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ABSTRACT
This paper describes the methods used for our submission
to the KDD 2007 Challenge on Time Series Classification.
For each dataset we selected from a pool of methods (indi-
vidual classifiers or classifier ensembles) using cross valida-
tion (CV). Three types of classifiers were considered: near-
est neighbour (using DTW), support vector machines (lin-
ear and perceptron kernel) and decision forests (boosting,
random forest, rotation forest and random oracles). SVM
and decision forests used extracted features of two types:
similarity-based and interval-based. Two feature selection
approaches were applied: FCBF or SVM-RFE. Where the
minimum CV errors of several classifiers tied, the labels were
assigned through majority vote. We report results with both
the practice and the contest data.

1. INTRODUCTION
The following two quotes from the challenge description [14]
underpin our submission:

• “We do not expect a single algorithm will win on all
datasets (but it is possible). We actually expect that
the winning entry might come last on some datasets”.

• “If you have two different algorithms, and you think
either could win, you can just create a single meta-
algorithm which tries both algorithms, and uses the
predictions of the better algorithm on each problem”.

Previous works have considered classifier ensemble approaches
for time series classification [7, 9, 3]. In this submission we
try for the first time a combination of our earlier time series
classification methods [24, 25] with two recently proposed
ensemble methods: Rotation Forest [27] and Random Ora-
cles [16].

First, we tried a broad range of individual and ensemble
classification methods, as detailed in section 2, using the

practice data sets [15]. Feature construction and selection
was carried out as explained in section 3. A subset of 36
methods was selected according to their performance on the
practice data. The criteria for selecting the methods, as well
as the other experimental details are provided in section 4.
The most accurate methods for each contest dataset were se-
lected by a 10-fold cross validation (CV) from the collection
of 36 methods, within the competition time slot of 24 hours.
The results are presented in section 5. Section 6 concludes
the paper.

2. CLASSIFICATION METHODS
We considered two main approaches: (I) A nearest neigh-
bour classifier with DTW as the dissimilarity function and
(II) Construction and selection of features followed by a con-
ventional classifier.

2.1 Dynamic Time Warping
DTW has been the technique of choice for a variety of time
series data mining tasks [13, 21]. DTW had also achieved
the smallest error rate on several of the practice data sets, as
reported in [15], and so was placed among the most promis-
ing candidates in our experiments.

Two standard approaches to constrain the warp in DTW are
the Ikatura parallelogram and the Saoke-Chiba band [21].
Both were considered in our study. Although it is possible
to tune the band width for each data set, we chose a fixed
band width of 5% of the series length.

In some data sets, the series of the same class are best char-
acterised by their shapes rather than by their values. For
instance, the existence of a local maximum at a given point
may be more important than the value of its peak. Nor-
malisation does not solve the problem because the values of
the maxima can be very different even for normalised series.
We address this question by using DTW with transformed
series. A sliding window is run along the series, and the
covariances between the series values in the window and the
temporal axis are stored. The transformation consists in
replacing the original series by these covariances. This ap-
proach is similar to Derivative DTW [12].

DTW has a quadratic time complexity, in the length of the
series. For the data sets in [15] it is possible to run DTW in
a sensible time. If the series were longer, however, it would
not be possible to run the method in the required time. We
tackle this problem by compressing the series. From each se-



ries, we generate 3 new, shorter series. The values of these
series are obtained from the average, minimum and maxi-
mum of the values in an interval of the original series. The
calculation of the distance between two series is as follows:
first, for each series we generate the three shorter series.
DTW is calculated 3 times, once for each type of series. The
distance between series is the sum of these three distances.

2.2 Conventional Classifiers
A classification method is named “conventional” if it is not
designed specifically for time series.

2.2.1 Support Vector Machines
Support Vector Machines [30] are among the most popu-
lar classification methods due to their accuracy and the-
oretical elegance. They have been applied to time series
data, with kernels designed specifically for this task [28, 1,
29, 31]. Some SVM variants are based on DTW. We used
the implementation in Weka [34]. It is based on the SMO
algorithm [20, 10]. Two kernels were considered: the lin-
ear kernel K(x, y) = 〈x, y〉 and the perceptron kernel [18]
K(x, y) = ||x − y||2. The latter is less known than the
Gaussian kernel but has the advantage of not requiring any
parameters.

2.2.2 Classical ensemble methods
AdaBoost [6] is a well known ensemble design method which
enjoys substantial theoretical and empirical support across
many applications. The ensemble is built in steps where a
single classifier (base classifier) is trained at each step. Let
D = {(xi, yi)}

N
i=1 be the labelled dataset available for train-

ing the whole ensemble. A set of weights W (i), i = 1, . . . , N ,
is maintained on the data set and used as a probability dis-
tribution for selecting the consecutive training sets. Starting
from an initial uniform distribution (W (i) = 1

N
), a boot-

strap sample S1 is taken from D using the distribution W . A
classifier is trained on S1, and the weights of the mislabelled
objects from D are increased, thereby increasing the proba-
bility that these objects will be selected in the next samples.
The process of taking a sample, training a classifier and up-
dating the weights is repeated for L steps, leading into and
ensemble of L classifiers C1, . . . , CL. The prediction of the
class label for a new instance, x, is done by weighted voting
between ensemble members, where the classifiers that were
found to be more accurate during the training stage par-
ticipate with higher weights. AdaBoost has been found to
reduce both the bias and the variance of the base classifier
model which explains its almost universal success. However,
other ensemble methods were found to be superior to Ad-
aBoost when the data is noisy or contains outliers. Dozens
of variants of AdaBoost have been proposed, one of them
being MultiBoost [32]. In this method, after a chosen num-
ber of iterations the object weights are assigned randomly
according to a Poisson distribution.

While the classifiers in AdaBoost need to be trained sequen-
tially, other ensemble methods such as Random Subspaces
and Random Forests, allow for independent training. To en-
sure that the classifiers in the ensemble are diverse, the Ran-
dom Subspace method builds the ensemble members on ran-
domly chosen subsets of features. Bootstrap samples may be
taken instead of using always the whole D. Random Forest

is an ensemble of decision tree classifiers [2]. Bootstrap sam-
ples are taken independently and a tree is trained on each
such sample. The tree induction differs slightly from the
standard one: at each node, M features are taken randomly,
and the best one among these features is elected to split the
node. Compared to using all features to split each node, the
random choice is shown to induce diversity in the ensem-
ble without corrupting the individual accuracy. Owing to
the massive number of experimental studies with classifier
ensembles, the methods summarised here have acquired con-
vincing records of stable and accurate behaviour, while no
method is clearly dominated by another. This makes them
all potential candidates for the classification task at hand.

2.2.3 Rotation Forests
Rotation Forest is a recently proposed classifier ensemble
method [27, 17] with promising empirical results. With-
out loss of generality assume that the data lives in an n-
dimensional feature space. The n features for building the
ith tree in the ensemble are extracted from the data us-
ing principal component analysis (PCA). We first split the
feature set into subsets of a specified size, M (to simplify
explanation, assume that M is a factor of n). Then we
take a random sample of classes, and a bootstrap sample
from the instances labelled in these classes from D. PCA is
then applied on this set and all M components are retained
(assuming that all M eigenvalues are non-zero). For each
subset of features, M principal components are derived, us-
ing only these features. The n

M
groups, each of M extracted

PCA features, are pooled to form the new feature set for
classifier Ci.

We show the following example in order to clarify the fea-
ture extraction process. Let F = {f1, . . . , f9} be the feature
set. Split F randomly into 3 groups of M = 3 features,
e.g. (1,7,9), (2,3,5) and (4,6,8). Suppose that there are 6
classes in the problem. Take a random subset of classes, e.g.,
{ω3, ω6}. Sample from D using only the instances from these
classes and only features (f1, f7, f9). Run PCA on the sam-
ple and store the three principal components. Denote these
principal components p1, p7, p9, even though each compo-
nent is a linear combination of the three features. Choose
randomly another subset of classes and sample from D us-
ing only features (f2, f3, f5). Run PCA and store p2, p3, p5.
Finally, derive in the same manner p4, p6, p8. Pool all com-
ponents pj , j = 1, . . . , 9. The data set for training classifier
Ci is obtained by “rotating” D. Consider the following set
of principal components (arbitrary numbers)

p1 = [2,−1, 4]T p7 = [0, 3, 1]T p9 = [−6,−9, 0]T (f1, f7, f9)

p2 = [−1, 4, 3]T p3 = [1, 5,−7]T p5 = [4, 0, 1]T (f2, f3, f5)

p4 = [5, 5, 1]T p6 = [−2, 3,−1]T p8 = [−1, 2, 2]T (f4, f6, f8)

Let x1 = [6, 3, 1,−1, 2, 2, 0,−5, 1]T . The corresponding “ro-
tated” instance, xr

1 will have values

xr
1,1 = x

T
1

· [2, 0, 0, 0, 0, 0,−1, 0, 4]T = 12 + 0 + 4 = 16

xr
1,2 = x

T
1

· [0, 0, 0, 0, 0, 0, 3, 0, 1]T = 0 + 0 + 1 = 1

xr
1,3 = x

T
1

· [−6, 0, 0, 0, 0, 0,−9, 0, 0]T = −36 + 0 + 0 = 36

xr
1,4 = x

T
1

· [0,−1, 4, 0, 3, 0, 0, 0, 0]T = −3 + 4 + 6 = 7
. . .

xr
1,9 = x

T
1

· [0, 0, 0,−1, 0, 2, 0, 2, 0]T = 1 + 4 − 10 = −5

After all instances in the original training set D have been
rotated, the whole rotated set is used to train a standard
decision tree as the ith member of the ensemble.



2.2.4 Random Oracles
Using a random oracle leads to a meta-ensemble strategy
which combines classifier fusion and classifier selection into
one simple scheme. The main idea is to let each ensemble
member to run its own “mini-ensemble” by selecting from
a set of subclassifiers. For a given input x, each ensemble
member nominates its representative and that representa-
tive becomes a member of the overall ensemble for x. In the
simplest case, two subclassifiers, Ai and Bi are trained for
each ensemble member Ci. Each subclassifier is responsible
for a part of the feature space where x falls. We have previ-
ously proposed random linear split of the feature space, so
that each of Ai and Bi is trained on half space, using the
data points from D falling on one side of the randomly cho-
sen hyperplane [16]. A hyperplane is chosen randomly for
each for Ci and then fixed as the oracle for that ensemble
member. The training sets for the subclassifiers may be of
very different sizes, and with different representations of the
classes in the problem. This comes to no harm to the over-
all model, as it increases the diversity in the ensemble. At
the same time, the accuracy is maintained by the fact that
the bespoke classifier from the couple (Ai, Bi) is chosen for
each x. Random oracle can come in any shape. A spherical
oracle is proposed in [26], where Ai is built from the data
points from D falling inside a sphere centred at a randomly
chosen instance and with a randomly chosen radius, and Bi

is built using all examples outside the sphere.

Random oracles can be applied “on top” of another ensem-
ble method. For example, in bagging, the data for building
Ai and Bi can be the bootstrap sample taken from D for
training ensemble member Ci. In other words, the ensemble
heuristic is applied first, and then the data set designated
to train Ci is split through the chosen random oracle. In
fact, the oracle doesn’t have to have only two outcomes; we
can have subclassifiers A1, A2, ... AM . Previous experi-
ments showed that applying the oracle as a meta-ensemble
heuristic always improved on the accuracy of the respective
ensemble methods [16].

3. FEATURE CONSTRUCTION AND SELEC-
TION

3.1 Feature Construction
The following types of features were used

R : raw

A : average

D : deviation

C : covariance

M : minimum, maximum

P : amplitude

F : frequency

T : dtw

Tc : dtwc

3.1.1 Interval Features
Interval features [24, 25] are functions of the values, sk of a
series, s, in an interval from i to j:

• The average of the values of the interval.

average(s, i, j) =

∑j

k=i
sk

l

where l = j − i + 1 is the length of the interval.

• The standard deviation.

deviation(s, i, j) =

√

∑j

k=i
s2

k

l
− (average(s, i, j))2

• The covariance with the temporal axis.

covariance(s, i, j) =

∑j

k=i
skk

l
− average(s, i, j)

(

i + j

2

)

• The minimum and maximum.

minimum(s, i, j) = min(si, . . . , sj)

maximum(s, i, j) = max(si, . . . , sj)

• The amplitude.

amplitude(s, i, j) = maximum(s, i, j) − minimum(s, i, j)

• The frequency of values in a given region r.

frequency(s, i, j, r) = #{sk|i ≤ k ≤ j ∧ sk ∈ r}

Interval Length. The number of intervals for a series of
length n is O(n2). Using all possible intervals is unaccept-
able except for short series. Hence, some restrictions are
necessary. We only consider intervals whose length is an ex-
act power of 2, i.e., j − i + 1 = l = 2k, with k a natural
number. The only exception is that we always consider the
complete series, i.e., the interval (1, n). With this restriction
the number of intervals is reduced to O(n log n).

Suppose that it is necessary to reduce further the number
of intervals by a factor of f . An interval (i, j) will only be
considered if its length is greater than or equal to f , and
(i mod f) = 1.

Feature Evaluation. For all intervals and feature types it
is necessary to evaluate the function on an interval. The
näıve approach is to do this individually for each interval.
Timing can be improved by an iterative calculation. The
feature value for interval (i, i + l − 1) is calculated after the
values for intervals (i, i+ l/2−1) and (i+ l/2, i+ l−1) have
been calculated. For the majority of feature types (e.g.,
average, minimum) it is possible to obtain the value of the
bigger interval from the values of the smaller intervals. For
the rest of the features, it is only necessary to store interme-
diate values for each interval that will enable the iterative
calculation. In this way, the computation time necessary for
constructing the interval features from a series is propor-
tional to their total number, O(n log n).

Regions. Feature frequency needs a region to be specified.
A region is an interval on the values of s. A discretisation
method could be used to obtain a set of regions. In this
work, the series were discretised independently of one an-
other. The discretisation method was based on selecting
intervals with the same number of values. This approach is
similar to the one used in SAX [11], the difference being that



SAX selects the thresholds assuming that the data follows
a Gaussian distribution.

Given a set of thresholds, t0, . . . , tM , usually the regions are
defined by two consecutive thresholds, e.g.,

rk : s ∈ [tk−1, tk), k = 1, . . . , M.

Instead, we follow the method of [5] where

rk : s ≤ tk.

3.1.2 Dissimilarity-based Features
The idea is to use dissimilarity values between pairs of ex-
amples as the new features [19, 22, 23, 36, 35]. In our case,
the dissimilarity value will be DTW (dtw). Given a series s
and a set of series t1, t2, . . . , tK , the new features describing
s will be

dtw(s, t1), dtw(s, t2), . . . , dtw(s, tK).

We will use DTW with the series obtained using a sliding
window and the covariance (dtwc). When using DTW as
features, only the Ikatura parallelogram will be considered,
although it would be possible to use the Saoke-Chiba band.

3.2 Feature Selection
The number of similarity features depends on the number
of training examples while number of interval features de-
pends on the length of the series. Some classification meth-
ods (e.g., SVM and Random Forest) can work directly with
high-dimensional data sets such as time series. For other
methods, however, the computational cost using all interval
features will be prohibitive. Hence, it is necessary to put in
place a procedure for selecting subsets of the features.

Two feature selection methods are considered. The first
method is FCBF (Fast Correlation-Based Filter) [37]. The
number of selected features is determined automatically with-
in the method. One problem detected with this method is
that for some data sets, it finishes with an inadequately
small number of features. For instance, for the CBF data
set from [15] FCBF selected only one among all the interval
features.

The second feature selection method is SVM-RFE (Recur-
sive Feature Elimination using SVM) [8]. An SVM (with
linear kernel) is built and a pre-selected number of features
with the smallest coefficients in the classifier are discarded.
This process is repeated until a desired number of features
is reached. This method is slower than FCBF but does not
share its drawback of drastically overcutting the feature set
in some cases. Our preliminary experiments did not pick a
clear winner between the two feature selection methods, so
we decided to use both.

4. EXPERIMENTAL SETTINGS
4.1 Accuracy estimation protocol
Ten-fold stratified cross validation was used. Due to effi-
ciency reasons, feature selection was not done for each fold,
but only once using all the available data. This can bias
optimistically the error estimations obtained with the CV.
We hope that the bias will be insignificant, and the CV re-
sults will be an accurate gauge of the quality of the method

for the respective dataset. Anyway, even though we take a
risk with this assumption, the experimental protocol is still
fair because the results will be finally evaluated on unseen
testing data.

4.2 Feature extraction/selection details
The number of thresholds (and therefore regions) for feature
frequency was 6. This means that for each considered (time)
interval, there are 6 features (one for each region). To cope
with the feature explosion, the number of intervals was re-
duced by requiring that the length of the interval has to be
an exact power of 2. A further reduction by factor of f = 4
was applied. This amounts to taking intervals with length
4, 16, 32, etc., starting at times 1, 5, 9, 13. . . .

For all the interval features, the number of intervals depends
on the length of the series. For time series longer than the
practice data sets we found it necessary to reduce the num-
ber of intervals even further. A reduction factor f = 16 was
used for contest data sets 01, 05, 12 and 18.

Interval features were grouped in three groups: ADC (av-
erage, deviation and covariance), MP (minimum, maximum
and amplitude), and F (frequency). This means that the
classifiers and the feature selection methods were used with
one of these groups. The raw data is included in group ADC,
because average(s, i, i) = si. If a reduction factor was used,
the raw data is not seen by the classifier.

For the DTW method using the covariance values, the size
of the sliding window could be optimized for each data set.
As a rule of thumb, this value was set to 4 for all the data
sets.

For contest data sets 01, 05, 12 and 18, dynamic time warp-
ing was used with reduced series, as described in section 2.1.
The length of each of the three reduced series was 10% of
the original series length.

For the feature selection methods, FCBF determines the
number of features automatically. For SVM-RFE, the num-
ber of selected features was fixed at 100. In each iteration,
at most, 20% of the features were discarded. This means
that the SVM classifier was run up to 5 times.

Feature selection was done independently for each group of
features. Further to that, we formed new data sets by joining
selected subsets of features. In the display of the results we
use a slash (/) to indicate the joined groups of features. For
instance, ADC/MP means that feature selection was done
for ADC (average, deviation and covariance) and for MP

(minimum, maximum and amplitude) and then the selected
features from the two groups were concatenated to create a
new data set.

The number of trees in the decision forest ensembles was
100.

4.3 Selection of Classification Methods
A method is described completely by

2 a set of feature types,
2 an optional feature selection method, and



2 a classification method.

Classification methods themselves have different options and
parameters. If the classification method is an ensemble, it
can be used with different base classifiers. The combinato-
rial explosion of choices requires a pre-selection of classifiers
that can be trained, tested and applied to the unlabelled
data within the 24 hours time allocated for the competition.
To form such a collection of good classification methods we
used the testing [15] results for the practice data sets. The
following criteria were deemed relevant.

• Select the 5 best methods according to their average
ranks [4].

• Select the 5 best methods according to the evaluation
metric used in the challenge. This criterion is sim-
ilar to the previous one. The difference is that, for
each data set, only the top 10 methods receive points.
Therefore methods that were uniformly good but were
outranked by bespoke methods for the various data
sets will score low on this metric.

• Each data set in the practice suite was allowed to
“vote” for one or more methods with minimum error
on that dataset. All methods that score any vote were
added to the collection.

• For each group of interval feature types, select SVM
with linear kernel. These classifiers will be available
as a by-product after applying SVM-RFE feature se-
lection [8].

• For each group of features and for each feature selec-
tion method, select the Random Forest method. The
motivation is that Random Forests was found to offer
a good compromise between speed and accuracy.

The collection of 36 classifiers, formed as the union of the
methods chosen through these criteria, appear in tables 2
and 4. The methods are ordered differently, according to
their success in the practice and in the contest data, respec-
tively. The notation used is

{feature types}-{selection method}-{classifier}.

In some cases all the features are used; then no selection
method is shown.

DTWc is DTW using the series obtained from the covari-
ance. DTWb is DTW using a 5%band. By default, the
parallelogram is used.

In decision forests, “Linear” and “Sphere” after the classi-
fier name indicate that the corresponding random oracle was
used. The selection process picked Boosting with pruned
trees and Random Subspaces and Rotation Forest with un-
pruned trees.

4.4 Selection of the best method for a dataset
The collection of classifiers was applied to the contest data
sets, with the aim to select one most accurate classifier for
each data set. The following protocol was adopted: A 10-
fold cross-validation was run on the labelled data for each of

the 36 selected methods. The method with the minimum er-
ror was used to classify the unlabelled data. If several meth-
ods had the same minimum CV error, majority vote between
them was used. If there was a tie in the majority vote, the
classifier (or tier of classifiers) with the next smallest error
was consulted. In case the tie was still not resolved, a ran-
dom class label was picked from the tied classes. Ties in the
accuracy were not be unlikely because some of the contest
data sets had small number of labelled instances, and the
classification accuracy was practically a discrete variable.

5. RESULTS
5.1 On the Practice Data Sets
This section describes the results obtained with the data sets
provided in the UCR Time Series Classification/Clustering
Page [15]. For all these data sets, training and testing sets
were specified so that classification accuracies can be di-
rectly compared against accuracies of strawmen classifiers,
kindly supplied by the contest organisers. We trained the
36 classifiers on the training data and tested them on the
testing data. Table 1 shows some statistics for the error
percentages on the testing data. For example, the best clas-
sifier for dataset “adiac” was Tc-SVMRFE-RotationForest,
giving an error of 16.88%, while the worst classifier was F-
FCBF-RandomForest with 85.93%. To test the classifier
selection protocol devised for the contest data, we give the
following results in the last column of the table, labelled
“CV”. The number is the error obtained following our pro-
tocol: pick the classifier with the smallest CV error and
label the testing set with it. Note that the classifier asso-
ciated with the minimum testing error, e.g., classifier Tc-
SVMRFE-RotationForest for dataset “adiac”, is not neces-
sarily the classifier selected by the protocol. Althought it
is unlikely that the CV selection will match the minimum
achievable error (from all 36 classifiers), the expectation is
that the error in column CV will be smaller than the mean
or the median. While this is the case in general, we can point
at a couple of anomalies in the table: data sets lighting-7
and yoga, where the error of the method selected with CV
is greater than the average and median errors.

Table 2 shows the average ranks of the methods [4]. For
each data set, the methods are sorted according to their
performance. The best method has rank 1, the second best
has rank 2, and so on. If several methods have the same
performance, they receive an average rank. For instance,
if 4 methods had the minimum error, they would receive a
rank of 2.5 each. The ranks shown in Table 2 are averaged
across all data sets.

Together with the 36 methods in the collection, this table
also contains the results from our experimental protocol. A
perfect selection would have an average rank of 1. Our strat-
egy reached only 7.60. Nevertheless, there is an important
gap between that and the second best method in the table.

From these average ranks we can conclude that combining
several types of features is generally a good idea and that
best results are obtained by Rotation Forest methods fol-
lowed by SVM using the perceptron kernel. It has to be
noted that this table ranks the methods with respect to all
data sets put together. The rankings for an individual data
set can be very different.



Table 1: Error percentages for the practice data sets.

dataset minimum maximum average median CV
50words 19.12 39.56 26.21 25.16 19.12
adiac 16.88 85.93 31.20 23.79 17.65
beef 3.33 60.00 29.44 25.00 13.33
cbf 0.00 41.22 6.35 3.06 1.22
coffee 0.00 35.71 9.82 7.14 0.00
ecg-200 0.00 29.00 10.28 9.50 0.00
face-all 6.39 29.11 20.82 22.63 13.49
face-four 0.00 31.82 11.08 9.09 2.27
fish 2.86 24.00 11.70 10.86 4.57
gun-point 0.00 18.00 5.72 6.00 0.00
lighting-2 9.84 45.90 27.14 26.23 22.95
lighting-7 19.18 47.95 27.82 26.03 34.25
olive-oil 10.00 50.00 17.78 13.33 13.33
osu-leaf 10.74 58.26 33.47 33.06 10.74
swedish-leaf 4.48 23.52 9.54 7.60 4.48
synthetic-control 0.00 53.67 5.88 2.17 0.33
trace 0.00 44.00 4.44 0.00 0.00
two-patterns 0.00 58.53 5.38 0.30 0.02
wafer 0.02 3.91 1.00 0.53 0.13
yoga 4.23 24.97 13.77 13.83 16.03

5.2 On the Contest Data Sets
Table 3 shows some statistics for the cross validation esti-
mates of the error rates across the 36 classification methods.
There are at least two reasons why these estimates may not
be completely accurate. First, as stated previously, feature
selection was only done once for each data set; it was not
done for each run of cross validation. Second, for several
data sets, the labelled sets were very small.

Table 4 shows the average ranks of the methods. For five
contest data sets (03, 06, 10, 17 and 18), the predictions
were based solely on either (or both) top methods. These
two methods also tied for other data sets, and in those cases
majority vote was used. In summary, many of the predic-
tions for the contest data relied heavily on the top two meth-
ods. One cause for concern is whether the good results for
the top two methods are genuine or an artifact coming from
our experimental protocol. The two caveats we note here
are as follows. (i) Both the selection of features and the
classification method are based on SVM. (ii) Feature selec-
tion is only done once for each data set. However, we do not
expect this to be a major problem because:

• SVM behaves differently with linear kernels (used for
feature selection) and perceptron kernels (used for clas-
sification).

• In the classification, we use a concatenation of features
of different types. Thus one single run of SVM-RFE
selection is not fully responsible for the entire set of
features that is subsequently processed by the SVM
classifier.

In retrospect, using the practice data, for each of the 36
methods, we should have analysed the differences between
the CV estimates of the error and the true testing error.
Methods for which the discrepancy was found to be large

should have been approached more carefully, or perhaps left
aside for the particularly small datasets.

Table 5 shows the methods that had minimum CV error for
each one of the 20 contest data set. These methods were
used for the submission. A summary is given below, where
# stands for “Number of data sets”

#: Classifier method(s)
2: Nearest nighbour (NN)
3: Decision forests
5: SVM
6: MAJORITY VOTE: Decision forests and SVM
4: MAJORITY VOTE: Decision forests, SVM and NN

6. CONCLUSION (THE AFTERMATH)
In the contest suite, the imbalance between the sizes of la-
belled and unlabelled data in favour of the unlabelled data
was unexpected. Practice sets did not suggest that we may
be faced with very small training samples, so we did not
look into alternative classification strategies suitable for this
scenario. Had we known that large unlabelled data would
be made available, we would have explored transductive or
semi-supervised learning [33].

Table 3 also includes the final results and scores, courtesy
of the Contest organisers. The scores in the last column
are based on the ranking of the test error (among 12 sub-
missions). For each data set, the best method received 10
points, the second best 9 points, and so on.

The protocol we followed requires that we take the classifier
with the minimum estimated CV error for the respective
data set. Therefore, the predicted error according to our
strategy is the one given in column “minimum” in the CV
section of Table 3. Comparing this error with the true
test error shown in the penultimate column, we were quite
surprised by the large discrepancy as well as the lack of



Table 3: Characteristics and error percentages for the contest data sets.

—characteristics— —cross validation error— test
dataset classes train test lenth minimum maximum average median error score

01 8 55 2345 1024 1.82 20.00 7.07 5.45 23.98 10
02 2 67 1029 24 1.49 10.45 4.35 4.48 12.10 3
03 2 367 1620 512 8.72 55.59 41.45 45.50 66.00 6
04 2 178 1085 512 0.00 43.82 6.74 1.40 5.98 8
05 4 40 1380 1639 0.00 55.00 17.99 10.00 3.37 9
06 5 155 308 1092 22.58 64.52 45.02 41.94 14.35 9
07 6 25 995 398 0.00 52.00 9.00 4.00 14.62 6
08 10 381 760 99 18.37 46.19 26.76 26.64 6.86 4
09 2 20 601 70 0.00 30.00 14.03 15.00 1.95 10
10 2 27 953 65 3.70 29.63 13.37 14.81 2.37 8
11 2 23 1139 82 0.00 26.09 6.76 4.35 17.31 5
12 3 1000 8236 1024 1.70 17.20 6.15 4.70 19.47 9
13 4 16 306 345 6.25 18.75 9.20 6.25 20.66 10
14 2 20 1252 84 0.00 30.00 12.50 10.00 4.12 9
15 3 467 3840 166 15.42 48.18 29.47 22.91 52.92 10
16 2 23 861 136 0.00 56.52 14.61 8.70 2.10 10
17 2 73 936 405 1.37 24.66 7.72 5.48 2.12 10
18 7 100 550 1882 56.00 79.00 65.47 65.50 52.53 0
19 14 200 2050 131 3.50 19.50 8.21 8.00 5.44 5
20 25 267 638 270 21.35 52.81 35.04 33.90 4.22 10

consistency of the prediction.

First, our concerns about the two top ranked methods in
Table 4 were neither confirmed nor eliminated. For 5 data
sets (03, 06, 10, 17 and 18) our submission was based only
on these two methods. Our respective scores are 6, 9, 8, 10
and 0.

Second, for 4 data sets with the longest series (01, 05, 12
and 18) we had to use DTW with reduced series and fewer
intervals. The scores for these data sets were 10, 9, 9 and
0, suggesting that the reduction did not have detrimental
effect on the accuracy. Further analysis needs to be carried
out in order to find out whether the 0-score for data set 18
is caused by the series reduction or other factors.

What was even more surprising though was that in spite of
the mismatch between our prediction of the error and the
true error rate, the scores were as good. The reason could
be that the collection of 36 methods was formed out of a
large and diverse initial pool, so every single member was
a capable classifier. Thus, even if the CV error might have
represented a biased and noisy estimate of the true error, the
chosen of method still did a reasonable job on the intended
data set. There is a lot of room for improvement, particu-
larly in devising a more reliable error estimation strategy. It
will have to be flexible enough to accommodate cases of very
small labelled data sets, as well as make use of any available
unlabelled data.

7. ACKNOWLEDGEMENTS
Thanks to the donors of the data sets and the organisers
of the challenge. For the experiments, Weka [34] was used;
thanks to its developers and contributors. We thank Dr.
Matthew Williams for his assistance in running the experi-
ments in the computer laboratory of the School of Computer
Science, University of Wales Bangor.

Some of the used techniques were developed by the first
author when he was doing his PhD under the supervision of
Dr. Carlos Alonso. This supervision is acknowledged.

This work has been supported in part by the Spanish Min-
istry of Education and Science under grant PR20060503,
“Junta de Castilla y León” project VA088A05 and EPSRC
grant #EP/D04040X/1.

8. REFERENCES
[1] C. Bahlmann, B. Haasdonk, and H. Burkhardt.

On-line handwriting recognition with support vector
machines: A kernel approach. In 8th Int. Workshop on
Frontiers in Handwriting Recognition (IWFHR), pages
49–54, 2002.

[2] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[3] L. Chen and M. S. Kamel. Design of multiple classifier
systems for time series data. In Multiple Classifier
Systems, 6th International Workshop, MCS 2005,
volume 3541 of Lecture Notes in Computer Science,
pages 216–225. Springer, 2005.
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[26] J. J. Rodŕıguez and L. I. Kuncheva. Näıve bayes
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