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Abstract

We design a fuzzy model of the loadings of heavy metals for two coastal
areas of the Irish Sea (Liverpool Bay and Morecambe Bay). Each metal
concentration is associated with a fuzzy set “contaminated”, defined over
a set of sampling sites (70 in Liverpool Bay and 203 in Morecambe Bay).
The higher the concentration, the higher the degree of membership of the
site. Six overall loading indices are calculated using aggregation connec-
tives between fuzzy sets. The loading indices are then interpolated and
plotted on a map. A visual inspection shows that: (i) product aggregation
is most indicative for the locations of the disposal grounds; (ii) mean ag-
gregation reflects well the sediment movement in the bay; (iii) maximum
aggregation indicates all highly contaminated sites. The proposed fuzzy
model is easy to implement and the results are directly interpretable.
Keywords: Fuzzy aggregation connectives, environmental modelling,
Liverpool Bay, Morecambe Bay, heavy metal concentrations, index of spa-
tial distribution, spatial data analysis.

1 Introduction

Near shore waters have been used as a resource for the disposal of waste mate-
rial over a prolonged period extending back to the later part of the industrial
revolution. In the case of the Irish Sea disposal of sewage material from the
heavily populated industrial region of south Lancashire has been carried out
since the late 1800’s. For most of this time the attitude to disposal may be
summarised as ‘out of sight out of mind’. With the development of reliable and
sensitive methods for measuring trace contaminants, questions have been raised
as to the environmental impact of long-term disposal in coastal areas.
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Assessing the impact of such long-term activities in areas such as Liver-
pool Bay and Morecambe Bay (Figure 1) is fundamental to environmental risk
management in coastal zones of the Irish Sea.

There are several strands to impact assessment.

1. Assessing the degree of contamination above normal, or background, lev-
els.

2. Defining the pattern, or the geographical distribution, of contamination.

3. Determining the likely changes in contamination with time.

This present work addresses the first two components of risk assessment and
management by analysis of data sets on metals in the surface sediments of two
distinct coastal environments of the Irish Sea.

The dynamic nature of coastal waters presents a severe challenge to envi-
ronmental assessment of disposal activities in near shore waters. Surface sed-
iments lying in shallow water act as a primary sink for pollutants delivered
through rivers and groundwater flow and are most often studied in an attempt
to identify and assess contaminant sources. However, sediments are subjected
to strong oscillating tidal forces resulting in bed load transport; storms may
result in mixing of contaminated sediment with material from a different source
and organisms in sediments may re-work deeper consolidated material to the
surface layer. The overall effect of these uncontrollable environmental variables
is to obscure spatial data.

The basic problem centers on combining metal data in a way which produces
a meaningful distribution pattern given that the metal have different concentra-
tion scales. Large data sets are being collected and stored, awaiting processing
and analysis. The current study falls into the general (and controversial) cate-
gory of statistical spatial data analysis as defined in (Bailey, 1994). This type
of analysis has been recognized as an important research line, gaining speed
in the past 10 years and trying to establish its identity. The importance lies
with the demand on the part of Geographical Information Systems (GIS) for
“systems that ‘do something’ other than display and organize data” (Fothering-
ham and Rogerson, 1994). In this study we have multiattribute data, i.e., for
each location a set of metal concentrations has been measured. The problem
is to combine this information for each location and to devise a contamination
distribution picture of the whole area of interest. Typical choices for processing
such data are principal component analysis (PCA) or cluster analysis, possibly
because these techniques are available in most statistical software packages. The
results of both methods are difficult to interpret, unless the data has favorable
structure and characteristics. Fuzzy set modeling is a straightforward option
for this kind of problems.

We study the loadings of 10 heavy metals in Liverpool Bay and 7 in More-
cambe Bay, and design loading indices to represent the overall metal concen-
tration. Section 2 describes the environmental problem and the data set. In
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Section 3 we briefly introduce fuzzy sets and give the fuzzy aggregation opera-
tors used to design the loading indices. The results are shown and discussed in
Section 4 along with PCA and cluster analysis results.

2 Liverpool Bay and Morecambe Bay data

The situation in Liverpool Bay is complicated by multiple sources of contam-
inants. The bay receives heavy metals from continuous sources (Mersey and
Dee Estuaries), point sources (offshore disposal ground) and a higher than nor-
mal input of some heavy metals (notably arsenic) through erosion of natural
mineral sources (Camacho-Ibar, 1992). Although water circulation in the bay
depends on tides, winds, freshwater inputs, etc., it has been found that there is a
well established estuarine-like circulation induced by the low-density freshwater
inputs from the rivers (the Mersey in particular) and by higher density sea wa-
ter from the Irish Sea (Camacho-Ibar, 1992). Low-density water moves offshore
through the surface and high-density water moves inshore near the bottom. This
density-driven inshore movement of bottom water, coupled with tidal asymme-
try producing stronger flood than ebb tides, induces a net sediment transport
directed east and south-east toward Mersey. The combined effect of environ-
mental factors and multiple sources of contamination is to generate complex
and changing patterns in the distribution of metal contaminants in surface sedi-
ments. The problem from the point of view of environmental management is to
develop patterns from metal data which reflect the current status of sediments.
The impact of metal contamination on the biota in sediments is complex; ex-
posure of organisms to high levels of more than one metal introduces further
environmental stress. It is therefore appropriate that an approach to developing
patterns of contaminant distribution should include all metals.

Environmental management in Liverpool Bay is based on yearly analysis of
heavy metals in surface sediments from a sampling grid approximately 20 km2.
Figure 2 (lefthand side plot) shows the Liverpool Bay area, the disposal ground
and the sampling sites (stations). Interpretation of the sampled data is limited
by the factors described above and there is a need to develop a rational protocol
whereby a realistic picture may be produced from spatial data.

The data set in this study consists of concentrations of 10 heavy metals
relative to aluminium content, measured between 14th and 16th September 1988
at the 70 sites on the sampling grid. The metals are: mercury (Hg), cadmium
(Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), arsenic
(As), manganese (Mn), and iron (Fe).

The same stations have been sampled every year. A database has been
collected over the period 1986-1993. Our aim in this pilot study was to develop
a mathematical tool for analysing metal distributions using one data set. We
chose the 1988 data set because a thorough analysis of the processes in Liverpool
Bay for year 1988 can be found in (Camacho-Ibar, 1991, 1992).

Morecambe Bay is geographically contiguous with the northern sector of
Liverpool Bay (Figure 1) and this area has not been used routinely for disposal of
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Figure 2: Liverpool Bay, the disposal ground (light gray area), Morecambe Bay,
and the sampling sites (70 in Liverpool Bay and 203 in Morecambe Bay).

waste organic material. Morecambe Bay sampling stations are shown in Figure
2. A large data set for the late 1980’s has been used for the generation of patterns
of metals in surface sediments for purposes of comparison with Liverpool Bay.

In this study, Liverpool Bay contamination is the central environmental
theme, and Morecambe Bay data is only used as a counter example. The loading
indices for Liverpool Bay should be able to verify the low level of contamination
of Morecambe Bay.

3 Loading Indices design by fuzzy aggregation

3.1 Fuzzy sets

Lotfi Zadeh introduced the simple and intuitive concept of a fuzzy set in his
seminal paper in 1965 (Zadeh, 1965). Since then fuzzy sets have been applied
to a vast number of areas including environmental sciences: soil, forest and air
pollution, meteorology, water resources, etc. (Bezdek, 1999).

Let U be an ordinary set with elements u1, . . . , um. A fuzzy set A on U is
defined by assigning a degree of membership between 0 and 1 to each ui ∈ U ,
usually with regard to a linguistic term. For example, let U be the set of
integers from 1 to 100 denoting the age of a person, and let A be “middle
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aged”. We can define a (subjective!) function that assigns to each ui a degree
of membership µA(ui) ∈ [0, 1]. Degree 0 denotes non-membership, degree 1
denotes full membership, and any other value is partial membership. A plausible
model of “middle aged” will be obtained using a function (membership function)
that yields high values between, say, 40 and 55 and gradually decreases towards
the two edges of the scale. Thus, the degree of membership of 37, µA(37), can
be 0.75, and of 82, µA(82) = 0.1. A fuzzy set is determined by its membership
function, so the two notions will be used interchangeably.

Let S = {s1, . . . , s70} be the set of 70 sites in Liverpool Bay. Let A1, . . . , A10

be fuzzy sets on S, one for each metal, with membership functions

µAi
: S → [0, 1], i = 1, . . . , 10.

The higher the ith metal concentration at site sj , the higher the degree of
membership µAi

(sj). We chose the simple rescaling to devise the 10 membership
functions from data: Let xi(sj) be the concentration of the ith metal measured
at site sj , and let

LBi
min =

70

min
k=1

{xi(sk)},

and
LBi

max =
70

max
k=1

{xi(sk)}.

Then

µAi
(sj) =

xi(sj)− LBi
min

LBi
max − LBi

min

(1)

Figure 3 plots the membership function of mercury over the 2-dimensional
space (sampling ground) spanned by the 70 sites in Liverpool Bay. Referring
the plot to the original geographical problem, we observe a high concentration
of mercury in the area of river estuaries. The contamination with mercury in
that area is higher than that at the disposal ground (the second highest peak).

Another way of representing the membership functions (adopted here) is to
use color or contour plot and overlay the scatterplot of the sampling sites.

Clearly, the concentration pattern would be the same if we did not scale the
concentration between 0 and 1. Although individual metal distribution is an
interesting topic on its own, it was argued above that an index of overall loading
(contamination) is needed.

3.2 Fuzzy aggregation connectives

Dubois and Prade (Dubois, 1997) point out that although fuzzy membership
functions have numerous possible interpretations, fuzzy mathematics has gone
a long way disregarding fuzzy sets semantics: “The risk is to leave the user
with no guidelines about how to apply fuzzy set theory...” They distill three
main semantics: similarity, preference and uncertainty. The interpretation of
the fuzzy sets used here fits best in the second category: preference (in a broad
sense) because the membership functions do not measure a similarity to some
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Figure 3: Hg membership function for the fuzzy set “contaminated”. Th hor-
izontal axis with the negative numbers is longitude between -4.00 and -3.00
degrees (west of Greenwich) and the one with the positive numbers is 53 de-
grees and decimal minutes north. The vertical axis is the degree of membership
(between 0 and 1).

“ideal” prototypes nor do they express any type of uncertainty. For example, we
prefer (to call “contaminated”) a site with degree of membership 0.7 to a site
with degree 0.4. Taking this interpretation, fuzzy decision-analysis approach
seems reasonable. Fuzzy aggregation connectives (aggregation operators) will
be used to define overall loading indices.

An m-place aggregation operator A is defined as

A : [0, 1]m → [0, 1],

satisfying the following properties:

1. Limit conditions:

A(0, 0, . . . , 0) = 0, A(1, 1, . . . , 1) = 1.
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2. Commutativity:

A(a1, a2, . . . , am) = A(b1, b2, . . . , bm),

where b1, . . . , bm is any permutation of a1, a2, . . . , am, ai ∈ [0, 1], i =
1, . . . , m.

3. Monotonicity:

A(a1, a2, . . . , am) ≥ A(b1, b2, . . . , bm),

for any a1, a2, . . . , am, b1, . . . , bm ∈ [0, 1], such that ai ≥ bi, ∀i = 1, . . . , m.

There are a great variety of fuzzy connectives and aggregation operators
(Bloch, 1996, Dubois, 1985, Grabisch, 1995, Yager, 1994). Since this is a pilot
study, here we use perhaps the simplest 6 aggregation operators:

1. Pessimistic-type aggregation

• Minimum

A1(a1, a2, . . . , am) = min{a1, a2, . . . , am},

• Product
A2(a1, a2, . . . , am) = a1 · a2 · . . . · am.

• Geometric mean

A3(a1, a2, . . . , am) = (a1 · a2 · . . . · am)
1/m

.

2. Optimistic-type aggregation

• Maximum

A4(a1, a2, . . . , am) = max{a1, a2, . . . , am},

3. Indifferent-type aggregation

• Arithmetic mean

A5(a1, a2, . . . , am) =
1

m
(a1 + . . . + am) .

• “Competition jury”. This is an operator, where we discard the high-
est and the lowest values from the set a1, a2, . . . , am, and average the
remaining m− 2 values.

A6(a1, a2, . . . , am) =

1

m− 2

(

a1 + . . . + am −max
k

ak −min
k

ak

)

.

Replacing ai with µAi
(sj), each of these 6 aggregation operators defines a

Loading Index as a fuzzy set on S. The indices are denoted respectively
LI1, . . . LI6.
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4 Results

Table 1 shows the correlation coefficients (× 100) between the metal concentra-
tions in Liverpool Bay.

Table 1: Correlations between the metal concentrations (× 100)

Cd Cr Cu Ni Pb Zn As Mn Fe
Hg 0 -16 -23 -34 -31 -23 -27 -31 -27
Cd 55 54 63 71 70 51 55 48
Cr 77 83 76 85 70 64 87
Cu 70 77 80 60 57 78
Ni 78 84 65 73 79
Pb 95 81 82 78
Zn 88 88 88
As 90 87
Mn 76

Cluster analysis is often used in environmental studies to find spatial areas
corresponding to values “low”, “medium”, and “high” of a certain parameter
indicative of the concentration (Markus, 1996). When this parameter is based
on more than one variable, e.g., contamination with heavy metals, clustering
might not be appropriate. Figure 4 shows the difference between “favourable
data” (where the clusters correspond to “low” and “high” contamination) and
“unfavourable data” (where such correspondence does not exist). Shown on the
left plot are two clusters found by the hard c-means (HCM) clustering procedure
for zinc (Zn) and lead (Pb) from the Liverpool Bay data. Their concentrations
correlate well (0.95), so the two cluster centers can be labeled “low” and “high”
as shown. The plot on the right shows the results from the same procedure ap-
plied to mercury (Hg) and lead (Pb). The metal concentrations have a negative
correlation coefficient (-0.31), so the cluster centers (circled) do not correspond
to “low” and “high” in any order.

When more than two components are involved such inconsistencies are dif-
ficult to resolve, likely to be obscured, and the result can be misinterpreted.

As Table 1 shows, most of the correlations are positive (due to high concen-
trations around the waste disposal ground and low elsewhere) except for Hg,
and therefore cluster analysis can be expected to produce sensible results. For
three suspected clusters the hard c-means algorithm on the scaled data (eqn.
(1)) found the centers shown in Table 2.

All center components but the first one (Hg) are ordered so that the three
clusters correspond to “high”, “low”, and “medium”, respectively. Figure 5
shows the result as the spatial distribution of loading on the geographical sam-
pling grid. Dark regions correspond to high metal loading, and bright regions, to
low loading. Hard c-means clustering uses random initialization, hence different
sets of centers can be obtained. The two plots show the results from clustering
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Figure 4: Scatterplot of “favourable” and “unfavourable” data

Table 2: Three cluster centers from one HCM run

Cluster 1 Cluster 2 Cluster 3
Hg 0.1259 0.3011 0.2448
Cd 0.4159 0.0810 0.1679
Cr 0.7228 0.1739 0.5275
Cu 0.6875 0.0663 0.3147
Ni 0.7823 0.1846 0.4810
Pb 0.5663 0.0322 0.1836
Zn 0.5707 0.0674 0.2413
As 0.4846 0.0252 0.1312
Mn 0.4184 0.0092 0.0863
Fe 0.7141 0.1339 0.3602

the original metal concentrations (left) and the scaled data (right). Clustering
results are influenced by data transformation (Duda and Hart, 1973). This ef-
fect is demonstrated by the differences in the two plots and clearly raises the
question of whether the data should be scaled. If not, the metals with concen-
trations which are by orders of magnitude higher than the others will dominate
and determine the clustering result. On the other hand, if we decide to scale
the data, we need to choose a scaling method (e.g., taking the logarithm, z-
normalisation, scaling as in eqn (1), etc.). Each of these methods might lead to
a different clustering result.

Fuzzy c-means has also been used for clustering purposes in spatial data ana-
lysis (Markus, 1996). It is debatable, however, what the added value of using
fuzzy c-means is over that of the hard c-means.

Principle Component Analysis (PCA) gives results that are not easily in-
terpretable in the general case. Here, the variance of most metals is along the



Fuzzy Model of Metal Loadings 365

−40 −30 −20 −10

20

25

30

35

40
Clustering the original data

−40 −30 −20 −10

20

25

30

35

40
Clustering the scaled data

Figure 5: Overall distribution of the 10 heavy metals in Liverpool bay calculated
by hard c-means clustering

same axis: high values at the disposal site, which are an order of magnitude
higher than the values elsewhere. In this case the first principal component
should follow the pattern found by the HCM clustering. Figure 6 shows the
distribution defined by the first and the second principal components. While
the first component might correspond to metal loading, the second component
is not easy to name. The top two plots show the results with the original data,
and the bottom two plots, with the scaled data. As the figure shows, similarly
to clustering, PCA is sensitive to the type of data scaling. The difference is es-
pecially clear in the second principal component which makes its interpretation
even more obscure.

Contour maps of the loading indices LI1, . . . LI6 for the 10 fuzzy sets A1, . . . , A10

are plotted in Figure 7.
The LI results identify clearly a number of important patterns in the spatial

data. The feature common to all 6 methods is the area of low metal contam-
ination in the north west (top left) section of the sampling grid. The product
method of calculation efficiently resolves the disposal ground whilst most of the
other methods identify a residual south easterly movement of material from
the disposal ground towards the estuary mouth. The smaller high area in the
extreme eastern sector (seen most clearly in the Maximum plot) identifies a
widening area at the estuary mouth where there is net deposition of suspended
material delivered from industrial sources higher up the River Mersey.

We calculated the six indices with the Morecambe bey data. To make the
results comparable, we used formula (1) with the limits LBi

min and LBi
max

of metal i as in Liverpool Bay. All negative values were set to 0 and all val-
ues greater than 1 were set to 1. Figure 8 gives an example of the scaling of
Morecambe data using the liverpool Bay limits.

Because many of the concentrations in Morecambe Bay were lower than
LBi

min, a significant number of degrees of membership were set to 0. Thus the
product and the minimum loading indices produced entirely flat distributions
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Figure 6: Overall distribution of the 10 heavy metals in Liverpool Bay by the
first and second principal components of PCA

indicating no significant contamination of Morecambe bay. The maximum load-
ing index is the most sensitive of all six and would label a site as contaminated if
even one metal has high concentrations, regardless of the concentrations of the
other metals. Figure 9 shows the distributions of maximum and product loading
indices for Morecambe Bay. As with Liverpool Bay, the product loading index
generates a pattern which is easily interpreted. The featureless distribution in
Morecambe Bay indicates, in direct contrast with Liverpool Bay, no point source
for heavy metals. This observation is consistent with the fact that specific areas
of Morecambe Bay have not been used for routine disposal.

Initial plots of the maximum loading index showed almost blanket contam-
ination of Morecambe Bay. Stepwise removal of individual metal data sets
revealed that this effect was due entirely to lead. The question of lead in More-
cambe Bay will be addressed in a future paper. For the purposes of this present
work, the maximum loading index plot in Figure 9 has been generated without
the lead data. The maximum loading index is a sensitive indicator of possible
contamination and the resulting pattern is more complex. There are isolated
areas of apparent contamination which require further examination of the data
for specific sampling stations.

The difficulty in assessing results such as those in this study comes from the
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Figure 7: Overall distribution of the 10 heavy metals in Liverpool Bay calculated
by the 6 Loading Indices

fact that there is no benchmark against which the new solution can be matched.
The plausibility of the results can be judged only by eye and the interpretation
will therefore be subjective. Product aggregation clearly indicates where the
highest contamination is. This loading index may be favored by the user re-
sponsible for the waste disposal. Maximum aggregation shows all contaminated
sites even if the contamination is due to just one of the components. This loading
index may be selected by the user concerned about, say, the fish diversity in the
region. The bottom line is that there is no true loading distribution nor is there
a single one that can be “useful” from all points of view. What the proposed
fuzzy approach offers is a collection of indices, each one with comprehensible
interpretation, thereby giving the user a chance to make an educated choice. In
this respect the fuzzy sets approach to spatial data analysis has an advantage
over clustering and PCA where the interpretation is not straightforward and
the results are at the mercy of the data.

An Index of Toxicity can also be designed by weighting the fuzzy sets
A1, . . . , A10 with respect to the toxicity of the metals and then applying a proper
fuzzy aggregation, if the relative toxicities are known. There are many fuzzy
set connectives that can incorporate individual weights for the fuzzy sets but
the problem here is more complex. Different combinations of metals could have
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Bay data using Liverpool Bay limits LBi
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different implications on the biota. Besides, these implications could be specific
for different groups of species. Therefore, a more complex coefficient scheme
has to be considered where each combination of metals has its own weight. For
example, for Pb, Mn and Hg the aggregation rule should be able to account for
seven toxicity coefficients: for (Pb), (Mn), (Hg), (Pb, Mn), (Pb, Hg), (Mn, Hg),
and (Pb, Mn, Hg). An apt fuzzy model for this type of weighted aggregation
is the fuzzy integral (cf. Grabisch, 1995). However, determining a set of coeffi-
cients that assess the joint effect of two or more metals on a variety of species
is not a trivial task.

5 Conclusions

We show how fuzzy set theoretic aggregation operators can be used for modeling
the spatial distribution of a set of variables in environmental problems, thereby
providing the non-mathematical user with a simple and effective modeling tool.
We applied 6 different fuzzy aggregation techniques to a set of heavy metal con-
centrations sampled from Liverpool Bay. For verification of our findings we used
data from Morecambe Bay which is supposed to be low- or non-contaminated.
The results were displayed as geographical scatterplots of metal loading and
were assessed visually. Morecambe Bay data analysis supported our conclusions
about the loading indices. The low contamination appearing on the maximum
aggregation loading index plot was not unexpected and we offered a hypothesis
about its origin. The other indices such as product and minimum, indicated no
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Figure 9: Product and maximum LI for Morecambe Bay

contamination across the whole bay, which confirmed the supposed difference of
contamination between Liverpool Bay and Morecambe Bay. Unlike PCA and
HCM, fuzzy aggregation offers a variety of plots with different information in
them. On the two edges of the scale are the product aggregation, which resolves
the disposal grounds clearly, and the maximum aggregation, which identifies all
possible sites with suspected high contamination. The main advantage of our
fuzzy model over PCA and clustering is that the results are directly interpretable
in the domain context.
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