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Abstract Functional Magnetic Resonance Imaging serves
to identify networks and regions in the brain engaged in vari-
ous mental activities, represented as a set of voxels in the 3D
image. It is important to be able to measure how similar two
selected voxel sets are. The major flaw of the currently used
correlation-based and overlap-based measures is that they
disregard the spatial proximity of the selected voxel sets.
Here, we propose a measure for comparing two voxel sets,
called Spatial Discrepancy, based upon the average Haus-
dorff distance. We demonstrate that Spatial Discrepancy can
detect genuine similarities and differences where other com-
monly used measures fail to do so. A simulation experiment
was carried out where distorted copies of the same voxel sets
were compared, varying the level of distortion. The exper-
iment revealed that the proposed measure correlates better
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with the level of distortion than any of the other measures.
Data from a 10-subject experiment were used to demonstrate
the advantages of the Spatial Discrepancy measure in multi-
subject studies.
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1 Introduction

Functional magnetic resonance imaging (fMRI) is currently
the most advanced non-invasive technology for identifying
regions in the brain as they increase output in response to
task demand. Traditionally, voxel activity maps are created
by relating the individual voxel responses to some expected
response. A voxel is deemed important if its evaluated rela-
tionship with the stimulus exceeds a pre-defined threshold.
Pattern recognition takes voxel selection a step further by
treating voxels as the features, the stimuli as the class labels,
and the brain responses to the stimuli as the instances to be
labelled. There are two groups of voxel selection methods.
Univariate methods evaluate the importance of each voxel
in the image separately. They are fast, reliable, reproduc-
ible and statistically sound, but they cannot capture any joint
behaviour of the voxels [9]. Multivariate methods, on the
other hand, based largely on pattern recognition, evaluate a
subset of voxels at a time, where the voxels do not necessar-
ily form a spatial neighbourhood. Multivariate methods are
more time-consuming but offer higher accuracy and deeper
insight into distributed patterns of brain functionality [5,12,
30,31]. Feature selection is now a mature, rich and well-struc-
tured sub-domain of pattern recognition and machine learn-
ing [6,11,13,21]. Only recently has attention been turned to
the problem of very large-scale feature selection, addressing
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classification tasks such as micro-array data analysis [19,42].
Given the abundance of voxel selection methods, it is sur-
prising that comparison of their outputs has received so little
attention. The aim of this article is to present a measure of
discrepancy between two subsets of voxels which takes into
account the spatial positioning of the voxel sets within the
brain.

Similarity between sets of voxels has been quantified for
studying variability or reliability of fMRI results across mul-
tiple subjects as well as multiple runs for a single subject
(test–retest experiments) [25,26,40]. In addition to multi-
subject variability, and variability due to the differences in
the experimental protocol from one run to the next, vari-
ability in fMRI data can be due to random fluctuations or
artefacts. These fluctuation can be of environmental, physi-
ological and psychological nature (random errors), technical
imperfections of the data collecting equipment, faults in the
data pre-processing, etc. [23]. Thus, different voxel sets may
be identified as important from two identically planned runs
carried out at different times. Reliability studies are primarily
focused on cleaning the noise and producing a more certain
brain map showing the voxels deemed to be important (often
termed active voxels) [25,40]. Reproducibility or activation
maps do not give a value that measures the discrepancy be-
tween two fMRI outcomes.

Intra-class correlation coefficients (ICC) [37] have been
used to capture the difference between within- and between-
subject variability. They can serve as reliability measures for
multi-subject and multi-session experiments [2,27,33,39].
A similar measure of dependence, the RV-coefficients [34],
has been adapted to fMRI data analysis [16]. By design, nei-
ther ICC nor the RV-coefficients take into account the spatial
relationship between the voxels in the brain.

fMRI reliability studies often base voxel importance on the
value of a continuous-valued measure or statistic that can be
thresholded to identify a set of significant voxels [25,36,39].
Feature selection methods, on the other hand, produce a sub-
set of voxels. While correlation between two voxel subsets
can still be calculated, the insightful scatterplots proposed
by Specht et al. [39] and the certainty maps developed by
Maitra [25] will not be applicable.

Discrepancy between two subsets of voxels can be evalu-
ated by the overlap measure [24,35]. It is calculated as twice
the ratio between the cardinality of the intersection and the
sum of the cardinalities of the two voxels sets. Despite being
well accepted for the purpose [33,39,44], the overlap mea-
sure has been criticised for its adverse sensitivity to the car-
dinalities of the compared sets [25]. The overlap measure
is simple and intuitive but it ignores the spatial relationship
between selected voxels.

A step closer to taking spatial relationships into account
are the methods based upon labelling the selected voxels
into clusters and comparing the clustering results. After the

clusters have been identified, a matching procedure is ap-
plied, e.g., the Rand index. A problem with the clustering
approach is that the results will depend on the clustering
algorithms used (k-means, fuzzy clustering [3], genetic algo-
rithm [1], neural networks [41], SVM [43], etc.). A straight-
forward clustering method coming from image analysis is to
keep only voxels forming connected components larger than
a certain size (η). For example, Thirion et al. [40] experiment
with η = 10 and η = 30.

Having identified a gap in the fMRI comparison toolbox,
here we propose a discrepancy measure that bypasses the
clustering step and compares the voxels subsets directly, tak-
ing into account their spatial positioning within the brain. The
rest of the paper is organised as follows. Section 2 details six
commonly used discrepancy measures from the fMRI liter-
ature and introduces the proposed Set Discrepancy measure,
DS . Section 3 presents a simulation study to demonstrate the
advantage of DS over the other discrepancy measures. An
experiment with a 10-subject data set is given in Sect. 4.

2 Discrepancy between voxel subsets

Consider a set of features (voxels) V = {v1, v2, . . . , vn}.
Let A ⊆ V and B ⊆ V be two non-empty subsets of V
with respective cardinalities |A| = NA and |B| = NB . Let
r = |A ∩ B| be the cardinality of the intersection of the two
subsets. The discrepancy between A and B can be quantified
in different ways.

2.1 Existing measures

Taking the overlap and the correlation measures from the
fMRI reliability literature, we convert them into discrepancy
indices in the following way

• Overlap index

DO = 1 − 2r

NA + NB
. (1)

The overlap discrepancy index is effectively the Rombouts et
al.’s [35] overlap measure, negated and shifted by a constant
to scale the discrepancy index between 0 (complete match)
and 1 (complete mismatch).

• Correlation Index

Dρ = 1

2
− rn − NA NB

2
√

NA NB(n − NA)(n − NB)
. (2)

The correlation index is the scaled negated correlation coef-
ficient between the two binary variables corresponding to
subsets A and B [37]. Both variables have length n and each
bit corresponds to a voxel. The bits for the selected voxels
are set to 1 and the bits for the non-selected voxels are set
to 0. The discrepancy measure Dρ takes value 0 if A and B
are identical, and value 1 if they are complementary subsets
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(A ∪ B = V, A ∩ B = ∅). Statistical literature offers a myr-
iad of measures of dependency between binary variables that
can be used to the same effect [8,38].

Two simple discrepancy measures can be added to the list.
These have been used before to study consistency of feature
selection methods [7,15,17].

• Intersection-union cardinality ratio

DIU = 1 − |A ∩ B|
|A ∪ B| = 1 − r

NA + NB − r
. (3)

• Relative hamming distance

DRH = NA + NB − 2r

n
. (4)

Both DIU and DRH take value 0 if the two sets are identical
and have maximum value 1. DIU takes its maximum value
1 when the two sets are not intersecting, as does the overlap
index DO , regardless of the cardinalities of A and B. On the
other hand, DRH, like Dρ , takes its maximum value of 1 for
complementary A and B.

None of the four measures takes into account the spatial
relationship between the voxels. Suppose that the two sets
contain one voxel each. If the voxels are different, the inter-
section will be empty, hence DIU = DO = 1, labelling the
two sets as completely different. The Hamming distance will
be DRH = 2

n , which is approximately 0 given that n in a typi-
cal fMRI data set is of the order of tens of thousands. Finally,
the correlation measure will be Dρ ≈ 0.5, signifying inde-
pendence between the two sets. Now assume that the voxel in
A is situated in the brain as a neighbour to the voxel in B. To
account for this case, we need a measure that will recognise
the proximity between the two selections. Therefore, we add
a discrepancy measure based upon the Hausdorff distance
between sets

• Hausdorff distance

DH = 1

dmax

× max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
(5)

where d(a, b) is the Euclidean distance between voxel a from
set A and voxel b from set B within the three-dimensional
brain array. The normalising constant dmax is the maximum
possible value of the distance. For a 3D box containing the
fMRI data, the largest distance between any pair of voxels is
the length of the diagonal.1 The maximum value DH = 1 is
attained when A and B contain a single voxel each situated
at the two furthest corners in the fMRI volume. For identical

1 If Xmax, Ymax and Zmax are the maximum dimensions of the three
axes, dmax = √

X2
max + Y 2

max + Z2
max.

sets, DH = 0. Note that the empirical values measured on
fMRI maps are likely to be orders of magnitude smaller than
the maximum.

• Cluster-based distance. This measure was proposed by
Thirion et al. [40] for evaluating reproducibility of fMRI acti-
vation maps across multiple subjects or multiple runs. Here,
we use it for comparing two maps, A and B. First, clus-
ters are identified within A and B as connected components
consisting of η or more selected voxels. The centres of the
clusters are calculated next. Let {x1, . . . , xCA } be the CA cen-
tres of clusters derived from voxel set A, and {y1, . . . , yCB }
be the CB centres of clusters derived from voxel set B. The
Cluster-Based Distance measure is

DC = 1

2

{
1

CA

CA∑
i=1

CB
min
j=1

φ
(||xi − y j ||

)

+ 1

CB

CB∑
j=1

CA
min
i=1

φ
(||xi − y j ||

)
⎫⎬
⎭ (6)

where

φ(ζ ) = 1 − exp

{
− ζ 2

2σ 2

}
(7)

Given the two selected voxel sets, A and B, this distance
requires the values of two parameters: the minimum cluster
size η and the spread σ . The values used by Thirion et al.
[40] are η ∈ {10, 30} and σ = 6 mm.

2.2 The spatial discrepancy measure

• The spatial discrepancy measure is defined as follows

DS = 1

dmax(NA + NB)

×
{∑

a∈A

min
b∈B

d(a, b) +
∑
b∈B

min
a∈A

d(a, b)

}
(8)

The measure is the average spatial distance between the
voxels selected in the two sets, scaled to span the interval
[0, 1]. To calculate DS , we sum up the distances from each
selected voxel in A to the nearest voxel from B. Then, we
add the sum of the distances from each selected voxel in B
to the nearest voxel from A and finally divide by the number
of distances, NA + NB . The advantage of the proposed mea-
sure over the other six measures is demonstrated through the
examples shown in Fig. 1. Three cases of non-intersecting
sets of selected voxels are displayed.

The values of the seven measures for the three cases are
given in Table 1. The four measures that do not consider spa-
tial context, DO , Dρ , DIU and DRH, fail to recognise the
differences between the three cases, having constant values
across (a), (b) and (c). On the other hand, DH , DC and DS
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(a) (b) (c)

Fig. 1 Examples of non-intersecting A (light) and B (dark): a distant,
b close, c close with an outlier

Table 1 Values of the seven measures for the example in Fig. 1

Measure (a) (b) (c)

DO 1.00 1.00 1.00

Dρ 0.56 0.56 0.56

DIO 1.00 1.00 1.00

DRH 0.14 0.14 0.14

DH 0.49 0.07 0.49

DC 0.16 0.05 0.05
DS 0.48 0.05 0.06

have lower values for the close selections (subplot (b)), indi-
cating low discrepancy compared with the value for distant
selections (subplot (a)). Comparing subplots (b) and (c), the
Hausdorff measure, DH , leaps to 0.49, wrongly indicating
high discrepancy due to the outlier in set B. For computing
the cluster-based discrepancy, DC , we set the limit η = 10.
The clustering, achieved by filtering out smaller connected
components, is a form of smoothing of the image and will
therefore wipe out the outlier in B. Thus, DC will not be able
to distinguish between cases (b) and (c). The proposed Spa-
tial Discrepancy measure, DS , is stable and consistent with
the perceived discrepancy across the three subplots. Its value
drops from (a) to (b) and increases only marginally from (b)
to indicate the outlier in (c). To the best the authors’ knowl-
edge, a discrepancy measure with these properties has not
been applied before for the analysis of fMRI data.

3 Simulations

3.1 Data 1. Single-subject, single-run fMRI experiment

The fMRI data were collected on a 3 Tesla Philips Achieva
system (TR = 2 s, TE = 30 ms, 30 slices, 3 mm slice thickness,
inplane resolution 2 mm × 2 mm). Pre-processing was per-
formed using the Brainvoyager software QX (Braininnova-
tion, Maastricht, The Netherlands). The data were corrected
for intra-subject angular and translational motion and filtered
to remove long-term drift.

The participant was a right handed male with corrected to
normal vision, with no history of neurological or psychiatric
illness. Prior to the start of the experiment, informed consent
was obtained. The experimental protocol was approved by
the ethics committees of the School of Psychology, Bangor
University, and the North West Wales NHS Trust. The data
set was a part of a neurofeedback experiment [14]. In a pilot
run, the participant views images with negative and positive
content. Subsequently, the specific brain regions correspond-
ing to positive and negative emotion were localised for this
participant. He was then instructed to upregulate his target
brain region corresponding to negative emotion for periods
of 20 s “up”, alternating with baseline periods of 14 s “rest”.
Twelve up-rest cycles were recorded in the run, spanning a
total of 204 scans (408 s).

To construct the data set, we averaged the 3D brain images
recorded in the five scans around the peak of the predicted
haemodynamic response function (HRF)2 during the up-reg-
ulation phase and also the five scans around the trough during
the rest phase. By doing this we apply ‘temporal compres-
sion’, found to be a useful pre-processing heuristic in sin-
gle-subject experiments [29]. A grey-matter mask estimated
from the anatomical MR image was applied, leaving a data set
of 24 instances (12 negative emotion and 12 rest) × 33,274
voxels (features). The classification task is to recognise the
state (negative or rest) from the brain image alone.

3.2 Comparison of distorted voxel subsets

Five hundred voxels were selected by sorting and cutting the
p value of the two-sample t test, using all 24 instances. This
set will be called “the original set”, O . One hundred dis-
torted versions of O were created and the seven discrepancy
measures were calculated between O and each distorted ver-
sion. The distortion was implemented in the following way.
A magnitude of the distortion, Δ, in voxel positions, was a
chosen randomly from the set {−5,−4, . . . , 4, 5}. Then, K %
of the important voxels were randomly chosen for shifting.
Here, we experimented with K ∈ {10, 25, 50}. Each such
voxel was shifted in a random direction: Left, Right, Ante-
rior, Posterior, Dorsal and Ventral, by Δ positions. If the
new location was already occupied by a selected voxel, the
move was cancelled, otherwise the new voxel was marked as
important and the voxel at the starting location was marked as
unimportant. The processing of the chosen voxels was done
in random order. Since some of the voxels might not move as
a result, the distortion is said to be of up to K % of the labels.
If exactly K % of the labels of important voxels were flipped,
and the important voxels were moved to new locations, DO ,
Dρ , DIU and DRH would have constant values regardless of

2 The haemodynamic response function (HRF) models the expected
changes in bloodflow that follows a neural event.
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Fig. 2 a A slice of the original image O; b The same slice after
distortion of 25 % of the labels, jump distance 4

Δ because none of r , NA, NB and n changes from one dis-
torted set to the next. We added two outliers in each distorted
image. Two random non-important voxels were re-labelled as
important. Figure 2a shows O , and Fig. 2b shows an example
of a distorted set.

Figure 3 shows the plots of the measure values aga-
inst Δ. Each plot contains 3 curves corresponding to K ∈
{10, 25, 50}. The grey points show the individual (Δ, mea-
sure) values from which the averages are calculated. The
estimates of the correlation ρ̂ and the Spearman’s rank cor-
relation coefficient ρ̂R between the measure and Δ are shown
in Table 2. The proposed spatial discrepancy measure cor-
relates very well with the magnitude of the distortion. The
farther the jump, the larger the DS value. All other measures
show much lower correlations with Δ. The two outliers com-
pletely fool the Hausdorff measure which would have had a
high correlation with Δ in the absence of outliers. DS man-
ages to ignore the outliers while being finely responsive to
the Δ.

4 A multi-subject experiment

The purpose of this experiment is to evaluate the how
well the seven measures capture the similarities and differ-
ence between the voxel sets selected through three different
methods.

4.1 Data 2. Multi-subject, 10 fMRI runs

The experimental protocol was approved by the ethics com-
mittees of the School of Psychology, Bangor University, and
the North West Wales NHS Trust. The participants’ task was
to passively view a set of ‘emotionally charged’ images in a
block type design, while fMRI data were collected and pre-
processed as explained in Sect. 3.1. Each block of images

consisted of pictures of a single emotional valence type,
either positive, negative or neutral. The images were selected
from the international affective picture system (IAPS) [20],
which have been pre-tested in normative samples for their va-
lence (emotion evoked in participants with a scale of 1 to 9,
ranging from “unhappy” to “happy”) and arousal (scale from
1 to 9, ranging from “calm” to “excited”).

The data set for each subject consisted of 329 instances
where each TR in the fMRI sequence was taken to be one
instance. The instances were labelled in four classes: positive
stimuli, negative stimuli, neutral stimuli and fixation. The
labels corresponded to the stimuli at the time of taking the
TR. A common grey-matter mask consisting of 59,707 vox-
els was calculated.

4.2 Comparison of three voxel selection methods

We ran voxel selection separately on each subject data. Three
voxel selection methods were applied:

– t-selection. The voxels were ranked according to the
t test scoring function and the top 1,000 were retained.

– W -selection. The voxels were ranked according to the
scoring function for the Wilcoxon rank sum test and the
top 1,000 were retained.

– SVM-selection. The support vector machine classifier
SVM has proven its worth for high-dimensional data [10].
SVM is particularly suited to wide data because it scales
linearly along the feature dimension while tolerating the
small sample size by ensuring large classification mar-
gins. The linear-kernel SVM can be used as a feature
ranking algorithm. A feature’s relevance is measured by
the absolute value of the weight for this feature in the
linear discriminant function of the trained SVM [18,28].

Since there are four classes and all three voxel selection
methods operate for two classes, we calculated the measures
for all pairs of classes and averaged the scores. The top vox-
els were those which scored the best on the average scores.
By applying the three methods to the 10 subjects, we created
30 voxel subsets. A “random subject” was created for com-
parison. Three independent random subsets of 1,000 voxels,
one for each method, were sampled from the voxel set. Thus,
there were 33 voxel subsets altogether. A good discrepancy
measure is expected to demonstrate the following:

– The measure should find the T and W methods more
similar to one another than T and SVM.

– It is expected that a good measure should detect larger
variability of the selected sets between subjects compared
with the variability within subjects.
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Fig. 3 The values of the seven discrepancy measures versus the magnitude of the distortion Δ calculated from 100 distorted versions of the original
set O

– The measure should be able to indicate that the voxel
sets for the random subject (randomly and independently
sampled subsets) are notably different from the sets for
all real subjects.

We calculated the 11 × 11 = 121 discrepancies be-
tween the pairs of voxel sets selected through T and W (de-
noted T/W) and also the 121 discrepancies between T and

SVM (denoted T/SVM). Figure 4 shows the behaviour of the
seven discrepancy measures in 2d. Each plot contains 121
points. Consider subjects i and j (i, j ∈ {1, 2, . . . , 11}).
The ordered pair of subjects (i, j) generated a point on
each graph. The x-coordinate is the discrepancy between
the T subset of i and the W subset of j . The y-coor-
dinate is the discrepancy between the T subset of i and
the SVM subset of j . If the three voxel sets were iden-
tical, the point would lie at the origin of the coordinate
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Table 2 Correlation ρ and rank
correlation ρR (both in %)
between the seven measures and
the distortion value Δ for K =
10, 25 and 50 %, as plotted in
Fig. 3

Measure 10 % 25 % 50 %

ρ ρR ρ ρR ρ ρR

DO 64.4 58.1 70.2 60.5 69.7 53.5

Dρ 64.4 58.1 70.2 60.5 69.7 53.5

DIO 64.4 58.1 70.1 60.5 69.7 53.5

DRH 64.4 58.1 70.2 60.5 69.7 53.5

DH 16.3 14.5 12.0 11.5 1.5 3.5

DC 15.6 14.7 34.3 32.1 32.3 32.0
DS 94.3 94.2 96.5 97.3 96.3 97.8

system. If the sets were very different, the point would
be further up the diagonal indicating high discrepancy be-
tween the T and W subsets as well as high discrepancy
between T and SVM subsets. If, however, T and W sub-
sets were close whereas T and SVM subsets were different,
the point is expected to appear towards the top left corner
of the plot. The scatterplots were annotated by colour to
facilitate the interpretation. Blue circles indicate the pairs
where one or both are the random subject. Green squares
indicate the same subject. Thus, in each plot, there are 21
blue circles: 10 for pairs (i = random, j = other), 10 for
(i = other, j = random) and one for (i = random, j = ran-
dom). There will be 11 green points for the pairs (i, i).
The point (i = random, j = random) will be in both col-
ours.

As indicated by green colour, the cluster on the left cor-
responds to within-subject discrepancies. Its position shows
that the discrepancy between T and W is smaller than the
discrepancy between T and SVM and also that the within-
subject discrepancies are smaller than between-subject dis-
crepancies (the main cluster in the middle). Apart from the
plots for DH and DC , the cluster with the individual discrep-
ancies is quite pronounced. The random subject is clearly
identifiable only in the plots for DH and DS as a cluster far
along the diagonal. The position of this cluster should be
above and to the right of the black dot cluster. The reason
is that random voxel subset should have high discrepancies
with a selected subset compared with the discrepancy be-
tween any pair of selected subsets, whatever the selection
method. The figure shows that only the proposed spatial dis-
crepancy measure DS behaves as desired.

As with any pairwise measure, DS can be used to evaluate
the discrepancy between a collection of M voxel subsets by
averaging the M(M − 1)/2 pairwise values. Alternatively,
DS could be extended to carry out the calculation in one
pass, as is done with other non-pairwise measures [4,22].
One possible extension could be by creating M sums in (8),
where the distance will be to the nearest selected voxel in
any of the other M − 1 sets. Such an extension, however,
merits a separate study in the context of similar multi-set
measures.

5 Conclusions

The identification of the degree of spatial discrepancy of
voxel sets in fMRI has a wide range of potential applications.
Here, we propose a novel discrepancy measure, DS , calcu-
lated as the average distance between each selected voxel and
the nearest selected voxel from the alternative set. We argue
that set-theoretic measures, often applied for comparing two
voxel sets, are not well suited for the task because they are not
equipped to take into consideration any spatial relationship
between the elements of the two sets. We have also shown
that the Hausdorff metric is adversely affected by outliers in
the selected voxel set. We demonstrated the use of DS on
fMRI data for getting insights about the results of six voxel
selection methods. The measure could equally be applied to
maps obtained with univariate and multivariate analyses. It
can be used to assess similarity across trials, runs, or sessions
of the same experiment or across participants for assessing
group homogeneity [16].

It would be interesting to include the brain surface map
in the calculation of the distance function. Voxels in close
proximity to one another may be at a considerable distance
on the brain surface. Such account of the brain surface is
only applicable if we are analysing the results from different
methods on the same brain. It has been argued that spatial
discrepancies from one subject’s brain to another may vary
as far as 1 cm [40]. In this case, a correction of the distance
to account for the brain surface will be of little use and will
rather contribute to the noise, unless the multi-subject align-
ment procedure takes care of inter-individual variability of
cortical folding patterns [32].

While some possible uses of DS were demonstrated
through illustrations and simulations, we should also de-
clare what the proposed measure is not designed/ suitable for.
None of the pairwise measures discussed here is a straight-
forward measure of reliability. However, they can be taken as
a component in the process of assessing reliability of fMRI,
as demonstrated through the real-data experiment. Second,
the analyses in this paper have not been designed with acti-
vation maps in mind, nor are they based upon threshold-
ing some statistic, calculated for the individual voxels. We
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Fig. 4 The seven discrepancy measures for the real data. Blue circles indicate the random subject. Green squares indicate the same subject. Only
DS manages to separate clearly the random subject from the rest, while recognising at the same time the within-subject similarities (colour figure
online)

designed DS to quantify the outcomes of feature selection
methods, where the features are selected as a group, and
the cardinality of the selected sets is similar. Third, the pa-
per does not advocate a particular voxel selection method
nor does it look for an optimal number of selected vox-
els. The fMRI data are used as an illustration; hence, we
have not carried out cross-validation experiments to eval-
uate classification accuracies or regions of interest in the
brain related to discrimination between positive and nega-
tive emotions.

An exciting future use of DS is for creating a landscape
of the existing voxel selection methods. Through gauging
their classification success, a gap may be found for new, even
more successful voxel selection methods. The landscape may
suggest what characteristics these new methods should pos-
sess, e.g., multivariate versus univariate, correlation-reward-
ing versus correlation-penalising, and so on.

Variations of DS can be tried too. For example, the con-
tributions from the two sets of voxels are scaled differently.
Instead of dividing by NA + NB , the sums in Eq. (8) can be
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weighted, respectively, by 1/NA and 1/Nb. The Euclidean
distance in (8) can be replaced by the squared Euclidean dis-
tance, the Minkovski distance or any other distance that is
deemed suitable.
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