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Abstract

Individual animal recognition and re-identification from still images or video

are useful for research in animal behaviour, environment preservation, biol-

ogy and more. We propose to use Restricted Set Classification (RSC) for

classifying multiple animals simultaneously from the same image. Our lit-

erature review revealed that this problem has not been solved thus far. We

applied RSC on a koi fish video using a convolutional neural network (CNN)

as the individual classifier. Our results demonstrate that RSC is significantly

better than applying just the CNN, as it eliminates duplicate labels in the

same image and improves the overall classification accuracy.

Keywords: Individual animal recognition, Reidentification, Restricted Set

Classification

1. Introduction1

Consider an environmental project where the scientist is interested in wild2

animal behaviour, and is monitoring the movements of a group of animals3

on a daily basis. In order to study the behaviour and the dynamic within4

the group, each animal has to be identified with a unique tag or name. As5

recording and processing 24-hour video footage is impractical, time-lapse6
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footage can be used instead. This modality will render tracking methods7

infeasible and will require other methods for re-identification of the animals8

in the group images. Individual animal recognition has made significant9

advances [1, 2, 3, 4]. Interestingly, the current approaches try to identify10

each animal individually, disregarding the possibility that several animals11

from the same group can be present in the image. Having several animals12

in the same image poses an instant constraint on the classification task.13

Suppose that four subimages were extracted from an image, each containing14

an individual animal. In classifying those four individuals, we will have the15

extra knowledge that they all have different identities. Taking this restriction16

into account is expected to improve on the individual classification accuracy.17

In this study we propose a methods for re-identification of animals from18

images using Restricted Set Classification (RSC) [5, 6, 7]. RSC belongs to19

the general area of weak supervision and non-standard classification [8]. A20

set of objects are classified together so that each object receives a unique21

label but the relationship between the objects (the context) is also taken22

into account. Our experiments with a video of a fish pond demonstrate that23

the classification accuracy increased compared to that of the naive approach24

where each object is classified individually.25

The rest of the paper is organised as follows. Section 2 gives an overview26

and categorisation of the computer vision methods for animal recognition and27

reidentification. RSC is explained in Section 3. The experiment is reported28

in Section 4 and our conclusions are given in Section 5.29

2. Methods and approaches for animal recognition30

Past methods for animal identification such as physical branding, tagging,31

tattooing or radio frequency identification (RFID) were accurate but often32
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invasive or at least intrusive to the animal [9, 10, 11]. Computer vision has33

been gaining momentum as an inexpensive and non-intrusive alternative.34

2.1. Tasks35

A substantial amount of research has been devoted to automatic analysis36

of camera-trap images in order to find out whether there is an animal in the37

camera view and also to identify the species [3, 12, 13, 14].38

On the other hand, individual animal identification and re-identification39

are of great interest to the animal behaviourist. Started as hand-drawn pat-40

terns and descriptions of re-captured animals (e.g., swan bill patterns [15]),41

visual biometrics now dominate the research landscape of animal re-identi-42

fication. Burghardt and Campbell [16] point out in 2007 that while tools for43

human re-identification from images abound, animal re-identification does44

not enjoy the same level of attention. Nonetheless, there are many studies,45

especially recent ones, that propose adapted or new methodologies for animal46

re-identification. One of the matching directions between human and ani-47

mal re-identification is face/head identification in the image and subsequent48

recognition, predominantly for primates [17, 18, 19] but also for other animals49

such as cats, tigers, pandas, foxes, cheetahs [20], lions [21], lemurs [22] and50

cows [23]. The main interest, however, lies in the identification of the unique51

coat/skin pattern such as spots, stripes, creases, etc. [24, 25, 26, 16, 27].52

In tracking animals in video footage, the main focus is on the trajectories53

of the movements of the individual animals [28, 29, 30, 31]. The animals54

have to be re-identified in each frame of the video. This is typically done55

based on two sources of information: the predicted position of the animal56

and the appearance. The leading source is the former, especially in the case57

when the animals are very similar in appearance such as fruit flies or ants.58
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In this study, we are interested in identification of individual animals from59

separate images (e.g. from time-lapse video footage), which may not form a60

succession suitable for tracking. Thus, the appearance of the animal is the61

only source of information.62

Notably, the task of group recognition has not been approached thus far63

in the literature. Such groups exist in many of the studies, as can be seen64

by the published images, for example, a group of primates [19], piglets [32],65

cows [33] or African penguins [34]. Here we argue that taking the group into66

account will improve on the accuracy of the individual recognition.67

2.2. Machine Learning and Computer Vision methods68

The overwhelming majority of the literature on animal identification is69

concerned with what Schneider et al. [3] name feature engineering. This is a70

collective term for methods from Computer Vision for extracting informative71

features from images and videos. Machine Learning has been widely applied72

in studying animal behaviour [35] but it can offer a lot more, specifically73

to animal re-identification. Typically, animal re-identification relies on a74

database of stored images and a comparison of a candidate image with the75

database to retrieve the closest match. This approach is the same as the76

nearest-neighbour classifier in machine learning. The use of state-of-the-art77

machine learning is handicapped by the relatively small number of images of78

a single individual in the database. This is the case in many applications,79

especially those relying on crowd sourcing for collecting images of individual80

animals. Even though the database may have a substantial size, containing81

data for thousands of animals, training accurate classifiers will be impossible82

due to the small count of images per animal. In our scenario, a group of83

animals is observed over a period of time, allowing for collecting an adequate84
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number of samples for each individual. In this case, advanced classification85

methods could be applied.86

Recently, deep neural networks (DNN) have established themselves as87

the preferred tool for various tasks in animal re-identification [36, 37, 13, 14].88

While most of the applications are about detecting bounding boxes, face89

matching and similarity evaluation [36], with a sufficient number of images90

per individual in the data set, DNN can be used as a high-accuracy classifier.91

We use a DNN classifier in the experiment in this study. We show that taking92

advantage of the group context improves the classification accuracy of the93

DNN classifier.94

3. Restricted Set Classification95

3.1. Definitions96

Definition 1. The restricted set classification problem is defined as follows97

[5, 7]. Let X = {x1, . . . ,xm} be a set of instances such that at most ki98

instances come from class ωi ∈ Ω, where Ω = {ω1, . . . , ωc} is the set of class99

labels (animal identities). The task is to find labels for all elements of X so100

that the restriction holds.101

Note that k1 + . . .+ kc = k ≥ m.102

Definition 2. A base classifier D is a classifier that assigns a class label to103

an instance x ∈ Rn
104

D : Rn → Ω. (1)

We also require that D provides estimates of the posterior probabilities105

P (ω1|x), . . . , P (ωc|x).106
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For the animal re-identification problem, we assume that there is a group107

of c animals that we wish to monitor. The c animals are the classes of interest.108

Assuming that there are no newcomers to the group, in any given image,109

there may be at most c different animals. This problem is a version of the110

restricted set classification problem, which we termed “who-is-missing” [6].111

In this case, k1 = k2 = . . . = kc = 1, and m ≤ c. Classifier D will output the112

probabilities for the c classes for a given animal sub-image x.113

Definition 3. A super-label for set X is any collection of m labels from Ω so114

that any instance x ∈ X receives a single label. A super-label will be called115

consistent if it satisfies the requirement that at most ki labels are equal to116

ωi, i = 1, . . . , c.117

Denote by S the set of all possible super-labels of X. For cardinality118

|X| = m, S has c!
(c−m)!

elements. Let P = [pij] be a matrix of size m× c that119

contains the posterior probability estimates obtained from the base classifier120

D applied to X. Entry pij is the estimate of P (ωj|xi). Let P be the set of121

all matrices P .122

Definition 4. A set classifier Dset assigns a super-label to any set X using123

the output of classifier D, that is124

Dset(X,D) : P → S. (2)

3.2. Evaluation of accuracy of a set classifier125

We consider two type of estimates of the accuracy of Dset for a given set126

X:127

� AT , total accuracy: AT = 1 if all labels are correctly assigned to the128

instances in X, and AT = 0, otherwise;129
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� AP , partial accuracy: AP is the proportion correctly labelled instances130

across the whole set of instances (identical to classification accuracy).131

3.3. Three set classifiers132

We consider here the following set classifiers:133

(1) Independent set classifier (Baseline) Di
set. This classifier takes the labels134

suggested by D without any modification and collates them to make the135

super-label of X. Note that this approach does not guard against having136

multiple labels of the same animal for different objects in X (sub-images).137

Thus, the super-label is not guaranteed to be consistent.138

In Di
set, all instances are labelled independently. Assuming that D’s139

accuracy is p, the accuracy measures of Di
set are140

AT (Di
set) = pE[m], (3)

where E[m] is the expected value of the cardinality of X, and141

AP (Di
set) = p. (4)

(2) Greedy set classifier Dg

set. The input to this set classifier are the posterior142

probabilities P (ωi|x) produced by classifier D for i = 1 . . . , c for the given143

x ∈ Rn. The Greedy Set Classifier labels X according to the following144

algorithm:145

1. Initialise a set V = ∅ to store the assigned object-class pairs.146

2. Identify the largest posterior probability P (ω∗j |x∗j) among the objects147

and classes not assigned so far.148

3. Remove ω∗j from the list of available classes, and x∗j from the list of149

available objects, and add the pair to set V .150
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4. If there are no objects left, stop and return V . Else, continue from151

step 2.152

The Greedy set classifier guarantees consistent super-labels. It can be153

formally proved [7] that for two-class problems, and 2 instances in each image,154

AP (Dg

set) > AP (Di
set) . (5)

(3) Hungarian set classifier Dh
set. Here we propose to use this set classifier155

for the animal re-identification problem. It is based on the Hungarian as-156

signment algorithm further developed by Kuhn and Munkres, also known as157

Kuhn-Munkres algorithm [38]. Proposed originally for c × c matrices, the158

Hungarian algorithm has been extended for rectangular matrices [39]. Be-159

low we demonstrate the mathematical rationale behind the Hungarian set160

classifier.161

We shall assume that the objects in X are drawn independently from162

their respective classes, that is, xi is drawn from the distribution of class ωi,163

independently of the remaining m− 1 objects. It can be argued that the ap-164

pearance of a given animal in the image does not depend on the appearances165

of the other animals. For example, one chimpanzee’s face could be in full166

frontal view in the image while another’s could be in semi-profile. However,167

animals interact in certain ways, and there may be patterns of interactions168

that will correlate the animals’ appearance. For example, all animals can be169

on high alert and looking in the direction of the approaching danger. Also,170

they may all be looking at a food source. Correlated appearances may be171

used to improve the accuracy of the set classifier. For such correlated appear-172

ances to be evaluated and used, we need a large amount of data. While this173

is an interesting research line, for the purposes of this study, we will assume174

independent appearances.175
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With this assumption in place, the likelihood of a super-label S = 〈s1, . . . , sm〉,176

si ∈ Ω is177

L(S|X) ∝
m∏
i=1

P (si|xi) . (6)

The optimal super-label S∗ will be the one maximising L (equivalently log(L)),178

that is179

S∗ = arg max
S∈S

m∑
i=1

log(P (si|xi)) , (7)

It can be shown that the Greedy set classifier Dg

set will not guarantee180

the optimal solution. We can cast the problem defined by Equation (7) as181

a linear programming problem (LP). Let T be a reward matrix with entries182

ti,j = P (ωi|xj). Introducing the unknowns r(i,j) ∈ {0, 1}, i = 1, . . . ,m,183

j = 1, . . . , c, the LP is184

max
m∑
i=1

c∑
j=1

r(i,j) log(ti,j),

subject to185

m∑
i=1

r(i,j) ≤ 1, j = 1, . . . , c,

c∑
j=1

r(i,j) = 1, i = 1, . . . ,m.

The Hungarian assignment algorithm provides the solution to this LP186

problem, guaranteeing that the obtained super-label is S∗.1187

1MATLAB code for the Restricted Set Classification with the three set classifiers is

available at https://github.com/LucyKuncheva/Restricted-Set-Classification .
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4. Experiment188

4.1. Data189

Koi is an informal group name of the coloured variants of the Amur carp190

(Cyprinus rubrofuscus) that are kept for decorative purposes. We sourced a191

video from Pixabay to use as an example with multiple animals in the same192

frame. The video consists of 536 frames with 9 fish in total. We named the193

fish randomly (regardless of their true gender): Catherine, Dwayne, Florence,194

Humphrey, JP, Jack, Ruby, Selwyn and Siobhan. Each frame of the video195

was manually segmented by defining a bounding box around the visible part196

of the fish. Each sub-image was stored with the respective name tag. By197

segmenting the video manually, we bypass the main bottleneck of animal198

re-identification. We did this on purpose, because the claim in this study199

concerns the last stage of the classification.200

Overall, 1640 sub-images were cropped from the 536 frames, each one201

containing one fish individual. Table 1 shows the distribution of the classes202

as well as examples from each class.203

4.2. The Independent classifier D204

The Independent classifier D used in this experiment was a deep neu-205

ral network (Convolutional Neural Network, CNN) from the Deep Learning206

Toolbox of MATLAB, version 12.1 (R2019a). We chose this model because207

of the overwhelming evidence in the literature reviewed in Section 2 in favour208

of deep learning models. Since we have nine classes, and the data set is not209

very large compared to standard deep learning set-ups, we kept the CNN as210

simple as possible using its default structure and training choices:211

� Structure:212
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Table 1: Distribution and examples of the classes (nine individual fish).

Name Number Examples

Catherine 103 (6.28%)

Dwayne 228 (13.90%)

Florence 145 (8.84%)

Humphrey 152 (9.27%)

JP 233 (14.21%)

Jack 161 (9.82%)

Ruby 265 (16.16%)

Selwyn 94 (5.73%)

Siobhan 259 (15.79%)

Total 1640 (100.00%)
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– an input layer with colour images sized 56-by-56 pixels213

– a convolution layer with 10 filters of size 5-by-5214

– a RELU layer215

– a max pooling layer with pool size [2, 2] and stride [2, 2]216

– a fully connected layer for 9 classes217

– a softmax layer returning the posterior probabilities for the classes.218

� Training parameters: We used the default stochastic gradient descent219

with momentum (SGDM) optimiser with 30 maximum number of epochs220

and initial learning rate 0.0001. The data was shuffled after each epoch.221

� Data Augmentation:222

In view of the relatively small data size, we opted for augmentation.223

Each image in the data set was processed twice with random aug-224

mentation, thereby tripling the training data size. MATLAB func-225

tion imageDataAugmenter was applied with the following augmenta-226

tion choices:227

– random rotation at an angle between 0 and 360 degrees. This228

transformation was deemed reasonable because the fish were swim-229

ming in any direction in the video.230

– random scaling on the x-axis and a separate random scaling on231

the y-axis at a ratio between 0.8 and 1.232

– random shear on the x-axis and a separate random shear on the233

y-axis at an angle between −20 degrees and 20 degrees.234

– random translation on the x-axis and a separate random transla-235

tion on the y-axis at ±4 pixels.236
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The experiments were carried out on a HP Pavilion Laptop 15-cs1xxx with237

graphics card NVIDIA GeForceGTX 1050 with Max-Q Design and operating238

system Windows 10 Home 64-bit.239

We considered the classification accuracy sufficient for the purposes of240

this study.241

4.3. An example242

The expected improvement on the classification accuracy by using RSC243

is illustrated by the following example. Figure 1 shows the original image244

containing five fish and Catherine’s head. Catherine was not segmented in245

this frame because she would not be identifiable from such a small part.

Figure 1: Original image with five recognisable fish.

246

Figure 2 shows the labels assigned by the Independent set classifier. This247

classifier labelled two fish as Jack and mistook Humphrey for Florence.248

The two proper set classifiers guarantee that the restriction is observed249

(no repeated labels). The Greedy set classifier (Figure 3) resolves the conflict250
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Figure 2: Labelling by the Independent set classifier. Correct labels are marked with a

yellow bounding box, repeated labels with red, and wrong (non-repeated) labels, with

blue.

by relabelling the bottom “Jack” to “Catherine”, which is also largely white251

in colour. It, however fails to recover the correct label of “Florence”.252

Finally, the Hungarian set classifier reassigns the labels to their correct253

values as shown in Figure 4.254

4.4. Cross-validation experiment255

To compare the independent set classifier with the two proposed variants,256

we ran a 2-fold, 3-fold, 5-fold and 10-fold cross-validation by splitting the set257

of frames into folds. We then retrieved the objects in the training frames to258

collate a training set of objects for D. The objects in the testing frames were259

pooled to create the testing data set. Care should be taken when preparing260

training and testing data from a video. The individual fish images cropped261

from consecutive frames will be very similar. Thus, if two consecutive frames262

are randomly assigned to the training and the testing part, respectively, the263
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Figure 3: Labelling by the Greedy set classifier. Correct labels are marked with a yellow

bounding box and wrong labels, with blue.

classifier may achieve a deceptively high accuracy. Therefore, we carried out264

the cross-validation by splitting the video into time intervals. For example,265

in the two-fold cross-validation experiment, the first 268 frames were taken266

as the first fold and the remaining 268 frames, as the second fold. All cross-267

validation and data shuffle experiments were carried out in this manner.268

The classification accuracies AP and AT , averaged across the folds, are269

shown in Tables 2 and 3, respectively. The last column in Table 2 shows270

the number of frames with repeated labels in the testing set. These numbers271

show how many chances there have been for the RSC to improve on the272

Independent set classifier. As D becomes more accurate with the growing273

size of the training data, the number of frames with repeated labels declines.274

Tables 2 and 3 show that the best option is the Hungarian set classifier275

for both AP and AT . Naturally, the total accuracy is lower than the partial276

accuracy, as it requires that all objects in the frame are correctly labelled.277
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Figure 4: Labelling by the Hungarian set classifier. Correct labels are marked with a

yellow bounding box.

AT is more affected by the training sample size than AP . In the 2-fold cross-278

validation the training sample contained 820 objects on average, while in the279

10-fold cv, this size was 1476.280

Statistical validation of these results is only feasible for the 10-fold cross-281

validation experiment. Table 4 shows the relationship between the set clas-282

sifiers. The probabilities were calculated using a Bayesian correlated t-test283

proposed by Benavoli et al. [40]. The paper argues that the p-value based284

statistical analyses are inaccurate and misleading. The proposed alternative285

directly answers the question of ‘what is the probability that classifier A286

is better than classifier B?’ For two classifiers and one data set, the authors287

propose using a cross-validation and a Bayesian correlated t-test as a replace-288

ment of the conventional t-test or even the corrected t-test due to Nadeau289
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Table 2: Partial accuracy AP for the cross-validation experiment and the three set classi-

fiers. The last column shows the number of frames with repeated labels.

Hungarian Greedy Independent Repeated labels

2-fold 0.4257 0.4063 0.4248 206

3-fold 0.5204 0.4856 0.4613 250

5-fold 0.4819 0.4743 0.4701 177

10-fold 0.6243 0.6138 0.6039 165

Table 3: Total accuracy AT for the cross-validation experiment and the three set classifiers

Hungarian Greedy Independent

2-fold 0.1856 0.1819 0.1726

3-fold 0.2559 0.2236 0.1593

5-fold 0.1611 0.1739 0.1412

10-fold 0.2502 0.2481 0.2219

and Bengio [41].2 Again, the Hungarian set classifier is substantially better290

than the Greedy set classifier and the Independent classifier in view of both291

partial accuracy and total accuracy.292

To illustrate the difference in the performances of H and I, we com-293

pare their partial accuracy AP . Based on the number of folds of the cross-294

validation and the number of repeats, a distribution of the paired differences295

between the classification accuracies was calculated and plotted in Figure 5.296

It is an extended Student distribution with degrees of freedom N − 1, where297

2Python library baycomp contains the functions for this analysis https://github.com/

janezd/baycomp. Here we used a MATLAB version available at https://github.com/

LucyKuncheva/Bayesian-Analysis-for-Comparing-Classifiers.
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Table 4: Probabilities from the Bayesian correlated t-test for AP . The value in cell (i, j)

is the probability that Method i (the row) is better than Method j (the column).

Partial accuracy AP Total accuracy AT

H G I H G I

Hungarian 0.0000 0.9221 0.8581 0.0000 0.9884 0.9988

Greedy 0.0779 0.0000 0.7282 0.0116 0.0000 0.9989

Independent 0.1419 0.2718 0.0000 0.0012 0.0011 0.0000

Note: The column headings are abbreviated as H (Hungarian set classifier), G

(Greedy set classifier) and I (Independent classifier)

N is the number of differences, the mean is equal to the sample mean x̂, the298

variance is299

v =

(
1

N
+

ρ

(1− ρ)

)
σ̂2

where ρ = 1/K for a K-fold cross-validation and σ̂2 is the sample variance.300

The larger shaded area to the right of 0 indicates that the differences are301

mostly positive, and the Hungarian set classifier is better than the Indepen-302

dent set classifier.303

Based on these results, we recommend the Hungarian set classifier for the304

problem of individual animal recognition from images containing groups of305

animals.306

4.5. Data-shuffle experiment307

This part of the experiment examines the effect of the training set size308

on the improvement offered by the set classifiers. We carried out 100 runs309

of training and testing with a given proportion split. As explained earlier,310

we kept the testing set as a time-contiguous part of the video with a random311
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Figure 5: Distribution of the difference AP (Dh
set) − AP (Di

set) [40]. Most values lie to

the right of zero (orange line). The shaded area to the right of zero gives the probability

0.8581 that the Hungarian set classifier is better than the Independent classifier.

starting point. We ran experiments with split proportions {0.5, 0.7, 0.9}.312

The accuracies AP and AT for the three methods are shown in Tables 5 and313

6, respectively.314

Table 5: Partial accuracy AP for the data shuffle experiment and the three set classifiers for

splitting proportions P . The last column (R) shows the number of frames with repeated

labels.

P Hungarian Greedy Independent R

0.5 0.3823 0.3624 0.3350 131.7100

0.7 0.4216 0.4079 0.3696 74.0500

0.9 0.5862 0.5783 0.5675 15.1300

The results ascertain again the advantage of the RSC classifiers over the315

independent labelling of the objects. Notably, there is a dramatic fall in316

the classification accuracy for smaller training data sizes. Further statistical317

analyses using the Bayesian correlated t-test also unequivocally select the318
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Table 6: Total accuracy AT for the data shuffle experiment and the three set classifiers

for splitting proportions P .

P Hungarian Greedy Independent

0.5 0.1155 0.1132 0.1001

0.7 0.0659 0.0641 0.0494

0.9 0.1427 0.1414 0.1071

Hungarian set classifier as the best of the three alternatives. The dominance319

of the Hungarian set classifier is even more prominent compared to the cross-320

validation experiment. For all split proportions, for both AP and AT , the321

probability that the Hungarian set classifier is better the Greedy and the322

Independent set classifiers was evaluated at 1. Similarly, The Greedy set323

classifier dominated the Independent set classifier in all experiments with324

probability evaluated at 1.325

The rate of improvement was not affected much by the training sample326

size, unlike the accuracy itself. While accuracy AP drops by over 20% (in327

absolute units) when 50% of the data is used for training compared to 90%328

of the data, the improvement offered by the RSC methods is within 5% for329

both training proportions. Still, the less accurate individual classifier for the330

50% split leaves more room for improvement. To illustrate this, we show two331

box-plots in Figure 6. The three methods were plotted next to one another332

for split proportions 0.5 and 0.9. In both plots, the box for the Hungarian333

set classifier is higher than the other two boxes. The dotted line marks the334

median of the Independent set classifier taken as baseline.335

While the improvement achieved by the Hungarian and the Greedy set336

classifiers is visible, the rate of improvement is similar between the two pro-337

portions. The reason for this is that if the independent classifier D is not338
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very good (the case with the smaller training data), then there are too many339

mistakes. For example, a frame containing fish that is labelled wrongly but340

there are no repeated labels, will receive the same labels from all set classi-341

fiers. Therefore, the potential of correcting the repeated labels through any342

set classifier is limited by the accuracy of D.343

Fine-grained classifiers based on more complex CNN architectures may344

be accurate, provided there is enough data for training. In this case, the345

effect of RSC may be too small to warrant its use.346

Figure 6: Box-plots of the classification accuracies AP for split proportions 0.5 and 0.9.

The dashed horizontal line indicates the median of the baseline method (the Independent

set classifier).

Table 7 shows the computational times of the data shuffle experiments.347

The table also shows the number of frames in the training data as well as the348

average number of images in the training data (after augmentation) and the349

average number of frames with repeated labels. The times are calculated as350

the average of the 100 runs and are shown in seconds. The CNN training takes351

the bulk of the time. Testing is a small fraction of the training time, and the352

add-ons through the RSC classifier are also relatively small. The Hungarian353

set classifier is slightly more expensive than the Greedy set classifier and can354
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be used as a viable extension of the individual CNN in the RSC setting.355

Table 7: Computational times in seconds for the data shuffle experiment (100 runs with

each proportion split). P is the proportion of the video for training; N is the number of

individual training sub-images per run; R is the number frames with repeated labels per

run.

Times (s)

P (frames) N R Train Test Hungarian Greedy

0.5 (268) 2151.0 131.7 15.2 0.120 0.027 0.021

0.7 (375) 3309.0 74.0 20.8 0.088 0.016 0.013

0.9 (482) 4146.0 15.1 28.8 0.055 0.005 0.005

5. Conclusion356

In this study we advocate using a Restricted Set Classification instead of357

independent classification for individual animal recognition. We demonstrate358

that RSC can correct mistakes when there are more than one animal in the359

same image assigned to the same individual label. The best RSC version360

was the Hungarian set classifier which assigns the most probable labels while361

observing the restriction of no repeated labels in the same frame.362

Note that no further labelling is needed for RSC to work. The only363

information that it uses is that the set of sub-images that are labelled together364

come from the same frame.365

We observed that the potential of correcting repeated labels through a set366

classifier is limited by the accuracy of the base classifier. It would be inter-367

esting to prove the limits of the improvement and determine how calibration368

of posterior probabilities affects it.369
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This study bypasses the considerable problem of image segmentation by370

assuming that the correct bounding boxes and labels are available. The371

result from any classification will be preconditioned by the accuracy of the372

segmentation. If the segmentation is accurate, then the classifier (CNN)373

could be good on its own. This means that the individual classification374

accuracy will be high, and the benefits from RSC may not be that great.375

The proposed approach will be most useful when the individual accuracy376

leaves room for improvement. It will be interesting to study the effect of377

automatic segmentation on the improvement potential of RSC.378

While the results in favour of the RSC classifier are compelling, we have379

used only one data set (the koi fish video). We could not find another suitable380

annotated and labelled data set with multiple individual animals to expand381

our experiment. We are currently preparing a second data set from a video382

containing a group of pigeons.383

An important future line of research is accommodating objects from384

classes that were not represented in the training data. In other words, the385

individual classifier D should be able to realise its own competence by out-386

putting a probability vector that does not necessarily sum up to 1. The387

‘leftover’ probability will allow for assigning label ‘don’t know’ to accom-388

modate unseen classes. The set classifier should be modified accordingly.389

Further on, constrained clustering can be used to label the objects in the390

‘don’t know’ category into different classes (individuals). The constrained391

version of the clustering will ensure that the RSC restrictions are in place,392

that is, there cannot be more than one individual with the same class label393

in a single image.394
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[1] H. S. Kühl, T. Burghardt, Animal biometrics: quantifying and detecting401

phenotypic appearance, Trends in Ecology & Evolution 28 (2013) 432–402

441. doi:10.1016/j.tree.2013.02.013.403

[2] J. Parham, C. Stewart, J. Crall, D. Rubenstein, J. Holmberg, T. Berger-404

Wolf, An animal detection pipeline for identification, in: 2018 IEEE405

Winter Conference on Applications of Computer Vision (WACV), IEEE,406

2018. doi:10.1109/wacv.2018.00123.407

[3] S. Schneider, G. W. Taylor, S. Kremer, Deep learning object detection408

methods for ecological camera trap data, in: 2018 15th Conference409

on Computer and Robot Vision (CRV), IEEE, 2018. doi:10.1109/crv.410

2018.00052.411

[4] S. Kumar, S. K. Singh, Visual animal biometrics: survey, IET Biomet-412

rics 6 (2017) 139–156. doi:10.1049/iet-bmt.2016.0017.413

[5] L. I. Kuncheva, Full-class set classification using the Hungarian algo-414

rithm, International Journal of Machine Learning and Cybernetics 1415

(2010) 53–61. doi:DOI10.1007/s13042-010-0002-z.416

24



[6] L. I. Kuncheva, A. S. Jackson, Who is missing? A new pattern recogni-417

tion puzzle, in: Intenrational Conference on Statistical, Structural and418

Syntactic Pattern Recognition (S+SSPR), volume LNCS 8621, Springer,419

Joensuu, Funland, 2014, pp. 243–252.420
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