Irvine, School of Information and Computer Sciences, 2017,
URL http://archive.ics.uci.edu/ml.

[62] D.J. Hand, R.J. Till, A simple generalisation of the area under the ROC
curve for multiple class classification problems, Mach. Learn. 45 (2) (2001)
171–186.

[63] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The
WEKA data mining software: an update, ACM SIGKDD Explor. Newsl. 11
(1) (2009) 10–18, http://dx.doi.org/10.1145/1656274.1656278.

[64] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J.
Mach. Learn. Res. 7 (2006) 1–30.

[65] S. García, F. Herrera, An extension on ‘‘statistical comparisons of classifiers
over multiple data sets’’ for all pairwise comparisons, J. Mach. Learn. Res.
9 (2008) 2677–2694, URL http://www.jmlr.org/papers/volume9/garcia08a/
garcia08a.pdf.

[66] Y. Hochberg, A sharper Bonferroni procedure for multiple tests of sig-
nificance, Biometrika 75 (4) (1988) 800–802, http://dx.doi.org/10.1093/
biomet/75.4.800.

[67] A. Benavoli, G. Corani, J. Demšar, M. Zaffalon, Time for a change: a tutorial
for comparing multiple classifiers through Bayesian analysis, J. Mach. Learn.
Res. 18 (77) (2017) 1–36, URL http://jmlr.org/papers/v18/16-305.html.

[68] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauffman, 1993.
[69] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line

learning and an application to boosting, J. Comput. System Sci. 55 (1)
(1997) 119–139.

http://dx.doi.org/10.1016/j.patcog.2017.07.024
http://dx.doi.org/10.1016/j.patcog.2017.07.024
http://dx.doi.org/10.1016/j.patcog.2017.07.024
http://www.sciencedirect.com/science/article/pii/S0031320317302947
http://www.sciencedirect.com/science/article/pii/S0031320317302947
http://www.sciencedirect.com/science/article/pii/S0031320317302947
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb22
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb22
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb22
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb22
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb22
http://dx.doi.org/10.1109/TNNLS.2012.2228231
http://dx.doi.org/10.1109/TNNLS.2012.2228231
http://dx.doi.org/10.1109/TNNLS.2012.2228231
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb24
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb24
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb24
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb24
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb24
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb25
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb25
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb25
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb25
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb25
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb26
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb26
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb26
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb26
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb26
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb27
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb27
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb27
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb27
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb27
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb27
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb27
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb28
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb28
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb28
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb28
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb28
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb28
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb28
http://dx.doi.org/10.1016/j.knosys.2013.01.018
http://dx.doi.org/10.1007/s10044-003-0192-z
http://dx.doi.org/10.1007/s10044-003-0192-z
http://dx.doi.org/10.1007/s10044-003-0192-z
http://dx.doi.org/10.1016/j.knosys.2016.05.048
http://dx.doi.org/10.1016/j.knosys.2016.05.048
http://dx.doi.org/10.1016/j.knosys.2016.05.048
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb32
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb32
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb32
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb32
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb32
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb33
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb33
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb33
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb33
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb33
http://dx.doi.org/10.1109/TSMCB.2008.2007853
http://dx.doi.org/10.1109/TSMCB.2008.2007853
http://dx.doi.org/10.1109/TSMCB.2008.2007853
http://dx.doi.org/10.1016/j.ins.2018.03.002
http://www.sciencedirect.com/science/article/pii/S0020025518301725
http://www.sciencedirect.com/science/article/pii/S0020025518301725
http://www.sciencedirect.com/science/article/pii/S0020025518301725
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb37
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb37
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb37
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb37
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb37
http://dx.doi.org/10.1016/j.knosys.2018.05.037
http://dx.doi.org/10.1016/j.knosys.2018.05.037
http://dx.doi.org/10.1016/j.knosys.2018.05.037
http://www.sciencedirect.com/science/article/pii/S095070511830282X
http://www.sciencedirect.com/science/article/pii/S095070511830282X
http://www.sciencedirect.com/science/article/pii/S095070511830282X
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb39
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb39
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb39
http://dx.doi.org/10.1109/TSMCB.2012.2187280
http://dx.doi.org/10.1016/j.neucom.2017.08.035
http://dx.doi.org/10.1016/j.neucom.2017.08.035
http://dx.doi.org/10.1016/j.neucom.2017.08.035
http://www.sciencedirect.com/science/article/pii/S092523121731456X
http://www.sciencedirect.com/science/article/pii/S092523121731456X
http://www.sciencedirect.com/science/article/pii/S092523121731456X
http://dx.doi.org/10.1007/s10844-017-0446-7
http://dx.doi.org/10.1109/TSMCC.2011.2161285
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb44
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb44
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb44
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb45
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb45
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb45
http://dx.doi.org/10.1016/j.knosys.2015.04.022
http://dx.doi.org/10.1016/j.knosys.2015.04.022
http://dx.doi.org/10.1016/j.knosys.2015.04.022
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb47
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb47
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb47
http://dx.doi.org/10.1016/j.patcog.2016.03.012
http://dx.doi.org/10.1016/j.patcog.2016.03.012
http://dx.doi.org/10.1016/j.patcog.2016.03.012
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb49
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb49
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb49
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb49
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb49
http://dx.doi.org/10.1016/j.patcog.2011.01.017
http://dx.doi.org/10.1007/11538059_91
http://dx.doi.org/10.1109/IJCNN.2008.4633969
http://dx.doi.org/10.1109/IJCNN.2008.4633969
http://dx.doi.org/10.1109/IJCNN.2008.4633969
http://dx.doi.org/10.1109/3477.809027
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb54
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb54
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb54
http://jmlr.org/papers/v18/16-365.html
http://dx.doi.org/10.1016/j.knosys.2019.03.001
http://dx.doi.org/10.1016/j.knosys.2019.03.001
http://dx.doi.org/10.1016/j.knosys.2019.03.001
http://www.sciencedirect.com/science/article/pii/S0950705119301042
http://www.sciencedirect.com/science/article/pii/S0950705119301042
http://www.sciencedirect.com/science/article/pii/S0950705119301042
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb57
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb58
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb58
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb58
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb59
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb59
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb59
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb59
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb59
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb59
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb59
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb60
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb60
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb60
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb60
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb60
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb62
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb62
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb62
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb62
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb62
http://dx.doi.org/10.1145/1656274.1656278
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb64
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb64
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb64
http://www.jmlr.org/papers/volume9/garcia08a/garcia08a.pdf
http://www.jmlr.org/papers/volume9/garcia08a/garcia08a.pdf
http://www.jmlr.org/papers/volume9/garcia08a/garcia08a.pdf
http://dx.doi.org/10.1093/biomet/75.4.800
http://dx.doi.org/10.1093/biomet/75.4.800
http://dx.doi.org/10.1093/biomet/75.4.800
http://jmlr.org/papers/v18/16-305.html
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb68
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb69
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb69
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb69
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb69
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb69


24 J.J. Rodríguez, J.-F. Díez-Pastor, Á. Arnaiz-González et al. / Knowledge-Based Systems 193 (2020) 105434

[70] C. Nadeau, Y. Bengio, Inference for the generalization error, Mach. Learn.
52 (3) (2003) 239–281.

[71] M. Galar, A. Fernández, E. Barrenechea, F. Herrera, EUSBoost: Enhancing
ensembles for highly imbalanced data-sets by evolutionary undersampling,
Pattern Recognit. 46 (12) (2013) 3460–3471, http://dx.doi.org/10.1016/j.
patcog.2013.05.006.

[72] G. Menardi, N. Torelli, Training and assessing classification rules with
imbalanced data, Data Min. Knowl. Discov. 28 (1) (2014) 92–122, http:
//dx.doi.org/10.1007/s10618-012-0295-5.

[73] J.A. Sáez, J. Luengo, J. Stefanowski, F. Herrera, SMOTE-IPF: addressing the
noisy and borderline examples problem in imbalanced classification by
a re-sampling method with filtering, Inform. Sci. 291 (2015) 184–203,
http://dx.doi.org/10.1016/j.ins.2014.08.051, URL http://www.sciencedirect.
com/science/article/pii/S0020025514008561.

[74] M. Galar, A. Fernández, E. Barrenechea, F. Herrera, DRCW-OVO: Distance-
based relative competence weighting combination for one-vs-one strategy
in multi-class problems, Pattern Recognit. 48 (1) (2015) 28–42, http://dx.
doi.org/10.1016/j.patcog.2014.07.023, URL http://www.sciencedirect.com/
science/article/pii/S0031320314002829.

[75] Z.-L. Zhang, X.-G. Luo, S. González, S. García, F. Herrera, DRCW-
ASEG: One-versus-one distance-based relative competence weighting
with adaptive synthetic example generation for multi-class imbalanced
datasets, Neurocomputing 285 (2018) 176–187, http://dx.doi.org/10.1016/
j.neucom.2018.01.039, URL http://www.sciencedirect.com/science/article/
pii/S0925231218300584.

[76] L. Zhou, H. Fujita, Posterior probability based ensemble strategy using opti-
mizing decision directed acyclic graph for multi-class classification, Inform.
Sci. 400–401 (2017) 142–156, http://dx.doi.org/10.1016/j.ins.2017.02.059,
URL http://www.sciencedirect.com/science/article/pii/S0020025516314207.

[77] C. Zhang, C. Liu, X. Zhang, G. Almpanidis, An up-to-date comparison
of state-of-the-art classification algorithms, Expert Syst. Appl. 82 (2017)
128–150, http://dx.doi.org/10.1016/j.eswa.2017.04.003, URL http://www.
sciencedirect.com/science/article/pii/S0957417417302397.

[78] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Pro-
ceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, ACM, New York, NY, USA, 2016, pp.
785–794, http://dx.doi.org/10.1145/2939672.2939785.

http://refhub.elsevier.com/S0950-7051(19)30659-8/sb70
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb70
http://refhub.elsevier.com/S0950-7051(19)30659-8/sb70
http://dx.doi.org/10.1016/j.patcog.2013.05.006
http://dx.doi.org/10.1016/j.patcog.2013.05.006
http://dx.doi.org/10.1016/j.patcog.2013.05.006
http://dx.doi.org/10.1007/s10618-012-0295-5
http://dx.doi.org/10.1007/s10618-012-0295-5
http://dx.doi.org/10.1007/s10618-012-0295-5
http://dx.doi.org/10.1016/j.ins.2014.08.051
http://www.sciencedirect.com/science/article/pii/S0020025514008561
http://www.sciencedirect.com/science/article/pii/S0020025514008561
http://www.sciencedirect.com/science/article/pii/S0020025514008561
http://dx.doi.org/10.1016/j.patcog.2014.07.023
http://dx.doi.org/10.1016/j.patcog.2014.07.023
http://dx.doi.org/10.1016/j.patcog.2014.07.023
http://www.sciencedirect.com/science/article/pii/S0031320314002829
http://www.sciencedirect.com/science/article/pii/S0031320314002829
http://www.sciencedirect.com/science/article/pii/S0031320314002829
http://dx.doi.org/10.1016/j.neucom.2018.01.039
http://dx.doi.org/10.1016/j.neucom.2018.01.039
http://dx.doi.org/10.1016/j.neucom.2018.01.039
http://www.sciencedirect.com/science/article/pii/S0925231218300584
http://www.sciencedirect.com/science/article/pii/S0925231218300584
http://www.sciencedirect.com/science/article/pii/S0925231218300584
http://dx.doi.org/10.1016/j.ins.2017.02.059
http://www.sciencedirect.com/science/article/pii/S0020025516314207
http://dx.doi.org/10.1016/j.eswa.2017.04.003
http://www.sciencedirect.com/science/article/pii/S0957417417302397
http://www.sciencedirect.com/science/article/pii/S0957417417302397
http://www.sciencedirect.com/science/article/pii/S0957417417302397
http://dx.doi.org/10.1145/2939672.2939785

	Random Balance ensembles for multiclass imbalance learning
	Introduction
	Multiclass imbalanced classification
	Random balance ensembles for multiclass imbalanced problems
	MultiRandBal (proposed extension 1)
	OVO-RandBal and OVA-RandBal (proposed extension 2)

	Experimental set-up
	Data sets
	Measures
	Methods and settings

	Results
	Decomposition of MAUC
	Bayesian tests
	Diversity
	Computation time

	Conclusion and future work
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A. Supplementary data
	References


