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A B S T R A C T   

In the face of the global concern about climate change and endangered ecosystems, monitoring individual an
imals is of paramount importance. Computer vision methods for animal recognition and re-identification from 
video or image collections are a modern alternative to more traditional but intrusive methods such as tagging or 
branding. While there are many studies reporting results on various animal re-identification databases, there is a 
notable lack of comparative studies between different classification methods. In this paper we offer a comparison 
of 25 classification methods including linear, non-linear and ensemble models, as well as deep learning networks. 
Since the animal databases are vastly different in characteristics and difficulty, we propose an experimental 
protocol that can be applied to a chosen data collections. We use a publicly available database of five video clips, 
each containing multiple identities (9 to 27), where the animals are typically present as a group in each video 
frame. Our experiment involves five data representations: colour, shape, texture, and two feature spaces 
extracted by deep learning. In our experiments, simpler models (linear classifiers) and just colour feature space 
gave the best classification accuracy, demonstrating the importance of running a comparative study before 
resorting to complex, time-consuming, and potentially less robust methods.   

1. Introduction 

According to predictions, climate change, global pollution, and un
controllable growth of plastic waste are among the factors heralding an 
ecological catastrophe. Multidisciplinary effort in monitoring and 
managing of animal populations and ecosystems can reduce the risk of 
losing animal species and destroying natural habitats (Kumar and Singh, 
2017; Kühl and Burghardt, 2013; Schneider et al., 2019; Kays et al., 
6240). 

Scientists have monitored animals for a long time using a variety of 
methods. Individual animal recognition has been in place for a long 
time, but the methods have been predominantly intrusive, and often 
invasive, including branding, tattooing, notching, and tagging. Ethical 
issues aside, this may affect the behaviour of the animal and also 
compromise the demographic study (Kühl and Burghardt, 2013; Eradus 
and Jansen, 1999; Awad, 2016; Speed et al., 2007). Geared predomi
nantly towards human re-identification (Behera et al., 2022), computer 
vision is currently also making large strides towards aiding or replacing 
the outdated physical identification methods in animal re-identification 

(Weinstein, 2018). Distinctive individual patterns allow for re- 
identification of animals in many species such as zebras, giraffes 
(Ramanan et al., 2006), whale shark (Speed et al., 2007), African pen
guins (Burghardt and Campbell, 2007), ringed seals (Nepovinnykh et al., 
2022; Nadolin, 2020), common dolphins (Bouma et al., 2018), giraffes 
(Miele et al., 2021), giant panda (Wang et al., 2021), honey bees (Chan 
et al., 2022), yaks (Zhang et al., 2021), and many more. To succeed in 
this quest, large databases of animals need to be collected, annotated, 
and made available to researchers. Additionally, interdisciplinary teams 
should be involved, bringing together the state-of-the-art in animal 
studies and machine learning. 

Animal re-identification is the task of recognizing the animal’s 
identity from an image or a collection of images. In a video, an animal 
may be present in different frames; it may come in and out of camera 
view multiple times. Re-identification means that the animal’s identity 
is recognised correctly each time it is in camera view. Sometimes, 
(human) re-identification is understood as identifying the same indi
vidual from different camera views, at the same time moment. Practi
cally, this is the same task, only differently phrased. In this context, we 
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will stipulate that animal re-identification is a standard classification 
task. While there is a large body of literature on animal re-identification, 
the classification part rarely explores more than one designated classi
fier or different feature representations. 

The prospective real-life scenario, which our experiments are tar
geted at, is as follows. A long video footage is available containing 
nearly the same individuals (a few may join in or drop off). A small part 
of the video is annotated with bounding boxes and class labels (identi
ties). Classifiers are trained and tested on the labelled part, and the most 
successful classifier is identified. The unlabelled part is subsequently 
processed by detecting bounding boxes and labelling each one by the 
chosen classifier. 

In this study, we consider only the first part of this scenario, where 
we train and test classifier models across different feature representa
tions. We view a twofold contribution of this study. Our methodological 
contribution is an experimental protocol that can be applied when 
choosing animal re-identification method for a given, partly annotated 
dataset. Second, we offer insights and general recommendations for the 
type of data similar to that used in the experiment. Our results could be 
used as a benchmark for further re-identification experiments for the 
chosen dataset. 

2. Related work 

Camera trap, bespoke fixed camera setting, and unconstrained video 
footage are useful sources of imaging data for tracking, species identi
fication, and individual animal recognition (Schneider et al., 2019). 
Fixed camera setting has been used primarily in managing livestock, for 
example, Holstein cows (Okura et al., 2019; Zhao et al., 2019; Guzhva 
et al., 2019; Zin et al., 2018) and pigs (Kashiha et al., 2013), (Wang 
et al., 2022), where the animals are kept into an enclosure or herded 
through a gate. Drone videos (unconstrained) have been used for re- 
identification of livestock as well (Andrew et al., 2017). Camera traps 
are mostly suitable for monitoring the type of species in a given location 
(Willi et al., 2018; Norouzzadeh et al., 2018). They are rarely used for 
animal re-identification. On the other hand, unconstrained video 
footage is the common source of data for tracking and recognising ani
mals in the wild (Ramanan et al., 2006; Burghardt and Campbell, 2007; 
Zeppelzauer, 2013; Schofield et al., 2019). However, this makes the task 
of bounding box identification and subsequent classification a lot more 
challenging. 

A notable work on animal re-identification from video are the 
idTracker models (Pérez-Escudero et al., 2014; Romero-Ferrero et al., 
2019), reporting excellent identification accuracy on a group of simul
taneously moving animals. Their experiments, as well as several related 
studies (Xu and Cheng, 2017; Naiser et al., 2018), include ants, mice, 
fruit fly, and zebra fish, none of which presents clear biometric markers. 
The videos are taken in a non-cluttered lab environment and the indi
vidual recognition is solely based on the trajectories. While acknowl
edging the strong information potential of the animals’ movement, our 
study is focused on the appearance alone. By ignoring the frame conti
nuity, we gauge the potential of the classification methods chosen here 
to work for image collections obtained through different means, such as 
crowd-sourcing and time-lapse video footage. Schneider et al. (2019) 
recommend using video as the richest source of images for animal re- 
identification and encourage researchers to publish curated and anno
tated animal image datasets. The database we chose for this study is 
available at: https://github.com/LucyKuncheva/Animal-Identificati 
on-from-Video (Kuncheva et al., 2022). 

Schneider et al. (2019) present a timeline of the development of the 
area of animal re-identification, highlighting the paradigm shift from 
what they call ‘feature engineering’ towards ‘machine learning’. The 
feature engineering era was rooted in standard image descriptors of 
colour, texture, and shape of the objects to be recognised. Similarity- 
type features such as SIFT were also included there. Bespoke image 
processing approaches were adapted to suit the task of animal re- 

identification. An example comes from the realisation that primate 
faces bear resemblance to human faces, hence the well-developed 
human face recognition can lend a hand (Schofield et al., 2019; Deb 
et al., 2018; Crouse et al., 2017). In fact, face recognition has been 
attempted for cows (Bergamini et al., 2019; Kumar et al., 2015), goats 
(Billah et al., 2022) and dogs (Kumar and Singh, 2018) as well. The 
shortcoming of the feature engineering approach was lack of generality. 
The methods were also deemed impractical because, in addition to 
domain knowledge about the species being studied, these methods 
required computing expertise (Schneider et al., 2019). 

The machine learning stage defined by Schneider et al. (2019) is 
exclusively associated with deep learning (Schneider et al., 2019; Rav
oor and Sudarshan, 2020). The earliest deep learning methods were 
based on convolutional neural networks (CNN). Older studies applied 
standard or adapted classification methods, the most intuitive of which 
is the nearest neighbour. Moskvyak et al. (2021) proposed a system 
architecture to re-identify manta rays by generating an embedding of a 
target image using a CNN and subsequently applying a K-nearest 
neighbour classifier. Miele et al. (2020) propose two CNN-based 
methods for animal re-identification which include deep metric 
learning and a pipeline where the CNN is followed by matching through 
SIFT features. The standard CNN networks are progressively being 
replaced by similarity-based networks such as Siamese networks 
(Schneider et al., 2022; Dlamini and van Zyl, 2021; Nepovinnykh et al., 
2020; Van Zyl et al., 2020; Crall, 2017). This was dictated by the 
observation that the training data would often be insufficient for 
learning a multitude of classes compared to learning the two-class 
problem of ‘same/different’. In essence, similarity-based networks are 
trained to extract a metric (features most relevant to pairwise compar
ison). This is followed by a nearest neighbour (1-nn) or k-nn classifica
tion in order to return the animal identity. 

Deep learning models can seamlessly integrate the three stages of the 
re-identification process: detection of the bounding box with the animal 
in the image, feature extraction, and finally classification. For example, 
reinforcement learning networks such as Faster RCNN (Ren et al., 2015) 
have proven useful as part of the pipeline responsible for bounding box 
detection. Once bounding boxes were identified, a CNN version is used 
for feature extraction. Ravoor and Sudarshan (2020) consider a final 
stage of the pipeline called Identity association. At this stage, either the 
trained CNN predictions are taken forward through softmax (the feature 
extraction and classification task are fused and performed entirely by the 
CNN) or another classifier is used on the features extracted by the CNN. 
The typical classifiers, as reported by Ravoor et al., are the support 
vector machine (SVM) classifier, k-nn, Euclidean distance, and cosine 
similarity. A two-step process decoupling feature extrcation and classi
fication is also considered by Bodesheim et al. (2022), with SVM and 
Gaussian processes used at the classification step. In our study, we are 
interested in testing a large collection of different classifier models at the 
Identity association stage. To the best of our knowledge, very little 
experimental research has been done to explore the success of the 
plethora of state-of-the-art classifier models with either engineered 
features or deep learning features. Following the previous research, in 
this study, we decouple the two stages of animal recognition into feature 
extraction and classification. The novelty of our study can be summar
ised as follows: 

(1).Most previous studies focus on feature extraction, typically using 
a deep neural network model. We suggest that, for complicated tasks 
with relatively small number of instances per class, simpler, more 
basic feature extraction methods may be useful. Our experiment 
demonstrates this argument. 
(2).While most previous studies apply a basic classifier model at the 
classification stage, here we test a variety of state-of-the-art 
classifiers. 
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(3).We propose a generic method and a testing protocol for animal 
re-identification from video or an image collection, where part of the 
data is annotated with bounding boxes and class labels. 

3. The proposed experimental protocol 

We start with a labelled data set of images (instances), each con
taining one animal. We assume that these images are obtained by 
applying object detection or tracking in the video, and extracting 
bounding boxes with one animal in each. The images are therefore of 
different sizes. An example of the type of images (resized to identical 
squares), taken from our case study, is shown in Fig. 1. 

For the experiment here, we do not need to keep the location of the 
bounding box within the frame, but these locations are available in the 
database. 

The proposed protocol consists of two steps: feature extraction and 
classification, as illustrated in the diagram in Fig. 2. The feature 
extraction is carried out over the whole collection of images, ignoring 
the class label. A twofold cross-validation classification is applied to test 
various state-of-the-art classification models, where the video is split 

into halves. The reason for keeping the video halves intact is to avoid 
near-identical instances coming from time-adjacent frames to be split 
between training and testing. Randomised cross-validation will not 
guard against such splits, which will lead to deceptively high accuracy 
rates. Bypassing the feature extraction branch in the diagram, deep 
learning models can be applied directly to the original image data. This 
is the currently preferred method for animal recognition and re- 
identification. We argue here (and demonstrate through our case 
study) that deep learning is not necessarily the best approach. 

4. Experimental study 

Following the proposed protocol, in this section we detail our data 
and design choices. 

4.1. Data 

The dataset chosen for our case study consists of five video clips 
sourced from Pixabay https://pixabay.com/ under the Pixabay license. 
The unconstrained videos capture the movement of groups of animals 

Fig. 1. An example of the type of images in our case study. These are three of the nine classes in the Koi fish video.  

Fig. 2. Diagram of the proposed experimental protocol for animal re-identification.  
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within 9–24 s. The animals in each video are of the same species: Koi 
fish,1 pigeons (square),2 pigeons (pavement)3, pigeons (curb),4 and 
pigs,5 available from www.pixabay.com. Each video has been manually 
annotated by creating bounding boxes (BB) with one animal in each BB. 
The BBs have been labelled with the respective animal identities. Ex
amples of annotated frames are shown in Fig. 3. 

The full database is available at https://doi.org/10.5281/zenodo. 
7322820 (Kuncheva et al., Nov. 2022). It contains the annotations, in
dividual images and datasets with different feature representations. The 
characteristics of the five videos are summarised in Table 1. We also 
display an imbalance metric for each video, which is calculated as the 
size of the largest class divided by the size of the smallest class. 

In order to visualise the complexity of our problem, we used the 
feature reduction algorithm UMAP (McInnes et al., 2018) to reduce the 
dimensionality to two. We applied UMAP to the colour feature repre
sentation (RGB, detailed in the next section) of the Koi fish video. Fig. 4 
(a) shows the overall scatterplot of the nine classes plotted with different 
markers and colours. Instances in consecutive frames are joined by lines. 
Fig. 4 (b) is a close-up of the three classes illustrated in Fig. 1. The in
stances in the second half of the video are additionally marked with 
circles. 

The figure demonstrates that the classes are heavily intertwined. 
More importantly, Fig. 4 (b) shows that there could be large differences 
in the representations of the animal identities in the two halves of the 
video. This implies that classification models which may learn very well 
in the training data, e.g., deep neural networks, may be inadequate for 
the testing half of the video. 

Fig. 3. Examples of annotated frames from the animal re-identification database used as our case-study.  

Table 1 
Characteristics of the videos.  

Video k l N c Min p/f Max p/f Avr p/f Imbalance 

Koi fish 536 22 1635 9 1 6 3.1 2.8 
Pigs 500 16 6184 26 4 20 12.4 10.5 
Pigeons (square) 300 9 4892 27 1 23 16.3 24.8 
Pigeons (pavement) 600 24 3079 17 3 8 5.1 19.3 
Pigeons (curb) 443 17 4700 14 8 13 10.6 3.1 

Table notes: k is the number of frames; l is the video length in seconds; N is the number of objects (individual animal images); c is the number of classes (animal 
identities); Min p/f is the minimum number of animals per frame (image); Max p/f and Avr p/f are respectively the maximum and the average numbers. 

Fig. 4. Two-dimensional representation of the RGB dataset from the Koi fish video after applying UMAP.  

1 www.pixabay.com/videos/koi-carp-fishes-ornamental-fish-5652/.  
2 www.pixabay.com/videos/birds-street-pigeon-29033/.  
3 www.pixabay.com/videos/pigeons-doves-and-pigeons-bird-city-4927/  
4 www.pixabay.com/videos/pigeons-eating-nature-birds-food-8234/.  
5 www.pixabay.com/videos/pigs-farm-animals-livestock-49651/. 
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4.2. Feature extraction  

• Colour-related (RGB). RGB moments: The image with the animal was 
divided into 3-by-3 blocks. For each block, we calculate and store the 
mean and the standard deviations of the red, the green, and the blue 
panel, which results in a total of 54 RGB features. A MATLAB func
tion get\inferior rgb\inferior features is provided in the 
Github repository https://github.com/admirable-ubu/animal-rec 
ognition/. We store all the code there.  

• Shape-related (HOG). We resized all individual images to a square 
with side a (we used a = 40) and extracted a Histogram of Oriented 
Gradients (HOG) from the colour image. MATLAB function 
extractHOGfeatures was used with default parameters, resulting 
in 576 HOG features.  

• Texture-related (LBP). Local Binary Patterns (LBP) features were 
extracted using from the grey-scale, resized image using MATLAB 
function extractLBPfeatures. We used the default parameters, 
apart from setting ‘Upright’ to false, in order to allow for rotation- 
invariant features. The function returned 10 LBP features.  

• Autoencoder (AE). Autoencoders are deep learning neural networks 
which are trained to reconstruct the input. There is a “code” layer, 
which contains the so called latent representation of the input. The 
outputs of the code layer are the features extracted by the AE 
network. MATLAB function trainAutoencoder was used with 
default parameters. The latent representation is of size 10, which 
gives 10 AE features. The network was trained on the whole dataset 
while ignoring any class labels.  

• MobileNetV2 (MN2. We used the Keras MobileNetV2 model pre- 
trained on Imagenet. The last layer was cut off, and replaced with 
a GlobalAveragePooling layer, which yielded 1280 features. Python 
code for this part of the experiment is provided using function 
extractMobilNetfeatures from functions.py. 

4.3. Classifiers 

We included 23 classifiers from the Python library lazypredict (Pan
dala and da Silva, 2022), based on scikit-learn (Pedregosa et al., 2011). 
These were all the classifiers in this library that could be applied to our 
data. We grouped the classifiers into: baseline, linear, non-linear, and 
ensembles, as shown in Table 2. Details of these methods can be found in 
the scikit-learn documentation and the books by Géron (2022) and 
Raschka et al. (2022). These classifiers were applied to the five data 
representations detailed in Section 4.2. The Largest Prior classifier 
(Classifier 1 in the Table; also known as Majority or ZeroR classifier) was 
chosen as a baseline. 

We also trained a bespoke Convolutional Neural Network (CNN) 
using a standard structure as detailed in Fig. 5. 

The CNN was trained using the Adam optimiser and binary cross- 
entropy loss. 

To explore further the potential of deep learning, we used the Keras 
MobileNetV2 model pre-trained on Imagenet. The last layer was cut off, 
and replaced with: GlobalAveragePooling layer, followed by a Dropout 
layer with rate 0.2. Finally, we added a Dense layer with sotmax acti
vation. The network was trained with the same training options as the 
bespoke CNN network. 

For both deep learning models, we used data augmentation. During 
training, we modified each image according to a random augmentation 
selected among: random rotation at up to 30 degrees, zoom with a range 
of 0.2, random horizontal shift up 0.1 of the image width, random 
vertical shift up 0.1 of the image height, and horizontal flip. 

Python code is available at https://github.com/admirable-ubu/ani 
mal-recognition/. All experiments were carried out on Rocky Linux 
8.5 with two Intel Xeon Platinum 8358 CPU @ 2.60 GHz and Nvidia RTX 
A6000 with 48 GiB of VRAM. 

Table 2 
Classifiers used in this study. The colour boxes correspond to the colours in the 
figures, with Results 7–11. In the electronic version of the document, classifier 
names include a hyperlink to the classifier implementation documentation.  

Baseline 

1. Largest Prior classifier (ZeroR/ Majority) 

Linear Non-Linear 

2. Bernoulli (Naïve Bayes) 14. DecisionTree (C45) 
3. Calibrated CV 15. Extra Tree 
4. Gaussian Naïve Bayes 16. K-nn 
5. Linear Discriminant Analysis 17. Quadratic Discriminant Analysis 
6. Linear SVM 18. SVM 
7. Logistic Regression  
8. Nearest Centroid 

Ensembles 

9. Passive Aggressive Classifier  

10. Perceptron 19. AdaBoost 
11. Ridge Regression 20. Bagging 
12. Ridge Regression CV 21. Extra Tree Ensemble 
13. SGD 22. LGBM  

23. Random Forest 

Deep Learning  

24. Convolutional Neural Network (CNN) 
25. Transfer learning using MobileNetV2 (MNV2)  

Fig. 5. The CNN configuration.  
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5. Results 

5.1. Ranking of the classifier models 

According to the proposed protocol, twofold cross-validation was 
carried out where the videos were split into halves so that the frame 
continuity is preserved. Each half has been used once for training and 
once for testing. The classification accuracies were averaged across the 
two folds. These experiments were run separately for each of the five 
feature representations described in Section 4.2. 

The obtained classification accuracies for all classifiers and all 

feature representations can be found in Tables 6 and 5 in the Appendix. 
The first set of results we show are average ranking box plots. As the 

classification accuracies are not commensurable from one video to 
another, we used ranks. Each video together with a feature representa
tion are considered a separate data set, so the total number of datasets is 
25. For each dataset, the classifiers are assigned a rank between 1 and 
25, as there are also 25 classifiers. The most accurate classifier receives 
rank 1 and the least accurate classifier, rank 25. Tied ranks are shared so 
that the sum of ranks is preserved. Thus, each classifier receives 25 rank 
values. Fig. 6 shows a boxplot of the classifier ranks. The classifiers are 
arranged from the best (leftmost, the lowest rank), to the worst, which, 

Fig. 6. Box plot of the 25 classifier ranks across the 25 datasets. The classifiers are arranged from best (left) to worst (right) according to the mean (red dot).  

Fig. 7. Classification accuracy of the 25 classifiers for the five feature representations for the Koi Fish video. Best accuracy of 34.13% was achieved with RGB feature 
representation and the LDA classifier. 
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as expected, is the Largest Prior classifier (the baseline). The best clas
sifier in our experiment was the LDA. 

Admittedly, while some classification models are quite robust (e.g., 
LDA), others depend substantially on how they are tuned for the 
application task. In this experiment we used the default parameters of all 
classification methods and their training options, apart from the CNN, 
which was designed ad hoc. We ran a small additional study to check 
whether tuning of some of the more susceptible models will lead to a 
great difference in the classification accuracy. 

5.2. Feature representation results 

Next, we look at the feature representations. Figs. 7–11 show glyph 
plots of the classification accuracies. Each video has a separate figure. 
The five plots in each figure correspond to feature representations. The 
classification accuracies are represented by the spoke sizes. The subplots 
in each figure are scaled so that the largest spoke corresponds to the 
maximum accuracy across all feature representations for the respective 
video. This spoke is shown in red. The numbers in parentheses within 
the subplot titles are the average classification accuracy for the respec
tive feature representation across the 25 classifiers. The classifier groups 

Fig. 8. Classification accuracy of the 25 classifiers for the five feature representations for the Pigeons (square) video. Best accuracy of 49.13% was achieved with RGB 
feature representation and the LDA classifier. 

Fig. 9. Classification accuracy of the 25 classifiers for the five feature representations for the Pigeons (pavement) video. Best accuracy of 18.41% was achieved with 
RGB feature representation and the QDA classifier. 

Fig. 10. Classification accuracy of the 25 classifiers for the five feature representations for the Pigeons (curb) video. Best accuracy of 38.53% was achieved with RGB 
feature representation and the Calibrated CV classifier. 

Fig. 11. Classification accuracy of the 25 classifiers for the five feature representations for the Pigs video. Best accuracy of 34.51% was achieved with RGB feature 
representation and the LDA classifier. 
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detailed in Table 2 are shown with different shading. It can be seen that 
sometimes the best accuracy does not come from the feature represen
tation with the best overall accuracy. 

Fig. 12 shows the ranks for the feature representations, considering 
each pair of classifier and video as an item. Hence, for each feature 
representation there are 23 × 5 = 115 ranks. The figure shows that the 
RGB representation markedly outperforms the rest. 

As we are interested in the combination of feature representation and 
classifier, the best accuracies are shown in Table 3. 

5.3. Tuning parameters 

The previous results were obtained with default parameter values. 
Results can usually be improved tuning parameters, but with a higher 
computational cost. In order to get a first idea of the effect of this tuning, 
we conducted an affordable experiment with a subset of the classifiers (i. 
e., Linear Discriminant Analysis, Quadratic Discriminant Analysis, SVM, 
Extra Tree Ensemble and Random Forest) and the RGB representation. 
They were selected because they were the best classifiers and repre
sentation in the previous experiment. 

Parameter tuning was performed using an AutoML (automated ma
chine learning) (He et al., 2021) tool, auto-sklearn (Feurer et al., 2015). 
The parameters to tune and their possible values were those predefined 
in auto-sklearn. 

Table 4 shows the best accuracies for each video from the classifiers 
with tuning. Comparing with the results without tuning in Table 3, the 
results with tuning are only better for the Pigs video and worse for the 
others. The reason could be that parameter tuning in these data sets 
increases over-fitting. 

The CNN parameters were also tuned in another experiment, using 
keras-tuner (O’Malley et al., 2019). For each fold, the size of the vali
dation data was 25%. The search space is defined by the following 

Fig. 12. Box plot of the ranking of the 5 feature representations arranged from 
best (left) to worst (right) according to the mean (red dot). 

Table 3 
Accuracy for the best combination of classifier and feature representation for 
each video.   

Koi Pigeons 
(square) 

Pigeons 
(pavement) 

Pigeons 
(curb) 

Pigs 

Classifier LDA LDA QDA Calibrated 
CV 

LDA 

Features 
set 

RGB RGB RGB RGB RGB 

Accuracy 34.13 49.13 18.41 38.53 34.57  

Table 4 
Accuracy for the best classifiers with tunning for each video. The complete set of 
results for these classifiers are in Table 11.   

Koi Pigeons 
(square) 

Pigeons 
(pavement) 

Pigeons 
(curb) 

Pigs 

Classifier LDA LDA LDA QDA LDA 
Accuracy 29.30 45.86 15.73 32.01 35.10  

Table 5 
Cross-validation classification accuracy [in %] for the deep learning models 
using raw images and data augmentation.   

Koi Pigeons 
(square) 

Pigeons 
(pavement) 

Pigeons 
(curb) 

Pigs 

MNV2 7.53 6.44 5.93 11.15 11.21 
CNN 24.74 13.64 10.63 16.95 20.68 
CNN with 

tuning 
26.20 13.32 12.51 17.52 17.47  

Table 6 
Classification accuracy of the classifiers for the feature representations for the 
Koi fish video.   

Classifier AE HOG LBP MN2 RGB Average 

1 Largest prior 
(baseline) 

8.19 8.19 8.19 8.19 8.19 8.19 

2 Bernoulli (Naïve 
Bayes) 

13.22 14.41 22.04 22.37 20.12 18.43 

3 Calibrated CV 15.14 11.57 26.63 15.38 26.77 19.10 
4 Gaussian Naïve 

Bayes 
22.77 15.46 21.84 16.14 20.57 19.36 

5 Linear 
Discriminant 
Analysis 

22.93 13.56 23.63 17.23 34.13 22.30 

6 Linear SVM 16.51 12.09 25.59 16.82 19.96 18.19 
7 Logistic 

Regression 
14.85 11.96 23.46 20.41 22.88 18.71 

8 Nearest Centroid 16.68 12.46 20.41 21.80 25.68 19.41 
9 Passive 

Aggressive 
Classifier 

11.17 11.71 21.65 16.94 17.70 15.83 

10 Perceptron 11.47 12.72 23.89 16.77 16.13 16.20 
11 Ridge Regression 22.23 13.72 25.15 15.58 17.20 18.78 
12 Ridge Regression 

CV 
22.18 12.50 25.15 15.58 16.98 18.48 

13 SGD 17.72 13.27 20.08 15.82 30.60 19.50 
14 DecisionTree 

(C45) 
20.47 13.28 17.57 18.52 24.50 18.87 

15 Extra Tree 20.99 10.56 18.62 14.13 26.70 18.20 
16 K-nn 20.29 14.10 21.43 18.81 28.10 20.55 
17 Quadratic 

Discriminant 
Analysis 

25.67 11.31 23.41 9.86 15.53 17.16 

18 SVM 18.27 12.52 24.54 22.10 27.07 20.90 
19 AdaBoost 13.73 12.57 16.17 13.13 10.87 13.29 
20 Bagging 23.95 11.95 21.09 20.35 27.51 20.97 
21 Extra Tree 

Ensemble 
25.91 13.07 23.27 19.52 29.39 22.23 

22 LGBM 25.69 13.02 21.54 23.79 27.00 22.21 
23 Random Forest 27.66 12.56 21.54 20.64 31.05 22.69  

Average 19.03 12.55 21.60 17.39 22.81 18.68  
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parameters and values. Number of filters for the first convolutional 
layer: 16, 32 and 64. Number of filters for the second convolutional 
layer: 32, 64 and 128. Dropout rate for both dropout layers: between 
0 and 0.5 in steps of 0.1. Dimensions of the output space in the inter
mediate dense layer: 64, 128 and 256. Learning rates: 0.01, 0.001 and 
0.0001. Epochs: between 3 and 200. 

The results of this experiment are shown in Table 5. The results with 
tuning are close to the results without tuning and they are worse for two 
of the five videos. 

5.4. Discussion 

The overwhelming opinion, backed by numerous studies, is that the 
use of deep learning methods for animal re-identification improves ac
curacy (Schneider et al., 2019; Ravoor and Sudarshan, 2020). In 
contrast, our results show that, for our data, LDA is the best classifier. It 
stands at the top of the overall average ranking, obtaining the best ac
curacy on three of the five datasets. The overall and individual best 
performance for all datasets is obtained using the colour feature repre
sentation, surpassing the texture and shape representations, which res
onates with findings by other authors (Zeppelzauer, 2013). Neither the 
ensemble methods nor the deep learning models, both of which were 
expected to work well, produced reasonable accuracy. Moreover, 
parameter tuning also does not produce more promising results, for the 
classifiers considered. We have already discussed the possible reasons in 
Section 4.1. 

In real-life scenarios, the data will likely be fairly different from one 
part of the video to the next. Classifiers which are capable of capturing 
intricate classification structures will suffer more heavily when 

distribution changes, compared to simpler classifiers which rely on the 
most generic representation of the data. This is why LDA, and the linear 
models in general, outperformed their competitors in our case study, 
using the RGB features. If, however, the distributions are likely to be 
relatively static along the video (e.g., if a fixed camera is used), more 
complex models may dominate. This reinforces the importance on car
rying out an experimental study to compare different classifier models, 
keeping the cross-validation folds contingent. 

We observe that, compared to similar studies on animal re- 
identification, our classification accuracy is low. There are different 
reasons for this result. First, in many studies, a typical measure of ac
curacy is based on whether the correct identity is among the top five 
results retrieved from the database (top-5 accuracy) (Bodesheim et al., 
2022; Dlamini and van Zyl, 2021; Nepovinnykh et al., 2022). This metric 
assumes that the classifier approach is a version of the nearest- 
neighbour classifier. We experimented with standard classifier models 
which return only one class label. Variants of the standard classification 
models can be devised, especially for the most successful methods, 
which return a ranked list of similar instances from a chosen reference 
database. 

One issue that we faced, even in these short video clips, which ac
counts for the low accuracy, is the so-called open set recognition problem 
(Bodesheim et al., 2022). This refers to the introduction of new classes 
(identities) in the testing part of the video. As the classifier has not seen 
these classes in the training, it will mistakenly label the instances as 
belonging to some of the existing classes. This will inevitably introduce 
extra classification error compared to the closed-set case. One possible 
approach to address this problem is to use classifiers which are 
confidence-conscious. Such classifiers will refuse to assign a label if the 

Table 7 
Classification accuracy of the classifiers for the feature representations for the 
Pigeons (square) video.   

Classifier AE HOG LBP MN2 RGB Average 

1 Largest prior 
(baseline) 

6.18 6.18 6.18 6.18 6.18 6.18 

2 Bernoulli (Naïve 
Bayes) 

14.02 29.41 14.34 14.11 32.03 20.78 

3 Calibrated CV 16.51 37.26 20.67 35.66 39.83 29.99 
4 Gaussian Naïve 

Bayes 
17.84 28.51 17.93 12.33 30.70 21.46 

5 Linear 
Discriminant 
Analysis 

14.92 34.05 19.04 35.99 49.13 30.62 

6 Linear SVM 15.42 36.59 20.60 33.77 38.23 28.92 
7 Logistic 

Regression 
16.72 37.37 19.41 33.67 37.19 28.87 

8 Nearest Centroid 16.35 29.81 17.55 14.94 34.13 22.55 
9 Passive 

Aggressive 
Classifier 

13.24 37.68 9.48 33.18 39.08 26.53 

10 Perceptron 10.81 34.01 16.01 26.97 36.15 24.79 
11 Ridge Regression 11.47 35.16 18.28 36.12 42.54 28.71 
12 Ridge Regression 

CV 
11.45 35.93 18.28 35.98 42.62 28.85 

13 SGD 12.61 30.41 15.97 24.69 27.59 22.26 
14 DecisionTree 

(C45) 
20.10 17.61 14.42 18.07 24.52 18.94 

15 Extra Tree 19.67 15.02 14.47 13.08 21.12 16.67 
16 K-nn 24.17 38.91 16.69 23.08 40.80 28.73 
17 Quadratic 

Discriminant 
Analysis 

18.97 5.92 20.40 7.82 31.88 17.00 

18 SVM 15.19 37.84 20.07 27.10 41.36 28.31 
19 AdaBoost 8.91 10.77 14.54 7.08 9.33 10.13 
20 Bagging 24.21 25.25 17.59 22.86 31.38 24.26 
21 Extra Tree 

Ensemble 
27.41 35.58 19.04 25.88 43.16 30.22 

22 LGBM 27.46 32.09 19.25 27.31 36.36 28.50 
23 Random Forest 27.46 35.95 19.00 25.88 41.73 30.00  

Average 17.00 29.01 16.92 23.55 33.78 24.06  

Table 8 
Classification accuracy of the classifiers for the feature representations for the 
Pigeons (pavement) video.   

Classifier AE HOG LBP MN2 RGB Average 

1 Largest prior 
(baseline) 

6.26 6.26 6.26 6.26 6.26 6.26 

2 Bernoulli (Naïve 
Bayes) 

12.77 11.68 12.66 6.39 8.11 10.32 

3 Calibrated CV 14.09 14.63 13.60 11.25 17.18 14.15 
4 Gaussian Naïve 

Bayes 
14.12 12.78 15.27 3.30 9.96 11.08 

5 Linear 
Discriminant 
Analysis 

13.63 14.76 13.59 12.29 16.50 14.15 

6 Linear SVM 13.77 14.31 14.23 11.04 17.29 14.13 
7 Logistic 

Regression 
12.51 15.27 15.35 10.31 15.35 13.76 

8 Nearest Centroid 15.45 11.09 14.93 6.72 8.47 11.33 
9 Passive 

Aggressive 
Classifier 

14.31 14.03 13.27 11.51 16.28 13.88 

10 Perceptron 14.44 12.80 13.14 10.85 14.58 13.16 
11 Ridge Regression 13.97 13.98 11.81 12.03 15.66 13.49 
12 Ridge Regression 

CV 
13.94 14.21 11.81 10.96 15.60 13.30 

13 SGD 11.22 15.44 16.36 11.78 11.35 13.23 
14 DecisionTree 

(C45) 
11.81 10.46 11.68 8.64 11.10 10.74 

15 Extra Tree 12.68 9.27 11.05 6.78 10.27 10.01 
16 K-nn 14.54 13.67 13.97 7.59 11.22 12.20 
17 Quadratic 

Discriminant 
Analysis 

13.93 5.70 13.96 7.02 18.41 11.81 

18 SVM 14.17 16.44 14.65 8.62 12.39 13.26 
19 AdaBoost 9.81 3.82 10.04 8.16 7.34 7.83 
20 Bagging 13.11 11.71 13.50 7.86 10.26 11.29 
21 Extra Tree 

Ensemble 
15.95 14.50 14.99 8.14 12.15 13.14 

22 LGBM 15.34 14.60 13.93 9.68 11.82 13.08 
23 Random Forest 16.26 15.30 14.09 8.00 12.18 13.17  

Average 13.40 12.47 13.22 8.92 12.60 12.12  
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certainty of the classification decision is low. They can be tuned to 
achieve acceptable accuracy at the expense of declining to label a pro
portion of instances from known classes. 

Finally, in addition to the concept change between training and 
testing data, the low accuracy can be attributed to the large intra-class 
variability illustrated in Fig. 4. Besides, some of the classes were too 
small for the classification algorithm to learn the pattern properly. 

While we do not offer answers to all the questions raised here, the 
proposed protocol is meant to give general guidelines to the practi
tioners in the field. 

6. Conclusion 

In this paper we argue that classification experiments to determine 
the best model for animal re-identification for a given dataset are 
paramount. We propose a general protocol and carry out a case study on 
a difficult animal re-identification database. We examined 25 classifi
cation models and five data representations. Two of the classification 
models and two of the data representations were based on the currently 
acclaimed deep learning. Our results favoured simple linear models 
(LDA) and basic feature representation (colour through RGB moments). 
We attribute this result to the complexity of the data distribution, 
multitude of overlapping classes, and the difference of the distributions 
between the cross-validation folds. Our findings highlight a somewhat 
overlooked message that deep learning is not the answer to all tasks, and 
many times simple classifier models work better for animal re- 
identification, e.g., Nepovinnykh et al. (2022). 

There are several limitations to our study. 
First, the data set for each animal group is only one video. The 

appearance of the animals in a video taken at a different time or under 
different illumination conditions may not match the current model. If 
multiple videos are available, annotation should be carried out on a 
small portion of each video. The annotated data can be pooled together 
and the protocol can be applied thereafter. 

At the start, we decided to ignore time contingency of the video 
frames in order to be able to apply the protocol to a collection of images 
that does not come necessarily from video. However, if the source is 
video footage, we can use consecutive frames to establish links between 
the objects that are being classified. Also, the instances coming from the 
same frame must have different identities. Thus, we can impose Must 
Link (ML) constraints and Cannot Link (CL) constraints on the testing 
data, without the need of any further supervision or annotation. Our 
next study is on incorporating this information in the classification 

Table 9 
Classification accuracy of the classifiers for the feature representations for the 
Pigeons (curb) video.   

Classifier AE HOG LBP MN2 RGB Average 

1 Largest prior 
(baseline) 

7.59 7.59 7.59 7.59 7.59 7.59 

2 Bernoulli (Naïve 
Bayes) 

22.94 16.49 12.60 11.97 25.55 17.91 

3 Calibrated CV 26.31 23.11 18.92 23.70 38.53 26.12 
4 Gaussian Naïve 

Bayes 
24.93 17.34 12.98 11.89 28.04 19.03 

5 Linear 
Discriminant 
Analysis 

27.76 21.57 19.83 25.22 32.54 25.39 

6 Linear SVM 25.98 21.75 19.46 23.67 37.06 25.59 
7 Logistic 

Regression 
26.34 22.27 19.18 21.93 37.23 25.39 

8 Nearest Centroid 24.64 15.45 14.21 15.29 26.94 19.30 
9 Passive 

Aggressive 
Classifier 

22.22 22.66 13.82 20.25 36.65 23.12 

10 Perceptron 24.12 20.54 13.36 19.18 30.79 21.60 
11 Ridge Regression 26.98 21.01 19.57 24.28 32.67 24.90 
12 Ridge Regression 

CV 
27.03 21.38 19.69 24.41 31.34 24.77 

13 SGD 24.74 21.27 16.25 20.14 30.96 22.67 
14 DecisionTree 

(C45) 
23.23 13.66 12.58 13.81 21.59 16.97 

15 Extra Tree 22.64 13.28 12.48 14.47 20.80 16.73 
16 K-nn 28.64 21.94 14.42 19.34 30.04 22.88 
17 Quadratic 

Discriminant 
Analysis 

27.34 7.57 18.60 8.36 29.48 18.27 

18 SVM 29.41 21.06 16.86 23.73 31.47 24.51 
19 AdaBoost 15.55 7.48 11.37 12.20 12.72 11.86 
20 Bagging 26.00 18.36 14.76 17.83 26.89 20.77 
21 Extra Tree 

Ensemble 
31.30 19.72 15.69 21.43 31.97 24.02 

22 LGBM 30.32 20.67 15.84 21.81 30.57 23.84 
23 Random Forest 30.12 22.03 16.23 21.56 30.30 24.05  

Average 25.05 18.18 15.49 18.44 28.77 21.19  

Table 10 
Classification accuracy of the classifiers for the feature representations for the 
Pigs video.   

Classifier AE HOG LBP MN2 RGB Average 

1 Largest prior 
(baseline) 

6.65 6.65 6.65 6.65 6.65 6.65 

2 Bernoulli (Naïve 
Bayes) 

17.15 23.66 15.90 11.07 20.48 17.65 

3 Calibrated CV 20.03 25.31 16.44 26.51 31.13 23.88 
4 Gaussian Naïve 

Bayes 
20.98 25.18 16.60 7.26 25.17 19.04 

5 Linear 
Discriminant 
Analysis 

18.90 25.02 17.73 24.99 34.51 24.23 

6 Linear SVM 20.06 24.13 16.93 24.67 30.89 23.33 
7 Logistic 

Regression 
20.51 27.71 18.01 24.38 30.41 24.20 

8 Nearest Centroid 16.19 23.19 15.70 11.60 21.67 17.67 
9 Passive 

Aggressive 
Classifier 

13.69 25.13 9.79 24.46 27.99 20.21 

10 Perceptron 13.47 22.74 10.78 24.69 25.98 19.53 
11 Ridge Regression 15.02 24.30 15.05 26.60 30.67 22.33 
12 Ridge Regression 

CV 
15.04 24.34 15.05 26.72 31.46 22.52 

13 SGD 16.17 25.50 13.90 19.04 27.11 20.34 
14 DecisionTree 

(C45) 
18.86 14.97 11.78 13.55 19.96 15.82 

15 Extra Tree 15.33 12.09 10.98 13.30 16.09 13.56 
16 K-nn 18.70 29.92 14.01 17.96 27.17 21.55 
17 Quadratic 

Discriminant 
Analysis 

23.08 4.65 15.87 7.12 22.73 14.69 

18 SVM 20.47 27.72 17.36 21.24 27.51 22.86 
19 AdaBoost 12.36 6.90 9.08 9.54 9.84 9.55 
20 Bagging 19.99 20.09 14.00 17.22 25.03 19.27 
21 Extra Tree 

Ensemble 
22.45 29.08 16.75 19.56 30.36 23.64 

22 LGBM 23.01 26.51 16.48 19.69 29.32 23.00 
23 Random Forest 22.78 29.15 16.32 19.52 29.30 23.42  

Average 17.86 21.91 14.40 18.15 25.28 19.52  

Table 11 
Classification accuracy of the tuned classifiers with the RGB representation.   

Koi 
fish 

Pigeons 
(square) 

Pigeons 
(pavement) 

Pigeons 
(curb) 

Pigs 

Linear 
Discriminant 
Analysis 

29.30 45.86 15.73 31.65 35.10 

Quadratic 
Discriminant 
Analysis 

19.39 35.46 15.65 32.01 25.72 

SVM 28.32 39.65 11.98 28.88 27.28 
Extra Tree 

Ensemble 
27.71 43.91 12.74 31.80 30.16 

Random Forest 27.84 42.75 11.34 30.63 29.65  
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process. Future research may also explore combinations of feature rep
resentations, as well as various methods for dimensionality reduction. 

The use of deep learning can be explored further. As advocated by 
recent studies, similarity networks may learn an informative feature 
representation from small numbers of instance per class. 

The future in animal re-identification is likely to involve active 
learning (a human in the loop) due to the changing environments, 
concept drift, and inevitable problem variability (Bodesheim et al., 
2022). Classes will appear, disappear, or reappear; the class description 
may change, i.e., the appearance of the same individual may vary with 
time. Involving a human in the loop will ensure that the open-set clas
sification process is steered in the correct vein. Adaptive, semi- 
supervised classification methods are likely to be the most suitable 
choice, contributing to end-to-end automation for tasks such as tracking. 
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Appendix 

Tables 6–11 show the complete set of results. 
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