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Abstract

We develop the classification part of a system that analyses transmitted light microscope images
of dispersed kerogen preparation. The system automatically extracts kerogen pieces from the image
and labels each piece as either inertinite or vitrinite. The image pre-processing consists of: background
removal, identification of kerogen material, object segmentation, object extraction (individual images
of pieces of kerogen) and feature calculation for each object. An expert palynologist was asked to label
the objects into categories inertinite and vitrinite, which provided the ground truth for the classifica-
tion experiment. Ten state-of-the-art classifiers and classifier ensembles were compared: Naive Bayes,
decision tree, nearest neighbour, the logistic classifier, multilayer perceptron (MLP), support vector
machines (SVM), AdaBoost, Bagging, LogitBoost and Random Forest. The logistic classifier was
singled out as the most accurate classifier (accuracy > 90%). Using a 10 times 10-fold cross-validation
provided within the Weka software, we found that the logistic classifier was significantly better than
five classifiers (p < 0.05) and indistinguishable from the other four classifiers. The initial set of 32
features was subsequently reduced to 6 features without compromising the classification accuracy. A
further evaluation of the system alerted us to the possible sensitivity of the classification to the ground
truth that might vary from one human expert to another. The analysis also revealed that the logistic
classifier made most of the correct classifications with high certainty.
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1. Introduction
Kerogen is organic matter which can yield hydrocarbons on heating. Anglicising the kerogen content of
sedimentary rocks, using images of material seen under the microscope, is therefore a vital component
of oil and gas exploration (Tyson 1990). The kerogen pieces found in images of palynofacies can be
broadly classified as inertinite, vitrinite and other. Vitrinite and inertinite macerals are derived from
mainly higher plant material and include cell walls and gelified tissues. Figure 1 shows a typical image
of a slide prepared for transmitted light examination containing vitrinite, inertinite, microfossils and
other debris. Distinguishing between inertinite and vitrinite, based on their appearance in the image,
is difficult. Inertinite differs from vitrinite in being derived from plant material that has been more
strongly altered and degraded. Vitrinite appears a slightly lighter shade of brown, typically with more
raggedy edges, and with more compact shape than inertinite. Vitrinite and inertinite are more easily
identified using reflected light but the ready availability of transmitted light images from palynological
and geochemical studies, presents the opportunity for a much increased collection of useful data.

In this study we describe a software system that extracts the kerogen objects from the image
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Figure 1: Dispersed kerogen preparation slide with indicated examples of inertinite and vitrinite.

and labels them in one of two classes: inertinite or vitrinite. Automated classification of fossilised
material has been a topic of interest for decades (Athersuch et al. 1994; Bollmann et al. 2004; Hills
1988; Swaby 1992; Weller et al. 2005). While earlier object recognition systems used rule-based ap-
proaches (Athersuch et al. 1994; Liu et al. 1994), neural networks have been the preferred classifier
in the more recent works (Bollmann et al. 2004; Weller et al. 2005, 2007). The competitive accuracy
of neural networks across various distributions of the data compensates for their lack of transparency
and their sensitivity to design choices. Neural networks have been the favourite classification model
in other object recognition domains, e.g. classification of pollen types (France et al. 2000) and poly-
plankton species (Jonker et al. 2000; Wilkins et al. 1999). A combination of a statistical approach and
a knowledge-based approach to classification of pollen types has also been suggested (Bonton et al.
2001; Boucher et al. 2002). A common theme in all these works is the imperative need for automatic
extraction of the objects and their features from the original image. Plankton and pollen objects have
distinct elliptical shapes, hence a number of image processing algorithms can be applied to crop a
single object from an image. Kerogen objects, however, vary dramatically in shapes and sizes. Also, it
is sometimes difficult even for the trained eye, to determine whether a cluster of dark-coloured forms
contains several objects (touching or overlapping) or represents a single piece of kerogen. Thus the
extraction of the individual kerogen pieces from an image poses a severe challenge itself. The accuracy
and relevance of the features extracted from each object determines to a large extent the success of
the classification part of an object recognition system. It has been demonstrated that if a careful
extraction followed by a selection of features is carried out, even simple classification models will lead
to good results (Flesche et al. 2000; Wang 1995). We propose an automatic system for information
extraction from palynological images. The first three stages of the system are illustrated in Figure 2.
The images of dispersed kerogen preparation slides are captured using a digital camera attached to a
microscope. A stepping device is mounted on the microscope so that only a small portion of the slide is
viewed at a time. A digital firewire camera and control box are used to capture high resolution images
and transfer them to the computer. The setup is shown in Figure 2 A, and a typical captured image



is shown in Figure 2 B. To counter the problem of uneven background illumination due to the trans-
mitted light, the background is equalised by fitting parabolas to horizontal and vertical straps of the
image (Charles et al. 2008b) The resultant image is shown in Figure 2 C. The dark material (kerogen)
is found next in the image (Fig. 2 D). The recently proposed Centre Supported Segmentation (CSS)
algorithm (Charles et al., in press) is applied next to find the supposed centres of the kerogen objects
(Fig. 2 D). These centres are subsequently used as markers for the watershed algorithm (Vincent
and Soille 1991) so that individual pieces of kerogen are identified and catalogue (a random sample
of 9 pieces is shown in Fig. 2 F). The automatic classification of the identified kerogen objects into
inertinite and vitrinite constitutes the fourth stage of the system, which is the topic of this study.

2. The Classification Experiment

2.1 The features

609 objects were extracted from 7 microscope images of dispersed kerogen preparation. An expert
palynologist was asked to label the objects into classes inertinite, vitrinite and other. The 8 objects
labelled as “other” were not used in the subsequent training of the system, so the final labelled data
set consisted of 601 objects in two classes. Using Matlab, 32 features were extracted from the image
of each object accounting for its size, shape, texture and colour. Most of these are standard features
included in the image processing package Halcon ' and used in previous studies of palynological images
(Weller et al. 2005) and object recognition in general (Wang 1995; Boucher et al. 2002). Along with
the standard features we added equant/lath ratio and the variability of the colour at the periphery of
the object, as these were assumed to be important for distinguishing between inertinite and vitrinite.
Table 1 shows the grouping of the features and a short comment for each. Figure 3 displays “proto-
type” objects from the two classes. These objects were selected as the closest to the respective class
means using the 32 (normalised) features.

2.2 The classifiers

The classifiers for our problem, shown in Table 2 (columns 1 and 2), come from three groups: standard
(simple) classifiers, neural networks and classifier ensembles (Duda et al. 2001; Bishop 1995; Kuncheva
2004). All classifiers are well known and have been shown to perform well across a variety of datasets.
A brief description follows, with the logistic classifier relegated to the end, and presented with more
detail.

Simple classifiers. In the Naive Bayes classifier the features are considered to be conditionally
independent. Hence the class-conditional probability density functions (pdf) are approximated as
products of marginal probabilities. The priors and the marginal probabilities are estimated from
training data. The object is assigned to the class with the largest posterior probability, calculated
using these estimates. The decision tree classifier works by making a sequence of decisions at the
nodes of a decision tree until a leaf is reached. Each leaf has a class label associated with it, and this
label is assigned to the object. Typically the decisions at the nodes are made by comparing a feature
with a threshold value, both computed through training. In the k-nearest neighbour classifier (k-nn)

"http://www.mvtec. com/halcon/



Figure 2: The first three stages of the kerogen recognition system. 1. Image acquisition: microscope
setup (A) and an aqcuired image (B); 2. Background removal (C) and identification of kerogen (D); 3.
Segmentation through the Centre Support Segmentation algorithm (centres overlaid on the original
grey-level image (E)) and 9 randomly chosen examples of extracted objects (F).

A B

Figure 3: The central objects (prototypes) of the two classes: Inertinite (A) and Vitrinite (B)



Table 1: Groups of features

Type Feature Notation Explanation
Colour  mean red
mean blue
mean green
mean gray
Size inner radius T Radius of the largest circle contained within the object
outer radius Ty Radius of the smallest circle containing the object
diameter d Maximum distance between 2 contour pixels
perimeter P Number of pixels on the object’s border
circle difference r, —r; Difference between the outer and inner radii
area a Total number of object’s pixels
distance ) Mean distance from centre of gravity to contour pixels
Texture (All features are extracted from the grey-level image)
entropy Entropy of the histogram
anisotropy Symmetry of the histogram about its median
correlation Correlation between intensity of neighbouring pixels
homogeneity Homogeneity of neighbouring pixels
contrast Contrast of neighbouring pixels
energy Energy of neighbouring pixels
rim variability Variance of intensity at the border (r;/5 pixels)
Shape anisometry er/e— Ratio of major to minor elliptic semi-axes
eccentricity d_/d Ratio of minor axis to diameter
rectangularity a/ayp Ratio of areas: object/smallest bounding rectangle
bulkiness m(ey)(e-)/a Ratio of areas: ellipse/object
convexity ala. Ratio of areas: object/convex hull
variance x Variance across x-axis with respect to centre of gravity
variance y Variance across y-axis with respect to centre of gravity
covariance
compactness dma/p? Ratio of areas: object/circle with the same perimeter
sigma o Standard deviation of distances from centre to contour
roundness 1-0/é
sides 1.41(6/0)%4™4  Number of pieces of a regular polygon
equant/lath ri/d Equant/lath ratio
structure factor 7(ey)*/a —1 anisometry xbulkiness - 1




the object receives the label most represented among its k£ nearest neighbours. The neighbours are
sought from a labelled reference set. The most popular variant of k-nn is the single nearest neighbour
classifier (1-nn) where the object is assigned to the class of its nearest neighbour. This classifier does
not require any prior training apart from specifying the reference set.

Neural network classifiers. The MultiLayer Perceptron (MLP) is a feedforward structure with one
input layer, one output layer and a desired number of hidden layers. The n features in the problem are
fed to the n input nodes, and the ¢ discriminant functions (one per class) are obtained from the nodes
at the output layer. The output with the largest value determines the class label of the object. The
weights of the MLLP are trained through backpropagation. The Support Vector Machines classifier
(SVM) transforms the input space spanned by the n features, R", into an infinite-dimensional Hilbert
space, where a linear classifier is trained. The linear boundary translates back to a highly accurate
nonlinear boundary in the original space. By design SVM discriminates between two classes only.

Classifier ensembles. Combining the decisions of several classifiers has been shown to be better
than taking forward the decision of a single classifier (Kuncheva 2004). Included in this category
are top ranked methods that have shown robustness and accuracy across disciplines. They are often
chosen as strawmen, against which other classifiers are compared. The classifier ensemble in AdaBoost
is build sequentially. Each new classifier is trained on a part of the data that has proven to be difficult
for the classifiers trained thus far. This approach induces diversity in the ensemble. The output class
is determined by weighted majority voting where the more accurate classifiers have stronger votes. In
Bagging, the classifiers are trained independently on bootstrap samples from the training data. The
class is determined by majority vote (or plurality vote, if there are more than two classes). Theoretical
studies led to developing LogitBoost so as to remedy AdaBoost’s adverse sensitivity to noise in the
data. Finally, Random Forest is a version of Bagging where diversity is sought by randomising the
construction of the decision tree classifiers used as the ensemble members.

The Logistic Classifier. Let x be the object to be classified, where x = [z1,...,z,]T € R". Let
wi,...,we be the class labels, P(w;) be the prior probabilities and P(w;|x) be the posterior probabilities
for the classes, 7+ = 1,...,c. The Logistic classifier relies on the assumption that the log-odds of the
posterior probabilities for any two classes can be approximated as a linear function. Without loss
of generality, we can pick class w,. and fix its discriminant function to be g.(x) = 0 for any x. The
remaining ¢ — 1 discriminant functions are calculated as

P(wilx)

n
= B; gz, i=1,...,c—1
P(wclx) /810 + Z /Bljmja 7 ’ yC 9

=1

gi(x) = log

where 3;;, are coefficients obtained through training the classifier. The training is done by the Iterative
Reweighted Least Squares (IRLS) method using Newton-Raphson updates (Bishop 2006; Hastie et al.
2001). The logistic classifier provides linear discriminant functions.

For each classifier, a 10-fold cross-validation was carried out 10 times. Thus the classification
accuracy was estimated as the average of 100 testing sets of size 60 objects each. All classifiers are
implemented in Weka, a free software environment for machine learning and data mining (Witten and
Frank 2005). The default parameter settings were used in all experiments.



Table 2: Accuracy of the ten classifiers for the kerogen data set (10 times 10-fold cross-validation).

Type Classifier Accuracy[%] + std
All features Top 6 features
Naive Bayes (Hand and Yu 2001) 81.38+ 5.36 ¢ 85.11+ 4.36 e
Standard Decision tree (Breiman et al. 1984) 84.01+ 4.53 ¢  86.94+ 4.20
classifiers Logistic* (Hastie et al. 2001) 89.07+ 3.44 90.62+ 3.87
Nearest Neighbour (Duda et al. 2001) 82.58+ 4.41 e 8584+ 4.38 @
Neural MLP! (Bishop 1995) 87.95+ 4.07 89.29+ 3.66
networks SVM? (Cristianini and Shawe-Taylor 2000) 88.17+ 4.26 90.07+ 3.95
AdaBoost (Freund and Schapire 1997) 84.51+ 4.59 ¢  85.09+ 4.44
Classifier Bagging (Breiman 1996) 87.32+ 4.47 88.06+ 4.29
ensembles LogitBoost (Friedman et al. 2000) 85.96+ 4.38 @  87.14+ 4.2] e
Random Forest (Breiman 2001) 86.71+ 4.57 88.07+ 4.15 =

*Chosen as the base for comparison

e The classifier is significantly worse than the chosen classifier (o = 0.05)
! MLP stands for Multi Layer Perceptron

2 SVM stands for Support Vector Machines

3. Results

3.1 Classification accuracy
The averaged classification accuracy and the standard deviations are shown in Table 2. The Logistic
classifier performs best among the chosen group. To evaluate the significance of this result, paired
t-test was carried out between the Logistic classifier and all other classifiers. The classifiers which
were significantly worse than the Logistic classifier according to the paired t-test are marked by a
bullet in Table 2.2 To reinforce the finding that the Logistic classifier is the best for our data, we
counted the Win/Draw/Loss score for each classifier. For a given classifier D, Win is the number of
classifiers significantly worse than D in the paired t-tests, Loss is the number of classifiers significantly
better than D, and Draw is the remaining number of classifiers where no significant difference has
been detected. A measure of total performance of D is therefore Total = Win—Loss. Table 3 shows
the results for the ten classifiers in this study sorted by the Total measure. The Logistic classifier is
again the best one among the selected 10 classifiers.
3.2 Feature selection

It is well known in pattern recognition that classifiers might work better if only a subset of the
original features are used. This seemingly counterintuitive phenomenon is called “peak effect” (also
“curse of dimensionality”) and is due to the fact that no classifier is perfect. The ideal classifier, optimal
in Bayesian sense, would not suffer from the peak effect, and its accuracy will not be adversely affected
if noisy features are used. Classifiers trained on data are affected in different degrees. Classifiers based
on features extracted from images are particularly vulnerable because there is no limit to the number
of features that may be extracted. This stands as a challenge in classification of sedimentary organic
matter from image analysis (Weller et al. (2006)).

2We note that the significance cannot be re-confirmed from the accuracies and the standard deviations shown in the
table because the t-tests were paired across the 100 testing results.



Table 3: Number of statistically significant Wins, Losses and Wins—Losses for the 10 classifiers on
the kerogen data

Classifier Total score  Win Loss
Win—Loss
Logistic ) 5 0
Bagging 4 4 0
SVM 4 4 0
MLP 4 4 0
Random Forest 2 2 0
LogitBoost 1 2 1
AdaBoost -3 1 4
Decision tree —4 0 4
Nearest neighbour —6 0 6
Naive Bayes -7 0 7

Table 4: Features ranked by the greedy stepwise selection procedure with the logistic classifier (average
of 10-fold cross-validation).

Feature Accuracyxstd  Rank#std

1 mean red 0.816 £ 0.055 1.20 &+ 0.60
2 mean blue 0.875 4 0.044 2.00 & 0.00
3 entropy 0.888 £+ 0.040 2.80 £ 0.60
4 inner radius 0.897 £ 0.038 4.80 £ 1.60
5 rectangularity 0.900 + 0.036 9.60 = 4.22
6 diameter 0.902 £ 0.036  10.30 &+ 4.75

The Logistic classifier favoured in our study might work better with a subset of the original features.
To test this, we ran feature selection using Weka with the following protocol. A greedy stepwise feature
selection was applied within a 10-fold cross-validation. Each feature was assigned a rank based on
when it was selected. For example, the feature selected first (deemed to be the most relevant one) will
get rank 1, while the feature selected last will get rank 32. By averaging the 10 ranks for each feature,
obtained from the 10 folds, we have a measure of “importance” for that feature. Table 4 gives the
best 6 features according to their ranks.

After finding the ranks, we carried out an experiment to evaluate the contribution of each feature.
We split the data randomly into 90% for training and 10% for testing and repeated the experiment
100 times. Figure 4 displays the averaged (testing) classification accuracy of the logistic classifier as a
function of the number of selected features. A horizontal line is placed at the accuracy with 6 features
to show that beyond that point the accuracy levels off and then declines, which signifies overtraining of
the classifier. Therefore we propose to proceed with the top 6 features: mean red, mean blue, entropy,
inner radius, rectangularity and diameter. It was surprising that the bespoke features, equant/lath
ratio and rim variability were often picked towards the end of the procedure which gave them a poor
rank score. Since there are two classes in the problem, only one discriminant function is needed. The



Accuracy
0.92

0.88

0.86

0.84

0.82

0.8 5 10 15 20 25 30 d

Figure 4: Classification accuracy versus size, d, of the selected feature subset. The bars indicate the
95% confidence intervals.

coefficients of this linear function when the classifier was trained on the whole data set (normalised)
are given in Table 5. If the expression is positive, the predicted class is inertinite, if negative or zero,
the predicted class is vitrinite. Also shown in the table is the confusion matrix on the whole data
set and the resubstitution accuracy (note that that is not much different from the accuracy estimated
through 10 times 10-fold cross-validation in Table 2).

Table 5: Coefficients and confusion matrix for the logistic classifier with the best 6 features trained
on the whole data set (I stands for “inertinite” and V stands for “vitrinite”)

(a) Coefficients (b) Confusion matrix
meanred —-3.033 .
meanblue 1.9054 _Assigned

t —2.086 L v
CULoPy ' I (true) 210 28
innerradius —0.5118 V (true) 26 337
rectangularity —0.3388 e
diameter —0.3873
intercept —2.1066 Accuracy = 91.01%

4. Further Evaluation of the System

It is interesting to find out how certain the classifier is in its prediction and whether the misclas-
sified objects have been labelled with lower certainty. It is also curious whether the human expert and
the classifier are uncertain about the same objects. The certainty of the classification decision can be
measured by the posterior probability for the winning class. The larger the probability, the higher the
certainty (confidence). Let g(x) be the output of the discriminant function produced by the logistic



classifier. An estimate of the posterior probability P(inertinite|x) is P(inertinite|x) = m,
and, respectively, P(vitrinite|x) = 1 — P(inertinite|x). Figure 5 plots a histogram of P(inertinite|x)
across the 601 objects in the data set. Values close to () and to 1 signify high certainty while values
near (.5 signify low certainty. The shape of the histogram shows that most objects are classified with

high certainty.
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Figure 5: Histogram of P(inertinite|x) for the whole data set.

A look at the 54 misclassified objects reveals that these are not necessarily the objects labelled
with the lowest certainty. The posterior probability for the wrong class spans the whole interval from
0.5 to 1. This suggests that setting up a certainty threshold and allowing the system to abstain from
making a decision will not necessarily improve the system’s accuracy.

The 5 objects labelled in the wrong class with the highest certainty are shown in Figure 6. A
second opinion of a palynologist expert was sought on the misclassified objects. Out of the 28 objects
mislabelled as inertinite, the expert agreed with the system’s decision on 9 objects (32%). Out of the
26 objects mislabelled as vitrinite, the expert agreed with the system’s decision on 13 objects (50%)
and placed another 7 objects (27%) in class “other”. In total, the second expert accepted the system’s
(supposedly wrong) decision for 22 objects out the 54 (41%) and labelled further 7 of these objects
(13%) into class “other”.

The disagreement between the expert opinions prompts the following two comments about de-
signing an automatic system for kerogen classification. First, the ground truth on which the system
is trained may vary considerably from one expert to another. This makes the system expert-specific.
This concern has been flagged before by Athersuch et al. (1994) pointing out that fossil identification
is often a personal science. While an expert system relies on rules which are generally accepted, a
system based on expert labelling of objects may only be as good as that one expert. Therefore it is
important to seek consensus between experts on a set of objects in order to prepare the data. Second,
the fact that the experts may disagree means that the two classes do not have a clear-cut definition
in the first place. Thus labelling borderline cases in either of the two classes should not be considered
a severe mistake on the system’s part.

10
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Figure 6: The five misclassified objects from each class, labelled with largest certainty (shown under-
neath).

5. Conclusions

We present an approach to automatic classification of inertinite and vitrinite pieces in images of
dispersed kerogen preparation. To our knowledge, this is the first attempt at a completely automatic
classification system for kerogen types from microscope images of this type. Such a system can be
a first step towards remote palynology analysis concerning oil exploration. Palynologists are often
required to be present on oil rigs to help identify geological horizons as they are drilled. There are
currently not enough palynologists to cover all this work, which is geographically widespread. If pa-
lynological slides could be scanned by an automated system on the oil rig and pictures of all the
palynomorphs made available to a remote palynologist then there would be considerable advantages
to the oil industry.

The experiments singled out the Logistic classifier as the best choice among a selection of state-of-
the-art classifier models. This classifier is simple and robust, and outperformed both simple models
such as Naive Bayes and Nearest Neighbour, as well as more sophisticated classifiers such as Sup-
port Vector Machines (SVM) and a standard Multilayer Perceptron (MLP). Surprisingly, the logistic
classifier fared better than all the ensemble classification methods which are believed to be better
than single classifiers. This result may be explained by possible overtraining of the more sophisticated
classifiers.

The results from the experiments suggested that the problem can be solved at equal accuracy (even
slightly better) using only 6 of the 32 features. Most of the features are derived from one another, and
this creates redundancy. The most important features were found to be from the colour group (mean
red and mean blue), as vitrinite pieces are generally lighter than inertinite pieces. Importance of colour
was also noted by Weller et al. (2006) in regard to classification of palynomorphs by an artificial neural
network classifier. However, we note that within the top 6 features, there is a representative from
each of the four groups: colour (mean red and mean blue), size (inner radius and diameter), texture
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(entropy) and shape (rectangularity).

In all the analyses presented above we assumed that the expert’s decision on each piece is precise
and final. Thus, all our classifier is meant to do is match the expert’s decision as close as possible. In
this study we left the learning completely to the training algorithm of the chosen classifier model, and
have not attempted to mimic the expert’s logic in reaching the decision. The system will be further
extended to include palynomorph extraction and recognition. After the kerogen pieces have been clas-
sified, they will be removed from the image, and the remaining objects (palynomorphs, amorphous
matter) will be extracted and subsequently classified. Our future research will follow two paths. First,
we will evaluate the stability of the classification results with respect to small and large alterations of
the object extraction method. Second, we plan to solicit another expert’s opinion on the whole data
set and carry out experiments to evaluate concordance between the experts themselves and also with
respect to the systems designed on their individual and collective opinions.
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