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Abstract

Decision templates (DT) are a technique for classifier fusion for continuous-valued individual classifier
outputs. The individual outputs considered here sum up to the same value (e.g., statistical classifiers,
yielding some estimates of the posterior probabilities for the classes). First, the DT fusion algorithm is
explained. Second, we show that two similarity measures (S1 and S2) and two inclusion indices (I1 and I2)
between fuzzy sets (see Dubois and Prade, 1980) produce the same DT classifier. The equivalence is proven
by showing that for every object submitted for classification, all 4 measures induce the same ordering on
the set of class labels (through DT fusion), thereby assigning the object to the same class.

Keywords: Pattern recognition, multiple classifier fusion, aggregation, decision templates, measures of
similarity and inclusion

1 Introduction

The objective of combination of a set of classifiers is to achieve a higher accuracy than the accuracy of the best
individual in the set. There are generally two types of combination: classifier selection and classifier fusion
(see [16]). The presumption in classifier selection is that each classifier is “an expert” in some local area of
the feature space. For a feature vector x ∈ <p submitted for classification, the classifier responsible for the
vicinity of x should be given the highest credit for assigning the class label to x. We can nominate either only
one classifier to make the decision, as in [13], or more than one “local experts”, as in [1, 7].

Classifier fusion assumes that all classifiers are trained over the whole feature space, and are thereby
considered as competitive rather than complementary [12, 17]. Several fuzzy techniques have been proposed
for classifier fusion, the most popular being the fuzzy integral [3, 5, 8, 15]. Decision templates (DT) [10, 11]
is an intuitive and simple classifier fusion scheme. A series of experiments has been carried out comparing
various DTs and 15 other classifier fusion methods [2, 9]. The results were generally in favor of DTs, and
the best of all DTs were those based on the four measures studied here. DTs did not outperform all the
rival methods in all experiments but in the long run rated better than methods such as Behavior-Knowledge
Space BKS [6], which tended to overtrain; fusion by statistical classifiers, which was not always feasible; and
assumption-based schemes such as Naive Bayes [17] whose assumptions do not always hold. Dempster Shafer
aggregation implemented as suggested by Rogova [14] showed similar performance to the DTs but with much
higher computational complexity. Table 1 is an excerpt of the results presented in [9]. Two data sets were
used: the Satimage data (36 features (4 used in the experiments), 6 classes, 6435 objects) and the Phoneme
data (5 features, 2 classes, 5404 objects) from ELENA database (anonymous ftp at ftp.dice.ucl.ac.be, directory
pub/neural-nets/ELENA/databases). The table entries are the estimated testing classification accuracy (in
%), averaged over 10 experiments with each data set. For each experiment, 2000 objects were taken at random
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Table 1: Test classification accuracy with three classifier fusion methods (the average from 10 experiments,
2000 training objects taken at random as the training set in each experiment)

Satimage data Phoneme data

Best individual 80.62 75.17
Majority Vote 82.23 76.08

Average class support 83.88 75.91
DTs 84.88 77.45

as the training set, and the remaining part of the data was used for testing. Six individual classifiers (quadratic
discriminant classifiers based on each combination of 2 features) were used with the Satimage data and 10
individual classifiers were used with the Phoneme data. Three fusion methods are displayed in the table:
Majority vote, Average of the class support, and DTs (based on S1). Each of the fusion methods improved
on the best individual classifier (the accuracy is also shown in Table 1). In this example the DTs provide
the highest classification accuracy. A result that appeared during the experiments was that the DT fusion
using the four measures S1, S2, I1 and I2 produced the same classification accuracy. The connection was not
straightforward and this motivated the current study.

Decision templates work by comparing a fuzzy set obtained from the individual classifier outputs for a
given x with a template for each class using a measure of similarity (in a broad sense) between the two fuzzy
sets. This paper proves the equivalence between four such measures: S1, S2, I1, and I2 (see [4]), for individual
classifiers whose outputs sum up to the same (fixed) value. This type of classifiers is most often used in practice.
For example, widely used statistical classifiers often produce some estimate of the posterior probabilities of
the classes.

Section 2 explains the fuzzy template classifier fusion, Section 3 contains the proof of the equivalence of
the four measures, and Section 4, the conclusions.

2 Decision templates for classifier fusion

Let x ∈ <p be a feature vector and {1, 2, . . . , c} be the label set of c classes. Every mapping

D : <p → {1, 2, . . . , c} (1)

is called a classifier. A fuzzy classifier is the mapping

D̃ : <p → [0, 1]c. (2)

with output µD̃(x) = [µ1

D̃
(x), . . . , µc

D̃
(x)]T . The components µi

D̃
(x) can be regarded as “support” given by

classifier D̃ for the hypothesis that x comes from class i. If D̃ is a statistical classifier, the degree of membership
µi

D̃
(x) is most often some estimate of the posterior probability P (i|x). Besides the probabilistic interpretation,

this degree can be viewed as typicalness, belief, certainty, possibility, etc., not necessarily coming from a
statistical classifier. The decision of D̃ can be “hardened” so that a crisp class label D(x) ∈ {1, 2, . . . , c} is
assigned to x, usually by the maximum membership rule:

D(x) = k ⇐⇒ µk
D̃

(x) = max
i=1,...,c

µi
D̃

(x) (3)

Let C = {C1, . . . , CL} be the set of L individual classifiers. We denote by Ci(x) the output of the ith
classifier: Ci(x) = [di,1(x), . . . , di,c(x)]T . Typically, di,j(x) ∈ [0, 1]. The individual classifier decisions are then

aggregated (classifier fusion) to design a fuzzy classifier D̃
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D̃(x) = F(C1(x), . . . , CL(x)), (4)

where F is called aggregation rule. The class label for x is found by the maximum membership rule (3).

Definition 1. The decision profile of a combination of classifiers, given x ∈ <p, is the matrix

DP (x) =













d1,1(x) ... d1,j(x) ... d1,c(x)
...

di,1(x) ... di,j(x) ... di,c(x)
...

dL,1(x) ... dL,j(x) ... dL,c(x)













. (5)

@
@

@R

Output of classifier Ci(x)

Let Z = {z1, . . . , zN}, zj ∈ <
p be the (labeled) training data set.

Definition 2. The decision templates of class i is the L×c matrix Fi = {fi(k, s)} whose elements are obtained

by

fi(k, s) =

∑N
j=1

Ind(zj , i) dk,s(zj)
∑N

j=1
Ind(zj , i)

, (6)

where Ind(zj , i) is an indicator function with value 1 if zj has label i, and 0, otherwise [10, 11].
Thus, the fuzzy template for class i is the average of the decision profiles of the elements of the training

set Z labeled in class i. When x ∈ <p is submitted for classification, the DT scheme produces the soft class
label:

µi
D̃

(x) = S(DP (x), Fi)), i = 1, . . . , c, (7)

where S is interpreted as similarity. The higher the similarity between the decision profile of the current x

(DP (x)) and the fuzzy template for class i (Fi) is, the higher the support for that class (µi
D̃

(x)). Figure
1 illustrates how the DT scheme operates. The decision templates are calculated in advance using Z as in
equation (6).

Regarding the two arguments of S as fuzzy sets on some universal set with L · c elements, various fuzzy
measures of similarity can be used. Let A and B be fuzzy sets on U = {u1, . . . , un}. Here we consider the
following two measures of similarity [4]

S(A, B) ≡ S1(A, B) =
‖ A ∩B ‖

‖ A ∪B ‖
, (8)

where ‖ ζ ‖ is the relative cardinality of the fuzzy set ζ on U

‖ ζ ‖=
1

n

n
∑

i=1

µζ(ui), (9)

and

S(A, B) ≡ S2(A, B) = 1− ‖ A∇B ‖ . (10)
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Figure 1: Operation of the decision templates (DT) classifier fusion scheme

where A∇B is the symmetric difference defined by the Hamming distance:

µA∇B(u) = |µA(u)− µB(u)|. (11)

We also consider the following two indices of inclusion of A in B

S(A, B) ≡ I1(A, B) =
‖ A ∩ B ‖

‖ A ‖
, (12)

and

S(A, B) ≡ I2(A, B) = 1− ‖ A| − |B ‖ (13)

where | − | is the bounded difference

µA|−|B(u) = max{0, µA(u)− µB(u)} (14)

For intersection and union we use minimum and maximum, respectively. These four measures were of a
special interest because they led to the most accurate (hardened) D̃ compared to DT using S3, S4, S5, I3, I4,
and the consistency measure C (see [4]), and also compared to another 15 fusion techniques in our preliminary
experimental study [9]. These 4 measures were superior to the other 6, probably because they are integral

rather than point-wise.
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3 The equivalence of S1, S2, I1, and I2

We consider the (most common) case where the output of each classifier Ci, i = 1 . . . , L satisfy

c
∑

j=1

di,j(x) = T, ∀x ∈ <p, T > 0. (15)

When Cis are statistical classifiers, di,j(x) are interpreted as posterior probabilities and therefore T = 1.
We can regard the decision profile DP (x) and the decision templates Fj , j = 1, . . . , c as fuzzy sets on a certain
universal set M with L · c elements.

Two similarity measures Sq and Sr will be considered equivalent if the DT classifier fusion using any of
them produces the same crisp class labeling. This means that for every x ∈ <p submitted for classification,
the maximal component of D̃(x) using Sq has the same index (class label) as the maximal component of D̃(x)
using Sr. A sufficient (but not necessary) condition for this is that the two measures induce the same ordering
of the class labels for x, i.e.,

Sq(DP (x), Fj1 ) > Sq(DP (x), Fj2 ) ⇐⇒ Sr(DP (x), Fj1 ) > Sr(DP (x), Fj2 ) (16)

To simplify the notations we consider A, B and C as fuzzy sets on U = {u1, . . . un} to denote respectively
DP (x), Fj1 and Fj2 as fuzzy sets on the set of individual classifier outputs.

Proposition 1. Let A, B and C be fuzzy sets on U such that ‖ A ‖=‖ B ‖=‖ C ‖= t
n , t > 0. Then

S1(A, B) > S1(A, C) ⇐⇒ S2(A, B) > S2(A, C) ⇐⇒ I1(A, B) > I1(A, C) ⇐⇒ I2(A, B) > I2(A, C).

Proof 1. The proof will show that all 4 inequalities reduce to the same inequality.

Proof 1a. (S1)

‖ A ∩ B ‖=
1

n

n
∑

i=1

min(µA(ui), µB(ui)) (17)

Let IAB be a set of indices (a subset of {1, 2, . . . , n}) such that

IAB = {k | µA(uk) > µB(uk)} (18)

Then

‖ A ∩ B ‖=
1

n





∑

k∈IAB

µB(uk) +
∑

k/∈IAB

µA(uk)



 =

1

n

(

∑

k∈IAB

µB(uk) + t−
∑

k∈IAB

µA(uk)

)

=
1

n

(

t−
∑

k∈IAB

(µA(uk)− µB(uk))

)

. (19)

For the denominator of S1

‖ A ∪ B ‖=
1

n

n
∑

i=1

max(µA(ui), µB(ui)) =

1

n





∑

k∈IAB

µA(uk) +
∑

k/∈IAB

µB(uk)



 =

5



1

n

(

∑

k∈IAB

µA(uk) + t−
∑

k∈IAB

µB(uk)

)

=
1

n

(

t +
∑

k∈IAB

(µA(uk)− µB(uk))

)

. (20)

Let IAC denote the same index set as in equation (18) but with respect to sets A and C. Similarly to
equations (19) for ‖ A ∩ B ‖ and (20) for ‖ A ∪B ‖, we get for S1(A, C)

‖ A ∩ C ‖=
1

n

(

t−
∑

k∈IAC

(µA(uk)− µC(uk))

)

. (21)

and

‖ A ∪ C ‖=
1

n

(

t +
∑

k∈IAC

(µA(uk)− µC(uk))

)

. (22)

We introduce the following notations

αAB =
∑

k∈IAB

(µA(uk)− µB(uk)) (23)

and
αAC =

∑

k∈IAC

(µA(uk)− µC(uk)) (24)

Then from the definition of S1 (8) and the inequality in the proposition it follows that

‖ A ∩ B ‖

‖ A ∪ B ‖
>
‖ A ∩ C ‖

‖ A ∪ C ‖
(25)

which gives
‖ A ∩ B ‖‖ A ∪ C ‖ > ‖ A ∩ C ‖‖ A ∪ B ‖ (26)

and

(t− αAB)(t + αAC) > (t + αAB)(t− αAC) (27)

which reduces to

αAC > αAB . (28)

Proof 1b. (S2)
First we consider the symmetric difference A∇B (11)

‖ A∇B ‖=
1

n

n
∑

i=1

|µA(ui)− µB(ui)| =

=
1

n





∑

k∈IAB

(µA(uk)− µB(uk)) +
∑

k/∈IAB

(µB(uk)− µA(uk))



 =

=
1

n

(

∑

k∈IAB

(µA(uk)− µB(uk)) + t−
∑

k∈IAB

(µB(uk)− µA(uk))

)

=

=
1

n

(

t + 2
∑

k∈IAB

(µA(uk)− µB(uk))

)

=
1

n
(t + 2αAB). (29)
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The inequality for S2 in the proposition can be rewritten as

1− ‖ A∇B ‖> 1− ‖ A∇C ‖, (30)

or equivalently
1− (t + 2αAB) > 1− (t + 2αAC) (31)

and

αAC > αAB . (32)

Proof 1c. (I1)
From the definition of I1 (12) and the inequality in the proposition

‖ A ∩ B ‖

‖ A ‖
>
‖ A ∩ C ‖

‖ A ‖
(33)

and using the notations αAB and αAC

(t− αAB) > (t− αAC) (34)

which reduces to

αAC > αAB . (35)

Proof 1d. (I2)
For the bounded difference A| − |B (14)

‖ A| − |B ‖=
1

n

n
∑

i=1

max{0, µA(u)− µB(u)} =
∑

k∈IAB

(µA(u)− µB(u)) = αAB . (36)

Then from the inequality in the proposition

1− ‖ A| − |B ‖> 1− ‖ A| − |C ‖ (37)

it follows that

1− αAB > 1− αAC , (38)

and
αAC > αAB , (39)

which completes the proof.

4 Conclusions

This paper considers classifier fusion using decision templates (DT). In the first part the DT fusion technique
is explained. Two similarity measures (S1 and S2) and two inclusion indices (I1 and I2) were shown to be
equivalent for the fuzzy template fusion if the individual classifier decisions sum up to the same (fixed) value.
The proposition is based on the sufficient condition that if two similarity measures induce the same ordering
on the set of class labels, the fusion will point to the same class label for both measures. In the proof, each of
the four inequalities is taken separately and shown to reduce to the same inequality for all 4 measures.

Considering computational complexity, all four measures take linear time with respect to the number of
elements of the universal set. In classifier fusion it is unlikely to have large number of individual classifiers.
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Usually 5-10 classifiers appear to be accurate and different enough to form a useful group. The number of
classes is typically not large either: from 2 to, e.g., 26 (in character recognition). This makes a universal
set with up to 260 elements, and the computational complexity of the four measures is practically the same.
The message is that when using DTs with statistical classifiers, only one of the 4 measures (any!) need be
calculated.
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