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Abstract: Fuzzy rough scts are a notion introduced as a
further extension ol the idea of rough sets. Tts purpose is
fuzzy pattern recognition, where classes arc described by
fuzzy sets on the feature space. A measure of classification
accuracy, which can serve also as a criterion for feature
selection, is developed in order to be used in fuzzy
recognition problems. It is shown that the fuzzy concepts of
Positive, Negative and Boundary region of a set, proposcd in
the paper, coincide with the original definitions if
appropriately applied to ordinary rough classification.
Feature selection via fuzzy rough sets is illustrated using real
data from medical practice. The problem of cvaluating the
hypoxic resistance of a paticnt on the basis of the values of
his blood pressure during a barocamera examination was
considered. The measurements were evaluated by the luzzy
rough sets criterion. The results obtained are closely related
with the expert opinion on the problem.

Keywords: Foundations of fuzzy sets; rough sets: fuzzy
pattern recognition; feature selection.

1. Introduction

The concept of rough sets have been
introduced and developed by Pawlak and
co-workers [14,15,17] in deterministic and
probabilistic sense. This is an attractive tool to
assess the highest classification capacity and to
select a minimal set of significant features in
pattern recognition problems, where data are
described by qualitative features.

An appealing point behind the rough sets idea
is the application opportunity. Several meaning-
ful medical applications of rough sets are
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reported in [6, 16,20,21]. In [5, 8, 10] applica-
tions of rough classification to knowledge
engineering and inference models are described.

A number of theoretical investigations have
been carried out, which build a parallel between
rough sets and fuzzy sets [5,13,22,24,25]. In
these investigations the rough set classification is
being ‘fuzzified’ in different ways, including
fuzziness into some of its stages and elements.
Interrelations and subordination between fuzzy
sets and rough sets are being searched for.

In spite of the significant achievements of
fuzzy pattern recognition both in theoretical and
application plans [18], the feature selection
criterion is still an open problem. Among the
great amount of publications devoted to fuzzy
pattern recognition only few discuss this issue. In
this paper an attempt is made to integrate the
approaches of rough sets and fuzzy sets in order
to build a criterion oricnted to fuzzy pattern
recognition. A mecasurc of classification ac-
curacy, which can serve also as a criterion for
feature selection, is developed.

Feature selection via fuzzy rough scts is
illustrated using real data from medical practice.

In Scction 2 the theoretical basis of fuzzy
rough scts is presented. The idea of application
of fuzzy rough sets to feature selection in fuzzy
pattern recognition is described in Section 3. The
experimental illustration is given in Section 4.

2. Theoretical ground

2.1. Rough sets

A brief recall of some rough sets definitions is
given, in order to enable the casy acceptance of
their fuzzy variants.

Let U be a universum and

A={AI’---)AM}

be a partition on U, defined by an equivalence
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relation (i.e. A,cU, A;NA;=0, UA,=0).
For any subset X c U the following notions are
defined:

—lower approximation of X in terms of the
partition A (also called positive region of X):

POS,(X)=A"(X)= U A;

—upper approximation of X in terms of the
partition A:

AY(X) = AlﬂL}gﬂAi;

— Negative region of X:

NEG,(X)=U - AY(X);

- Boundary region of X:

BND,(X) = A"(X) — AM(X);

— quality of approximﬁlion of X by A:
L,

0=,

Obviously p,(X)€e[0,1] and p,(X)=1 iff X
is definable by A (i.e. AY(X) = A"(X)).

Let B={B,,..., By} be a second partition
on U, induced by some other equivalence
relation. Then the following definitions hold:

POS(B)= U AL(Bi),

BieB

BND.(B) = U (A%(B:) - AY(B)),

NEG(B)=U~ U AY(B).

Then a plausible measure of dependency of B
on A [15] is given by
_ card(POS4(B))
va(B)= card(U)

2.2. Fuzzy rough sets

Let A={A,,..
partition on U, i.e.

pa(x)e[0,1], xeU, A;eA,

., Ay} be a weak fuzzy

UsuppA;=U.

The weak fuzzy partition is a convenient
model of fuzzy classification problems, where A;,
i=1,..., M, correspond to the classes and
1 (x) expresses a certain degree of membership
(e.g. severity of illness) rather than a kind of
uncertainty. That is why the normalization
restriction of ordinary fuzzy partition,

M

> uafx)=1, Vxel,

i=1

is redundant for these problems.

Definition 1. The positive region of a fuzzy set X
in terms of the fuzzy partition A on the same
universe U is expressed by

POSE(X)= U A,

I(A, X)oh,
where U stands for the union of fuzzy sets,
I(A;, X) is a measure of inclusion of A; in X (see
for example [4]), and A, €[0, 1] is a threshold,
which expresses how ‘strictly’ the positive region
of X is to be determined.

Definition 2. The negative region of a fuzzy set
X in terms of the fuzzy partition A on the same
universe U is expressed by

NEGX(X)= U A4,

AL X)=hy

where A, is the respective threshold.

Definition 3. The boundary region of a fuzzy set
X in terms of the fuzzy partition A on the same
universe U is expressed by

BND#M(X) = U A

(A, X)e(l2, 1y)

It should be noted that when A and X are
crisp, the definitions introduced above coincide
with Pawlak’s original definitions. The following
simple considerations confirm this statement.

Assume that given P, Q, ordinary subsets of
U, the inclusion grade of P in Q is

card(P N Q)
card(P)

Then stating A, = 1.0 and 4, = 0.0 the following

I(P, Q)=
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relation (i.e. A,cU, A;NA;=6, UA,=U).
For any subset X c U the following notions are
defined:

—lower approximation of X in terms of the
partition A (also called positive region of X):

POS,(X)=A%(X) = AUXAi;

—upper approximation of X in terms of the
partition A:

= S

— Negative region of X:
NEG,(X)=U - AY(X);

- Boundary region of X :

BND,(X) = AY(X) - AX(X);

— quality of approxim.ation of X by A:
- S8

Obviously p,(X)€(0, 1] and p(X)=1 iff X
is definable by A (i.e. AY(X) = A“(X)).

Let B={B,,..., By} be a second partition
on U, induced by some other equivalence
relation. Then the following definitions hold:

POS,(B) = nLeJBAL(Bi)'
BND(B) = U (AY(B) - A(B)),

NEG4(B)=U- \U AY(B)).
B,eB
Then a plausible measure of dependency of B
on A [15] is given by

_ card(POS(B))
1a(B) = card(U)

2.2. Fuzzy rough sets

Let A={A,,...,Ay} be a weak fuzzy
partition on U, i.e.

pa(x)€[0,1], xelU, A€A,

Usupp 4; =U.

The weak fuzzy partition is a convenient
model of fuzzy classification problems, where A;,
i=1,..., M, correspond to the classes and
4 (x) expresses a certain degree of membership
(e.g. severity of illness) rather than a kind of
uncertainty. That is why the normalization
restriction of ordinary fuzzy partition,

M
> uax)=1, Vxel,
i=1

is redundant for these problems.

Definition 1. The positive region of a fuzzy set X
in terms of the fuzzy partition A on the same
universe U is expressed by

POSH(X)= U A,

1AL X)=hy
where U stands for the union of fuzzy sets,
I(A;, X) is a measure of inclusion of A; in X (see
for example [4]), and A, €0, 1] is a threshold,
which expresses how ‘strictly’ the positive region
of X is to be determined.

Definition 2. The negative region of a fuzzy set
X in terms of the fuzzy partition A on the same
universe U is expressed by

NEC‘%(X) = U 4,

I(A, X)=2

where A, is the respective threshold.

Definition 3. The boundary region of a fuzzy set
X in terms of the fuzzy partition A on the same
universe U is expressed by

BND#M(X) =
HA;, X)e(Xz, &y)

It should be noted that when A and X are
crisp, the definitions introduced above coincide
with Pawlak’s original definitions. The following
simple considerations confirm this statement.

Assume that given P, Q, ordinary subsets of
U, the inclusion grade of P in Q is

card(PN Q)
card(P)

Then stating A, = 1.0 and A, = 0.0 the following

1P, Q)=
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equations are obtained:

POS’(X)= U A=

=
(A, X)=1.0

A, X)=1.0
= U Ai)
AcX
BND%'(X)= U A= U A,
I(A,, X)e(0, 1) ANX %0
ANX 0
NEG%O(X)= ) A= U A
I(A;, X)=0.0 I(A;, X)=0
=A,nx-n

The above coincidence provides a guarantee that
other related notions from rough sets theory can
be successfully introduced in the sense of fuzzy
sets. In this paper a new measure of
approximation of a fuzzy set X in terms of a
weak fuzzy partition A is proposed.

Definition 4. The measure of approximation of a
fuzzy set X in terms of the weak fuzzy partition
A on the same universe U is

viM(X) = $(S(POSH(X), X) +1
— S(BNDZ(X), X)), (M

where S(P, Q) is a measure of similarity
between two fuzzy sets P and Q on the same
universe (see e.g. [4]).

Since S(P, Q)€[0, 1], it is clear that the
measure of approximation defined above varies
in the interval [0, 1]. Moreover it takes value 1 if
X is completely definable by A, and 0 if X is
completely undefinable. The extreme values of
the measure (from the interval (0, 1]) depend on
the type of measure of similarity S chosen and
on the properties of the weak fuzzy partition.

Let B={B,,..., By} be another weak fuzzy
partition on U. The problem of assessment of
approximation of B via A can be considered in
two ways:

(a) By analogy with Pawlak’s concepts [15],
the positive, negative and boundary regions of
the weak fuzzy partition B can be defined and
then the above introduced measure of ap-
proximation can be appropriately applied.

(b) The measure u’?*(B;) can be determined
for every B; € B and then an aggregation rule can
be applied to obtain the final value of
approximation.

In the sense of fuzzy pattern recognition the
second approach seems more reasonable. In the
first approach all fuzzy sets in A and B are
treated as equally significant in determination of
the final result, whereas the second one enables
the designer to use the achievements of fuzzy
decision theory and to treat the sets stating
different weights.

3. Application of fuzzy rough sets to feature
selection

3.1. Fuzzy pattern recognition

Fuzzy pattern recognition deals with problems
where objects and classes are described in fuzzy
way and objects may have multiclass member-
ship. The degree of membership stands either
for an estimate of certainty, belief, typicalness,
strength of confirmation, etc., or for a
characteristic which does not stem from uncer-
tainty. In real problems this characteristic may
correspond to e.g. degree of illness, severity of
the disease, etc.

Let

X={X,, X5, ..., X0}

be the feature set (which in medical problems is
the set of findings, measurements, or signs for
the patients),

Q={w,, 0y, ..., Wy}

the set of classes (diseases or physiological
states) and

2={Z,,2,,...,2Zy}

the sample.

The prior classification of objects is the set
w={ut, us, ..., us}, which consists of M initial
fuzzy sets, corresponding to the classes, with
membership functions puj of the form

ui:Z— [0, 1].

The value u(Z;) is the degree in which the
object Z;, j=1,..., N, belongs to the class w,,
i=1,...,M. These values are initially
stated by interviewing an expert council or by
measuring some real characteristic of the object.

In fact, this is the initial (weak) partition on
the set Z. The interpretation of- prior class-
ification could be elucidated considering an
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example from medical practice —a problem of
Ischemic Heart Discase (IHD) diagnosis. Each
object Z; from the sample 7 corresponds to a
patient, described by a set of features X
(containing anamnesis, laboratory, clinical etc.
measurements). Two fuzzy sets @, and w, on Z
for the classes healthy and affected, respectively,
form the weak fuzzy partition. The degree
Ko,(Z;) denotes the degree of ‘health’ of the
patient, and u,(Z;) the degree of ‘illness’
respectively. The weak fuzzy partition is an
expression of the following fact. A person can be
comparatively healthy, even able to practice
some kind of sport (u,,(x)=0.6, subjectively
assessed) and in the same time suffer from a
latent form of IHD (,.(x) =0.7, measured by
% of occlusion of main coronary arterics).
Obviously, a statistical interpretation could
hardly be used in these problems.

A fuzzy classifier is to be designed, which
yields degress of membership for a given set of
values for the features from X. For the objects
from 7 the degrees obtained are to be as close as
possible to the initial ones. Thus the posterior
classification of objects u? = {ul, uf, ..., uh} is
obtained, which forms a second partition on Z.

A great variety of strategies and methods
exists for fuzzy classification which use: a
linguistic approach based on fuzzy relational
equations and fuzzy logic; fuzzy analogies of
Bayes’ recognition method; fuzzy k-Nearest
Neighbor methods; fuzzy linear classification
rules; fuzzy multistage and multi-level class-
ification schemes; etc. Only few papers,
however, consider criteria for feature selection
(e.g. 3,12, 18]) and for assessing the accuracy of
fuzzy classification [1,7, 10, 19, 23]. These crite-
ria are predominantly defined to compare two
fuzzy sets representing prior and posterior
classifications respectively.

Here a feature selection criterion for fuzzy
pattern recognition is proposed on the basis of
the above defined measure of approximation (1).

3.2, Feature selection via fuzzy rough sets

Let p*={ui,u5, ..., uly} be a weak fuzzy
partition on the sample of objects Z and let
G X be a subset of the initial feature set X.
Using some fuzzy clustering procedure, the weak

fuzzy partition
uP(G) = {uf, pb, ..., ul}

on Z can be obtained. Then a criterion for
approximation of u® in terms of pP(G) is to be
designed, as described in the previous section:

M
G) = 3, wviki(ud),
i=1

where w; are weights.

This is an evaluation of the capacity of the
feature set G, which is to be taken into account
in classifier design. The optimal feature set can
be found as

G*= arg max NG).
=

Note that the number of classes for the second
partition is not definitely M. This is one of the
main advantages of the proposed approach. The
criterion evaluates the subset G taking into
account the partition which this subset induces in
spite of the prior classification. This advantage
will be illustrated by the following example.

Let us consider the hypothetical case of one
feature and one class presented in Figure 1. The
prior membership function p* (denoted as
‘Initial’) is to be approached as close as possible
by the posterior function. Suppose that two
posterior functions are available, u”' and u??,
which induce partition 1 and partition 2,
respectively. In order to estimate the closeness
between each posterior membership function
and the prior one, five measures of similarity

— Initial —+ Partition 1

¥ Partition 2

Fig. 1.
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Table 1

Similarity ~ S(u®,u™') S, 4" S(u*,p?')
measure

Cluster 1 Cluster 2
S 0.330 0.357 0.471 0-082
S, 0.583 0.593 0.827 0.429
S, 0.502 0.518 0.772 0.404
S, 0.050 0.100 0.300 0.000
S5 0.050 0.100 0.225 0.000

between two fuzzy sets P and Q are used [4]:
Si(P, Q)=1IPNQl/IiPUQI, @
5P, Q)=1-|IPVQ], ©)]
5P, @Q)=1-|IPAQI,

S(P,Q)=1- Sl:P ppvo(x),

S(P,Q)=1- EHp Upao(*),

where N denotes the intersection of fuzzy sets,
U the union, ||| the relative cardinality of a
fuzzy set, V stands for Hamming distance
between fuzzy sets and A for a symmetrical
difference of the form

tpap(x) = max(min [up(x), 1 — po(x)],
min [1 - pp(x), Ho()))-

The values of these measures are presented in
Table 1. According to them there is no reason to
prefer one posterior membership function to the
other.

It could be seen from Figure 1 that the
membership function P implies a fuzzy
partition consisting of two clusters. If we could
detect the objects falling in the left cluster the
prior membership function will be approximated
in a higher degree. In confirmation of this the
above five measures are separately calculated for
the left and for the right clusters of partition 1.
Results are presented in Table 1. In the
multidimensional case, however, the information
of this type is hidden and could be detected only
if fuzzy clustering is performed to obtain a
posterior partition which is the underlying idea
of the proposed criterion.

The values of the measure v for the two
partitions using measure S, (3) are:

VAR (u) =0.914, VRO (u) =0.204.

It secems clear that these two posterior
membership functions are no more indiscernible
and the partition generated by u”' is highly
preferable.

It should be pointed out that this paper
discusses only the criterion for feature selection.
The ways of searching through the set of subsets
of X can be referred to e.g. [2].

4. Experimental illustration

The proposed feature selection criterion is
illustrated with a set of real data from aviation
medicine [9]. The sample consists of 7
measurements of systolic blood pressure of 200
persons, examined in a hypobaric chamber
(barocamera) in order to estimate their hypoxic
resistance. The 7 values have been measured
during the experiment in the following moments:
— before the examination;

— at the 1st, Sth, 10th, 15th and 30th minute in
the barocamera;
- after the examination.

Two classes have been formed: Class 1, high
hypoxic resistance and Class 2, low hypoxic
resistance. The respective membership grades
have been stated by expert opinion.

The results obtained are shown in Table 2.
The values of the respective measures of
similarity S; to Ss are also provided. Only single
features were evaluated using fuzzy rough sets.
The clustering was done using frequency tables
and frequency polygons of the respective
features.

The following formula for inclusion grade [4]
is used to calculate the POS(£2), BND(£2):

I20Ql
e

where P and Q are fuzzy sets on the universe U.
The similarity measure for calculating the
respective measure of approximation is S, (2).
The results coincide with the expert opinion,
in the respect that the systolic blood pressure is
more informative in the barocamera than after
the examination. Moreover the measurement in
the first minute of examination has low
significance, because the first reaction of the
body to the extreme condition is very different

I(P, Q)=
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Table 2
Feature Similarity measures Number Value of the
of proposed
S S, S Ss clusters criterion

Belore 0.56 0.68 0.53 0.00 0.00 3 0.58
examination
1 0.50 0.60 0.48 0.05 0.0 4 0.47
minute
5th

" 0.50 0.62 0.48 0.10 0.07 3 0.61
minute
Ttk 0.43 0.57 0.44 0.02 0.02 2 0.60
minute
19t 0.40 0.57 0.43 0.00 0.00 2 0.57
minute
iy 0.45 0.61 0.46 0.00 0.00 3 0.56
minute
After 0.50 0.61 0.49 0.02 0.02 2 0.32
examination

and not very important for the decision. The appropriately applied to ordinary rough
values of measure of approximation are nearly classification.

indistinguishable in the barocamera, but there
are considerable differences between values for
the classes. This can be taken into account -not
only in the further feature selection process, but
also in the final choice of optimal feature set. It
should be mentioned that this medical inter-
pretation does not hold for the values of
similarity measures.

Taking into account the presumption that for
each method there exists a data set for which this
method yields perfect results, the positive
experimental results could not be considered as
unambiguous evidence in favor of the proposed
criterion. On the other hand they allow a
sensible interpretation which illustrates the
application possibilities of the proposed idea.

5. Conclusions

The present paper dealt with the application
of the rough sets idea to fuzzy sets. A measure
of classification accuracy, which can serve also as
a criterion for feature selection, was developed
in order to be used in fuzzy pattern recognition.
It was shown that the fuzzy concepts of positive,
negative and boundary region of a set proposed
in the paper coincide with the original ones if

Feature selection via fuzzy rough sets was
illustrated using real data from medical practice.
The results are closely related with the expert
opinion on the problem. This gives some hope
for further application of fuzzy rough sets in real
problems, described by fuzzy recognition model.
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