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The abundance of unlabelled data alongside limited labelled data has provoked significant interest in
semi-supervised learning methods. ''Naïve labelling'' refers to the following simple strategy for using
unlabelled data in on-line classification. A new data point is first labelled by the current classifier and
then added to the training set together with the assigned label. The classifier is updated before seeing the
subsequent data point. Although the danger of a run-away classifier is obvious, versions of naïve labelling
pervade in on-line adaptive learning. We study the asymptotic behaviour of naïve labelling in the case of
two Gaussian classes and one variable. The analysis shows that if the classifier model assumes correctly
the underlying distribution of the problem, naïve labelling will drive the parameters of the classifier
towards their optimal values. However, if the model is not guessed correctly, the benefits are outweighed
by the instability of the labelling strategy (run-away behaviour of the classifier). The results are based on
exact calculations of the point of convergence, simulations, and experiments with 25 real data sets. The
findings in our study are consistent with concerns about general use of unlabelled data, flagged up in the
recent literature.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Semi-supervised learning is becoming a centre-stage research
theme to answer the challenges of real-life problems [1--3]. The la-
belled data for training a classifier are usually a small proportion of
the total available data. This happens in situations where labelling
the objects is time-consuming, expensive, dangerous or destructive.
For example, in order to verify a scrapie diagnosis of a sheep, the an-
imal has to be slaughtered and samples of its brain tissue have to be
taken for analysis. There are many ways to incorporate unlabelled
data in the process of training a classifier.

• Active learning seeks to select objects within the unlabelled data
whose labelling would lead to the greatest improvement of the
chosen classification model or the greatest insight about the prob-
lem. These objects are then labelled and used to update the clas-
sifier and guide the next selection of candidates for labelling.
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• Transductive learning assumes that all objects of interest are already
collected, and the task is to assign the most plausible labels to the
currently presented unlabelled data. There is no concern about a
procedure for labelling new data thatmight become available later.
• Training generative classifiers relies on guessing the probabilistic
structure of the problem and estimating the parameters of the
distributions using both labelled and unlabelled data. Usually ex-
pectation maximisation (EM) algorithms are applied for this task.
• Adaptive learning constantly modifies the classifier when new data
becomes available [4]. On-line EM algorithms have been designed
which take a batch of data and re-estimate the parameters of
the distributions before proceeding with the next batch [5,6]. An
example of this category is the co-training algorithm of Blum and
Mitchell [7]. No assumptions are made with respect to the prob-
ability distributions. First, two classifiers are trained on different
aspects of the data (e.g., different subsets of features) using the
labelled data only. Then the unlabelled data are run through both
classifiers. The most accurately labelled objects by classifier 1 are
added to the training set of classifier 2 and vice versa. The clas-
sifiers are re-trained using the new respective training sets and
the process goes on until some heuristic convergence condition is
met. To run this algorithm on-line, batches of data are collected
during the on-line operation and the classifier pauses to re-train
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after each batch. This training methodology is particularly useful
when the underlying distribution changes. For example a speech
recognition classifier needs to be re-trained for a different speaker.

Within the general enthusiasm and success reports with semi-
supervised learning, researchers voice their concerns that the clas-
sifiers might deteriorate rather than improve with unlabelled data
[3,8--11]. The main result by Cozman et al. [8--10] demonstrates the-
oretically that if the model is guessed correctly, unlabelled data are
expected to improve on the error. This is in unison with the earliest
works where normally distributed classes were considered and the
batch of unlabelled data was used to evaluate the distribution pa-
rameters [12--15]. However, if there is a modelling error (incorrect
guess about the shape of the data distribution), using unlabelled data
may do more harm than good. It is frustrating that a small modelling
error may lead to inadequate results even using a perfect training
algorithm, guaranteed to converge to the optimal solution for the
assumed classifier.

In this study we relax the training requirements and adopt naïve
labelling (NL) to update the classifier. While maximum likelihood
estimators (EM being the main representative) work on the batch
data, NLworks on-line. It takes each new point, labels it, adds it to the
training data and updates the classifier. Therefore themultiple passes
through the data, which EM relies heavily upon [16], are disallowed
for NL. This prevents NL from having the neat convergence properties
and asymptotical optimality of EM.

Cozman's results reveal that even the optimal maximum likeli-
hood approximation of the class-conditional densities may be flawed
when the model is not guessed correctly. In this context, NL, which
makes a single pass through the data and does not optimise the
approximations in any way, looks like a lost cause from the start.
Logically, if an imperfect approximation method is applied to a
correctly guessed model, the benefits from using unlabelled data
may disappear. Even worse, when the model is incorrectly guessed,
adding imprecise approximation is unlikely to lead to good results.
Therefore, any encouraging result with NL would be a bonus. There
is anecdotal empirical evidence that NL may improve the classifier
[15]. We are interested in NL because it can be viewed as the basic
stepping stone for the case where semi-supervised learning is ap-
plied for streaming data and non-static environments.

In this paper we look for insights into the asymptotic behaviour
of NL for the nearest mean classifier (NMC) and the linear discrimi-
nant classifier (LDC). As in the previous studies [12--14] we consider
the case of two Gaussian classes. In our scenario the classifier is a
true on-line system where each data point is seen once and is then
''forgotten''. We also investigate the case where the classifier as-
sumptions do not match the true data distribution. To the best of our
knowledge, asymptotic results have not been derived for this case.
Assuming that we have access to a very small labelled training set
and practically unlimited unlabelled data, the question is whether
to use NL to update the classifier or stay with the initial classifier.

The rest of the paper is organised as follows. Section 2 explains
NL. Section 3 discusses the special case of two Gaussians and one
variable. Simulation results are reported in Section 4, and results
with real data in Section 5. Section 6 concludes the paper.

2. NL---the general scenario

We consider the general pattern recognition problem where
the data come from a mixture of c distributions corresponding to
c mutually exclusive classes � = {�1, . . . , �c}. Denote by x a data
point in the feature space of the problem. Without loss of generality
we may assume that the feature space is the n-dimensional real
space Rn. Let p(x|�i) be the class-conditional probability density
function for class �i and P(�i) be the prior probability for this class.

Regardless of what the true distributions are, suppose that a para-
metric classifier C(��) has been chosen and trained on a labelled data
set Xl sampled from the distribution of the problem.We denote by �� ∈
� the vector of parameters that specify the classifier completely. Ap-
plying the classifier to the feature space is equivalent to partitioning
the
feature space into c classification regions R1(C(��)), . . .Rc(C(��)).
The class label of a point x is determined by the region it belongs
to. The classification error of C(��) is

E(C(��))= 1−
c∑

i=1

∫
Ri(C(��))

P(�i)p(x|�i)dx. (1)

The error depends on �� through the definition of the classification
regions by the respective classifier.

Consider the following scenario. Classifier C(��) is initialised by us-
ing a small labelled training data set sampled from the distribution
of the problem. Denote the initial parameter values by ��l . Assume
that beyond the initial stage we have access to practically unlimited
supply of unlabelled data sampled from the same distribution. The
classifier has an adaptationmechanism so that each data point is first
labelled by the current classifier, added to the training set and im-
mediately used to re-train the classifier. The restriction that we pose
here is one of the hallmarks of on-line classifiers [17,18]: the clas-
sifier must see each data point only once. This restriction precludes
using algorithms such as EM, which loop through the data until the
maximum of the likelihood is achieved with a desirable precision.
However, later in the experiment we use a single iteration of EM as
a ''soft'' alternative of NL. The re-training itself consists in updating
the parameter vector ��. We assume that the re-training does not re-
quire storing of all previously seen data but only depends upon the
previous parameter values, the number of data points seen thus far,
and the new data point x

��(k)= f(��(k − 1), k(1), k(2), . . . , k(c),x), (2)

where k(i) is the number of points from class �i within the k seen
points.

For obvious reasons we term this adaptation strategy NL [1].
Assuming the sequence ��(1), ��(2), . . . , ��(k), . . . converges (��(1) = ��l),
denote by ��u the parameter vector it converges to. Also, let ��∗ be the
optimal set of parameters for this classifier with respect to classifi-
cation error, defined by

��∗ = argmax
��∈�

c∑
i=1

∫
Ri(C(��))

P(�i)p(x|�i)dx. (3)

Modelling the general case of NL requires specifying the underly-
ing distributions, the classifier and the update rule (2). In this study
we investigate the simple case of

• two normal distributions in R,
• the nearest mean classifier (NMC) and the linear discriminant clas-
sifier (LDC) and
• maximum likelihood estimates of �� (Robbins-Monro update for-
mulas for the means and the standard deviations [19]), taking the
guessed label of the data point as the correct label.

Cozman and Cohen [8] already showed that using unlabelled data
is expected to improve the classifier if the modelling assumptions
are correct. Included within the modelling assumption is the pro-
cedure of finding the asymptotically optimal value ��∗. In our sce-
nario, even with a correct guess of the underlying distribution, the
updating process is not guaranteed to lead to ��∗. Here we study the
convergence of NL, the errors incurred by classifiers C(��∗), C(��l) and
C(��u), and their relationship to the Bayes error.
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3. NL for two Gaussians

Let x ∈ R be the variable of interest, and let p(x|�1) ∼ N(�1, �21)

and p(x|�2) ∼ N(�2, �22) be the class-conditional pdfs. Denote by �
the prior probability for class �1, i.e., P(�1)=�, P(�2)=1−�. Without
loss of generality we may assume that �1 < �2.

We start with the NMC as the simplest parametric classifier. NMC
estimates the means of the classes from the available data and labels
an unseen point in the class with the nearest mean. NMC is optimal
in Bayesian sense (minimum classification error) if the two classes
have the same variance �= �1 = �2 and the same priors �= 0.5. For
the case of two classes and x ∈ R, NMC requires two parameters,
m1 and m2 for the respective means. Note that the optimal values of
these parameters, m∗1 and m∗2, found through Eq. (3) are not unique.
The unique optimal classification boundary b∗ = (m∗1 + m∗2)/2 will
be the same for infinitely many transformations of the two means
which keep them symmetrical about b∗. Therefore we will consider
the boundary b to be the only parameter of NMC, �= {b}.

Knowing the true distribution of the classes, we can construct
a classifier in order to derive a possible convergence point �u = bu.
Since we assumed that the labelled data set is finite and small, it
will merely initialise the boundary by b=bl . The convergence will be
evaluated under the assumptions that infinite amount of unlabelled
data is available.

Let b be the boundary obtained by updating the NMC at some
stage of the training process. NMC will label all points to the left in
class 1, and all points to the right in class 2, as illustrated in Fig. 1. The
true distributions scaled by the priors �=0.4 and 1−�=0.6 (subplot
(a)) are p(x|�1) ∼ N(0,1) and p(x|�2) ∼ N(4,16). The boundary b

defines a new set of distributions. As all points x < b belong to the
new class 1, the pdf for class 1 will be

p1(x)=

⎧⎪⎨
⎪⎩

1
Z(b)

p(x)= 1
Z(b)
[�p(x|�1)

+(1− �)p(x|�2)], x < b,

0, x�b,

(4)

where Z(b) is a normalising constant so that the integral of p1(x)

across x is 1,

Z(b)=
∫ b

−∞
p(x)dx

=
∫ b

−∞
[�p(x|�1)+ (1− �)p(x|�2)]dx. (5)
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Fig. 1. Illustration of the true distributions (p(x|�1) and p(x|�2)) and the corresponding boundary-induced distributions (p1(x) and p2(x)). (a) True distributions and
(b) distributions induced by boundary b.

Accordingly,

p2(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < b,

1
1− Z(b)

p(x)= 1
1− Z(b)

[�p(x|�1)

+(1− �)p(x|�2)], x�b.

(6)

Fig. 1(b) shows the new distributions. If we sample long enough
from the original distribution and let the classifier learn by labelling
the data according to b, the two class means will be the means with
respect to p1(x) and p2(x)

m1(b)=
∫ ∞
−∞

xp1(x)dx = 1
Z(b)

∫ b

−∞
x[�p(x|�1)

+ (1− �)p(x|�2)]dx, (7)

m2(b)=
∫ ∞
−∞

xp2(x)dx = 1
1− Z(b)

∫ ∞
b

x[�p(x|�1)

+ (1− �)p(x|�2)]dx. (8)

Having estimated the two means, a new boundary can be calcu-
lated. Then a sequence of parameter values can be constructed by
taking b0=bl , b1= (m1(b0)+m2(b0))/2, and so on. The general term
for the NMC is

bk =
m1(bk−1)+m2(bk−1)

2
. (9)

Denote by f(b) the function determining the new boundary, given
the current boundary b. If the sequence b0, b1, . . . , bk, . . . converges,
the stationary point would be the solution of

b= f(b). (10)

The equation does not have an analytical solution even for the
simple case of NMC and two Gaussian distributions because of the
scaling constant Z(b) which has to be evaluated through integration.
The derivation of f(b) is given in the Appendix. From numerical
analysis, the sequence bk can be regarded as steps in solving b= f(b)

using the fixed point method (see, for example, Ref. [20]). The se-
quence bk is guaranteed to converge if f(b) is differentiable and, in
some vicinity of the solution, |df(b)/db|<1. It is difficult to analyse
f(b) even for the simple case considered here. Hence we provide an
illustration of the behaviour of f(b) for three choices of parameters
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Table 1
Optimal and asymptotic boundaries and error rates for two Gaussian classes

Distribution Bayes error Optimal boundary b∗ Error rate at b∗ NMC LDC

Asymptotic bu Error at bu Asymptotic bu Error at bu

p(x|�1) ∼ N(0,1)
p(x|�2) ∼ N(4,1) 0.0228 2.0000 0.0228 2.0000 0.0228 2.0000 0.0228
�= 0.5

p(x|�1) ∼ N(0,1)
p(x|�2) ∼ N(4,1) 0.0122 1.4507 0.0122 2.3313 0.0438 1.4147 0.0122
�= 0.1

p(x|�1) ∼ N(0,1)
p(x|�2) ∼ N(4,16) 0.1400 1.7570 0.1635 3.5246 0.2265 4.7498 0.2872
�= 0.5

of the true distributions

• Equal priors and equal variances: In this case the optimal boundary
b∗ (satisfying Eq. (3)) is b = (�1 + �2)/2. This is also the Bayes-
optimal boundary, and NMC is equivalent to the Bayes-optimal
classifier for this problem. We use p(x|�1) ∼ N(0,1) and p(x|�2) ∼
N(4,1), �= 0.5, so the optimal boundary is b∗ = b= 2.
• Different priors, equal variances: For equal variances �2 and differ-
ent priors the optimal boundary is

b∗ = �1 + �2
2

− �2

�1 − �2
ln

�

1− �
. (11)

In our examples, p(x|�1) ∼ N(0,1) and p(x|�2) ∼ N(4,1), � = 0.1,
so b∗ ≈ 1.4507.
• Equal priors, different variances: For non-equal variances, the opti-
mal boundary consists of two points found as the real roots a1,2
(if they exist) of the quadratic equation

(
1

�22
− 1

�21

)
a2 + 2

(
�1
�21
− �2

�22

)
a

+ 2 ln
��2

(1− �)�1
−
(

�21
�21
− �22

�22

)
= 0. (12)

As NMC only calculates one boundary, b∗ in Eq. (3), NMC can
never be Bayes-optimal in this case. It can be proved, however,
that a single optimal boundary b∗ is one of a1 or a2. As there
will be two points of intersection of the discriminant curves, one
of the classes will have its classification region Ri(C(b)) split into
two subregions spanning the distribution tails. The boundary that
cuts off the sub-region with the larger area will be b∗. For our
example, p(x|�1) ∼ N(0,1) and p(x|�2) ∼ N(4,16), � = 0.5. The
two boundaries are a1 = −2.2903 and a2 = 1.7570. The optimal
boundary is b∗ = a2 = 1.7570. Note that Eq. (12) can be used to
derive the optimal boundaries for any priors �.

Table 1 shows the Bayes error rate, the optimal boundaries b∗ and
the error rates for the three distributions. We calculated f(b) for val-
ues of b varying from −1 to 5 and plotted the graphs in Fig. 2. Plotted
is also the diagonal line f(b)=b. The intersection of this line with the
curve f(b) gives the stationary point bu. To find out bu we ran the
iterative procedure bk = f(bk−1) from an initial point which ensured

convergence, and set as a terminating condition |bk − bk−1|<10−6.
The values of f(b) were calculated by Eq. (32) in the Appendix. The
convergence values bu for NMC are shown in Table 1 along with the
incurred error rate. Note that in all three cases we are solving iter-
atively a theoretical equation that carries no uncertainty related to
the choice of training data. The point of convergence can be used to

measure the bias of the classifier, i.e., the deviation from the optimal
boundary.

Like NMC, the LDC will also determine one boundary between
the classes. However, instead of only the means of the distributions
induced by the boundary b, LDC also evaluates the class variance,
assumed to be the same for both classes, as well as the priors. The
new boundary is calculated as

bnew = f(b)= m1(b)+m2(b)

2

− s(b)2

m1(b)−m2(b)
ln

Z(b)

1− Z(b)
, (13)

where s(b)2 is the common variance found as

s(b)= Z(b)

Z(b)

∫ b

−∞
(x −m1(b))2p(x)dx

+ 1− Z(b)

1− Z(b)

∫ ∞
b

(x −m2(b))2p(x)dx

=
∫ b

−∞
(x −m1(b))2p(x)dx

+
∫ ∞
b

(x −m2(b))2p(x)dx. (14)

The expression for f(b) in this case is even less tractable than the one
for NMC. Thus the calculations of f(b) for this case use Eqs. (5), (7),
(8) and (14), and plug them into Eq. (13). Using Eq. (13) we found
bu for the three distributions in the above example (results are in
Table 1), and also plotted the graphs for LDC in Fig. 2.

Table 1 and Fig. 2 reveal several interesting phenomena. For the
simplest case of equal variances and equal priors, NL lands both
classifiers on the optimal boundary, b∗ = bu = 2. In other words, NL
will indeed improve upon an initial boundary. However, while NL
with NMC is guaranteed to improve the boundary starting from any
initial b0, NL may diverge for LDC if b0 is slightly to the left of �1 or
slightly to the right of �2.

For equal variances and non-equal priors, NMC converges to a
non-optimal boundary with an error at bu more than 3.5 times the
Bayes error. LDC, if NL converges, is only slightly off the optimal
boundary, and the error at bu is practically the same as the Bayes
error.

For the case of unequal variances, LDC is misled by NL in a larger
degree than NMC is, and finds a boundary far away from the optimal
boundary, with an error around twice the Bayes error. This agrees
with the conclusion in Ref. [10] that when the model guess is in-
correct, unlabelled data may adversely affect the performance of the
classifier. The assumption for LDC is that variances of the classes are
the same. NMC has the advantage in this case of assuming addition-
ally (correctly!) that the priors are the same, and does not estimate
these from the data. This explains the better solution by NMC.
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Fig. 2. Illustration of the optimal and the asymptotical boundary points for the linear discriminant classifier (LDC) and the nearest mean classifier (NMC) for two classes with
p(x|�1) ∼ N(�1,�2

1), p(x|�2) ∼ N(�2,�2
2) and prior probabilities P(�1) = �, P(�2) = 1 − �. (a) N(0,1), N(4,1), � = 0.5, (b) N(0,1), N(4,1), � = 0.5, (c) N(0,1), N(4,1), � = 0.1,

(d) N(0,1), N(4,1), �= 0.1, (e) N(0,1), N(4,16), �= 0.5 and (f) N(0,1), N(4,16), �= 0.5.

4. Simulations

In this section we put the asymptotic boundaries found
above to the test. The question we seek to answer is whether
these boundaries are achievable in a more realistic scenario
where each new observation is used to re-calculate the current
boundary.

In evaluating the asymptotic boundary bu in Section 3, it was as-
sumed that the parameters of the two distributions p1(x) and p2(x)

(Fig. 1(b)) are readily available for each bk in the sequence of bound-
aries. For this to correspond to a real experiment, we need an in-
finite sample for a fixed boundary bk . NL is, in fact, quite far from
this scenario because the boundary might change after each new
sample. Then the parameters being evaluated are heavily affected by
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Fig. 4. Initial boundaries and boundaries at convergence for the simulation experiment with the three distributions. The optimal boundary (b∗) and the two means
(�1 = 0,�2 = 4) are also indicated. (a) N(0,1), N(4,1), �= 0.5, (b) N(0,1), N(4,1), �= 0.1, (c) N(0,1), N(4,16), �= 0.5, (d) N(0,1), N(4,1), �= 0.5, (e) N(0,1), N(4,1), �= 0.1,
(f) N(0,1), N(4,16), �= 0.5.

the labelling of all previous data. To demonstrate this effect, we ran
simulation experiments with the following protocol.

• The initial boundary b0 was varied taking all values in the set
{−2.00,−1.99,−1.98, . . . ,5.99,6.00}.
• Data samples have been randomly generated from the distribution
of the problem.
• To start off the procedure, boundary b1 = f(b0) was calcu-
lated as soon as the number of objects in the smaller of the

two classes reached a pre-specified limit (set to 20 in this
experiment).
• The procedure of estimating the parameters of the classifier and
subsequently bk = f(bk−1) was run for 5000 iterations. Thus we
obtained the convergence boundary bu = b5000.

To answer the main question, whether NL will improve on the
initial boundary, Fig. 3 shows the error rate of NL as a function of the
initial boundary. Overlaid in the figure is the error of the classifier
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if the initial boundary was not changed at all (dashed line). When
the dashed line is above the solid lines (classifiers' errors) the initial
boundary incurs higher classification error.

Fig. 3(a) suggests that in the case of equiprobable classes with
equal variances, both classifiers benefit substantially from NL. NMC
(the solid line without a marker) is the more stable of the two clas-
sifiers, giving error that almost coincides with the Bayes error for
any initial boundary. LDC, on the other hand (the solid line with
the dot marker), suffers from major instability outside the region
from �1 = 0 to �2 = 4. This could be expected in view of the two
regions of divergence in Fig. 1(b). Subplot 3(b) reveals that the suc-
cess of NMC is short-lived. When the assumptions for optimality
of NMC are not met (unequal priors in this case), the classifier be-
haves inadequately. LDC is again very well behaved between the
two means and unstable outside this region. This shows that when
the distribution is indeed correctly guessed, a very simple proce-
dure such as NL is expected to improve on the initial boundary.
Finally, subplot 3(c) suggests that neither of the two classifiers offers
an improvement on the initial boundary, especially if it happens to
be near the optimal boundary. The failure of the classifiers can be
attributed to the wrong modelling assumptions. NMC is again the
more stable of the two classifiers, but is not of much use in terms of
error rate.

Fig. 4 displays the boundary at convergence, bu, as a function
of the original boundary b0. The trends of the graphs with NMC
(subplots (a)--(c)) suggest the possibility of a runaway classifier, i.e.,
existence of divergence regions. LDC (subplots (d)--(f)) is relatively
stable outside its divergence regions.

The results show that the theoretical convergence properties for
the synthetic cases considered here carry forward when the bound-
ary is re-calculated with each new observation. This gives us the
reassurance that NL is not likely to show a dramatic change in its
behaviour in real-life scenarios. Even though NL has not been proved
to be a sound density approximation method, it is capable of leading
to the correct solution.

5. Experiments with real data

In this sectionwe examine NL for NMC and LDCwith real data that
hardly conform to the distribution assumptions which make NMC
and LDC Bayes-optimal. Getting sensible error rates is a tall order
anyway bearing in mind that NMC and LDC are among the simplest
classifiers and are going to be trained on a very small labelled data
set. A negative outcome of this experiment would not be a surprise,
hence any favourable result would be welcome.

5.1. Data

Twenty five real data sets were used in the experiment (Table 2).
All features are numerical and there are no missing values. In the
table, the data sets are sorted by the total number of samples N.

5.2. Experimental protocol

Although there is no strict guideline about what a sufficient data
size is, the common wisdom (which we quote after Nagy [4]) is that
the size of the training data should be around 10× n× c, where n is
the number of features and c is the number of classes in a problem.
To simulate a small data set we took the size of the labelled data
set to be 1× n× c. The choices for the experimental protocol with a
single data set are listed below:

• 100 runs were carried out with 90% of the data used for training
and 10% used for testing. The splits were done using stratified
sampling.

Table 2
Data sets used in the experiment

Data set Features Classes Objects Source

iris 4 3 150 UCIa

wine 13 3 178 UCI
sonar 60 2 208 UCI
laryngeal1 16 2 213 Collectionb

glass 9 6 214 UCI
thyroid 5 3 215 UCI
votes 16 2 232 UCI
voice3 10 3 238 Collection
breast 9 2 277 UCI
heart 13 2 303 UCI
liver 6 2 345 UCI
spect 44 2 349 Collection
ionosphere 34 2 351 UCI
laryngeal3 16 3 353 Collection
voice9 10 9 428 Collection
wbc 30 2 569 UCI
palynomorphs 31 3 609 Privatec

laryngeal2 16 2 692 Collection
pima 8 2 768 UCI
vehicle 18 4 846 UCI
vowel 11 10 990 UCI
german 24 2 1000 UCI
image 19 7 2310 UCI
scrapie 14 2 3113 Privated

spam 57 2 4601 UCI

aUCI [21] http://www.ics.uci.edu/∼mlearn/MLRepository.html.

bCollection http://www.informatics.bangor.ac.uk/∼kuncheva/activities/
real_data_full_set.htm.

cImages of pieces of kerogen extracted from microscope images of palynomorphs.

dData on scrapie disease in sheep (related to BSE in cows), provided by DEFRA,
UK, http://www.defra.gov.uk/.

• From each training part of the data, a random stratified sample
of Nl = 1 × n × c was taken as the initial labelled data. An initial
classifier (NMC or LDC) was trained on the labelled part. The error
of this classifier is called ''the initial error''.
• The remaining part of the training data was used as the new coming
unlabelled data. To simulate an i.i.d. sequence of unlabelled data
the data were shuffled before each of the 100 runs.
• One point from the unlabelled data was fed to the system at a time.
The point was labelled, added to the training set and the classifier
parameters were updated accordingly. The classification error was
evaluated on the (labelled) testing set. In this way we created a
''progression curve'' which is the classification error as a function
of the number of unlabelled samples seen by the classifier.
• The results were averaged across the 100 runs giving a single pro-
gression curve for the data set.

5.3. Results

The experiments were run with the 25 data sets and the two
classifiers NMC and LDC. The results are displayed in Fig. 5. The x-
axis corresponds to the number of processed unlabelled samples and
the y-axis is the progression of the classification error, evaluated on
the testing sets and averaged across 100 runs. The thin black line
shows the error for the NMC and the thick red line shows the error
for the LDC.

The graphs are meant to visualise the direction of the curves
rather than the details. Several typical patterns can be observed.
The error rates have completely opposite trends for data sets iris,
votes, breast, heart, laryngeal3, wbc, laryngeal2, pima and spam.
While NMC becomes a ''run-away classifier'' as a consequence of NL,
the error of LDC gradually decreases with more unlabelled samples.
This pattern, however, is not matched on all data sets. There are
sets where the errors are in agreement, both markedly decreasing
(german) or increasing (spect, ionosphere, vowel, image).
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Fig. 5. Error progression with sequential processing of unlabelled data through naïve labelling. The x-axis corresponds to the number of processed unlabelled samples and
the y-axis is the classification error on the testing set, averaged across 100 runs. The thin black line shows the error for the nearest mean classifier (NMC) and the thick
red line shows the error for the linear discriminant classifier (LDC).

To examine the effect of NL in more detail, Table 3 shows the
initial and the final classification errors for the two classifiers. A
paired t-test was carried out. Indicated with ''•'' is a case where the
initial error is significantly smaller than the final error (p <0.05),
and therefore NL is harmful. The opposite case where the initial
error is significantly higher than the final error (p <0.05) is marked
with ''◦''.

5.4. The ''soft'' NL

We took NL a step further. Instead of the ''hard'' labelling in one
of the classes, we consider a ''soft'' label made up by estimates of the
posterior probabilities P̂(�i|x), i = 1, . . . , c. The two classifiers were
updated using these estimates. This approach constitutes a single
iteration of the EM algorithm (denoted further ''EM1''). To calculate
the updates, a soft count is maintained for each class. The count for
class �i, denoted C(�i), is initially set to Ni, the number of samples
from �i in the labelled training data set. To be Bayes-optimal, LDC
needs the assumption that all class-conditional pdfs are Gaussians
and have the same common covariance matrix. The initial covariance

matrix was estimated from the training data.1 Letmi be the estimate
of the mean for class �i, S be the estimate of the common covariance
matrix and C =∑c

i=1 C(�i) be the total sum of the soft counts. The
EM1 updates for LDC are

P̂(�i)←
C(�i)+ P̂(�i|x)

C + 1
, i= 1, . . . , c (priors), (15)

mi ←
C(�i)mi + P̂(�i|x)x

C(�i)+ P̂(�i|x)
, i= 1, . . . , c (class means), (16)

S← CS+∑c
i=1P̂(�i|x)(x −mi)(x −mi)

T

C + 1
(covariance matrix), (17)

C(�i)← C(�i)+ P̂(�i|x), i= 1, . . . , c (soft counts). (18)

1 If this covariance matrix happened to be singular, the identity matrix was
used instead.
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Table 3
The initial classification error and the final classification error after naïve labelling, both in (%), for NMC and LDC

Data set Initial error (NMC) Final NL error (NMC) Final EM1 error (NMC) Initial error (LDC) Final NL error (LDC) Final EM1 error (LDC)

iris 8.8 10.9• 12.3• 5.9 3.4◦ 21.9•
wine 28.5 30.3• 32.6• 3.2 1.7◦ 9.4•
sonar 34.2 41.7• 35.1• 30.0 30.9-- 28.9--
laryngeal1 34.0 37.0• 35.9-- 26.4 24.3◦ 24.6◦
glass 59.3 62.0• 51.0◦ 43.1 47.7• 45.0•
thyroid 17.8 19.7-- 45.0• 14.8 16.8• 17.2--
votes 9.5 9.4-- 11.1• 8.6 5.1◦ 6.1--
voice3 48.7 56.0• 52.2• 32.5 33.5-- 35.8•
breast 36.6 41.9• 40.5• 35.8 32.6◦ 35.3◦
heart 37.2 44.7• 38.5-- 38.5 46.6• 37.2--
liver 47.6 50.6• 47.7• 42.6 45.8• 43.5--
spectcontinuous 31.5 42.7• 39.7• 30.7 34.7• 33.2•
ionosphere 24.5 28.6• 29.5• 23.2 30.4• 30.9•
laryngeal3 49.8 54.6• 57.8• 34.1 31.4◦ 33.4◦
voice9 77.6 79.6• 72.8◦ 64.4 65.5• 64.9--
wbc 10.9 13.9• 8.9◦ 10.7 8.4◦ 14.4•
palynomorphs 65.2 62.7◦ 61.1◦ 68.3 66.0◦ 57.7◦
laryngeal2 29.8 41.4• 46.9• 12.1 9.9◦ 11.2◦
pima 40.5 45.3• 44.1• 35.2 31.7◦ 29.1◦
vehicle 61.8 63.0• 62.7-- 28.2 28.6-- 31.0•
vowel 51.9 61.5• 59.5• 44.2 53.4• 63.7•
german 40.4 40.6-- 41.1• 36.3 33.2◦ 32.9◦
image 29.1 38.1• 51.2• 28.7 37.4• 50.9•
scrapie 34.3 42.4• 48.2• 17.7 19.8• 20.2•
spam 32.0 34.5• 32.3-- 30.6 27.3◦ 23.6◦
• indicates that the final error is significantly worse than the initial error (loss).

◦ indicates that the final error is significantly better than the initial error (win).

Table 4
The win/loss scores for NL and EM1 on the 25 data sets

Factor NMC(NL) NMC(EM1) LDC(NL) LDC(EM1)

0.5 2 (0)/23 (20) 7 (4)/18 (14) 15 (12)/10 (9) 13 (10)/12 (7)
1.0 3 (1)/22 (21) 6 (4)/19 (17) 12 (12)/13 (10) 9 (8)/16 (11)
2.0 3 (2)/21 (18) 7 (4)/17 (15) 8 (3)/16 (12) 7 (4)/17 (12)
3.0 2 (2)/18 (17) 5 (4)/15 (12) 5 (2)/15 (13) 4 (1)/16 (9)

Given in parentheses are the statistically significant scores out of the total number
of wins/losses. ''Factor'' indicates the size of the initial labelled data set used for
training (Factor×n× c).

For NMC, only the updates of the means (16) and the soft counts (18)
are needed. The final error rates for EM1 are displayed in Table 3.
The statistically significant differences with the initial errors are in-
dicated next to each value.

Finally, we ran all the experiments for different sizes of the initial
labelled set used for training. Taking the size to be Factor × n × c,
we varied Factor in the set {0.5,1,2,3}. The differences between the
initial and the final error are summarised in Table 4. The notation
a(b)/c(d) in the table means that in a out of the 25 data sets the final
error rate has been smaller than the initial error rate (win), and in b

of these cases the difference has been statistically significant (one-
sided paired t-test, 	= 0.05). On the other hand, for c data sets the
final error rate has been larger than the initial error rate (loss), and
in d of these cases the difference has been statistically significant.2

5.5. Discussion

The results in Table 3 indicate, almost unequivocally, that NL is
inadequate for NMC. EM1 is slightly better but the losses outweigh
the wins by a large number. On the other hand, LDC may or may
not benefit significantly from NL and EM1. This means that applying
unsupervised on-line training to LDC is a gamble. The reason why

2 The reason that a + c <25 for Factor = 3 and 4 is that we dropped from
the experiment the data sets for which the size of the training set was larger than
30% of the total size. This was done because in these cases the on-line training was
considered to be too short for the error rates to reach convergence.

LDC behaves better than NMC is rooted in the underlying models of
the two classifiers. NMC would be the optimal classifier if the un-
derlying distributions were Gaussians, with equal diagonal covari-
ance matrices with the same variance along all features, and equal
priors. When the assumptions are met, NMC may benefit from us-
ing unlabelled data, even in the simple naïve way considered in this
study. However, if the true distribution is not close to the one that
is a prerequisite for optimality of NMC, NL will do more harm and
will cause the run-away behaviour observed in the experiment. LDC
takes the assumptions a step further. In order for LDC to be the op-
timal classifier for the problem, the classes must be Gaussian with
equal covariance matrices. This is a more plausible assumption than
the one for NMC, which makes LDC the more adequate classifier be-
tween the two. Presumably classifiers relying on more sophisticated
models, e.g., where each class-conditional pdf is represented as a
mixture of Gaussians, will fare better than LDC. However, if the as-
sumption is far from the real situation NL is likely to do more harm
than good.

Table 4 shows that NMC is not affected much by the size of
the training set. This is to be expected knowing that NMC needs
only estimates of the class means. With a larger training set these
estimates will be slightly more accurate. However, this improved
accuracy is not sufficient to prevent the run-away behaviour of both
NL and EM1. While both labelling strategies are rather harmful than
useful with NMC, EM1 is the better of the two. For some data sets
where NL failed, EM1 managed to drive the error rate to a smaller
final value. With LDC there is a clear pattern in Table 4 indicating
that when training sets of adequate size are available, unsupervised
on-line training by NL or EM1 is worthless.

The empirical findings in our experiment resonate with the con-
clusions of the series of studies by Cozman et al. [8--10]. One inter-
esting result in favour of NL was that for very small labelled train-
ing sets (Factor = 0.5, Table 4), LDC with NL brought the initial error
down in 60% of the data sets, and 2

3 of the differences were statis-
tically significant. With larger training sets sampled from the same
data sets, NL was not that successful. This comes to show that the
optimality assumptions for LDC are not likely to hold. Nonetheless,
using a very small labelled sample appears to lead to such an inac-
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curate initial classifier that NL can do well in spite of all the expec-
tations to the contrary. This suggests that there may be a bound on
the size of the training data limiting the scope of NL as an on-line
training strategy.

6. Conclusions

Previous studies have proved that unlabelled data would dam-
age the classifier when the model is not guessed correctly and will
improve the classifier if the guess is correct. The further assumption
there is that there is an approximation procedure in place for the
pdfs, which is allowed to iterate through the data, and is asymp-
totically optimal. Here we chose the naïve labelling (NL) strategy to
augment the training set, which is the basic stepping stone for on-
line semi-supervised learning. NL makes a single pass through the
data, thereby denying repeating iterative optimisation of the pdf ap-
proximations to take place. Our study extends previous theoretical
results in the following way. We considered a special case of two
Gaussian pdfs and one feature. There is no theoretical proof of opti-
mality of NL even for the case of correctly guessed pdfs. For our spe-
cial case we found that NL will converge to the optimal boundary if
the distributions are guessed correctly for the given classifier (NMC
or LDC). We carried out a simulation experiment and an experiment
with real data. While our findings are mostly in the same vein with
the studies by Cozman and co-authors, the experiments where very
small labelled data sets were used for training suggest that LDC may
benefit from NL even when the optimality assumptions are likely to
be false.

In our scenario all new coming points are used for re-training
the classifier. In most studies where NL has been attempted for real-
life problems, there has been a confidence threshold for accepting
a new point in the training set. The classifier is re-trained only if
the new point is classified with certainty greater than the thresh-
old. Thismodification introduces an extra parameter---the confidence
threshold---which needs to be picked in advance. Besides, this strat-
egy may not be as successful as intuition suggests [4].

Another question here is whether we need to update the classifier
with all the streaming data if the underlying distribution does not
change. Instead of updating the classifier on-line, it makes more
sense to collect a large enough amount of unlabelled data, put the
classifier on hold, and run an EM algorithm on thewhole data set. The
reason for adopting NL is that we are looking for potential application
of the on-line classifier to non-stationary environments where the
distribution of the problem may change with time.
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Appendix

This appendix details the derivation of f(b) for the NMC, two
classes with normal distributions, p(x|�1) ∼ N(�1, �21), p(x|�2) ∼
N(�2, �22), P(�1)= � and a fixed boundary b.

The new boundary bnew = f(b) is calculated as the middle of the
means of the two distributions p1(x) and p2(x) defined in Eq. (4).
Thus

f(b)= 1
2Z(b)

∫ b

−∞
xp(x)dx︸ ︷︷ ︸
A

+ 1
2(1− Z(b))

∫ ∞
b

xp(x)dx︸ ︷︷ ︸
B

. (19)

Taking the two integrals separately and substituting �p(x|�1)+ (1−
�)p(x|�2) for the unconditional pdf p(x), we get

A=
∫ b

−∞
x

[
�√
2
�1

exp

{
− (x − �1)2

2�21

}

+ (1− �)√
2
�2

exp

{
− (x − �2)2

2�22

}]
dx. (20)

The term A breaks into two integrals. Making the substitutions t =
(x − �1)/�1 in the first integral and u = (x − �2)/�2 in the second
integral, we arrive at

A= �√
2


∫ (b−�1)/�1

−∞
(�1t + �1) exp

{
− t2

2

}
dt

+ (1− �)√
2


∫ (b−�2)/�2

−∞
(�2t + �2) exp

{
−u2

2

}
du (21)

= ��1√
2


∫ (b−�1)/�1

−∞
t exp

{
− t2

2

}
dt

+ ��1
1√
2


∫ (b−�1)/�1

−∞
exp

{
− t2

2

}
dt

︸ ︷︷ ︸
�
(
(b−�1)/�1

)
(22)

+ (1− �)�2√
2


∫ (b−�2)/�2

−∞
u exp

{
−u2

2

}
du

+ (1− �)�2
1√
2


∫ (b−�2)/�2

−∞
exp

{
−u2

2

}
du

︸ ︷︷ ︸
�((b−�2)/�2)

(23)

= ��1√
2


exp

{
− (b− �1)2

2�21

}
+ ��1�

(
b− �1

�1

)
(24)

+ (1− �)�2√
2


exp

{
− (b− �2)2

2�22

}

+ (1− �)�2�

(
b− �2

�2

)
, (25)

where�(.) is the cumulative distribution function of the standardised
normal distribution. In a similar way, term B in Eq. (19) can be
expressed as

B=
∫ ∞
b

xp(x)dx =−
∫ −b

−∞
yp(−y)dy (26)

= −
∫ −b

−∞
x

[
�√
2
�1

exp

{
− (−x − �1)2

2�21

}

+ (1− �)√
2
�2

exp

{
− (−x − �2)2

2�22

}]
dx (27)

= ��1√
2


exp

{
− (b− �1)2

2�21

}
− ��1�

(
−b− �1

�1

)
(28)

+ (1− �)�2√
2


exp

{
− (b− �2)2

2�22

}

− (1− �)�2�

(
−b− �2

�2

)
. (29)
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To simplify notations, let

�1 = �

(
b− �1

�1

)
and �2 = �

(
b− �2

�2

)
. (30)

Putting A and B back in Eq. (19), and taking into account that �(�)=
1− �(−�), we obtain the final expression for f(b)

f(b)= 1√
8
Z(b)(1− Z(b))

[
��1 exp

{
− (b− �1)2

2�21

}

+ (1− �)�2 exp

{
− (b− �2)2

2�22

}]
(31)

+ ��1�1
Z(b)

+ (1− �)�2�2
1− Z(b)

− 1
2

[
��1
Z(b)
+ (1− �)�2

1− Z(b)

]
, (32)

where the normalising constant Z(b) is

Z(b)= ��1 + (1− �)�2. (33)
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