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Abstract

Mainstream semi-supervised classification assumes that part of the available data are la-

belled. Here we assume that, in addition to the labels, we have pairwise constraints on the

unlabelled data. Each constraint links two instances, and is one of Must Link (ML, belong

to the same class) or Cannot Link (CL, belong to different classes). We propose an approach

that uses the labelled data to train a classifier and then applies the ML and CL constraints

in subsequent labelling. In our approach, a set of instances are labelled at the same time.

Our case study is on animal re-identification. The dataset consists of five free-camera video

clips of of animals (koi fish, pigeons and pigs), annotated with bounding boxes and animal

identities. The proposed approach combines the representations or classifiers predictions

from the bounding boxes of consecutive frames. We demonstrate that our approach out-

performs standard classifiers, constrained clustering, as well as inductive and transductive

semi-supervised learning, using five feature representations.

Keywords: animal re-identification, computer vision, classification, semi-supervised

learning

1. Introduction

The aim of semi-supervised learning is to train classifiers using both labelled data and

(typically abundant) unlabelled data. Semi-supervised learning has two principal branches [1]:
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transductive learning and inductive learning. The main difference between the two is that

inductive learning returns a classifier, while transductive learning aims at labelling the un-

labelled data in an optimal way. Transductive learning may or may not produce a classifier

model in the process.

As a rule, the unlabelled data are assumed to be independent, identically distributed (iid).

Known relationship between instances are not considered in mainstream semi-supervised

classification or transductive learning, except for graph data [2]. Here we assume that,

in addition to the feature representation of the unlabelled data, we have also two sets of

constraints: Must Link (ML) constraints in the form of pairs of instances that belong to the

same class, and Cannot Link (CL) constraints in the form of pairs of instances that should

not be labelled in the same class. Pairwise constraints are the main gist of constrained

clustering [3, 4, 5, 6, 7, 8]. However, state-of-the-art classifiers trained on the labelled data

are hardly used within constrained clustering, leading to mediocre classification accuracy.

The main contribution of this study is a method which falls in the area of semi-supervised/

transductive learning, that includes pairwise constraints on the unlabelled data. Unlike semi-

supervised learning, we do not use unlabelled data to improve on the initial classifier model.

Also, unlike most transductive learning methods, our method does not apply an iterative

algorithm to relabel the data. Once the labelled data has been used to train a classifier,

they are no longer needed for classifying the unlabelled data. Our method is based on clas-

sification of sets of instances simultaneously, using data-generated constraints. We offer an

experiment that demonstrates the benefit of using constraints.

Figure 1 shows a flow diagram of the task at hand. In conventional classification, we

use a training dataset consisting of instances with corresponding labels to train a classifier.

Once the classifier has been trained, it can be used to predict labels for testing instances.

The training instances are not needed for using this classifier. Therefore, the classifier can

be used to classify new instances without requiring the original training data.

Conventional classification can be seen as the initial step in the task that we are consid-

ering. The difference is that, in this case, constraints can be automatically obtained when

given a set of instances to classify. These constraints are then used to modify the predictions
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given by the classifier, taking them into account.1

As a case study, we chose identification of individual animals https://doi.org/10.5

281/zenodo.7322820 [9]. Examples of annotated frames from the five videos are shown in

Figure 2. The choice of subject and data for our case study was prompted by two aspects.

First, the ML and CL constraints can be obtained automatically from the video material,

and do not require human annotation. Second, animal identification from image collec-

tions and videos has received little attention in the literature compared to human [10, 11]

or vehicle [12] identification. Global concerns about a looming ecological catastrophe re-

quire multidisciplinary effort in monitoring and managing of animal populations and ecosys-

tems [13, 14, 15, 16, 17, 18]. We view our work on animal identification as a step in this

direction.

Figure 3 illustrates how constraints can be obtained from frames. For each frame, several

bounding boxes have been previously identified.2. Instances for the classification task are

the images in these bounding boxes. Different instances from the same frame cannot be

the same individual, so there are CL constraints between them. Given two bounding boxes

from consecutive frames, if they are in similar positions and with similar sizes, they are

likely to be from the same individual. Therefore, a ML constraint between them can be

established. Constraints obtained in this way may be incorrect, but if the proportion of

errors is manageable this constraints could improve the predictions.

The rest of the paper is organised as follows. Related work is summarised in Section 2.

Section 3 explains the proposed methodology. Experimental results are shown in Section 4,

and a conclusion is offered in Section 5.

2. Related work

Re-identification from videos is a task that involves recognizing elements (e.g., persons,

vehicles, animals) from a video. As such, re-identification is a different task from classifi-

1Actually, not only the predictions but also the probabilities assigned by the classifier to each class are
used. This detail is not shown in Figure 1 for the sake of simplicity.

2This work assumes that these bounding boxes and the corresponding instances are already available.
For the considered case study, some approaches are evaluated in [19].
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(a) Koi (b) Pigeons (c) Pigeons (d) Pigeons (e) Pigs
(square) (pavement) (curb)

Figure 2: Examples of annotated frames from the animal re-identification database used as our case-study.

cation. Nevertheless, they are related as classification can be, and is commonly, used for

re-identification [10, 20].

Although classification can be a part of the re-identification task, there are also other

parts that are not classification, such as object detection and tracking. For the videos in

the considered case study, they have been studied in [19]. These are not considered in the

current paper, as it focuses in the classification part.

Re-identification problem falls in the realm of weakly labelled data [21], and specifically

the compound decision problem [22] and the Restricted Set Classification problem (RSC) [23,

24].

The real-life scenario where such a problem occurs is labelling objects in video frames or

collections of time-lapse images. As several instances (identities) are present in each frame,

they must belong to different classes. Also, we can combine instances which are related

through ML constraints by examining the proximity of the bounding boxes and the instance

appearance.

Standard transductive learning [1] does not include any information about dependencies

of the unlabelled data, hence we are using it in this study as a baseline. Label propagation

belongs to the transductive branch of semi-supervised learning [25]. A graph is built where

the nodes are the instances and the edges are obtained from the distances between the

instances. Subsequently, the labels of the labelled nodes are propagated to the unlabelled

nodes. Co-training belongs to the inductive branch of semi-supervised learning [26, 27]. In

co-training, two learning algorithms are trained separately on different “views” of the labelled

data. Typically, different views come from different feature sets. Then each algorithm’s

predictions on the unlabeled examples are used to enlarge the training set of the other
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algorithm. This process is repeated iteratively.

Another approach that has been used for person re-identification is metric learning [28,

29]. The labeled instances are used to learn a metric and this metric is used to classify or

cluster the unlabeled instances.

Combining label constraints with pairwise constraints (ML and CL) has been discussed

in the literature under different guises. Collective classification [30, 31] offers a solution to

classification of nodes of a network, where a limited number of nodes have class labels, and

the network structure serves as ML constraints. The basic collective classification algorithms

label the nodes iteratively, in a label propagation fashion. Provisional labels are obtained and

re-used for the unlabelled part until convergence. There is no mechanism for enforcing CL

constraints, though. Propagating labels over a graph has been studied extensively [25, 32].

In principle, our type of constraints can be converted to a graph structure with two types of

edges: ML and CL (positive and negative). While graph structures have been explored for

constrained clustering [33, 34], we did not come across studies combining label and pairwise

constraints.

Including pairwise constraints is considered by Wang et al. [35], who propose a method

for generating such constraints from the propagated labels and using constrained spectral

clustering thereafter. Zhang and Yan [36] propose a binary classification method where the

pairwise constraints are used to identify an optimal classification boundary. They assume

that the number of constraints is significantly larger than the number of instances to be

labelled. The labels are used at a later stage to associate the two sides of the boundary with

the class label. Interesting as it is, this method would not be suitable for data with many

classes. Nguyen and Caruana [37] propose a method termed PCSVM (pairwise constraints

SVM) which incorporates ML and CL in the multi-class SVM criterion function. Basu et

al. [38], on the other hand, use the labelled data to seed the clusters. Assuming that there

is at least one representative from each class, the initial means for the k-means constrained

clustering algorithm are calculated as the mean of each class. Two variants are proposed:

one where the constrained clustering algorithm is allowed to re-label the originally labelled

instances, and another, where the originally labelled instances are kept intact. In all cases,
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using both types of constraints leads to improved accuracy of the clustering. We take these

two methods in our experimental study.

Similar but not identical problems are considered in multi-instance classification [39,

40, 41], set classification [42], and relaxation labelling [43]. The context of our problem

also relates it to tracking of multiple objects in video [44]. Some tracking algorithms include

simultaneous classification of a set of instances. An example is tracking of individual moving

parts [45, 46, 47] or people [45, 48]. The classification is dominated by ML constraints derived

using the spatial location of the object/part. Appearance (extracted features) is deemed

much less important in video tracking [47]. Indeed, some objects are indistinguishable,

and the only way to identify them is using their predicted and observed locations. For

example, the idTracker models [49, 50] as well as several related studies [51, 52, 53, 54],

report experiments on identification of simultaneously moving, practically indistinguishable

animals such as ants, mice, fruit fly, zebra fish, honeybees and crabs. None of these animals

presents clear biometric markers. The videos are taken in a non-cluttered lab environment

and the individual recognition is mostly based on the trajectories. Thus far, using constraints

in video tracking is done in an implicit way, in a niche and problem-specific form. In this

study, we propose a generic framework which will allow for a wider use.

Aside from the problem set-up, there are several aspects that distinguish our study from

the related works where both labels and constraints are used:

• Previous studies make an assumption (explicitly or implicitly) that the labelled data

are insufficient to train a classifier of reasonable accuracy. Conversely, we will assume

that the data is of adequate size for this task. Linear models, the nearest neighbour,

and heavily pruned decision trees can be used for small-size data.

• Most other studies demonstrate their methods on real or synthetic datasets where

the constraints are sampled as i.i.d. or created from the candidate labels assigned to

the unlabelled data. Our prime example are the animal videos, where the constraints

come from the data. The constraints are not i.i.d, in that the CL constraints come

from single frames and ML constraints come from time and location proximity of the
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bounding boxes. We adopt the data-generated constraints because they come at no

extra cost, and reflect the real-life scenario.

• Previous studies use the label constraints at the initialisation stage [38], as a part

of the criterion guiding the classifier training algorithm [37] or as a part of the label

propagation iterative procedure. We propose a novel approach to using the constraints.

First, a classifier is trained on the labelled data, and then the unlabelled data are

classified, one set at a time, where data-generated constraints are applied.

3. Methodology

Consider a labelled dataset XL = {x1,x2, . . . ,xN} with class labels li ∈ Ω, i = 1, . . . , N ,

where Ω is a set of class labels. Assume that there is an unlabelled dataset in the same

feature space, coming from the same distribution, XU = {xU
1 ,x

U
2 , . . . ,x

U
M}. The goal is to

label all instances in XU as accurately as possible. Without further information, this is a

transductive learning task. However, we assume that there is more information in XU , and

this can improve the accuracy of the labelling. Instead of classifying one instance xU
j at a

time, we consider a set SU ⊆ XU at a time. Within SU , we know of certain dependencies

among the testing instances in the form of “these instances are all from different classes” or

“there are at most k” instances from class i in SU .

3.1. Restricted Set Classification (RSC)

Definition 1. The restricted set classification problem is defined as follows. Let X =

{x1, . . . ,xm} be a set of instances such that at most ki instances come from class ωi ∈ Ω =

{ω1, . . . , ωc}. Find labels for all elements of X so that the restriction holds.

Note that k1 + . . .+ kc = k ≥ m.

Definition 2. A base classifier D is a classifier that assigns a class label to an instance

x ∈ Rn. We also require that D provides estimates of the posterior probabilities P (ω1|x), . . . ,

P (ωc|x).

9



In our case, the instances that come from a frame constitute X. They must have different

class labels, hence ki = 1.

The RSC uses the posterior probabilities obtained from D to infer class labels for each

element of X. The standard RSC uses the Hungarian assignment algorithm [55] to find the

labels.3. The input to the algorithm is the matrix −LP = −{lij}, i = 1, . . . ,m (instances

in X), j = 1, . . . , c (classes in Ω) where lij, are the logarithms of the posterior probabilities

obtained from D. As the Hungarian algorithm minimises cost, while we seek maximum sum

of logarithms of posterior probabilities, the input needs to be negated. Optimality of this

label assignment has been proven in previous studies [23, 24]. RSC outperforms D because

it incorporates extra information in the form of CL constraints. We propose to label the

video frame by frame in order to enforce the CL constraints most effectively.

3.2. Why use one frame at a time?

The RSC method will not work effectively if applied to the whole of XU . It will lose its

main strength coming from the CL constraints if we apply it even just over two frames. To

illustrate this, consider the straightforward application of RSC to a set of two consecutive

frames. Suppose that there are two objects in each frame, a1 and b1 in frame 1, and a2

and b2 in frame 2. Assume that objects a come from class A and objects b, from class

B. Assume also that no pair of instances can be matched to generate an ML constraint.

The CL constraints enforced by RSC, applied separately on the two frames, will result in

the following possible label set for the four objects: ABAB,ABBA,BAAB,BABA. The

true labelling is among the four options. If we pool the two frames and try to label the

four objects together through RSC, we will have the restriction that there are at most two

objects from each class. This will introduce two more label possibilities, AABB,BBAA,

with non-zero probabilities, which will violate the CL constraints of both frames.

To illustrate this point numerically, consider the following simulation experiment. We

will call a 2-class classifier reasonable if its area under the ROC curve (AUC) is strictly

3Further developed by Kuhn and Munkres, also known as Kuhn-Munkres algorithm. Proposed originally
for c× c matrices, the Hungarian algorithm has been extended for rectangular matrices [56].
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greater than 0.5. Assume that we have trained a reasonable classifier D. Let PA(x) be the

posterior probability that D assigns to the hypothesis that the object x belongs to class A.

Then, with probability p > 0.5, PA(a1) > PA(b1) and PA(a2) > PA(b2). We set the AUC

to be p = {0.51, 0.60, 0.80, 0.95} and generated 50,000 scenarios of posterior probabilities

for four points a1, b1, a2, b2. Let x be the accuracy of D. To sample a pair of posterior

probabilities, we first generated a random number PA(a). With probability x, PA(a) > 0.5,

and with probability 1 − x, PA(a) < 0.5. For instance b, with probability x, PA(b) < 0.5,

and with probability 1 − x, PA(b) > 0.5. If both probabilities were simultaneously greater

than 0.5 (b is mislabelled) or less than 0.5 (a is mislabelled), with probability p we put the

two probabilities in correct order, that is PA(a) > PA(b), to ensure that the AUC of D is p.

Subsequently, we applied the RSC while pooling the frames (RSC pooled), and the RSC,

to each frame individually (RSC ind). The classification accuracy for the two methods and

x = 0.6 (accuracy of D) is shown in Table 1. The results demonstrate the advantage of

applying the RSC frame by frame instead of pooling multiple frames. We observe that,

while inferior to RSC ind, RSC pooled still improves on D.

Table 1: Classification accuracy [in %] of the simulation experiment for accuracy of D fixed at x = 0.6 and
four values of p.

p (AUC) RSC pooled RSC ind

51.00 64.60 72.36

60.00 65.68 74.28

80.00 67.91 79.01

95.00 69.75 82.85

We can verify the accuracy of RSC ind by a simple equation. As the frames are considered

separately, this accuracy is the same as the accuracy of a single frame. If a and b are labelled

correctly, accuracy is 1. The probability of this event is x2. The accuracy will also be equal

to 1 if b is mislabelled PA(b) > 0.5 but the two probabilities are in the correct order,

PA(a) > PA(b). The probability for this event is x(1 − x)p. the same calculation is valid

if a is mislabelled but b is correct. Finally, we have accuracy of 0.5 (one correct, the other
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wrong) if both PA(a) and PA(b) are greater than 0.5 or both are less than 0.5, but the

AUC condition does not work. Therefore, the contribution to the accuracy calculation is

0.5× 2× x(1− x)(1− p). Finally, the RSC ind accuracy is,

Accframe = x2 + 2 x (1− x) p+ x (1− x) (1− p) .

Calculating the accuracy of RSC pooled is more involved for this example because of the

need to apply the Hungarian algorithm to a 4-by-4 matrix.

3.3. Semi-supervised classification using constraints

3.3.1. Formulating of the ML constraints

Up to now, we only considered CL constraints in this study. They come from the fact

that two instances in the same frame cannot have the same identity. However, due to time

contingency, video data allow for easily obtainable, highly plausible, ML constraints. In our

case study, we construct ML constraints based on proximity of bounding boxes. We identify

tracks by calculating the Intersection-Over-Union (IoU) between all pairs of bounding boxes

in two consecutive frames. A matrix of IoUs is constructed with rows corresponding to

the bounding boxes in the first frame and columns for the second frame. The Hungarian

algorithm is applied to connect bounding boxes between the two frames, amounting to ML

constraints. If the IoU exceeds a given threshold (0.5 in our case), and ML constraint is

generated. The ML constraints in consecutive frames generate a track.

3.3.2. The proposed method

Assuming that the input to our task is a video footage, we need to apply the following

preprocessing steps.

Semi-supervised Classification with Constraints – PREPROCESSING.

1.) Identify instances as the bounding boxes (BB) surrounding each identity of interest in

each frame. This can be done by hand, by an object detector, or as a byproduct of a tracker

software.

2.) Annotate the first N BB with class labels.
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3.) Extract features from all BB in the video to form the two sets using a chosen feature

extraction method, thereby forming the two sets: set XL = {x1,x2, . . . ,xN} with class labels

li ∈ Ω and XU = {xU
1 ,x

U
2 , . . . ,x

U
M} with unknown labels.

4.) Using IoU metric between all pairs of BB in consecutive frames, identify the tracks in

the video. Thus, for each xU
j ∈ XU , we have a set of indices s(xU

j ) ⊆ {1, . . . ,M} of the ML

instances associated with xU
j . Note that s(x

U
j ) may also be a set of one element. Denote the

collection of the index sets as S = {s(xU
1 ), . . . , s(x

U
M)}.

5.) Train the chosen model of classifier D on XL. (Note that no constraints are used on the

labelled training data.)

6.) Prepare a frame association set F = {f1, . . . , fM}, where fj is the frame number that

instance xj comes from. The frame numbering is immaterial here; it can be a consecutive

number starting from the beginning of the video, from the beginning of the unlabelled data,

or can be any other number collection where each frame has a unique number. This number

is needed only to select all instances in the same frame for set classification.

From here onward, we propose two variants of our semi-supervised algorithm depending

on how we use the ML constraints, as illustrated in Figure 4 and detailed in Algorithms 1

and 2.

4. Experimental study

4.1. Description of the experiment

The purpose of the experiment is to demonstrate that the proposed methods for semi-

supervised classification with constraints are better than: (a) standard classification, (b)

semi-supervised classification without constraints, (c) transductive leaning, and (d) classifi-

cation through constrained clustering. To accomplish this, we carried out a case study on

animal re-identification using a dataset consisting of five short videos. [57]
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Algorithm 1 Semi-supervised Classification with Constraints. A: Feature fusion.

Input: Trained classifier D, unlabelled data XU , index set collection S, and frame associa-
tion set F .

Output: Labels for all instances in XU .

1: for each frame k in the testing sequence do
2: Use F to find all xU in frame k and place them in set Ik.
3: Dk = ∅ (a set to hold all outputs for set Ik)
4: for each xU ∈ Ik do
5: if |s(xU)| > 1 then
6: Feature Fusion: Replace xU with the average of all z ∈ s(x

U).∗

7: end if
8: Apply D to xU and store in Dk.
9: end for
10: Apply RSC to DK and store the assigned labels.
11: end for
12: return the labels of XU

∗ The feature fusion is done once for each track and then retrieved for each frame of that
track.

Algorithm 2 Semi-supervised Classification with Constraints. B: Probability fusion.

Input: Trained classifier D, unlabelled data XU , index set collection S, and frame associa-
tion set F .

Output: Labels for all instances in XU .

1: for each frame k in the testing sequence do
2: Use F to find all xU in frame k and place them in set Ik.
3: Dk = ∅ (a set to hold all outputs for set Ik)
4: for each xU ∈ Ik do
5: Apply D to xU .
6: if |s(xU)| > 1 then
7: Probability Fusion: Replace the output of D for xU with the average of the

outputs of all z ∈ s(xU).∗

8: Add the revised output of D to Dk.
9: end if
10: end for
11: Apply RSC to Dk and store the assigned labels.
12: end for
13: return the labels of XU

∗ The probability fusion is done once for each track and then retrieved for each frame of
that track.
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Figure 4: Diagrams of methods A and B for a single video frame. ML denotes Must Link constraints and
CL denotes Cannot Link constraints. D is a classifier that outputs posterior probabilities.

We implemented the two proposed methods in Python and sourced the remaining clas-

sification models from Scikit-Learn [58] and the semi-supervised learning extension Semi-

Supervised Learning Library [59] (https://github.com/jlgarridol/sslearn). The code

for the experiment is available at https://github.com/admirable-ubu/semi-supervise

d-animal-re-identification.

In all experiments, we applied a two-fold cross-validation where the video frames were

split into time-contingent halves. As we have the bounding box annotations already, for the

purpose of this experiment, we are not relying on object detection or multi-object tracking.

We are interested in showing how using constraints can improve classification accuracy.

4.2. Data

The database includes five videos and is available in full at https://doi.org/10.528

1/zenodo.7322820 [9]. Bounding-box and animal identity annotations are also available

at https://github.com/LucyKuncheva/Animal-Identification-from-Video. The

characteristics of the five videos are summarised in Table 2. We have a total of 2379 frames,

20,490 clips, and 93 identities. We also display an imbalance metric for each video, which

is calculated as the size of the largest class divided by the size of the smallest class. As

mentioned in the previous work [60], the features are extracted using various techniques.

Three sets of features are based on color relationships (RGB), shape (HOG), and textures
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Figure 5: Experiments overview. There are five videos and for each one five features representations are used.
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standard, inductive, transductive, constrained clustering and the proposed constrained classifiers. For the
latter, it can be used with only the CL constraints, only the ML constraints or both. Then, two fusion
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Figure 6: Annotated frame from the Pigs video.

(LBP). Two additional sets of features are obtained through deep learning, one using an

Autoencoder with a size of 10 and the other using the pretrained MobilNetV2 model with

the final activation layer.

Table 2: Characteristics of the videos: N is the number of objects (individual animal clips); c is the number
of classes (animal identities); Min p/f is the minimum number of animals per frame (image); Max p/f and
Avr p/f are respectively the maximum and the average numbers.

Video #Frames Length [s] N c Min p/f Max p/f Avr p/f Imbalance

Koi fish 536 22 1635 9 1 6 3.1 2.8

Pigeons (square) 300 9 4892 27 1 23 16.3 24.8

Pigeons (pavement) 600 24 3079 17 3 8 5.1 19.3

Pigeons (curb) 443 17 4700 14 8 13 10.6 3.1

Pigs 500 16 6184 26 4 20 12.4 10.5

Figure 6 shows an annotated frame from the Pigs video. The large overlap between the

bounding boxes illustrated the difficulty of the dataset.
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4.3. Feature representation

In a previous study, we carried out an extensive experimental comparison of state-of-

the-art classifiers on the same data [60]. We experimented with five feature representations:

colour data (RGB), shape-related features (Histogram of Oriented Gradients (HOG) [61]),

texture-related features (Local Binary Patterns (LBP) [62]), Autoencoder [63] features and

MobileNetV2 [64] features. We used MATLAB function trainAutoencoder with default

parameters for the Autoencoder features. For the MobileNetV2 features, we used the Keras

MobileNetV2 model pre-trained on Imagenet. The last layer was cut off, and replaced with

a GlobalAveragePooling layer. The RGB moments calculated from each bounding box in

the following way. The image with the animal was divided into 3-by-3 blocks. For each

block, we calculate and store the mean and the standard deviations of the red, the green,

and the blue panel, which results in a total of 54 RGB features. MATLAB and Python

functions for feature extraction are provided in the GitHub repository https://github.c

om/admirable-ubu/animal-recognition/ (We note that the previous experiment did not

include constraints or the RSC classifier.)

We treated each video and feature representation as an individual dataset. Thus, we

have 5× 5 = 25 datasets in total. The classifiers will be compared by their ranks on the 25

datasets.

4.4. Competing classifiers

4.4.1. Standard classifiers

To choose classifierD, in a previous study [60], we ran a large experiment with five groups

of classifiers: baseline, linear, non-linear, ensembles, and deep learning. The classifiers that

performed best, were: 1. (ST-LDA) Linear Discriminant Analysis, 2. (ST-LR) Logistic

Regression, 3. (ST-ETE) Extra Tree Ensemble [65], and 4. (ST-CV) Calibrated CV [58]

(which with default options is a linear SVM). In this case study, we use the four selected

classifier models as our individual classifier D. We compare the proposed methods to their

“vanilla” alternatives as D. The Python code was sourced from scikit-learn [58].

The objective of the experiment is to see if the constraints obtained from the data to

be classified improve the predictions of the classifiers. The proposed approach can be used
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with any classification method, with any parameters adjustement.

4.4.2. Inductive semi-supervised learning

Based on a survey by Triguero et al [66], we chose the following models from the semi-

supervised group:

5. (SSI-CoF) Co-Forest [67] is a co-training method where the training is done iteratively.

At each iteration, each base classifier C is re-trained using an augmented training set. A

sub-ensemble is constructed from all base classifier except C. The instances included in the

augmented training set for C are those elements of XU , whose sub-ensemble prediction is

most confident. The method was called Co-Forest because it was originally proposed for

random trees, but it can be used with any other classifier. Preliminary experiments with

several base classifier models singled out 5-NN as the best base classifier, hence we will use

Co-Forest with 5NN as a representative of the Co-Forest method.

6. (SSI-CoTC) Co-Training By Committee [68] is another iterative ensemble method from

the semi-supervised group. At each iteration, an ensemble is trained, and an augmented

training set is constructed for the next iteration. At each iteration, a random sample from

XU is labelled by the ensemble. The instances with the highest confidence of the prediction

are added to the training set, while maintaining the class proportions. The main difference

from Co-Forest is that the classifiers in the ensemble are not adapted individually.

7. (SSI-DeCo) Democratic Co-Learning [69] combines three different classifiers, i.e., Näıve

Bayes, a k-nn and a decision tree. Each classifier has its own enlarged labelled set. The new

instances to be added to the training set are chosen from the unlabelled set if the majority

vote and the weighted vote of the classifiers are equal. The difference between SSI-DeCo and

SSI-CoF is in the criteria for adding new instances in the extended dataset, and in SSI-DeCo

each classifier has their own enlarged labelled set.

8. (SSI-Tri) Tri-training [70] is a combination of three classifiers trained, with the same

method, initially on bootstrap samples from X, and updated iteratively. The training set

for a classifier is updated by including instances from XU for which the other two classifiers

agree in the predictions and meet certain conditions. In contrast to the previously mentioned

19



methods, the training sets are not augmented but updated at each iteration starting with

the respective training sample from XL. This means that instances added at a previous

iteration may no longer be present in successive iterations.

As with Co-Forest, our preliminary experiments with several base classifier models favoured

5-NN as the best base classifier, hence we will use Tri-training with 5NN as a representative

of the Tri-training method.

4.4.3. Transductive semi-supervised learning

The transductive graph-based semi-supervised models, implemented in scikit-learn [58]

and used in this study are:

9. (SST-LP) Label Propagation [25] creates a graph with the instances according to

distance criteria, and propagates the label according to the community structure of the

network [71]. The community structure is the natural division of the graph into different

groups of nodes with highly dense connection between them.

10. (SST-LS) Label Spreading [72] is a modification of Label Propagation whose initially

labelled nodes can change labels to make the network more consistent.

4.4.4. Constrained clustering

Label-type constraints have been used in constrained clustering mostly for initialising

(seeding) [38]. However, in our problem, we have two different types of constraints. On the

one hand, we have labelled data (label-type constraints) and, on the other hand, ML and

CL (pairwise constraints).

To combine the two types, we use Basu’s algorithm to incorporate the label constraints,

and the cop-kmeans [73] to implement the pairwise constraints. To enforce the label con-

straints, the clusters are seeded with the class centroids of the labelled data. Then XL and

XU are clustered together using cop-kmeans while not allowing the labels of XU to change

in the process (we call this method Basu2). The classification accuracy is calculated only

on the testing data. Viewed this way, we can liken our approach to transductive learning.

The two ‘classifiers’ from the constrained clustering group are detailed below.
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11. (CC-SCK) Seeded cop-kmeans works by using XL for calculating the cluster centroids.

Cop-kmeans [73] is applied thereafter on XU . Cop-kmeans extends the standard k-means

by including constraint validation at each iteration.

12. (CC-BA) Here we apply Basu’s method by combining the two types of constraints.

First, XL is used to calculate the initial means. Then cop-kmeans is applied to XL ∪ XU .

After each cop-kmeans iteration, the labels of XL are returned to the true labels.

The total number of pairwise constraints for each testing dataset is far too large for the

cop-kmeans algorithm. Therefore, we experimented with random samples of 20, 100, 200,

600, and 1400 constraints, half of each type (e.g., 10 ML and 10 CL constraints). With each

number of constraints, we carried out 5 runs with randomly chosen constraints, and then

averaged the results. We observed that increasing the number of constraints did not affect

the accuracy by much, therefore we report only results with 1400 constraints (700 of each

type).

All experiments were carried out on a Windows10 HP Pavilion laptop with core i5 pro-

cessor CPU @ 1.60GHz and GeForce GTX 1050 GPU. MATLAB code for the experiment

is available at https://github.com/admirable-ubu/semi-supervised-animal-re-ide

ntification.

4.5. Details of the implementation of the proposed methods A and B

To allow for a fair analysis of the two versions of the proposed method (A and B), we

run the methods in the following versions for each of the standard classifiers 1-4 as D:

• 13. (PRO-CL-LDA), 14. (PRO-CL-LR), 15. (PRO-CL-ETE), 16. (PRO-

CL-CV) This is the implementation of RSC, frame-by-frame, in its original form.

Only CL constraints are included.

• 17. (PRO-MLA-LDA), 18. (PRO-MLA-LR), 19. (PRO-MLA-ETE), 20.

(PRO-MLA-CV) Only ML constraints are included. To apply this method, we

replaced each instance with the feature average according to method A, but we did

not apply the RSC on each frame.
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Only CL constraints Only ML constraints Both CL and ML constraints

Figure 7: Accuracy of the proposed Method A (feature fusion) versus the independent classifier D.

• 21. (PRO-A-LDA), 22. (PRO-A-LR), 23. (PRO-A-ETE), 24. (PRO-A-

CV) This is the complete method A.

• 25. (PRO-MLB-LDA), 26. (PRO-MLB-LR), 27. (PRO-MLB-ETE), 28.

(PRO-MLB-CV) Only ML constraints are included. To apply this method, we

replaced each instance with the probability average according to method B, but we

did not apply the RSC on each frame.

• 29. (PRO-B-LDA), 30. (PRO-B-LR), 31. (PRO-B-ETE), 32. (PRO-B-

CV) This is the complete method B.

The methods marked with black labels are the ones we expect to perform best.

4.6. Results

A full set of results is available at [https://github.com/admirable-ubu/semi-sup

ervised-animal-re-identification/tree/main/results] and given in a table form as

supplementary material.

4.6.1. Comparison between the variants of the proposed methods

Figures 7 and 8 show scatterplots of the classification accuracy of the RSC models versus

the independent classifier D for methods A and B, respectively.

Each point in the figures corresponds to an instance of the triplet (video, classifier, feature

representation). Consider, for example, standard classifier SC-LDA as D. Suppose that it
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Only CL constraints Only ML constraints Both CL and ML constraints

Figure 8: Accuracy of the proposed Method B (probability fusion) versus the independent classifier D.

has been applied to the RGB representation of the Pigs video. The accuracy of D defines

the x-coordinate of a point. Then we apply methods PRO-CL-LDA, PRO-AML-LDA, and

PRO-A-LDA, which generates three y-coordinates of points in the figure for method A, with

the same x coordinates. If our proposed methods work well, the CL and the ML variants

will be better than D, and will lie above the diagonal y = x. Then the point for the

method which combines both constraints (PRO-A-LDA, in the example here), should lie

higher than the other two, on the same x coordinates. As there are 5 (videos) × 5 (feature

representations) × 4 (SC classifier models), there will be 100 values of x. With three points

for every x, each scatterplot contains 300 points. The difference between the three subplots

in each of Figures 7 and 8 is only in which of the three options is highlighted: only CL, only

ML, or both.

It can be observed that both methods A and B improve on the accuracy of the individual

classifier D. Interestingly, the CL constraints alone are the weaker of the two heuristics for

both methods. Using only ML constraints results in markedly better accuracy. The reason

for the weaker contribution of CL could be that they can only be used when the same

identity is predicted for several individuals in the same frame. For the used videos this

could happen rarely, the number of animals per frame can be well bellow the total number.

The best results are obtained using the complete methods A and B which combine both

type of constraints.
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To evaluate which of the two proposed methods is better, we plot in Figure 9 the accu-

racies for the complete A and the complete B methods. The x axis are accuracies of the 100

instances of (video, classifier, feature representation) for method A (feature fusion), and the

y-axis are the corresponding accuracies for method B (probability fusion).

Figure 9: Comparison of methods A and B with both CL and ML constraints.

At first glance, the methods seem to be on a par, with a slight prevalence of B for higher

accuracies. For a more detailed look, we plotted the points for the different videos with

different colours and markers. It can be seen that Pigs video and Pigeons (curb) video

benefit significantly from method B, while the two methods are similar for the other three

videos.

4.6.2. Overall ranking

Next, we compare all 32 classifier models.

The overall best accuracies are shown in Table 3. As expected, the methods using both

type of constraints took the top spots for all datasets. Method B won on four of the videos,

and method A, on one (Pigeons (square)). Interestingly, different combinations of SC models

and feature representations happen to achieve the best accuracy.

Table 4 shows the average ranks for the 32 classifiers. To calculate the rank, of a classifier

for a given video and a given feature representation, we sorted all 32 accuracies in descending

order. The top method was assigned rank 1, and the bottom method, rank 32. In case of a
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Table 3: Overall best accuracies for the five videos out of the 32 classification methods.

Video Classifier Feature set Accuracy

Koi fish 32. PRO-B-CV RGB 0.46

Pigeons (square) 29. PRO-B-LDA RGB 0.63

Pigeons (pavement) 21. PRO-A-LDA HOG 0.31

Pigeons (curb) 29. PRO-B-LDA MN2 0.51

Pigs 31. PRO-B-ETE HOG 0.50

tie, the ranks are shared. Having calculated the 25 ranks for each method, we averaged them

and sorted them in ascending order of the ranks (best method first). The rows of Table 4

follow this order. The columns of the table correspond to the feature representations. The

entries show the average rank across videos. For example,

The table demonstrates that the proposed methods outperform the competitor methods

from the related areas. The “complete” methods A and B, which use both CL and ML

constraints are mostly at the top of the table, which indicates that the two type of con-

straints should be used together. None of the inductive and transductive methods, nor the

constrained clustering show any reasonable accuracy. This is chiefly due to the fact that our

proposed methods process the data frame-by-frame, i.e., set-by-set. We argued in Section 3.2

that processing larger sets of instances together (two consecutive frames) or processing the

data instance-by-instance will not be as effective as processing one set at a time.

5. Conclusion

Pairwise constraints between instances arise naturally in some real-life problems. An

example is object re-identification from video (animals, people, or inanimate objects), espe-

cially when there are multiple object in camera view simultaneously. To deal with this type

of problems, we need a labelled data set for building an initial classifier, as well as a method

to include CL and ML constraints in the classification process thereafter. We propose a

solution where a set of objects are labelled together, applying CL and ML constraints for

that set. In method A (feature fusion), the ML constraints are aggregated through averag-

ing the features for all instances linked through an ML constraint chain, while in method
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Table 4: Average ranks of the 32 classifiers.

Classifier AE HOG LBP MN2 RGB Avg

21. PRO-A-LDA 12.25 3.50 4.50 8.50 8.75 7.50

24. PRO-A-CV 14.25 10.75 2.75 5.25 6.50 7.90

32. PRO-B-CV 18.75 8.25 3.75 7.75 4.50 8.60

31. PRO-B-ETE 3.50 7.25 10.75 14.00 8.25 8.75

29. PRO-B-LDA 18.50 7.50 9.00 6.75 8.00 9.95

30. PRO-B-LR 21.50 10.25 5.00 7.75 6.25 10.15

27. PRO-MLB-ETE 4.50 11.25 12.50 13.00 11.50 10.55

22. PRO-A-LR 18.00 11.00 3.50 9.75 11.00 10.65

18. PRO-MLA-LR 18.00 6.00 8.25 11.00 11.00 10.85

17. PRO-MLA-LDA 15.25 13.50 7.75 9.25 9.75 11.10

20. PRO-MLA-CV 10.50 17.88 7.12 13.75 10.00 11.85

28. PRO-MLB-CV 22.00 12.88 10.62 9.75 9.50 12.95

26. PRO-MLB-LR 20.00 15.00 8.25 10.25 14.50 13.60

25. PRO-MLB-LDA 20.50 14.00 12.50 15.50 5.75 13.65

23. PRO-A-ETE 4.50 11.00 18.25 25.00 15.25 14.80

19. PRO-MLA-ETE 5.50 15.50 17.25 23.00 17.00 15.65

15. PRO-CL-ETE 7.75 21.00 20.75 20.75 20.50 18.15

01. ST-LDA 19.75 22.75 20.75 14.50 15.00 18.55

03. ST-ETE 7.50 22.50 22.25 19.75 21.00 18.60

13. PRO-CL-LDA 22.25 22.00 19.50 14.50 15.00 18.65

16. PRO-CL-CV 22.25 20.75 19.00 17.00 15.75 18.95

04. ST-CV 21.25 22.00 18.75 19.75 17.00 19.75

02. ST-LR 23.50 20.00 19.25 18.50 22.25 20.70

14. PRO-CL-LR 26.00 21.25 19.50 17.75 20.00 20.90

08. SSI-Tri 13.88 18.75 25.75 26.62 25.25 22.05

05. SSI-CoF 14.62 21.00 25.75 26.38 27.00 22.95

10. SST-LS 20.75 12.75 29.88 23.00 31.50 23.57

06. SSI-CoTC 16.00 28.00 25.75 22.50 27.00 23.85

07. SSI-DeCo 14.75 23.25 27.75 27.25 26.25 23.85

09. SST-LP 18.75 17.00 29.62 25.00 31.50 24.38

11. CC-SCK 30.25 27.75 30.75 19.50 27.25 27.10

12. CC-BA 21.25 31.75 31.25 25.00 28.25 27.50
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B (probability fusion), we average the output probabilities coming from the independent

classifier D for those instances. The CL constraints are enforced through the Restricted

Set Classification method (RSC). The animal re-identification experiment demonstrates the

advantage of our approach over including constraints through constrained clustering and

over not including constraints at all.

Video tracking through computer vision necessarily includes handling ML and CL con-

straints, but this is done in implicit and problem-specific manner. Here we propose a generic

method which can be widely applied, not only to video tracking but to any problem which

would benefit from using pairwise constraints.

There are several interesting directions for future work. For data sets with natural

ordering of the sets of instances (e.g., frames in video), on-line variants can be constructed,

inspired by the ideas of semi-supervised learning, especially by classifier ensemble learning.

Concept drift is a likely complication for this type of data. Hence, adaptive classification

can be considered. Note that the constraints in the video example are generated by the data

itself, and this will not change in the presence of concept drift, which is a particularly useful

property.

Constrained clustering did not work well in our case study, mostly because we set aside a

significant number of labelled data to trainD. The labelled data is only used for initialisation

in CC-SCK and CC-BA. However, constrained clustering may help build the labelled dataset

with much less effort compared to manual annotation.

The proposed approach can be used with classifiers obtained with any method. In

particular, these classifiers could also be obtained with semi-supervised learning methods.

This combination could be worthwhile.

The study has a limitation in that it only considers videos where the animals to be

identified are captured by a single camera positioned relatively fixed throughout the con-

tinuous recording. It is important to note that the method can potentially be applied to

videos comprising multiple scenes, involving different camera positions, and even different

cameras. However, it should be acknowledged that the performance of the method on this

type of dynamic and varied video footage has not been studied thus far.
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When multiple cameras are recording simultaneously, the proposed method can be ap-

plied to each video independently. However, this does not take advantage of the knowledge

of camera positions. For example, if two cameras do not overlap, the same animal cannot be

seen simultaneously on both cameras. However, if two cameras do overlap, the correspon-

dence between animals in both cameras could be established.

Given the raising concern for animal welfare, the area of animal re-identification is ex-

pected to expand in the future. This calls for expanding the type of tasks and scenarios,

and looking for solutions that are robust and widely applicable. We consider our study to

be a step in this direction.
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