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Abstract. We look at three variants of the boosting algorithm called
here Aggressive Boosting, Conservative Boosting and Inverse Boosting.
We associate the diversity measure Q with the accuracy during the pro-
gressive development of the ensembles, in the hope of being able to de-
tect the point of “paralysis” of the training, if any. Three data sets are
used: the artificial Cone-Torus data and the UCI Pima Indian Diabetes
data and the Phoneme data. We run each of the three Boosting variants
with two base classifier models: the quadratic classifier and a multi-layer
perceptron (MLP) neural network. The three variants show different be-
havior, favoring in most cases the Conservative Boosting.

1 Introduction

Boosting algorithms are amongst the most popular methods for constructing
classifier ensembles [1, 3, 5, 13]. They build the ensemble incrementally, placing
increasing weights on those objects in the data set, which appear to be “diffi-
cult”. The presumption is that this introduces diversity into the ensemble, and
therefore enhances the performance. It has been found however, that boosting
might get “paralyzed” in the sense that adding more classifiers does not lead
to further improvement of the performance [17] and the ensemble testing error
might start to increase again.

In this study we are interested in how the diversity of the ensemble progresses
when new classifiers are added, one at a time, and how the pattern of diversity
is related to the training and testing errors. Section 2 introduces the concept of
diversity in classifier ensemble and the Q measure of diversity. In Section 3, three
variants of ADAboost (with resampling) are described: Aggressive Boosting,
Conservative Boosting and Inverse Boosting. Section 4 gives an illustration of
the relationship between the three methods on the one hand, and the measure
of diversity Q on the other hand.

2 Diversity in classifier ensembles

Several authors have pointed out the importance of diversity for the success of
classifier ensembles [2,6,7,11,12,16]. So far there is no diversity measure accepted



by consensus, perhaps owing to the lack of a clear-cut relationship between the
measures of diversity and the accuracy of the ensemble [10, 14]. Our previous
studies led us to the choice of the Q statistic for measuring diversity [9]. The
calculation of Q [18] is based on a pairwise table for each pair of classifiers in
the ensemble.

Let D = {D1, . . . , DL} be the ensemble, built on the data set Z, such that
Di : <n → Ω for x ∈ <n. For each classifier Di, we record whether it correctly
classifies zj (the label it produces matches the true label) or not. Consider two
classifiers Di and Dk, and a 2 × 2 table of probabilities that summarizes their
combined outputs as in Table 1.

Table 1. The 2 × 2 relationship table with probabilities

Dk correct (1) Dk wrong (0)

Di correct (1) a b

Di wrong (0) c d

Qi,k =
ad − bc

ad + bc
. (1)

Total, a + b + c + d = 1

Many pairwise statistics have been proposed as measures of similarity in the
numerical taxonomy literature (e.g., [15]). The Q statistic is designed for cate-
gorical data with the same intuition as the correlation coefficient for continuous-
values data. It is calculated from Table 1 as shown.

For independent Di and Dk, Qi,k = 0. Since independence is important in
classifier combination, although not necessarily the best scenario [10], the zero
value of Q is a practical target to strive for. We have found that negative values of
Q are even better but such ensembles are unlikely to be developed. If we calculate
the correlation coefficient between the values 0 (incorrect) and 1 (correct), using
the distribution in Table 1, the resultant formula will have the same numerator
as Q and a positive (but more cumbersome to calculate) denominator. As with
Q, the correlation coefficient will give a value 0 for independence. For none of
the other 9 diversity measures researched by us, is there any fixed value for
independence [9].

3 The three Boosting variants

The general boosting idea is to develop the classifier team D incrementally,
adding one classifier at a time. The classifier that joins the ensemble at step k

is trained on a data set selectively sampled from the training data set Z. The
sampling distribution starts from uniform, and progresses towards increasing
the likelihood of “difficult” data points. Thus the distribution is updated at
each step, increasing the likelihood of the objects misclassified by the classifier
at step k − 1. The basic algorithm implementing this idea is shown in Figure 1.
We use the data set Z = {z1, . . . , zN} to construct and ensemble of L classifiers.



1. Initialize all coefficients as W1(i) = 1
N

, i = 1, . . . , N . We start with an empty classifier

ensemble D = ∅ and initialize the iterate counter k = 1.
2. For k = 1, . . . , L

2.1. Take a sample Sk from Z using distribution Wk.

2.2. Build a classifier Dk using Sk as the training set.

2.3. Calculate the weighted ensemble error at step k by

εk =

N
∑

i=1

Wk(i)(1 − yi,k), (2)

where yi,k = 1, if Dk correctly recognizes zi ∈ Z, and yi,k = 0, otherwise. If εk = 0
or εk ≥ 0.5, the weights Wk(i) are reinitialized to 1

N
.

2.4. Next we calculate the coefficient

βk =

√

1 − εk

εk

, εk ∈ (0, 0.5), (3)

to be used in the weighted voting, and subsequently update the individual weights

Wk+1(i) =
Wk(i)β

ξ(yi,k)

k
∑N

j=1
Wk(j)β

ξ(yj,k)

k

, i = 1, . . . , N. (4)

where ξ(yi,k) is a function which specifies which of the three Boosting variants we

use.

End k.

3. The final decision for a new object x is made by weighted voting between the L

classifiers. First, all classifiers give labels for x and then for all Dk that gave label ωt,

we calculate the support for that class by

µt(x) =
∑

Dk(x)=ωt

ln(βk). (5)

The class with the maximal support is chosen for x.

Fig. 1. A general description of the Boosting algorithm for classifier ensemble design

The three variants of Boosting are as follows:

1. Aggressive Boosting. In this version, the weights for the incorrectly classi-
fied objects are increased and the weights of the correctly classified objects are
decreased at the same step k. Note that even if we do not decrease the weights
of the correctly classified objects, they will be decreased anyway by the normal-
ization step. This will happen because we have increased some of the Wk(i)’s,
and for the sum to be 1, all the remaining weights must go down. The adjective
“aggressive” expresses the fact that we force this difference even further. For



this case, ξ(yi,k) = 1 − 2yi,k. Aggressive Boosting is the versions of ADAboost
in [4, 13].

2. Conservative Boosting. Here the weights are changed only in one direction:
either the weights of the correctly classified objects are decreased, as for example
in [1], or the weights of the misclassified objects are increased, e.g. [5]. For the
latter case, we use ξ(yi,k) = 1 − yi,k.

3. Inverse Boosting. This variant is similar to the “hedge” algorithm described
in [5]. The philosophy is completely opposite to that of Boosting. Instead of in-
creasing the likelihood of the “difficult” objects, we decrease it, thereby gradually
filtering them out. Thus the classifiers will tend to be more and more similar,
eliminating any diversity in the process. The idea for this inverse boosting origi-
nated by a missprint (we believe) in [5] by which it turns out that the weights of
the misclassified objects were actually decreased. We were curious to see whether
the opposite strategy lead anywhere, so we brought this variant into the study
as well. For the inverse boosting, ξ(yi,k) = yi,k − 1.

In a way, variants 1 and 3 are the two extremes, and 2 is a softer version
of 1. Note that although all three variants appear in the literature, no particu-
lar distinction has been made between them, most of the time all being called
AdaBoost.

4 Experiments

The two data sets used are the Cone-torus data1, and the Pima Indian Diabetes
data set from the UCI Machine Learning Repository2

Figure 2 (left) displays the averaged results from 10 runs of the three variants
on the Cone-Torus data, using quadratic discriminant classifiers as the base
classifiers. The training and testing accuracies are plotted versus the number of
the classifiers, as they are added one at a time. Underneath each of these plots,
the training and testing diversity Q is shown. On the right in Figure 2 are the
point likelihoods found through the three Boosting variants. The light gray color
corresponds to the higher likelihood.

The following observations can be made

– The three methods give different performance patterns. The Aggressive Boost-
ing shows overtraining after L = 13 while the other two methods gradually
decrease both training and testing errors in a close correspondence between
the two.

– Training and testing diversities are approximately identical for all three
methods and have minima indicating a good place to stop the training.
In this example, an early stopping is especially important for the Aggressive
Boosting because of the overtraining. The Q has a characteristic ‘tic’-shape,

1 available at http://www.bangor.ac.uk/∼mas00a/Z.txt and Zte.txt, for more exper-
imental results see [8]

2 available at http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Inverse Boosting
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Fig. 2. Results from the three variants of ADAboost and the Cone-Torus data. On
the left, for each variant, we show: top plots: The training error rate (solid line) and
testing error rate (dashed line); bottom plots: The training Q(solid line) and the testing
Q (dashed line). The corresponding point likelihoods are plotted on the right. Light
gray points have highest weights (highest likelihood).



showing that there is a small L for which the classifiers are most diverse,
and with L increasing the ensemble loses this diversity.

– For this particular example, “proper” Boosting was not the most successful
ensemble building strategy. Inverse Boosting gave better results (lower error
rates), although not much lower than the starting error rate.

– As could be expected, the Aggressive and the Conservative Boosting concen-
trate on the boundary points (see the scatterplots), and the Inverse Boosting
does the opposite.

– Note the large difference between the Q values. Even though all training and
testing curves had minima, judging by the absolute values of Q, the diversity
for the Inverse Boosting is nonexistent. Still, the minimum, however shallow
it is, indicates a reasonable place to stop the training.

It is curious to find out how the methods compare to each other in terms of
both diversity and performance. We plotted the improvement on the single classi-
fier (the starting classifier for D) versus the diversity Q. To study the differences
in the performances we used two basic classifier models: the quadratic discrimi-
nant classifier, and an MLP neural network with one hidden layer consisting of
15 nodes. For each classifier, the training was performed for 300 epochs using
the fast backpropagation algorithm from the Matlab Neural Network Toolbox.
Ten random splits of the data into halves were used for training and for testing,
respectively, and the results were averaged. We used L = 25 as the final number
of classifiers. The figures in the rest of this paper show results on unseen testing
data only. Within this set-up, we have four combinations: 2 data sets × 2 base
classifier models. The three Boosting methods for the four cases are plotted in
Figure 3. The successive points for k from 1 to 25 are joined by lines. The y-axis
in all figures show the testing accuracy minus the accuracy of the first classifier.
Thus all ensembles started from Q=1, and zero improvement.

The plots prompt the following comments:

1. The patterns of performance are not consistent: there is no “best” Boosting
variant amongst the three. Of course we can rate the performances noticing that
the Inverse Boosting was only beneficial for the Cone-Torus data with quadratic
classifiers where the other two methods were useless there. However, this looks
more like a fluke than a serious finding. The improvement is not matched in the
Pima Indian data plot for boosting quadratic classifiers. In fact, the performance
declines after the first few “healthier” classifiers are added to the team, and
purifying the training data further only harms the overall accuracy. From all
three Boosting variants, perhaps the Conservative Boosting has the best overall
performance, managing some improvement in all cases, notably better than the
other two on the Pima Indian data plot with quadratic classifiers.

2. Looking at the scales of the two plots for the quadratic classifier and these for
the MLP, there is a dramatic difference in the improvement on the single best
classifier. While boosting quadratic classifiers leaves us with maximum 1.5 to
3 % improvement, when we combine neural network classifiers, the improvement
goes up to 15 %. This confirms the results found by others that boosting makes
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Fig. 3. Plots of improvement versus diversity Q for the two base classifier models and
the two data sets. The solid line with the dots corresponds to the Aggressive Boosting,
the dashed line with the circles corresponds to the Conservative boosting, and the solid
line with the pluses corresponds to the Inverse Boosting.

sense for “capable” classifiers such as neural networks, whereby the possible
overtraining is compensated for.

3. Diversity Q is not always a good indicator of the performance. For example,
the lowest Q (highest diversity) will fail to detect the highest improvement for
the Inverse Boosting (see Figure 3) in all cases except the Cone-Torus data and
the quadratic base classifier. Even for that case Q is not too indicative. If we
stopped at the lowest Q for the Pima Indian data and the quadratic classifiers,
we would have missed the best improvement on all three Boosting methods.
However, when the ensembles consist of neural networks, and the improvement
is significant, stopping at the lowest Q will lead to the highest improvement both
with the Aggressive Boosting and the Conservative Boosting. Notice also that
the span of the diversity is much wider than for boosting quadratic classifiers.
This indicates that while the relationship between diversity and accuracy might
be blurred when Q spans a short interval of values, when a large improvement on



the accuracy is possible, the relationship between diversity and accuracy might
become more prominent.

To examine our findings for different sizes of the training data we used the
Phoneme dataset from UCI. Three training sizes were considered: small, N = 80,
medium, N = 350, and large, N = 1000. Ten experiments were carried out
with randomly dividing the data set into training and testing. The results are
displayed on six Q-error plots in Figure 4 using the same line style as before.

The previous findings were confirmed and we also note that with the Phoneme
data Aggressive Boosting gave the most diverse classifiers but Conservative
Boosting managed to reach lower testing errors with less diverse classifiers. This
suggests that Aggressive Boosting overemphasizes diversity which might result
in ensembles with diverse but poor individual members. Conservative Boosting
seemed to find a better compromise. The plots also show that Inverse Boosting
leads the ensemble in the wrong direction of increasing the testing accuracy.
The values of Q were approximately 1, indicating almost identical classifiers.
Curiously, we did not find big differences for the different sample sizes with the
NN classifiers. The patterns with the small data sets indicated that Aggres-
sive and Conservative Boosting drive the testing error down for both classifier
models whereas for larger data sets, the quadratic classifier behaves erratically.
The reason for this is probably the fact that for small data sets, the quadratic
classifier is no longer “stable”. In other words, adding or removing a few data
points will cause a sufficient change in the estimates of the covariance matrices
to “destabilize” the quadratic classifier thereby making it suitable for boosting.
The downside however is that such classifiers might not be accurate enough and
therefore the total accuracy of the ensemble might suffer.

5 Conclusions

In this study we distinguish between three models of Boosting: Aggressive, Con-
servative and Inverse. We use an example of two data sets and two base classifier
models to relate diversity in the ensemble and the improvement on the single
classifier accuracy. Our results show that this relationship can be useful when
the base classifier is flexible, leading to ensembles of high diversity albeit with
possible overtraining of the individual members. Figure 2 suggests that the min-
imum Q identifies a sensible number of classifiers to include in the ensemble.
However, paralysis was not induced in our experiments with the neural network
classifiers, which are commonly accepted to be one of the more suitable models
for Boosting. Therefore we were unable to confirm that Q identifies where paral-
ysis begins. We also found that the Inverse Boosting quickly leads to a decline
in the ensemble accuracy, emphasizing again the benefits of trying to produce
diverse ensembles. The Conservative Boosting, which can be thought of as a
softer alternative of the Aggressive Boosting exhibited better performance than
the other two, and we therefore recommend it for practice.
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Fig. 4. Plots of error versus diversity Q for the two base classifier models and three
sample sizes for the Phoneme data. The gray dot shows the stopping point.
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