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The aim is to find the consistent set with the smallest possible

11\:‘:' " * 5 » o . .
tt? * % " s cardinality, called aminimal consistent subs¢MCS). One of the
:1"’ E “: 1//"_"’._ ‘}. earliest papers on this topic is by Hart [10], whose elegant method

% aw 7 * = - has been used as a basis for many subsequent modifications. Hart's
¢:, g, s -l'* .- F iterative procedure selects elements sequentially and ends up with
-~ ".,"."'* - :F o o et a relatively large consistent set. A recent study by Dasarathy [7]
:ﬁﬂ.“‘ ";"J * ‘J/"_ * presented a technique for finding a consistent set that he believed
s f'._."-"‘} .:..r'"ll to be minimal. On the IRIS data set, however, Dasarathy’s technique
@) finds a 15-element consistent subset, whereas our GA method resulted
in a 12-element consistent set. Thus, we provide a counterexample
o to Dasarathy’s conjecture that his MCS method is truly minimal.
*!ﬂ-! 3::== % “ ] g a Further, we wish to be able to select a small subsét-pfototypes
.‘ X : 1 O ‘/./.'_ull‘l a that restricts the resubstitution error to a certain predefined upper
e "'__'_.-" o0 ." limit. In the condensation techniques mentioned above, this task is
b \J O not dealt with, and their modification for this problem is not at all

straightforward. This difficulty motivated us to use GA's and even

- & | . .
. g * o brute-force RS for solving this problem.
. o M o

A. GA

(b) , : N . . .
) -~ ] ) GA’s are evolutionary optimization techniques with a wide scope
E(Igb; R_(par)ot'i?;éggs by selection of-protoypes inX. (b) Replacement of ¢ a5 jications [8], [9]. They are basically a guided RS and are
) deemed to work well in some large search spaces.
The objective is to find a set df-prototypesS™ that satisfies
out those that do not contribute significantly to the classification
accuracy [6]. Editing techniques that find subsets guaranteeing
zero errors when the original data 3&tis submitted to the NPC . ) )
are calledcondensation techniqueand the resultant set is saidVNere 7 (5) is the fitness functionin our study, we chose” to
to be consistentwith X. comprise two terms
* ReplacementFig. 1(b). The original data set is replellced py a F(S) = P(S) —af(lS)). )
number of labeled prototypes that do not necessarily coincide R
with any points inX. The simplest example of this is to replaceThe first termP(S) denotes the apparent classification accuracy of
each labeled subset by its sample mean vector. the NPC when using as the reference set, i.e., it is the ratio of
To distinguish between the two types, prototypes obtained prrectly classified vectors froX to the overall number of vectors
selection will be referred to as-prototypes, while those obtained?» 7 = |X|. The second (penalty) term is a function of the cardinality
by replacement will be calle@-prototypes. When something applies®f S weighted by the coefficient: > 0. Generally, the higher the
to both S- and R-prototypes, the single word “prototypes” will be cardinality, the higher the penalty. In this study, we experimented
used. with two penalty functions
In this paper we try to answer three questions. £S) =15 3)

1) Is it better to extract the prototype set or to select 2 ( an
prototypes versu$-prototypes.) ) ‘

2) How can we trade classification accuracy against a reduction f2(1S) =(1S| - T)* 4)
in the number of prototypes?

3) How good is purerandom search(RS) for selection ofS-
prototypes from data?

S* = arg max F(S) 1)

d

whereT" is a positive integerf, forces the GA to converge to a
predefined number of prototypeks*| = 7. This was needed to
) ) ) , enable comparisons with other techniques.

It has been claimed recently thgenetic algorithms(GA's) are  gejection of a subset of a given set is perhaps one of the problems
a good editing technique for the selection Stprototypes [4], that is most amenable to the GA approach because the natural
[12], [13]. Contrary to expectations, it appears that RS competg§coding is to make every chromosome a binary string of length
surprisingly well when t_he number &f-prototypes tq be keptis small. We represens C X by a chromosome whoséh bit is one ifx; € §
The GA and RS algorithms fo§-prototype selection are describedyq zero, otherwise. The population consists of a prespecified number
in S(_acnon Il. The methods and result; ®rprototypes _taken f_rom & of chromosomes (sets of-prototypes), which are subsequently
previous study by Bezdeit al.[3] are briefly presented in Section Ill. gylved while trying to maximize the fitness function (1) (for more
We compare the resubstitution classification error of NPC on IR|Rt4il see [12] and [13]).

data with R- and S-prototypes in Section IV. Section V contains our The version of the algorithm implemented here proceeds in the

conclusions and discussion. following steps.
1) Initialization. A set of V,.,, randomly generated chromosomes
Il. TECHNIQUES FORSELECTING S5-PROTOTYPES is the initial “population setTl = {5, ---, Sx,,, }. Each
Since we are tackling only the s& (without any split into train- bit in a chromosome takes the value one with a prespeci-
ing/test subsets), we confine the studgtmdensatiorechniques for fied probability P;,.;. By introducing this parameter, we can

editing the sample set. Condensation selects a subset of the original generate sparse or dense chromosomes for initializing the
set that “preserves” the classification boundary, i.e., it guarantees search. For example, when we wish to start a search $th
zero resubstitution errors if used as the reference for the 1-NN rule.  prototypes assuring very low error rates, we canfx; =

A collection of papers on this subject can be found in [6]. 0.85. Alternatively, we may initialize the chromosomes with
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P.,; = 0.1, which means that the search will start from sete; at stept is denoted as; » and is obtained as
containing about 10% of the data points, so the initial error will
probably be much higher than whét,,; = 1. GA parameters
are initialized: maximal number of generatioh,..,, mutation
probability P,.,, the weighting coefficient for the penalty term
of (1), and the specific form of in (2). The chromosomes in
TI are then evaluated by the fithess function.
Forming of the mating seM. Classically, the mating sél )
is formed on a “roulette” principle: chromosomes are samplégPUrse of’-prototype tuning.
from II with probability proportional to their fitness values. In * LVQ: Only the winner (nearesP-prototype) is updated and
the current implementatiofVI coincides withII. varies only with?.
Crossover Parent couples are randomly selected out of the® GLVQ-F: This algorithm belongs to a family of fuzzy LVQ
elements ofM. Every couple produces two offspring chromo- ~ models. AllcR-prototypes are updated at each step witheing
somes by exchanging parts of their codes. Here we adopted @ function oft, Vy_; andx.
uniform crossover as recommended in [1] and [2]. The parent® DR: This is the so-called dog-rabbit algorithm in which the
chromosomes swap theith bits with a certain probability (we learning rate distributior: is determined heuristically at each
setitto 0.5 here), andgoes from one ta. Each pair of parents step.
produces two offspring chromosomes, thereby constituting theSince none of the three algorithms uses class labels during training,
offspring setO. the R-prototypes must be given class labels at termination of learning.
Mutation Each bit of each offspring chromosome alternateShe authors use a “relabeling” procedure, whereby dagirototype
(mutates) with a predefined probability (mutation r&tg). All  gets the label of the most widely represented class amongst the
elements ofO are then evaluated by the fithess function.  data points associated with the prototype. Therefore, the learning is
Selection II and O are pooled and the besi,., individuals performed irrespective of classification accuracy, and it is always
survive, i.e. they stand as the ndw(elitist strategy). possible that clusters in the input space do not match the physical
Steps 2)-5) are executed,., times. class labels very well.
The next two techniques overcome this difficulty. They are extrac-
tion techniques that guarantee a consistent sdt-pfototypes.

« Chang’s Method [5]: Starting with all oK by fixing V = X,

®)

wherex;. is the vector inX submitted to the algorithm at iterate
anda;y + is the learning rate distribution. Depending on hew ; is
formulated, a variety of techniques can be described. The following
three are studied in [3]; none uses the class labels of the data in the

Vit = Vi t—1 + Gk, o(Xk — Vi 1), i=1-,c

2)

3)

4)

5)

B. RS

We paraphrase an interesting situation described in Fogel [8]. An
opponent of evolutionary techniques was cited, who claimed that
evolutionary algorithms are almost as bad as pure RS, which is

the R-prototypes are obtained by merging two at each step
whose resultant?-prototype will assure zero errors if used
instead of the original pair.

Modified Chang method: The authors of [3] propose a modifica-
tion that consists of changing the merging formula to a simpler

“... the most inefficient method for problem solving.” Contrary to

this view, our experiments show that for reasonably small tasks, RS

outperforms all of its sophisticated competitors. one and improving the search scope for candidates for merging
We implemented RS by suspending the evolutionary operators at each step.

2)-4) from the algorithm above. That is, we implemented only The last algorithm considered in [3] follows.

elitist selectionby keeping the best scoring chromosome. Thus, we, MECM-3: This is a modification of fuzzy-means clustering,

generateN,,, S-prototype sets with a fixed number of elements  \\hich allows for more than one prototype per class to be
(number of 1 s in the chromosome), evaluate the fitness function for | at5ined.

them, and store the best solution encountered so far. No memory
is kept from generation to generation, i.e., every setNof,,-
candidate solutions is drawn from the uniform random distribution.
The algorithm ends up with a single best solution found out throughWe used the popular IRIS data set comprising 150 vectof*in
Npop(Myern + 1) evaluations of the fitness function, the same numb@&0 each from three physically labeled subspecies of IRIS flowers [11].
of total candidates that the GA method considers. Our experiments with the GA and RS searches are only illustrative
because of the small number of runs. The purpose here is to show the
capacity of the algorithms and not to investigate their characteristics
" (e.g., robustness, convergence, etc.).
: In one of the experiments, we constrain the GA to zero-error
Bezdek et al. [3] present seven methods for generatidt chromosomes only (consistent sets$prototypes). The restriction
prototypes from labeled data, based on sequential competitigeimplemented in the form of a genetic operator, which practically
learning, sample means, modified fuzzymeans, Chang’'s method eliminates the first term of the fitness function (2). This operator
[5], and an original modification of Chang's method. These methodgjis all the offspring producing errors and keeps the reproduction of
are compared on the IRIS data set. The methods are listed @hir of parents going (by crossover and mutation) until two survivors
described in more detail below. are created. The number of evaluations of the fitness function in this
« Sample Means: This is perhaps the most inaccurate techniquexdtsion can be significantly higher than in the other one.
relies on the hypothesis that the classes are hyperspherical witffThe parameters for the GA follow.
equal volume and equal prior probabilities. Theprototypes « N,., was either ten or 20.
V = {vi, -, va} are found as the sample means of every . p, . was set to 0.8 for the restricted GA. Dense initialization
class. helped to quickly find an initial population. Then “evolution”
The second group of methods presented in [3] is based on sequen- was driven toward minimizing the cardinality. For the other
tial competitive learningR-prototypes are computed with sequential ~ version of the GA,P;,; was 0.1.
updating for every point in the data set. The new value of prototypes M., was 500 in all the experiments.

IV. EXPERIMENTAL RESULT

T ECHNIQUES FORDESIGNING R-PROTOTYPES
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A #obemn TABLE 1l
== LV RS (LEFT) AND GA (RIGHT) S-PROTOTYPES WITH
T4 g OLWOHF Two ResuBsTITUTION NPC ERRORS FORIRIS
- == [R
L]
,’ % S IFI.: Ty | z2 | 23 | 24 || class z1 | 2y | 23 | 34 || class
Al —_——
4412911402 1 50132112102 1
15 591304215 2 61]30(46| 14 2
57125150120 3 59 (3051718 3
-
o @ (b)
i TABLE Il

A 12-ELEMENT CONSISTENT SET OF S-PROTOTYPES
FoRr IRIS Founp BY THE GA METHOD

] + N
| F] 5 £ 7 H ]
# of Eesinhpe T | 3 | 23 | 24 || class
Fig. 2. Comparison of2- andS-prototype resubstitution error rates for IRIS 48130114101 1
with five methods. 5913248 |18 2
. .

TABLE | 631254915 2
MiNIMAL NUMBER OF RESUBSTITUTION ERRORS FORIRIS 6828|4814 2
e 314 (5167189 60275116 2
621294313 2

LvQ 17124 |14 14 |3 144
5812715119 3

GLVQ-F |[16 |20 |19 |14 {53 |4
6329|5618 3

DR 101131313 (343
6022 |50(15 3

GA 2141212 (3]1]2
622848 |18 3

RS 2121212111
63]28|51(15 3
6.0130/[48 1.8 3

e P, was either 0.015 or 0.025.
e a was 0.01.

* We ran experiments with botli; and f» as the penalty term three different runs. The two 12-element sets are nearly identical. We
of (2). show one of the sets in Table Ill. The other consistent set af12
With GA and RS we can derive as many prototypes as we likgototypes differs from the one in Table Ill only by the vector from

(which is not possible for the condensation techniques and for thl@ss 1, whose components wetie= 5.0;x2 = 3.4;23 = 1.6;24 = 0.4.
Chang algorithm and its modification). Fig. 2 graphs the numberIn Fig. 3, we plot the best results for IRIS achieved by each
of errors versus the number of prototypes for thiBeprototype Of the considered techniques as points in the (Errors, Prototypes)
techniques that allow specification of the number of prototypes as wéflace. In generah-prototype selection leads to better solutions. The
as GA and RS. First, both-prototype selection methods work bettefPareto-optimal set of results is

than their R-prototype competitors. And second (however awkward {(0, 11, Modified Chang, (1, 7, RS), (2, 3, RS)
it might seem to admit it), RS finds the minimal sets with the lowest C ] B P ’
error rate. (2,3, GA)}

Table | shows the lowest resubstitution error rate for IRIS achievgghare the parentheses enclose (errors, prototypes, design method).
by LVQ, GLVQ-F, DR, GA, and RS. Both RS and GA have found setghs shows that for these trials, the best consistent solution is a set of

of threeS-prototypes that produce two resubstitution errors (Table Iy _nrototypes, while the best inconsistent solutions $ugrototypes.
The best “inconsistent” result claimed by the authors in [3] is obtained

by the DR algorithm, fiveR-prototypes that result in three errors.
Exhaustive search of all combinations of three prototypes found
95 sets with two resubstitution errors. The total number of tested sets
was 125000. Each of these 125000 sets had one prototype per clAss-Prototypes versug-Prototypes
every other three-prototype set will result in at least 50 resubstitutionOur experiments clearly indicate th&-prototypes result in a
errors. smaller resubstitution error rate. Sinéeprototypes are found by
When the limit7" in (4) was 10 or 11, GA resulted in subsets withdirect minimization of the classification error, whilg-prototypes
one resubstitution error. The error rate of the sets of size 10 anddreé usually extracted by optimizing some other criterion, better
found by RS was also one error. Increasing the cardinality more diesults with.S-prototypes are not surprising. Only Chang’s method
not lead to better results with RS: two errors with a 12-element smtd its modification are designed to convergeRgrototypes that
and one error with a 13-element set. Our restricted version of the G&jsure zero error rate. Note that the Modified Chang’s prototype set
however, converged to consistent sets of 12, 12, and 13 elementdelongs to the Pareto-optimal set of solutions. It seems that finding

V. DiscussioN
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for the search space considered the number of estimations of the
© Reprototypes criterion function (error rate by NPC) was large enough that RS had
@ S-prototypes a relatively high probability of hitting a good solution. For example,
Pareto-optimal there are 551300 combinations of thr&eprototypes from 150. In
10 @ @ our experiment, we performed 10 020 evaluations (with replacement),
which were enough to find arb-prototype set resulting in two
errors. We can expect, however, that when the number of prototypes
increases (e.g., in the case of more complex classification structure
in the feature space), RS will be “dethroned” by GA’s or by other
relatives of brute-force search.

Next, when we restricted the GA to consistent solutions only, it
ended up with 125-prototypes with zero resubstitution NPC error.
The RS did not achieve this result because it had no chaneeolue
the final solution based on history.

Finally, a GA has many degrees of freedom, and the requirements
that we may wish to define on the solution can be embedded in it. The
above considerations point to GA’s as a good optionSegrototype
selection for NPC design.
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12

. Sample

Means

81 € MFCM-3

QO GLvor

© pr

2 RS, GA @

Modified Chang
GA

Chang
Dasarathy

5
@)
RS@

s
!

—_
L=
—
5

14 16
# of prototypes

0 2 4 6 8

REFERENCES
Fig. 3. Comparison of best resubstitution error rates for IRIS withrall
and S-prototype methods. [1] D. Beasley, D. R. Bull, and R. R. Martin, “An overview of genetic
algorithms: Part 1, fundamentaldJniv. Comput.vol. 15, pp. 58-69,

1993.
clusters in the data and subsequent relabeling does not guarantee ggfd___ “an overview of genetic algorithms: Part 2, research topitsyiv.
classification results. Since accuracy is the main goal, our preference Comput.,vol. 15, pp. 170-181, 1993.
goes toS-prototypes. [3] J. C. Bezdek, T. R. Reichherzer, G. S. Lim, and Y. Attikiouzel,

; PSR At ; “Multiple-prototype classifier design,” this issue, pp. 67-79.
Another aspect of thl.s question is gene.rallza.tlon, €., agcuracy O[q] E. |. Chang and R. P. Lippmann, “Using genetic algorithms to improve
unknown data. Overfitting the data sHt is a risk when directly pattern classification performance,” Advances in Neural Information
minimizing the classification error. It may turn out that NPC with Processing Systemspl. 3, R. P. Lippmann, J. E. Moody, and D.
prototypes found by clustering-relabeling is better at generalization. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufman, 1991, pp.
Experiments on the generalization performance of GA selection [13]5 (7:91‘%%3'n “Finding protot for nearest neighbor classifieEEE
suggest that with a small number Sfprototypes NPC can reach 5] Trans Ca;rgbutlyoll g_ng %gpisﬂ%_ﬁagfsl\loi'gw?‘lcass"

reasonably good generalization rates. No generalization experiments B. v. Dasarathy,Nearest Neighbor (NN) Norms: NN Pattern Classi-

with R-prototypes are presented in [3]. fication Techniques. Los Alamitos, CA: IEEE Comput. Soc. Press,
It is also true that selection of-prototypes by RS and GA is 19%0. _ S _
much more computationally demanding and, for large data sets, mcj&] —, “Minimal consistent set (MCS) identification for optimal nearest

. . neighbor decision systems desighPEE Trans. Syst., Man, Cybern.,
be infeasible. _ vol. 24, pp. 511-517, Apr. 1994.
One point in favor of GA’s (and'-prototypes) is that theluster-  [8] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of

validity problem is surmounted. RS and most of the other techniques Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.

either require specifying the number of prototypes in advance or thely] D. Goldberg,Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

converge to a set whose cardinality cannot be specified or change 1% P. E. Hart, “The condensed nearest neighbor rUBEE Trans. Inform.
desired (e.g., the Chang’s methods and the condensation techniques). Theory,vol. IT-14, pp. 515-516, Mar. 1968.
In GA'’s, the optimal number af-prototypes is decided in the course[11] R. A. Johnson and D. W. Wicheripplied Multivariate Statistical

of the evolutionary process and can be influenced by the value of Analysis,3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1992. _
[12] L. I. Kuncheva, “Editing for thek-nearest neighbors rule by a genetic

. . algorithm,” Pattern Recognit. Lettyol. 16, pp. 809-814, 1995.

B. Trading-Off Accuracy for Prototype Number Reduction [13] ., “Fitness functions in editing:-NN reference set by genetic
We considerS-prototypes here. The condensation techniques guar-  agorithms,”Pattern Recognityol. 30, no. 6, pp. 1041-1049, 1997.
antee only that the resultant set is consistent (zero resubstitution
error). It is not clear, however, how to find a subset if we agree to

accept, say, one error (or more generdllgrrors at most). Due to the
sequential character of condensation algorithms, their modifications
to meet this requirement are not straightforward. For example, it must
be decided at which particular sample(s)*fthe error(s) should be
committed. In the GA implementation, we can embed the maximal
admissible number of errors in the reproduction scheme and prevent
survival of chromosomes that do not meet the requirement. Starting
with large subsets ob-prototypes and penalizing the size, we can
arrive at reasonably small sets with the desired error rate.

C. RS versus GA's

Can RS really be that good? RS easily solved a problem that was
difficult for more sophisticated techniques. One possibility is that



