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and how this differs from identifying barriers, the use of leverage
points in structuring problem-solving activities, and the judgment of
solvability and how this relates to the detection of leverage points.

VII. CONCLUSIONS

We have presented the concept of leverage points as a means by
which new courses of action are generated in a situation requiring
problem solving. The use of leverage points is a constructive strategy
in which experience is needed to identify opportunities that can be
deepened and elaborated. This view contrasts with computational
approaches in which mechanical strategies are used to generate a
problem space; algorithmic and heuristic methods are then applied to
search through the problem space.
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Nearest Prototype Classification: Clustering,
Genetic Algorithms, or Random Search?

Ludmila I. Kuncheva and James C. Bezdek

Abstract—Three questions related to thenearest prototype classifier
(NPC) are addressed: 1) when is it better to construct the prototypes
instead of selecting them as a subset of the given labeled data, 2) how
can we trade classification accuracy for a reduction in the number of
prototypes, and 3) how good is purerandom search(RS) for selection of
prototypes from the data? We compare the resubstitution performance of
the NPC on the IRIS data set, where the prototypes are either extracted
by “replacement” (R-prototypes) or by “selection” (S-prototypes). Results
for the R-prototypes are taken from a previous study and are contrasted
with S-prototype results obtained by agenetic algorithm(GA) or by RS.
The best results reached by both algorithms (GA and RS), followed by
resubstitution NPC, are two errors with sets of threeS-prototypes. This
compares favorably to the best result found withR-prototypes, viz., three
errors with five R-prototypes. Based on our results, we recommend GA
selection for the NPC. A by-product of this research is a counter example
to minimality of a recently published “minimal consistent set selection”
procedure.

Index Terms—Classifier design, genetic algorithms (GA’s), nearest
prototypes, random search (RS)

I. INTRODUCTION

The Nearest Prototype Classifier(NPC) is perhaps the simplest
classifier in pattern recognition. Let the integerĉ denote the number
of classeŝc > 1 in a labeled data set. LetV = fv1; � � � ; vcg � <p

be a set ofc � ĉ prototypes, with eachvi 2 V labeled as one of thêc
classes. The NP classifier assigns any unlabeled objectx 2 <p to the
class of its nearest prototype. This scheme uses at least one prototype
per class. The NPC can be regarded as theone-nearest-neighbor(1-
NN) rule where the reference set isV. A subtle difference between
the two techniques is that NPC assumes a much smaller number of
prototypes than the 1-NN rule.

The problem here is to design a good prototype set that will ideally
be of minimal cardinality and will allow for the lowest possible error
rate of the NPC. There are two strategies that are illustrated in Fig. 1.

• Selection, Fig. 1(a). We retain a limited number of points from
the original data setX = fx1; � � � ; xng; xi 2 <p, while ruling
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(a)

(b)

Fig. 1. (a) Editing by selection ofS-protoypes inX. (b) Replacement of
X by R-prototypes.

out those that do not contribute significantly to the classification
accuracy [6]. Editing techniques that find subsets guaranteeing
zero errors when the original data setX is submitted to the NPC
are calledcondensation techniques, and the resultant set is said
to be consistentwith X.

• Replacement, Fig. 1(b). The original data set is replaced by a
number of labeled prototypes that do not necessarily coincide
with any points inX. The simplest example of this is to replace
each labeled subset by its sample mean vector.

To distinguish between the two types, prototypes obtained by
selection will be referred to asS-prototypes, while those obtained
by replacement will be calledR-prototypes. When something applies
to bothS- andR-prototypes, the single word “prototypes” will be
used.

In this paper we try to answer three questions.

1) Is it better to extract the prototype set or to select it? (R-
prototypes versusS-prototypes.)

2) How can we trade classification accuracy against a reduction
in the number of prototypes?

3) How good is purerandom search(RS) for selection ofS-
prototypes from data?

It has been claimed recently thatgenetic algorithms(GA’s) are
a good editing technique for the selection ofS-prototypes [4],
[12], [13]. Contrary to expectations, it appears that RS competes
surprisingly well when the number ofS-prototypes to be kept is small.
The GA and RS algorithms forS-prototype selection are described
in Section II. The methods and results forR-prototypes taken from a
previous study by Bezdeket al. [3] are briefly presented in Section III.
We compare the resubstitution classification error of NPC on IRIS
data withR- andS-prototypes in Section IV. Section V contains our
conclusions and discussion.

II. TECHNIQUES FORSELECTING S-PROTOTYPES

Since we are tackling only the setX (without any split into train-
ing/test subsets), we confine the study tocondensationtechniques for
editing the sample set. Condensation selects a subset of the original
set that “preserves” the classification boundary, i.e., it guarantees
zero resubstitution errors if used as the reference for the 1-NN rule.
A collection of papers on this subject can be found in [6].

The aim is to find the consistent set with the smallest possible
cardinality, called aminimal consistent subset(MCS). One of the
earliest papers on this topic is by Hart [10], whose elegant method
has been used as a basis for many subsequent modifications. Hart’s
iterative procedure selects elements sequentially and ends up with
a relatively large consistent set. A recent study by Dasarathy [7]
presented a technique for finding a consistent set that he believed
to be minimal. On the IRIS data set, however, Dasarathy’s technique
finds a 15-element consistent subset, whereas our GA method resulted
in a 12-element consistent set. Thus, we provide a counterexample
to Dasarathy’s conjecture that his MCS method is truly minimal.

Further, we wish to be able to select a small subset ofS-prototypes
that restricts the resubstitution error to a certain predefined upper
limit. In the condensation techniques mentioned above, this task is
not dealt with, and their modification for this problem is not at all
straightforward. This difficulty motivated us to use GA’s and even
brute-force RS for solving this problem.

A. GA

GA’s are evolutionary optimization techniques with a wide scope
of applications [8], [9]. They are basically a guided RS and are
deemed to work well in some large search spaces.

The objective is to find a set ofS-prototypesS� that satisfies

S
�
= arg max

S�X
F(S) (1)

whereF(S) is the fitness function. In our study, we choseF to
comprise two terms

F(S) = P̂ (S)� �f(jSj): (2)

The first termP̂ (S) denotes the apparent classification accuracy of
the NPC when usingS as the reference set, i.e., it is the ratio of
correctly classified vectors fromX to the overall number of vectors
n; n = jXj. The second (penalty) term is a function of the cardinality
of S weighted by the coefficient� > 0. Generally, the higher the
cardinality, the higher the penalty. In this study, we experimented
with two penalty functions

f1(jSj) = jSj (3)

and

f2(jSj) = (jSj � T )
2 (4)

whereT is a positive integer.f2 forces the GA to converge to a
predefined number of prototypes,jS�j = T . This was needed to
enable comparisons with other techniques.

Selection of a subset of a given set is perhaps one of the problems
that is most amenable to the GA approach because the natural
encoding is to make every chromosome a binary string of lengthn.
We representS � X by a chromosome whoseith bit is one ifxi 2 S

and zero, otherwise. The population consists of a prespecified number
of chromosomes (sets ofS-prototypes), which are subsequently
evolved while trying to maximize the fitness function (1) (for more
detail, see [12] and [13]).

The version of the algorithm implemented here proceeds in the
following steps.

1) Initialization. A set ofNpop randomly generated chromosomes
is the initial “population set”� = fS1; � � � ; SN g. Each
bit in a chromosome takes the value one with a prespeci-
fied probabilityPini. By introducing this parameter, we can
generate sparse or dense chromosomes for initializing the
search. For example, when we wish to start a search withS-
prototypes assuring very low error rates, we can fixPini =

0.85. Alternatively, we may initialize the chromosomes with



162 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 1, FEBRUARY 1998

Pini = 0.1, which means that the search will start from sets
containing about 10% of the data points, so the initial error will
probably be much higher than whenPini � 1. GA parameters
are initialized: maximal number of generationsMgen, mutation
probabilityPm, the weighting coefficient� for the penalty term
of (1), and the specific form off in (2). The chromosomes in
� are then evaluated by the fitness function.

2) Forming of the mating setM. Classically, the mating setM
is formed on a “roulette” principle: chromosomes are sampled
from � with probability proportional to their fitness values. In
the current implementation,M coincides with�.

3) Crossover. Parent couples are randomly selected out of the
elements ofM. Every couple produces two offspring chromo-
somes by exchanging parts of their codes. Here we adopted
uniform crossover as recommended in [1] and [2]. The parent
chromosomes swap theirith bits with a certain probability (we
set it to 0.5 here), andi goes from one ton. Each pair of parents
produces two offspring chromosomes, thereby constituting the
offspring setO.

4) Mutation. Each bit of each offspring chromosome alternates
(mutates) with a predefined probability (mutation ratePm). All
elements ofO are then evaluated by the fitness function.

5) Selection. � andO are pooled and the bestNpop individuals
survive, i.e. they stand as the new� (elitist strategy).

Steps 2)–5) are executedMgen times.

B. RS

We paraphrase an interesting situation described in Fogel [8]. An
opponent of evolutionary techniques was cited, who claimed that
evolutionary algorithms are almost as bad as pure RS, which is
“ . . . the most inefficient method for problem solving.” Contrary to
this view, our experiments show that for reasonably small tasks, RS
outperforms all of its sophisticated competitors.

We implemented RS by suspending the evolutionary operators
2)–4) from the algorithm above. That is, we implemented only
elitist selectionby keeping the best scoring chromosome. Thus, we
generateNpop S-prototype sets with a fixed number of elements
(number of 1 s in the chromosome), evaluate the fitness function for
them, and store the best solution encountered so far. No memory
is kept from generation to generation, i.e., every set ofNpop-
candidate solutions is drawn from the uniform random distribution.
The algorithm ends up with a single best solution found out through
Npop(Mgen+1) evaluations of the fitness function, the same number
of total candidates that the GA method considers.

III. T ECHNIQUES FORDESIGNING R-PROTOTYPES

Bezdek et al. [3] present seven methods for generatingR-
prototypes from labeled data, based on sequential competitive
learning, sample means, modified fuzzyc-means, Chang’s method
[5], and an original modification of Chang’s method. These methods
are compared on the IRIS data set. The methods are listed and
described in more detail below.

• Sample Means: This is perhaps the most inaccurate technique. It
relies on the hypothesis that the classes are hyperspherical with
equal volume and equal prior probabilities. TheR-prototypes
V = fv1; � � � ; vĉg are found as the sample means of every
class.

The second group of methods presented in [3] is based on sequen-
tial competitive learning.R-prototypes are computed with sequential
updating for every point in the data set. The new value of prototype

vi at stept is denoted asvi; t and is obtained as

vi; t = vi; t�1 + aik; t(xk � vi; t�1); i = 1; � � � ; c (5)

wherexk is the vector inX submitted to the algorithm at iteratet,
andaik; t is the learning rate distribution. Depending on howaik; t is
formulated, a variety of techniques can be described. The following
three are studied in [3]; none uses the class labels of the data in the
course ofP -prototype tuning.

• LVQ: Only the winner (nearestP -prototype) is updated anda
varies only witht.

• GLVQ-F: This algorithm belongs to a family of fuzzy LVQ
models. AllcR-prototypes are updated at each step witha being
a function of t; Vt�1 and xk.

• DR: This is the so-called dog-rabbit algorithm in which the
learning rate distributiona is determined heuristically at each
step.

Since none of the three algorithms uses class labels during training,
theR-prototypes must be given class labels at termination of learning.
The authors use a “relabeling” procedure, whereby eachP -prototype
gets the label of the most widely represented class amongst the
data points associated with the prototype. Therefore, the learning is
performed irrespective of classification accuracy, and it is always
possible that clusters in the input space do not match the physical
class labels very well.

The next two techniques overcome this difficulty. They are extrac-
tion techniques that guarantee a consistent set ofR-prototypes.

• Chang’s Method [5]: Starting with all ofX by fixing V � X,
the R-prototypes are obtained by merging two at each step
whose resultantR-prototype will assure zero errors if used
instead of the original pair.

• Modified Chang method: The authors of [3] propose a modifica-
tion that consists of changing the merging formula to a simpler
one and improving the search scope for candidates for merging
at each step.

The last algorithm considered in [3] follows.

• MFCM-3: This is a modification of fuzzyc-means clustering,
which allows for more than one prototype per class to be
retained.

IV. EXPERIMENTAL RESULT

We used the popular IRIS data set comprising 150 vectors in<4:
50 each from three physically labeled subspecies of IRIS flowers [11].
Our experiments with the GA and RS searches are only illustrative
because of the small number of runs. The purpose here is to show the
capacity of the algorithms and not to investigate their characteristics
(e.g., robustness, convergence, etc.).

In one of the experiments, we constrain the GA to zero-error
chromosomes only (consistent sets ofS-prototypes). The restriction
is implemented in the form of a genetic operator, which practically
eliminates the first term of the fitness function (2). This operator
“kills” all the offspring producing errors and keeps the reproduction of
a pair of parents going (by crossover and mutation) until two survivors
are created. The number of evaluations of the fitness function in this
version can be significantly higher than in the other one.

The parameters for the GA follow.

• Npop was either ten or 20.
• Pini was set to 0.8 for the restricted GA. Dense initialization

helped to quickly find an initial population. Then “evolution”
was driven toward minimizing the cardinality. For the other
version of the GA,Pini was 0.1.

• Mgen was 500 in all the experiments.
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Fig. 2. Comparison ofR- andS-prototype resubstitution error rates for IRIS
with five methods.

TABLE I
MINIMAL NUMBER OF RESUBSTITUTION ERRORS FORIRIS

• Pm was either 0.015 or 0.025.
• � was 0.01.
• We ran experiments with bothf1 and f2 as the penalty term

of (2).

With GA and RS we can derive as many prototypes as we like
(which is not possible for the condensation techniques and for the
Chang algorithm and its modification). Fig. 2 graphs the number
of errors versus the number of prototypes for threeR-prototype
techniques that allow specification of the number of prototypes as well
as GA and RS. First, bothS-prototype selection methods work better
than theirR-prototype competitors. And second (however awkward
it might seem to admit it), RS finds the minimal sets with the lowest
error rate.

Table I shows the lowest resubstitution error rate for IRIS achieved
by LVQ, GLVQ-F, DR, GA, and RS. Both RS and GA have found sets
of threeS-prototypes that produce two resubstitution errors (Table II).
The best “inconsistent” result claimed by the authors in [3] is obtained
by the DR algorithm, fiveR-prototypes that result in three errors.

Exhaustive search of all combinations of three prototypes found
95 sets with two resubstitution errors. The total number of tested sets
was 125 000. Each of these 125 000 sets had one prototype per class:
every other three-prototype set will result in at least 50 resubstitution
errors.

When the limitT in (4) was 10 or 11, GA resulted in subsets with
one resubstitution error. The error rate of the sets of size 10 and 11
found by RS was also one error. Increasing the cardinality more did
not lead to better results with RS: two errors with a 12-element set
and one error with a 13-element set. Our restricted version of the GA,
however, converged to consistent sets of 12, 12, and 13 elements on

TABLE II
RS (LEFT) AND GA (RIGHT) S-PROTOTYPES WITH

TWO RESUBSTITUTION NPC ERRORS FORIRIS

(a) (b)

TABLE III
A 12-ELEMENT CONSISTENT SET OF S-PROTOTYPES

FOR IRIS FOUND BY THE GA METHOD

three different runs. The two 12-element sets are nearly identical. We
show one of the sets in Table III. The other consistent set of 12S-
prototypes differs from the one in Table III only by the vector from
class 1, whose components werex1 = 5.0;x2 = 3.4;x3 = 1.6;x4 = 0.4.

In Fig. 3, we plot the best results for IRIS achieved by each
of the considered techniques as points in the (Errors, Prototypes)
space. In general,S-prototype selection leads to better solutions. The
Pareto-optimal set of results is

f(0; 11; Modified Chang); (1; 7; RS); (2; 3; RS);

(2; 3; GA)g

where the parentheses enclose (errors, prototypes, design method).
This shows that for these trials, the best consistent solution is a set of
R-prototypes, while the best inconsistent solutions areS-prototypes.

V. DISCUSSION

A. S-Prototypes versusR-Prototypes

Our experiments clearly indicate thatS-prototypes result in a
smaller resubstitution error rate. SinceS-prototypes are found by
direct minimization of the classification error, whileR-prototypes
are usually extracted by optimizing some other criterion, better
results withS-prototypes are not surprising. Only Chang’s method
and its modification are designed to converge toR-prototypes that
ensure zero error rate. Note that the Modified Chang’s prototype set
belongs to the Pareto-optimal set of solutions. It seems that finding
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Fig. 3. Comparison of best resubstitution error rates for IRIS with allR-
and S-prototype methods.

clusters in the data and subsequent relabeling does not guarantee good
classification results. Since accuracy is the main goal, our preference
goes toS-prototypes.

Another aspect of this question is generalization, i.e., accuracy on
unknown data. Overfitting the data setX is a risk when directly
minimizing the classification error. It may turn out that NPC withR-
prototypes found by clustering-relabeling is better at generalization.
Experiments on the generalization performance of GA selection [13]
suggest that with a small number ofS-prototypes NPC can reach
reasonably good generalization rates. No generalization experiments
with R-prototypes are presented in [3].

It is also true that selection ofS-prototypes by RS and GA is
much more computationally demanding and, for large data sets, may
be infeasible.

One point in favor of GA’s (andS-prototypes) is that thecluster-
validity problem is surmounted. RS and most of the other techniques
either require specifying the number of prototypes in advance or they
converge to a set whose cardinality cannot be specified or changed as
desired (e.g., the Chang’s methods and the condensation techniques).
In GA’s, the optimal number ofS-prototypes is decided in the course
of the evolutionary process and can be influenced by the value of�.

B. Trading-Off Accuracy for Prototype Number Reduction

We considerS-prototypes here. The condensation techniques guar-
antee only that the resultant set is consistent (zero resubstitution
error). It is not clear, however, how to find a subset if we agree to
accept, say, one error (or more generally,l errors at most). Due to the
sequential character of condensation algorithms, their modifications
to meet this requirement are not straightforward. For example, it must
be decided at which particular sample(s) ofX the error(s) should be
committed. In the GA implementation, we can embed the maximal
admissible number of errors in the reproduction scheme and prevent
survival of chromosomes that do not meet the requirement. Starting
with large subsets ofS-prototypes and penalizing the size, we can
arrive at reasonably small sets with the desired error rate.

C. RS versus GA’s

Can RS really be that good? RS easily solved a problem that was
difficult for more sophisticated techniques. One possibility is that

for the search space considered the number of estimations of the
criterion function (error rate by NPC) was large enough that RS had
a relatively high probability of hitting a good solution. For example,
there are 551 300 combinations of threeS-prototypes from 150. In
our experiment, we performed 10 020 evaluations (with replacement),
which were enough to find anS-prototype set resulting in two
errors. We can expect, however, that when the number of prototypes
increases (e.g., in the case of more complex classification structure
in the feature space), RS will be “dethroned” by GA’s or by other
relatives of brute-force search.

Next, when we restricted the GA to consistent solutions only, it
ended up with 12S-prototypes with zero resubstitution NPC error.
The RS did not achieve this result because it had no chance toevolve
the final solution based on history.

Finally, a GA has many degrees of freedom, and the requirements
that we may wish to define on the solution can be embedded in it. The
above considerations point to GA’s as a good option forS-prototype
selection for NPC design.
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