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Abstract—We propose a method for generating classifier ensembles based on feature extraction. To create the training data for a base

classifier, the feature set is randomly split intoK subsets (K is a parameter of the algorithm) and Principal Component Analysis (PCA) is

applied to each subset. All principal components are retained in order to preserve the variability information in the data. Thus, K axis

rotations take place to form the new features for a base classifier. The idea of the rotation approach is to encourage simultaneously

individual accuracy and diversity within the ensemble. Diversity is promoted through the feature extraction for each base classifier.

Decision trees were chosen here because they are sensitive to rotation of the feature axes, hence the name “forest.” Accuracy is sought

by keeping all principal components and also using the whole data set to train each base classifier. Using WEKA, we examined the

Rotation Forest ensemble on a random selection of 33 benchmark data sets from the UCI repository and compared it with Bagging,

AdaBoost, and Random Forest. The results were favorable to Rotation Forest and prompted an investigation into diversity-accuracy

landscape of the ensemble models. Diversity-error diagrams revealed that Rotation Forest ensembles construct individual classifiers

which are more accurate than these in AdaBoost and Random Forest, and more diverse than these in Bagging, sometimes more

accurate as well.

Index Terms—Classifier ensembles, AdaBoost, bagging, random forest, feature extraction, PCA, kappa-error diagrams.

Ç

1 INTRODUCTION

CLASSIFIER combination is now an active area of research
in Machine Learning and Pattern Recognition [31], [33],

[34], [35], [36], [46]. Many studies have been published, both
theoretical and empirical, which demonstrate the advan-
tages of the combination paradigm over the individual
classifier models [21]. A great deal of research has gone into
designing multiple classifier systems based on the same
classifier model trained on different data subsets or feature
subsets. Such multiple classifier systems are commonly
called classifier ensembles.1

Two approaches for constructing classifier ensembles

seem to be perceived as “classic” at present. They have been

found to be accurate, computationally feasible across various

data domains, and with no clear dominance between them.

. Bagging [5] takes bootstrap samples of objects2 and
trains a classifier on each sample. The classifier
votes are combined by majority voting. In some

implementations, classifiers produce estimates of
the posterior probabilities for the classes. These
probabilities are averaged across the classifiers and
the most probable class is assigned, called “aver-
age” or “mean” aggregation of the outputs. Bagging
with average aggregation is implemented in WEKA
and used in the experiments in this paper. Since
each individual classifier is trained on a bootstrap
sample, the data distribution seen during training is
similar to the original distribution. Thus, the
individual classifiers in a bagging ensemble have
relatively high classification accuracy. The only
factor encouraging diversity between these classi-
fiers is the proportion of different objects in the
training samples. Although the classifier models
used in Bagging are sensitive to small changes in
data, the bootstrap sampling appears to lead to
ensembles of low diversity compared to other
ensemble creating methods. As a result, Bagging
requires larger ensemble sizes to perform well. To
enforce diversity, a version of Bagging called
Random Forest was proposed by Breiman [7]. The
ensemble consists of decision trees built again on
bootstrap samples. The difference lies in the
construction of the decision tree. The feature to
split a node is selected as the best feature among a
set of M randomly chosen features, where M is a
parameter of the algorithm. This small alteration
appeared to be a winning heuristic in that diversity
was introduced without much compromising the
accuracy of the individual classifiers. The Random
Subspaces method [17] builds each ensemble mem-
ber on a different subset of features randomly
selected form the original feature set. A common
feature of all methods in this class is that the
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1. While still unifying terminology across the field, in a wider sense, any
system of more than one classifier can be called a classifier ensemble.

2. We use “objects” as synonym of instances, examples, and data points.
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individual classifiers can be built in parallel,
independently of one another. This does not mean
that their outputs will be independent though [16].

. Boosting [12] is a family of methods, the most
prominent member of which is AdaBoost. The idea is
to boost the performance of a “weak” classifier by
using it within an ensemble structure. The classifiers
in the ensemble are added one at a time so that each
subsequent classifier is trained on data which have
been “hard” for the previous ensemble members. A
set of weights is maintained across the objects in the
data set so that objects that have been difficult to
classify acquire more weight, forcing subsequent
classifiers to focus on them. The ensemble construc-
tion through AdaBoost comes from theory and is, in
fact, equivalent to fitting an additive logistic regres-
sion model by a stage-wise estimation procedure [13],
[37], [38]. The function being optimized is closely
related to the classification error. Bounds on the
training and generalisation errors of AdaBoost have
been proven [12], [37], [39], thereby inspiring further
developments of theory and practice of boosting [1],
[6], [12], [25], [27], [28], [30], [40], [45].

Comparative studies can be found in [2], [3], [8], [18]. It
appears that, on average, AdaBoost is the best method
although Random Subspaces and Bagging have their
application niches as well. Interestingly, for large ensemble
sizes (in the order of thousand classifiers) the significant
differences between the ensemble models almost disappear
[2]. This raises a quest for a consistently good ensemble
strategy for small ensemble sizes. Regardless of the
computational effort required for training, small ensembles
will have the advantage of fast and, in many cases, near-
optimal performance [26].

Diversity is an important property of a classifier ensemble
[23]. The success of AdaBoost has been explained, among
others, with its diversity creating ability. Margineantu and
Dietterich [26] devise the so-called “kappa-error” diagrams
to show the effect of making the classifiers diverse at the
expense of reduced individual accuracy. Plotted in these
diagrams areLðL� 1Þ=2 points, whereL is the ensemble size.
Each point corresponds to a pair of classifiers. On the x-axis is
a measure of diversity between the pair; kappa was chosen in
[26]. On the y-axis is the averaged individual error of the
classifiers in the pair. Plotting a diagram for an ensemble
designed by Bagging and another designed by AdaBoost
made the differences between the two approaches very clear.
AdaBoost was creating inaccurate classifiers by forcing them
to concentrate on difficult objects and ignore the rest of the
data. This however, led to large diversity which boosted the
ensemble performance, often beyond that of Bagging. This
leads us to the famous accuracy-diversity dilemma. It seems
that classifiers cannot be both very accurate and have very
diverse outputs.

In this study, we propose an ensemble construction
method, called Rotation Forests which aims at building
accurate and diverse classifiers. The main heuristic consists
in applying feature extraction to subsets of features and
reconstructing a full feature set for each classifier in the
ensemble. We have chosen Principal Component Analysis
(PCA) in this study for reasons explained in Section 2. The
rest of the paper is organized as follows: Section 2 explains
the Rotation Forests. Section 3 presents our experimental

study comparing Rotation Forest with Bagging, AdaBoost
and Random Forest. In Section 4, kappa-error diagrams are
plotted to illustrate the pattern of relationship between
diversity and individual accuracy for all ensemble methods
studied here. Section 5 offers our conclusions and outlines
directions of future work.

2 ROTATION FORESTS

Let x ¼ ½x1; . . . ; xn�> be a data point described by n features
and let X be the data set containing the training objects in a
form of anN � nmatrix. LetY be a vector with class labels for
the data,Y ¼ ½y1; . . . ; yN �>, where yj takes a value from the set
of class labels f!1; . . . ; !cg. Denote by D1; . . . ; DL the
classifiers in the ensemble and by F, the feature set. As with
most ensemble methods, we need to pick L in advance. All
classifiers can be trained in parallel, which is also the case
with Bagging and Random Forests. To construct the training
set for classifier Di, we carry out the following steps:

1. Split F randomly into K subsets (K is a parameter of
the algorithm). The subsets may be disjoint or
intersecting. To maximize the chance for high
diversity, we chose disjoint subsets. For simplicity,
suppose that K is a factor of n so that each feature
subset contains M ¼ n=K features.

2. Denote by Fi;j the jth subset of features for the training
set of classifier Di. For every such subset, select
randomly a nonempty subset of classes and then draw
a bootstrap sample of objects, of size 75 percent of the
data count. Run PCA using only theM features in Fi;j

and the selected subset of X. Store the coefficients of
the principal components, a

ð1Þ
i;j ; . . . ; a

ðMjÞ
i;j , each of size

M � 1. Note that it is possible that some of the
eigenvalues are zero, therefore, we may not have all
M vectors and, so,Mj �M. Running PCA on a subset
of classes instead on the whole set is done in a bid to
avoid identical coefficients if the same feature subset
is chosen for different classifiers.

3. Organize the obtained vectors with coefficients in a
sparse “rotation” matrix Ri

Ri¼

a
ð1Þ
i;1
;a
ð2Þ
i;1
;...;a

ðM1Þ
i;1

; ½0� ... ½0�
½0� a

ð1Þ
i;2
;a
ð2Þ
i;2
;...;a

ðM2Þ
i;2

; ... ½0�

..

.
..
. . .

. ..
.

½0� ½0� ... a
ð1Þ
i;K
;a
ð2Þ
i;K
;...;a

ðMK Þ
i;K

2
6664

3
7775:
ð1Þ

(The rotation matrix will have dimensionality n�
P

j

Mj.) To calculate the training set for classifier Di we
first rearrange the columns ofRi (the features) so that
they correspond to the original features. Denote the
rearranged rotation matrix Ra

i (size N � n). Then, the
training set for classifier Di is XRa

i .

Fig. 1 shows the pseudocode for the algorithm. We chose
decision trees as the base classifiers because they are sensitive
to rotation of the feature axes and still can be very accurate.

The feature extraction is based on Principal Component
Analysis (PCA) [15]. It is well documented in the
literature since the 1970s that PCA (known in pattern
recognition as Karhunen-Loéve transformation) is not
particularly suitable for feature extraction in classification
because it does not include discriminatory information in
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calculating the optimal rotation of the axes. Many
alternative linear transformations have been suggested
based on discrimination criteria [11], [14], [19], [43], [44].
Sometimes a simple random choice of the transformation
matrix leads to classification accuracy superior to that
when PCA is used. Fern and Brodley [9] advocate
random projections rather than PCA for cluster ensem-
bles. On the other hand, Skurichina and Duin [41] find
that an ensemble based on PCA performs better than
ensembles based on random feature selection. The
ensemble proposed in their study is built using the
principal components calculated on the whole data set.
The first classifier uses the first M components, the next
classifier uses the next M components, etc.

Tumer and Oza [42] also use PCA as a tool for ensemble
generation, but in their study it is applied to reduce
dimensionality. They propose an ensemble consisting of
L ¼ c classifiers, where c is the number of classes. To
produce diverse classifiers, they use different sets of
extracted features. To train classifier Di, they first single
out class !i and run PCA on this data only. (The number of
components to keep is a parameter of the algorithm.) The
obtained transformation is applied on the whole data set
and Di is trained on these new extracted features to
discriminate among all the original classes. This limits the
ensemble size L to the number of classes.

We used PCA to determine its feasibility and find out

whether it does contribute to increased accuracy and

diversity. The examples in the literature exposing PCA as

an inadequate method for feature extraction in classification

problems are related to dimensionality reduction. As only

few components are retained, there is a chance that the most

relevant discriminatory components correspond to small

variance and will be discarded. Here, we keep all the

components, so the discriminatory information will be

preserved even if it lies with the component responsible for

the least variance. Keeping all the components does not mean

that the classification will be easier in the new space of

extracted features. However, even if the rotation does not

contribute much to finding good discriminatory directions, it

is valuable here as a diversifying heuristic. Pilot experiments

with our Rotation Forest ensemble and random projections

using all n features showed that although the results were

competitive, they were not as good as the results with PCA.
The intended diversity in this model will come from

the difference in the possible feature subsets. Using only
the rotation heuristic, there are in total T ¼ n!

K!ðM!ÞK
different partitions of the feature set into K subsets of
size M, each giving raise to a classifier (recall that
n ¼ KM). If the ensemble consists of L classifiers,
assuming that each partition of the feature set is equally
probable, the probability that all classifiers will be
different is P ðdifferent classifiersÞ ¼ T !

ðT�LÞ!TL . For example,
the chance to have all different classifiers in an ensemble
of L ¼ 50 classifiers for K ¼ 3 and n ¼ 9 is less than
0.01. Therefore, there is a need for an extra randomiza-
tion of the ensemble. This can be done by applying PCA
to a bootstrap sample from X, a random subset of X or
a random selection of classes. In this study, we applied
both these heuristics. A nonempty random subset of
classes was chosen for each feature subset, and then a
bootstrap sample of objects was drawn. PCA was
applied on this new data set using only the features in

RODR�IGUEZ ET AL.: ROTATION FOREST: A NEW CLASSIFIER ENSEMBLE METHOD 1621

Fig. 1. Pseudocode of the Rotation Forest ensemble method.



the subset. Note, however, that after obtaining the
projection matrix from all feature subsets, the whole data
set was transformed and subsequently used for training
a base classifier.

3 EXPERIMENTAL VALIDATION

An experiment was set up to compare Rotation Forests with
Bagging, AdaBoost, and Random Forests. In all ensemble
methods, decision trees were used as the base classifier. The
decision tree construction method was J48 from the WEKA
library [47], a reimplementation of C4.5 [32], except for the
Random Forest method. Random Forest constructs the tree in
adifferentwaysoas to allowfor arandomchoiceof afeatureat
each node. The implementations of Bagging, AdaBoost.M1
(the version proposed in [12] for multiple classes) and
Random Forests are also from that library. As PCA is defined
for numeric features, discrete features were converted to
numeric ones for Rotation Forests. Each categorical feature
was replaced by s binary features encoded numerically as 0
and 1, where s is the number of possible categories of the
feature.3

This encoding unifies all the inputs so that PCA can be
carried out on any subsets of features. Kolenikov and Angeles
[20] advise against using dummy variables to replace ordinal
variables and subsequently apply PCA on these dummy
variables. Their main argument is that the evaluation of the
explained variance by the principal components in this case is
largely imprecise. Their study is primarily looking at data
analysis for devising scoring indices in economics. In our case,
however, the estimate of the explained variance is irrelevant,
as we keep all the principal components rather than discard
the ones with smaller contribution to the variance. On the
other hand, while the explained variance and the coefficients
for the first few principal components are very important for a
scoring index, they act merely as a rotation heuristic in our
ensemble model. Finally, in the presence of mixed contin-
uous-valued and categorical variables of nominal type (no
ordering of the categories), binary encoding is the most
natural way to unify the data for further processing. As
neither interpretation of the extracted features, nor the total
explained variance is a concern in Rotation Forest, we apply

standard PCA. Each category is encoded by one bit. Clearly,
this code contains redundancy as the sufficient number of bits
would be log2ðnumber of categoriesÞ. Also, the binary features
in the one-bit-per-category representation are dependent
because only one of them can be 1 at a time. There are no strong
arguments either way, so we adopted this encoding—it is
easy, intuitive, and is the standard one implemented in
WEKA [47]. An example of how PCA works on nominal
variables is shown in Fig. 2. PCA has been applied to the
“mushroom” data from the UCI repository [4], containing
22 nominal variables encoded as explained above into a total
of 121 binary variables. The new feature set was split
randomly into three subsets. Thus, some of the original
variables were “split” themselves, so that the bits correspond-
ing to the categories fell into different feature subsets. On each
of the three feature subsets, a PCA was run. The three
scatterplots show the data in the space of the first two
principal components. All plots reveal a cluster structure
indicating that a decision tree classifier would be a suitable
choice in each of the new spaces.

Table 1 shows the characteristics of the 33 data sets used
in this study. All of them are from the UCI repository [4].
We consider two versions of the “vowel” data, “vowel-c,”
and “vowel-n.” In “vowel-c,” the sex of the speaker and a
speaker identifier were used and in “vowel-n” they were
not. Because results with both versions have been reported
in the literature, we used both versions too.

The experimental settings were as follows: The parameters
of Bagging, AdaBoost, and Random Forests were kept at their
default values in WEKA. For Random Forest, the number of
features fo select from at each node is set at log2ðnÞ þ 1. For
Rotation Forest, we did not fix K but fixed the number of
features in each subset to beM ¼ 3. Ifndid not divide by 3, the
“remainder” subset was completed with 1 or 2 features, as
necessary, randomly selected from the rest of the feature set.

The decision tree classifier, J48, implemented in WEKA
uses an error-based pruning algorithm. The user can choose
a confidence value to be used when pruning the tree. The
default of 25 percent was found to work reasonably well, in
most cases, so we left it unchanged in our experiments. This
standard implementation was not suitable for Random
Forests, so Rotation Forest was compared with Bagging and
AdaBoost only.

The ensemble size L can be regarded as a hyper
parameter of the ensemble method. It can be tuned through
cross-validation or by using a separate validation set. L can

1622 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

Fig. 2. Scatterplot of the “mushroom” data (22 nominal features). The binary representation of the features (121 in total) was randomly split into three

subsets and PCA was applied on each subset. The scatterplots show the two classes in the space defined by the first two principal components.

3. In the current implementation, this conversion is done as a
preprocessing step, before the algorithm of Fig. 1. Hence, when the feature
set is splitted in subsets, the binary features from a categorical feature can
be assigned to different subsets. It could also be possible to do the
conversion after the splitting.



also be thought of as an indicator of the operating
complexity of the ensemble. Then, we can choose the most
accurate ensemble of a fixed complexity. As we are
interested in ensembles of a small (fixed) size, we decided
to train all ensemble methods with the same L. Hence, the
results of the experiments will apply with this restriction in
mind. If we let L be tuned, we could get a different ranking
of the ensemble methods with respect to their accuracy as
well as operational complexity.

Fig. 3 shows a percentage graph for Rotation Forest,
Random Forest, AdaBoost and bagging for ensembles of
unpruned decision trees, using one 10-fold cross-validation.
The x-axis is the ensemble size, L, and the y-axis shows the
percent of the data sets in which the respective method has
been the one with the lowest error among the four methods.
For example, we took all 33 data sets and looked at the
accuracies of the four ensemble methods for ensemble size
L ¼ 10 (the results shown in Table 3 and discussed later). For
each data set, one of the methods was declared “the winner.”
For example, for the “anneal” data set, Boosting shows the
highest accuracy of 99.54 percent, so this method is the
winner. The winnings for the methods were tallied across the
33 data sets. In this example, Rotation Forest scores 23 wins
(69.70 percent), AdaBoost 8 wins (24.24 percent), and Bagging
and Random Forest score 1 win each (3.03 percent). If we
draw a vertical line in the figure at L ¼ 10 and look at the

segment from 0 to 100 percent, the bottom 3.03 percent will
correspond to Bagging, the part from 3.03 to 27.27 will
correspond to Boosting, the part from 27.27 to 30.30 will
correspond to Random Forest, and the part from 30.30 to
100 percent will correspond to Rotation Forest. An integral-
type measure of performance of a method would be the area
corresponding to the percentage winnings for this method.
As the figure shows, Rotation Forest is the most accurate
method for all ensemble sizes, slightly better for smaller
ensembles than for larger ensembles.

As explained before, we are interested in relatively small
ensembles and so we fixed the ensemble size arbitrarily at
L ¼ 10. For each data set and ensemble method, 15 10-fold
cross validations were performed. The average accuracies
and the standard deviations are shown in Table 2. For
reference, we display the accuracy of a single J48 tree as
well. The results for which a significant difference with
Rotation Forest was found are marked with a bullet or an
open circle next to them. A bullet next to a result indicates
that Rotation Forest was significantly better than the
respective method (column) for the respective data set
(row). An open circle next to a result indicates that Rotation
Forest was significantly worse than the respective method.

For this comparison, we used a corrected estimate of the
standard deviation proposed by Nadeau and Bengio [29] as
implemented in WEKA, with a significance level of 5 percent.
This estimate was developed as an answer to the criticism that
the currently used statistical tests are unnecessarily “liberal,”
i.e., difference between a classifier’s accuracy and a reference
value might be found even though there is not any. The new
estimate is more conservative and leads to a test with a
specified size (chosen level of significance) and good power
(low error rate in accepting that there is no difference if there
is one). Instead of taking ��̂ ¼ ��ffiffiffi

T
p (T is the number of

experiments), the authors propose

��̂ ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T
þ Ntesting

Ntraining

s
; ð2Þ

where Ntraining and Ntesting are the sizes of the training and
the testing sets, respectively. Note that the comparison was
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TABLE 1
Characteristics of the 33 Data Sets Used in This Study

Fig. 3. Percentage diagram for the four studied ensemble methods with

unpruned J48 trees.



carried out using all the T ¼ 150 testing accuracies per
method and data set (15� 10-fold CV), not the 15 accuracies
of each CV. The standard deviations reported in Table 2, ��,
are calculated across the 150 testing accuracies.

It has been found that pruning is not always beneficial for
the ensemble [3], [8]. Hence, the experiments were repeated
with pruning being suspended. The results are shown in
Table 3. Here, it was fair to include Random Forests, because it
does not use pruning. The results from a statistical compar-
ison are again indicated by bullets and open circles.

Fig. 4 gives a graphical overview of the results in Table 2
(subplot a) and Table 3 (subplot b). On the y-axis is the
accuracy of the Rotation Forest ensemble while on the x-axis
is the best accuracy among the competing ensemble
methods.4 If Rotation Forest was better than the other
ensembles for each data set, all the points on the graph
would lie above the dashed diagonal line which marks the
equivalent scores. The data sets for which the differences
were particularly large are labeled in the graphs. As most of
the points in both subplots lie above the diagonal line, the
figure demonstrates the advantage of Rotation Forest.

Table 4 shows a summary of the comparisons among the
methods. The entry ai;j displays the number of times when

the method of the column ðjÞ has a better result than the

method of the row ðiÞ. The number in the parentheses

shows in how many of these differences have been

statistically significant. For example, Rotation Forest with

pruned trees has been better than AdaBoost with pruned

trees in 25 of the 33 comparisons and worse in 8. The

numbers in the parentheses show that, in nine cases, the

difference in favor of Rotation Forest has been statistically

significant; hence, the value 25(9) in row 3, column 4 of the

table. In one of the opposite eight cases, AdaBoost was

significantly better than Rotation Forest (the audiology data

set), i.e., the entry in row 4, column 3 is 8(1).5

Table 5 shows a ranking of the methods according to the

difference between the number of times each method has

been significantly better and significantly worse than

another method. Here, we use all pairwise comparisons as

summarized in Table 4. For example, the sum of the

numbers in the brackets in the column corresponding to

Rotation Forest using pruned trees in Table 4 is 84. The sum

of the numbers in the brackets in the row corresponding to
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TABLE 2
Classification Accuracy and Standard Deviation of J48 and Ensemble Methods with Pruning

4. The result for data set “primary tumor” is left out of the plots because
the accuracy with all ensemble methods is very low, the corresponding
point represents an outlier.

5. The sum “better + worse” for each pair of methods should be 33 as
there are 33 data sets (25 + 8 for Rotation Forest and AdaBoost with pruned
trees). The only exception is Rotation Forest with pruning versus Rotation
Forest without pruning. For this case, “better + worse” counts are
15þ 17 ¼ 32. This happens because the accuracies were exactly the same
for the iris data.



Rotation Forest is 2. These are used in Table 5 to calculate
the nondominance ranking of Rotation Forest (84� 2).

Tables 4 and 5 demonstrate the advantage of Rotation
Forest compared with the best benchmark classifier ensemble

methods: Bagging, AdaBoost, and Random Forest. The
dominance of Rotation Forest was established by a large
margin leaving AdaBoost, Bagging, and Random Forest in a
group with much smaller differences among them.
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TABLE 3
Classification Accuracy and Standard Deviation of J48 and Ensemble Methods without Pruning

Fig. 4. Comparison of accuracy of Rotation Forest ensemble (RF) and the best accuracy from any of a single tree, Bagging, Boosting, and Random

Forest ensembles.



To analyze the reasons for the success of Rotation
Forests, we look at the diversity-accuracy pattern of the

generated ensembles.

4 DIVERSITY-ERROR DIAGRAMS

Margineantu and Dietterich suggested a visualization means

for classifier ensembles [26]. Pairwise diversity measures
were chosen because “diversity” is intuitively clear for two

variables (two classifier outputs in this case). Dependence

between two variables can be measured as “deviation from
independence,” using a correlation coefficient or an appro-

priate statistic for nominal variables (class labels). For more

than two variables, such a measure of diversity is not easy to

define [21], [22]. The pair-wise diversity measure used in [26]
is the interrater agreement, kappa (�). Kappa evaluates the

level of agreement between two classifier outputs while

correcting for chance [10]. For c class labels,� is defined on the
c� c coincidence matrix M of the two classifiers. The

entry mk;s of M is the proportion of the data set used for

testing, which Di labels as !k and Dj labels as !s. The
agreement between Di and Dj is given by

�i;j ¼
P

k mkk �ABC

1�ABC
; ð3Þ

where
P

k mkk is the observed agreement between the

classifiers and ‘ABC’ is “agreement-by-chance”

ABC ¼
X
k

X
s

mk;s

 ! X
s

ms;k

 !
: ð4Þ

Low values of � signify high disagreement and, hence, high

diversity. If calculated for two classes,

�i;j ¼
2ðm1;1m2;2 �m1;2m2;1Þ

ðm1;1 þm1;2Þðm1;1 þm2;1Þ þ ðm1;2 þm2;2Þðm2;1 þm2;2Þ
:

ð5Þ

If the classifiers produce identical class labels, only the
main diagonal of M will contain nonzero elements and
� ¼ ð1�ABCÞ=ð1�ABCÞ ¼ 1. If the classifiers are inde-
pendent, their agreement will be the same as the agreement
by chance (ABC) and � ¼ 0. Independence is not necessa-
rily the best scenario in multiple classifier systems [24].
Even more desirable is “negative dependence,” � < 0,
whereby classifiers commit related errors so that when
one classifier is wrong, the other has more than random
chance of being correct.

An ensemble of L classifier generates LðL� 1Þ=2 pairs of
classifiers Di, Dj. On the x-axis of a kappa-error diagram is
the � for the pair and on the y-axis is the averaged
individual error of Di and Dj, Ei;j ¼ EiþEj

2 . As small values
of � indicate better diversity and small values of Ei;j

indicate better accuracy, the most desirable pairs of
classifiers will lie in the bottom left corner.

Fig. 5 shows the kappa-error diagrams for five data sets.
All ensembles consisted of 100 classifiers (decision trees),
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TABLE 4
Summary of Results

The entry ai;j shows the number of times method of the column ðjÞ has a better result than the method of the row ðiÞ. The number in the parentheses
shows in how many of these differences have been statistically significant.

TABLE 5
Ranking of the Methods Using the Significant Differences

from All Pairwise Comparisons



therefore there are 4,950 dots in each plot. We chose these sets
because they had a predefined partition of the objects into
training and testing subsets. The ensembles were trained on
the training sets and the kappa-error diagrams were
calculated on the testing sets. All ensembles consisted of
unpruned trees; the diagrams for pruned ensembles were
similar. The scales for � and Ei;j are the same for each given
data set but may vary from one data set to another. It was
important to show the relative position of the clouds of points
for each data set.

Fig. 6 plots the centroids of the clouds of kappa-error
points in the same plot for each data set. This enables a visual
evaluation of the relative positions of the clouds for the
respective ensemble methods. The axes of the plots are
rescaled so that the relative positions of the centroids are
clearly visible. Note that with some data sets the clouds are
heavily overlapping and the distances between the centroids
are small. Since the rescaling magnifies the distances, Figs. 5
and 6 cannot be easily compared.

Shown above each plot in Fig. 5 is the ensemble error on
the testing set. To help read the graphs, take row 1 as an
example. AdaBoost spans the largest diversity range but
many classifier pairs have large errors. The other three
ensemble methods have similar accuracies, with Random
Forest being less accurate than both Bagging and Rotation
Forest (elevated on the y-axis). Random Forest has better
diversity than Bagging. Rotation Forest has accuracy
approximately equal to that of Bagging, but better diversity
(position of the x-axis; the cloud of points for Rotation
Forest is situated to the left of the cloud for bagging). Thus,
Rotation Forest takes “the best of both worlds.” However,
the improvement on the diversity-accuracy pattern was not
sufficient to fetch statistically significant difference in the
ensemble performances in the general experiment. (Note
that the picture is based on one ensemble only.)

On the other hand, statistically significant difference was
observed with the Pendigits data set shown as row 2 in Fig. 5
and in second subplot in Fig. 6. The Rotation Forest ensemble
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Fig. 5. �-Error Diagrams. x-axis = �, y-axis = Ei;j (average error of the pair of classifiers). Axes scales are constant for each row. The ensemble error

on the testing set is displayed above the plot.



is less diverse than AdaBoost and Random Forest but rather
more accurate. It is slightly more accurate and slightly more
diverse than Bagging (seen in Fig. 6). It seems that accuracy
pays off with this data set as the differences in ensemble
performances are found to be statistically significant in favor
of Rotation Forest.6

Fig. 7 shows the kappa-error diagrams for the four
ensemble methods on the same plot for the vowel-n data
set. This is one of the unusual disposition of the clouds of
points because Rotation Forest is substantially more diverse
than Bagging. The plot indicates that Rotation Forest has the
potential to improve on diversity significantly without
compromising the individual accuracy. The testing results
shown in Fig. 5 reveal that Rotation Forest outperforms the
other methods by a large margin.

A more typical example is shown in Fig. 8. The graph
shows that Rotation Forest is not as diverse as the other
ensembles but clearly has the most accurate classifiers in it.
This comes to show that individual accuracy is probably the
more crucial component of the tandem diversity-accuracy,
contrary to the diversifying strategies which underpin

AdaBoost and Random Forests, and which have proven to
be extremely successful. It seems that there is a scope for
ensemble methods “on the other side of Bagging,” i.e.,
ensembles based on reasonably diverse but markedly
accurate members.

In general, Rotation Forest is similar to Bagging. Like
Bagging, Rotation Forest is more accurate and less diverse
than both AdaBoost and Random Forest. So, it seems that
Rotation Forest has a place in the ensemble landscape next
to Bagging, slightly improving on both its diversity and
accuracy. The results in the previous section show that this
seemingly minimal improvement on the diversity-accuracy
pattern materializes in significantly better ensembles. This
result has, among others, the implication that efforts
towards even small improvements on diversity-accuracy
pattern may bring unexpected benefits.

Below, we list a few caveats and our comments on these.

. Rotation Forest has an extra parameter which
controls the sizes of the feature subsets or equiva-
lently the number of feature subsets. We fixed the
size of feature subsets to M ¼ 3 here. We did not
tune the hyperparameters of any of the ensemble
methods in the experiment, including Rotation
Forest. We acknowledge that a thorough experi-
mental comparison of a set of methods needs tuning
each of the methods to its best for every data set. Our
reason for using the standard implementations in
WEKA is three-fold. First, our intention was to gain
initial feel of the merit of the proposed method. If it
failed against the standard implementations of other
ensemble methods, then no further investigations
would be worthwhile. Second, standard implemen-
tations are meant to be general enough to work
reasonably well across a variety of problems. The
lack of fine-tuning of the methods is compensated by
the diversity of the chosen data sets. The data sets
were chosen randomly, not intentionally favoring
one method or another. Third, we would like our
experiment to be easily reproducible by others.

. The data sets used in the experiments were all taken
from the UCI Machine Learning Repository. They
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Fig. 7. Kappa-error diagrams for the vowel-n data set.

Fig. 8. Kappa-error diagrams for the waveform data set.

6. Note that “accuracy” in this context means the accuracy of the
individual classifiers in the ensemble.

Fig. 6. Centroids of the kappa-error clouds for the five data.



represent a variety of problems but do not include
very large-scale data sets with the number of
features or objects in a scale of millions. Examples
of such data sets are DNA microarray data, searches
of the Web and image databases, time series data,
data from financial transactions, etc. Modifications
of the standard classification methods and algo-
rithms are needed in order to account for the
specifics of such large data sets. This applies to
ensemble methods as well including the rotation
forest method. Thus, the results reported here are
valid for data sets of small to moderate sizes.

. Random Forest offers as a by-product a way to order
the features by their importance. Rotation Forest
does not share this capability.

. Here, we used the same ensemble size L for all
methods. It is known that bagging fares better for large
L. On the other hand, AdaBoost would benefit from
tuning L. Our results apply to ensembles of fixed L
(L ¼ 10 for the statistical comparisons), which, ad-
mittedly, is quite small by the ensemble standards. For
larger L, we expect the differences to fade away, as
indicated by Fig. 3. It is not clear what the outcome
would be if L was treated as hyperparameter and
tuned for all ensemble methods compared here.

5 CONCLUSIONS AND FUTURE WORK

A novel method for generating ensembles of classifiers has
been proposed. It consists in splitting the feature set into
K subsets, running principal component analysis (PCA)
separately on each subset and then reassembling a new
extracted feature set while keeping all the components. The
data is transformed linearly into the new features. A decision
tree classifier is trained with this data set. Different splits of
the feature set will lead to different rotations. Thus diverse
classifiers are obtained. On the other hand, the information
about the scatter of the data is completely preserved in the
new space of extracted features. In this way, accurate
individual classifiers are built. Thus, we target diversity
and accuracy together.

Since PCA is a simple rotation of the coordinate axes and
the base classifier model is a decision tree we call the
proposed ensemble method Rotation Forest. Decision trees
were used here because this classifier model is sensitive to
rotation of the axes, yet sufficiently accurate.

Rotation Forest was compared with the standard imple-
mentations of Bagging, AdaBoost, and Random Forest
available in WEKA. The experimental results with 33 data
sets from UCI Machine Learning Repository showed that
Rotation Forest outperformed all three methods by a large
margin. We looked for an explanation of this improvement by
using kappa-error diagrams. It transpired that Rotation
Forest has similar diversity-accuracy pattern to Bagging,
but is slightly more accurate and slightly more diverse than it.
This seemingly marginal improvement fetched statistically
significant differences in favor of Rotation Forest. Future
studies and developments of Rotation Forest include, but are
not limited to:

1. Evaluation of the sensitivity of the algorithm to the
choice of M (or alternatively the number of feature
subsets K) and to the choice of the ensemble size, L.

2. Application of Rotation Forest together with other
ensemble approaches.

3. Trying a different base classifier model, e.g., Naı̈ve
Bayes and neural networks, to see whether the
“forest” component is a necessity for the ensemble
success.

4. Examining the effect of randomly pruning classes and
taking a bootstrap sample for each feature subset,
prior to applying PCA. Removing these two heuristics
might lead to more similar PCA projections being
obtained. It is interesting to find out whether or not
this will have an adverse effect on the performance of
Rotation Forest.

5. A different feature extraction algorithm can be used
in the place of the PCA.

While we view the proposed ensemble model as a general

framework, variants thereof will have to be tailored to

address the application specifics.
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