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Abstract We propose a probabilistic framework for classifier combination, which gives rig-
orous optimality conditions (minimum classification error) for four combination methods:
majority vote, weighted majority vote, recall combiner and the naive Bayes combiner. The
framework is based on two assumptions: class-conditional independence of the classifier
outputs and an assumption about the individual accuracies. The four combiners are derived
subsequently from one another, by progressively relaxing and then eliminating the second
assumption. In parallel, the number of the trainable parameters increases from one combiner
to the next. Simulation studies reveal that if the parameter estimates are accurate and the
first assumption is satisfied, the order of preference of the combiners is: naive Bayes, recall,
weighted majority and majority. By inducing label noise, we expose a caveat coming from
the stability-plasticity dilemma. Experimental results with 73 benchmark data sets reveal
that there is no definitive best combiner among the four candidates, giving a slight prefer-
ence to naive Bayes. This combiner was better for problems with a large number of fairly
balanced classes while weighted majority vote was better for problems with a small number
of unbalanced classes.

Keywords Classifier ensembles · Combination rules · Weighted majority vote · Recall ·
Naive Bayes

1 Introduction

Classifier ensembles are justly receiving increasing attention and accolade and generating
a wealth of research [1,22,23,25,29]. Theoretical and empirical studies have demonstrated
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that an ensemble of classifiers is typically more accurate than a single classifier. Research
on classifier ensembles permeate many strands machine learning including streaming data
[9,24], concept drift and incremental learning [5].

One of the basic design questions is what combination rule (combiner) to use. Majority vote
and weighted majority vote are the most widespread choices when the individual classifiers
give label outputs [15]. One of the great assets of the majority vote combiner is that it
does not require any parameter tuning once the individual classifiers have been trained. It
has been about a decade since Bob Duin posed the question “To Train or not to Train?”
[2], and exposed potential caveats in tuning the parameters of the combiner. Choosing the
right combiner for the classification problem is not discussed very often, and preferences
are given to uncomplicated combiners such as majority vote, average and their weighted
versions. Theoretical analyses [7,12,13,16,17,19,28] and experimental comparisons [3,8,
14,27,30,31] of classifier combiners do not offer a definitive answer or a recipe to guide this
choice.

Here, we propose a common probabilistic framework for the following four combination
methods: majority vote1 (MV), weighted majority vote (WMV), recall (REC) and naive Bayes
(NB). Each combiner is obtained from the previous one when a certain assumption is relaxed
or dropped. The price to pay is that each combiner needs more tunable parameters than the
previous one. We compare the four combiners on simulated data and on 73 benchmark data
sets with a view to propose a strategy to choose among the four combiners.

The rest of the paper is organised as follows. Section 2 introduces the proposed framework
and details the four combiners as special cases thereof. Section 3 contains a simulation study
and Sect. 4, the experimental protocol and results.

2 A weighted voting framework for classifier ensembles

2.1 Probabilistic set-up

Consider a set of classes � = {ω1, . . . , ωc} and a classifier ensemble of L classifiers. Denote
by si the class label proposed by classifier i (si ∈ �). We are interested in the probability

P(ωk is the true class | s1, s2, . . . , sL), k = 1, . . . , c,

denoted for short P(ωk |s), where s = [s1, s2, . . . , sL ]T is a label vector. Assume that the
classifiers give their decisions independently conditioned upon the class label,2 which leads
to the following decomposition

P(ωk |s) = P(ωk)

P(s)

L∏

i=1

P(si |ωk) (1)

1 This should be called rather the plurality vote because the assigned label is the most voted one, in spite of
the fact that majority of more than 50 % may not be reached.
2 Conditional independence means that

P(s1, s2, . . . , sL |ωk ) = P(s1|ωk )P(s2|ωk ) . . . P(sL |ωk ).

However, this assumption precludes unconditional independence, that is,

P(s1, s2, . . . , sL ) �= P(s1)P(s2) . . . P(sL ).
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Split the product into two parts depending on which classifiers suggested ωk . Denote by I k+
the set of indices of classifiers which suggested ωk , and by I k− the set of indices of classifiers
which suggested another class label. The probability of interest becomes

P(ωk |s) = P(ωk)

P(s)
×

∏

i∈I k+

P(si = ωk |ωk) ×
∏

i∈I k−

P(si = ωk |ωk) (2)

All four combiners described next rely upon the same conditional independence assump-
tion. They differ on the following assumption about the individual accuracies of the classifiers.
If the assumption is met, the respective combiner is optimal in the sense that it guarantees
the minimum Bayes error.

– Equal individual accuracies. When P(si = ωk |ωk) = p and P(si = ω j |ωk) =
1−p
c−1 , for any i = 1, . . . , L , k, j = 1, . . . , c j �= k, then majority vote is the optimal
combination rule. Note that for the optimality to hold, not only the accuracies should
be equal but also the “leftover” should be uniformly distributed across the remaining
classes.

– Different individual accuracies. When P(si = ωk |ωk) = pi and P(si = ω j |ωk) =
1−pi
c−1 , for any k, j = 1, . . . , c j �= k, then the weighted majority vote is the optimal

combiner with weights as derived in Sect. 2.3.
– Different individual class-specific recalls. When P(si = ωk |ωk) = pik and P(si =

ω j |ωk) = 1−pik
c−1 , for any k, j = 1, . . . , c j �= k, then the recall combiner is the optimal

combiner. The details are derived in Sect. 2.4.
– Different confusion matrices. When P(si = ω j |ωk) = pi jk , then the Naive Bayes

combiner is the optimal combiner.

The optimality of the combiner, however, is asymptotic, and holds for sample size
approaching infinity. For finite sample sizes, the accuracy of the estimates of the parameters
may be the primary concern. A combiner with fewer tunable parameters may be prefer-
able even though its optimality assumption does not hold. This issue will appear later as an
important lesson from the experimental study.

2.2 Majority vote (MV)

To give a correct label, “proper” majority vote requires that more than 50 % of the voters
give the correct label. If all classifiers have the same accuracy P(si = ωk |ωk) = p for any
i = 1, . . . , L and k = 1, . . . , c, then the majority vote will be correct if Lmaj = � L

2 � + 1 or
more votes are correct. Then,

Pproper MV =
L∑

i=Lmaj

(
L

i

)
pi (1 − p)(L−i) (3)

The Condorcet Jury Theorem, dated back in 1785 (cited after [26]), states that

1. If p > 0.5, then Pproper MV is monotonically increasing and tends to 1 as L → ∞.
2. If p < 0.5, then Pproper MV is monotonically decreasing and tends to 0 as L → ∞.
3. If p = 0.5, then Pproper MV = 0.5 for any L .

Lam and Suen [18] analyse the cases of odd and even L and the effect on the ensemble
accuracy of adding or removing classifiers. Shapley and Grofman [26] note that the result
is valid even for unequal individual accuracies, provided their distributions are symmetrical
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about the mean. Matan [21] gives tight upper and lower bounds of the majority vote accuracy
in the case of unequal individual accuracies.

Here, we consider majority vote in the wider sense of the word, as a synonym of plurality
vote. In this case, there is no requirement that more than 50 % of the voters are correct for
the majority to be correct. If there are many classes, a much smaller percentage may suffice.
In the absence of further information about the classifiers, assume that all incorrect labels
“share” the misclassification probability, that is,

P(si = ω j |ωk) j �=k = (1 − p)

(c − 1)
. (4)

Substituting in the probabilistic framework defined in (2),

P(ωk |s) = P(ωk)

P(s)
×

∏

i∈I k+

p ×
∏

i∈I k−

1 − p

c − 1
(5)

= P(ωk)

P(s)
×

∏

i∈I k+

p ×
∏

i∈I k−

1 − p

c − 1
×

∏
i∈I k+

1−p
c−1

∏
i∈I k+

1−p
c−1

(6)

= P(ωk)

P(s)
×

∏

i∈I k+

p(c − 1)

1 − p
×

L∏

i=1

1 − p

c − 1
(7)

Notice that P(s) and the last product term in (7) do not depend on the class label. The
prior probability, P(ωk), does depend on the class label but not on the votes, so it can be
designated as the class constant. Rearranging and taking the logarithm,

log(P(ωk |s)) = log

(
(1 − p)L

P(s)(c − 1)L

)
+ log (P(ωk))

+ log

(
p(c − 1)

1 − p

)
× |I k+|, (8)

where |.| denotes cardinality. Dividing by log
(

p(c−1)
1−p

)
and dropping all terms that do not

depend on the class label or the vote counts, (8) becomes

log(P(ωk |s)) ∝ log

(
1 − p

p(c − 1)

)
log (P(ωk))

︸ ︷︷ ︸
class constant ζ(ωk)

+|I k+|. (9)

Note that |I k+| is the number of votes for ωk . Choosing the class label corresponding to the
largest posterior probability is equivalent to choosing the class most voted for, subject to a
constant term. Interestingly, the standard majority vote rule does not include a class constant,
and is still one of the most robust and accurate combiners for classifier ensembles. Besides,
including the class constant will make MV a trainable combiner, which eliminates one of its
main assets. Since one of our aims is to give practical recommendations, in the experiments
in this study, we adopted the standard majority vote formulation, whereby the class label is
obtained by

ω = arg max
k

|I k+|. (10)
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2.3 Weighted majority vote (WMV)

The weighted majority vote is among the most intuitive and widely used combiners [11,20].
It is the designated combination method derived from minimising a bound on the training
error in AdaBoost [4,6]. Freund and Schapire [6] offer a similar probabilistic explanation as
an alternative justification for the weights in the two-class version of AdaBoost. Here, we use
our framework to derive the multi-class version of the weighted majority vote, and specify
the conditions for its optimality.

The weighted majority vote follows from relaxing the assumption about equal individual
accuracies. Thus, it will be the optimal combiner when the accuracies are equal as well,
and the MV combiner is its exact reduced version. Let P(si = ωk |ωk) = pi and P(si =
ω j |ωk) = 1−pi

c−1 , for any k, j = 1, . . . , c j �= k. Following the same derivation path as with
MV, Eq. (2) becomes

P(ωk |s) = P(ωk)

P(s)
×

∏

i∈I k+

pi ×
∏

i∈I k−

1 − pi

c − 1
(11)

= P(ωk)

P(s)
×

∏

i∈I k+

pi (c − 1)

1 − pi
×

L∏

i=1

1 − pi

c − 1
(12)

= 1

P(s)
×

L∏

i=1

1 − pi

c − 1
× P(ωk) ×

∏

i∈I k+

pi (c − 1)

1 − pi
. (13)

Then,

log(P(ωk |s)) = log

(∏L
i=1(1 − pi )

P(s)(c − 1)L

)
+ log (P(ωk))

+
∑

i∈|I k+|
log

(
pi

1 − pi

)
+ |I k+| × log(c − 1). (14)

Dropping the first term, which will not influence the class decision, and expressing the
classifier weights as

wi = log

(
pi

1 − pi

)
, 0 < pi < 1,

Equation (14) leads to

log(P(ωk |s)) ∝ log (P(ωk))︸ ︷︷ ︸
class constant ζ(ωk)

+
∑

i∈|I k+|
wi + |I k+| × log(c − 1). (15)

If pi = p for all i = 1, . . . , L , Eq. (15) reduces to the majority vote Eq. (8).

2.4 Recall combiner (REC)

The next logical step in relaxing the assumptions is to allow different probabilities of correct
classification depending on the classifier and the class, P(si = ωk |ωk) = pik . This amounts
to different individual class-specific recalls. The idea is that each class is considered sepa-
rately versus the union of the remaining classes. We assume again that the misclassification
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probability is shared among the remaining (wrong) classes, that is, P(si = ω j |ωk) = 1−pik
c−1 ,

for any k, j = 1, . . . , c, j �= k. Starting again with Eq. (2),

P(ωk |s) = P(ωk)

P(s)
×

∏

i∈I k+

pik ×
∏

i∈I k−

1 − pik

c − 1
(16)

= P(ωk)

P(s)
×

∏

i∈I k+

pik(c − 1)

1 − pik
×

L∏

i=1

1 − pik

c − 1
(17)

This time the last product depends on the class label ωk but not on the decisions in s. Therefore,
it will be part of the class constant. Rearranging and taking the logarithm,

log(P(ωk |s)) = log

(
1

P(s)(c − 1)L

)
+ log (P(ωk)) +

L∑

i=1

log (1 − pik)

+
∑

i∈|I k+|
log

(
pik

1 − pik

)
+ |I k+| × log(c − 1). (18)

Dropping the first term, and denoting the recall weights by

vik = log

(
pik

1 − pik

)
, 0 < pik < 1,

we arrive at

log(P(ωk |s)) ∝ log (P(ωk)) +
L∑

i=1

log (1 − pik)

︸ ︷︷ ︸
class constant ζ(ωk)

+
∑

i∈|I k+|
vik

+|I k+| × log(c − 1). (19)

If pik = pi for any k = 1, . . . , c, Eq. (19) reduces to the weighted majority vote Eq. (15).
To best of our knowledge, the recall combiner has not been used before. It arose from the

logical sequence of relaxing the assumption of equal individual accuracies, falling between
two well- known combiners: the weighted majority vote and naive Bayes.

2.5 Naive Bayes combiner (NB)

The Naive Bayes combiner has been acclaimed for its rigorous statistical underpinning and
robustness. We can derive this combiner by finally dropping the assumption of equal indi-
vidual accuracies, that is, allowing for P(si = ω j |ωk) = pi jk . We can think of pi jk as the
( j, k)th entry in a probabilistic confusion matrix for classifier i in the ensemble. In this case,

log(P(ωk |s)) = log

(
1

P(s)

)
+ log(P(ωk)) +

L∑

i=1

log (P(si |ωk)) (20)

∝ log (P(ωk))︸ ︷︷ ︸
class constant ζ(ωk)

+
L∑

i=1

log(pi,si ,k). (21)
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Table 1 Scopes of optimality (denoted by a black square) and the number of tunable parameters of the 4
combiners for a problem with c classes and an ensemble of L classifiers

Combiner 1 2 3 4 Number of parameters

Majority vote � – – – none

Weighted majority vote � � – – L + c

Recall � � � – L ∗ (c + 1)

Naive Bayes � � � � L ∗ c2 + c

Column headings: 1 Equal p, 2 Classifier-specific pi , 3 Classifier- and class-specific pi , 4 Full confusion
matrix

2.6 Overview of the four combiners

The progressive relaxation of the assumption means that the combiners have a nested opti-
mality scope. The enlargement of the optimality scope is paid by acquiring more tunable
parameters. Table 1 shows the optimality scopes and the number of tunable parameters for
each combiner. The additional c parameters are for estimating the prior probabilities for the
classes.

It is tempting to use always Naive Bayes because it has the largest optimality scope. In
practice, however, the success of a particular combiner will depend partly on the assumptions
and partly on the availability of sufficient data to make reliable estimates of the parameters.
Non-optimal but more robust combiners may fare better than the optimal combiner. The
simulation and the experimental studies described next highlight the importance of this issue
when choosing a combiner.

Curiously, the well-known and widely used majority vote, weighted majority vote and
Naive Bayes combiners typically ignore the class constant (Eqs. (9), (15), and (21), respec-
tively). This means that these combination methods will be optimal only if we add to their
current set of assumptions the assumption that the classes are equiprobable. The same argu-
ment holds for the recall combiner Eq. (19), but this combiner came as a byproduct of the
proposed framework and does not enjoy the popularity of the other three combiners.

3 A simulation study

3.1 Protocol

Experiments with simulated classifier outputs were carried out as follows:

– Number of classes c ∈ {2, 3, 4, 5, 10, 20, 50};
– Number of classifiers L ∈ {2, 3, 4, 5, 10, 20, 50};
– Number of instances (labels) 500;
– Number of runs 100.

For each run, c classes were generated by labelling the 500 instances according to a
symmetric Dirichlet distribution.3 To enforce class-conditional independence, the classifiers
in the ensemble were constructed class by class as shown in the Algorithm in Fig. 1. To form
the label set of classifier i and class k, take the labels for class k and replace a percentage
between 0 and 66.7 % with labels randomly sampled from �. The c sets of labels for each

3 Each set of c random numbers summing up to 1 had the same chance of being generated.
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Fig. 1 Algorithm for generating ‘true’ class labels and class-conditional independent outputs of the base
classifiers for one experimental run

(a) (b) (c)

Fig. 2 Relationship between the ensemble accuracies using the majority vote as the benchmark combiner.
Each scatterplot contains 4900 ensembles points

classifier are concatenated to form the final output of classifier i. L such classifiers were
generated and the four combination rules were calculated. The classification accuracies for
each pair (L, c) were averaged across the 100 runs.

3.2 Results

Figure 2 shows the relationship between the combiners’ accuracies for the whole ranges of
L and c. Since there are 100 runs and 7 values of each parameter, there are 4900 ensemble
accuracies for each combiner. The figure shows that the weighted majority and the recall
combiner are similar, with the recall combiner having an edge over the WMV. They are both
better than the majority vote combiners and worse than Naive Bayes combiner.

Figure 3 gives the ensemble accuracies as a function of log(c) for 2 and for 50 classifiers.
The benefit from the NB combiner is clearly demonstrated by the upward trend of the case
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Fig. 3 Ensemble accuracies of the 4 combiners as a function of log(c) (exact parameter estimates)
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Fig. 4 Ensemble accuracies of the 4 combiners as a function of log(L) (exact parameter estimates)

of two classifiers and increasing number of classes. The other three combiners show inferior
result. The same tendency is valid to a lesser extent for L = 50 classifiers.

The dependency of the combiner accuracies on the number of classifiers is shown in Fig. 4.
For 2 classes, REC and NB are identical, hence we chose to show 3 and 50 classes. The figure
suggests that for a small number of classes, NB is almost identical to REC and WMV. For a
large number of classes, however, NB is clearly the winner of the four combiners.

The order of the four combiners in all simulations is as expected (from best to worst):
NB, REC, WMV and MV. The NB combiner seems to have a great advantage over the other
three combiners for larger number of classes. However, NB may suffer from the curse of
dimensionality. In this part of the simulation study, we assumed that there is no noise in
the estimates of the parameters of the combiners. Any noise could be very harmful to NB’s
accuracy. REC and WMV will be less vulnerable, and MV will be immune to the size of
the validation data used for estimating the parameters. To demonstrate this effect, we ran
simulations with 10 % random noise on the labels after the estimates of the parameters have
been computed. Figures 5 and 6 show the same graphs as in Figs. 3 and 4 for the noisy
estimates.

For a small L and c, NB is still the best combiner but its accuracy plummets for larger L
and c. One reason for this drastic change of behaviour is that the number of examples here
was limited to 100. In real data, the number of instances is usually much larger, and the
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Fig. 5 Ensemble accuracies of the 4 combiners as a function of log(c) (10 % label noise)
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Fig. 6 Ensemble accuracies of the 4 combiners as a function of log(L) (10 % label noise)

stability-plasticity balance is much more delicate. If there is sufficient unseen data to allow
a “good” estimate of the parameters of the NB combiner, then NB should be better than the
remaining three combiners. However, in real data sets, the assumption of class-conditional
independence of the classifier outputs may not be true, which will affect the preference of
the combiners in an unforeseen way.

4 Experiments with real data

4.1 Protocol

In real data sets, the independence assumption is likely to be violated but the type of depen-
dencies that may occur in practice is too difficult to incorporate into a simulation study.
The purpose of this study was to define the optimality framework giving rise to the four
combiners. While they behaved as expected in the simulation study, the combiners may be
differently affected by violation of the assumptions. The purpose of the experiments was to
find out whether there is a dominant combiner across a wide variety of pattern classification
problems, and to recommend a choice depending on some characteristic of the data set.

The four combiners were tested on 73 publicly available benchmark data sets as indicated
in Table 2. We used L = 100 decision tree classifiers. To guard against log(0) and division
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by 0, we set a rounding threshold t = 10−8 for all classification accuracies, as well as for the
estimates of the prior probabilities. All estimates which were less than t were reassigned to t,
and all estimates greater than 1 − t were reset to 1 − t . For each scenario, we carried out
10 replicas of 10-fold cross-validation. For each cross-validation fold, the training set was
split into two equal parts called “proper” training and validation. All individual classifiers
were trained on bootstrap samples from the proper training part and all parameters of the
combiners were evaluated on the validation part except for the prior probabilities which were
estimated from the whole training part of the fold.

All experiments were run within the Weka environment [10]. The accuracy of each ensem-
ble is the average across the 100 testing results.

4.2 Results

Table 3 shows the ensemble accuracies. The best accuracies for each data set are underlined.
We have indicated the winner even where, due to rounding, the values for the data set appear
as identical in the table. The bottom row of the table shows the average accuracies across the
data sets. With the diversity of domains and types of data sets in this experiment, and the large
span of classification accuracies, it is unlikely that these accuracies will be commensurable.
But even though the average values across the data sets cannot serve as a valid performance
gauge, they give a rough reference of the achievements of the combiners.

The table shows that there is no clear winner, hence we calculated the ranks for the
combiners. For example, on the dermatology data set, NB receives rank 1 (the best), REC
receives rank 2, WMV receives rank 3 and MV rank 4 (the worst). In case of a tie, the ranks
are shared. The average ranks across the data sets were: MV 2.5205, WMV 2.4315, REC
2.8356 and NB 2.2123, making NB the best combiner. The Friedman nonparametric ANOVA
was run on the ranks, followed by a multiple comparisons test. The p value of Friedman’s
ANOVA was 0.0269 indicating significant differences among the ranks. It was subsequently
found that NB is significantly better than REC. One possible reason for the poor performance
of REC is hinted by the simulation results. The results with REC are similar to these with
WMV but the number of tunable parameters of REC is approximately c times larger. With
inaccurate estimates of the parameters, the small performance advantage of REC over WMV
may be smeared. In addition, it is not clear how the violation of the assumption of conditional
independence affects the performance of the combiners. Then, it is not surprising the REC
combiner has not surfaced thus far.

Figure 7 shows the distribution of the “winner” between NB and WMV, the combiner
with the second best rank. The axes are the prior of the largest class and the prior of the
smallest class. The feasible space is within a triangle, as shown in the figure. The right edge
corresponds to the 2-class problems because the smallest and the largest prior sum up to 1.
The number of classes increases from this edge towards the origin (0, 0). The left edge of the
triangle corresponds to equiprobable classes. The largest prior on this edge is equal to the
smallest prior, which means that all classes have the same prior probabilities. This edge can
be thought of as the edge of balanced problems. The balance disappears towards the bottom
right corner. The pinnacle of the triangle corresponds to two equiprobable classes.

Each data set is represented as a dot. The marker denotes the better combiner: circles
markers for NB and triangle markers for WMV. The figure does not shows a clear pattern of
dominance of one combiner over the other. NB seems to be slightly better for larger number
of classes and for generally balanced classes while WMV is better for problems with fewer
unbalanced classes. If we applied the NB combiner for c > 3 and WMV for c ≤ 3 for the
73 data sets, it will give average accuracy of 83.33 % and will achieve the top rank.
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Table 2 Data sets from UCI
used in this study

Data set # #E #N #D #C R

Abalone 1 4,177 7 1 28 0.002

Anneal 2 898 6 32 5 0.012

Arrhythmia 3 452 206 73 13 0.008

Audiology 4 226 0 69 24 0.018

Autos 5 205 15 10 6 0.045

Balance 6 625 4 0 3 0.170

Breast-w 7 699 9 0 2 0.526

Breast-y 8 286 0 9 2 0.423

Bupa 9 345 6 0 2 0.725

Car 10 1,728 0 6 4 0.054

Cmc 11 1,473 2 7 3 0.529

Credit-a 12 690 6 9 2 0.802

Credit-g 13 1,000 7 13 2 0.429

Crx 14 690 6 9 2 0.802

Dermat 15 366 1 33 6 0.179

Dna 16 3,186 0 180 3 0.463

Ecoli 17 336 7 0 8 0.014

Glass 18 214 9 0 6 0.118

Heart-c 19 303 6 7 2 0.836

Heart-h 20 294 6 7 2 0.564

Heart-s 21 123 5 8 2 0.070

Heart-stat 22 270 13 0 2 0.800

Heart-v 23 200 5 8 2 0.342

Hepatitis 24 155 6 13 2 0.260

Horse-colic 25 368 7 15 2 0.586

Hypo 26 3,163 7 18 2 0.050

Hypothyroid 27 3,772 6 21 4 0.001

Ionosphere 28 351 34 0 2 0.560

Iris 29 150 4 0 3 1.000

Kr-vs-kp 30 3,196 0 36 2 0.915

Krk 31 28,056 6 0 18 0.006

Labour 32 57 8 8 2 0.541

Led-24 33 5,000 0 24 10 0.925

Letter 34 20,000 16 0 26 0.903

Lrs 35 531 93 0 10 0.004

Lympho 36 148 3 15 4 0.025

Mfeat-fact 37 2,000 216 0 10 1.000

Mfeat-fourier 38 2,000 76 0 10 1.000

Mfeat-karh 39 2,000 64 0 10 1.000

Mfeat-morph 40 2,000 6 0 10 1.000

Mfeat-pixel 41 2,000 0 240 10 1.000

Mfeat-zernike 42 2,000 47 0 10 1.000

Mushroom 43 8,124 0 22 2 0.931

Nursery 44 12,960 0 8 5 0.001
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Table 2 continued

#E: examples, #N: numeric
attributes, #D: discrete attributes,
#C: classes, R: ratio between the
smallest and largest class priors

Data set # #E #N #D #C R

Optdigits 45 5,620 64 0 10 0.969

Page 46 5,473 10 0 5 0.006

Pendigits 47 10,992 16 0 10 0.922

Phoneme 48 5,404 5 0 2 0.415

Pima 49 768 8 0 2 0.536

Primary 50 339 0 17 21 0.012

Promoters 51 106 0 57 2 1.000

Ringnorm 52 300 20 0 2 0.841

Sat 53 6,435 36 0 6 0.408

Segment 54 2,310 19 0 7 1.000

Shuttle 55 58,000 9 0 7 0.000

Sick 56 3,772 7 22 2 0.065

Sonar 57 208 60 0 2 0.874

Soy-small 58 47 0 35 4 0.588

Soybean 59 683 0 35 19 0.087

Splice 60 3,190 0 60 3 0.463

Tae 61 151 3 2 3 0.942

Threenorm 62 300 20 0 2 1.000

Tic-tac-toe 63 958 0 9 2 0.530

Twonorm 64 300 20 0 2 0.974

Vehicle 65 846 18 0 4 0.913

Vote1 66 435 0 15 2 0.629

Voting 67 435 0 16 2 0.629

Vowel-context 68 990 10 2 11 1.000

Vowel-nocntxt 69 990 10 0 11 1.000

Waveform 70 5,000 40 0 3 0.977

Yeast 71 1,484 8 0 10 0.011

Zip 72 9,298 256 0 10 0.456

Zoo 73 101 1 15 7 0.098

Table 3 Ensemble accuracies
with the 4 combiners

Data MV WMV REC NB

1 24.1 24.1 24.5 24.7

2 97.9 97.9 98 98.6

3 73.1 73.2 71.6 69.8

4 74.6 74.4 73.8 75.0

5 69.9 70.2 70.7 76.3

6 82.9 82.9 82.2 82

7 95.8 95.8 96.0 96.0

8 71.5 71.7 70 70

9 68.6 68.8 67.2 67.2

10 88.8 88.8 88 90.0

11 52.4 52.5 52 52.1
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Table 3 continued Data MV WMV REC NB

12 85.8 85.8 85.8 85.8

13 73.8 73.9 70.9 70.9

14 85.9 86 86.0 86.0

15 94.8 95 95.5 96.3

16 94.1 94.1 94 94

17 82.3 82.2 81.3 82.9

18 71 71 70.5 73.0

19 79.9 79.5 79.2 79.2

20 79.7 79.7 80.1 80.1

21 93.2 93.3 84.3 84.3

22 80.7 80.7 80.5 80.5

23 73.8 74.0 69.3 69.3

24 81.5 81 79.7 79.7

25 84.7 84.8 84.3 84.3

26 99.1 99.1 99.2 99.2

27 99.5 99.5 99.2 99.5

28 91.6 91.5 91.7 91.7

29 93.4 93.3 93.5 93.7

30 99 99.1 99.1 99.1

31 74.9 74.9 74.9 75.3

32 81.5 82.4 84.5 84.5

33 73.9 73.9 74.1 74.3

34 90.9 90.9 90.7 91.3

35 85.3 85.3 83.2 82.9

36 77.3 78.2 76.6 76.6

37 93.2 93.2 93 93.3

38 79.4 79.4 79 79.1

39 89.5 89.4 89.4 89.1

40 72.3 72.3 72.5 73.0

41 80.5 80.5 80.6 81.2

42 75.2 75.1 74.4 78.0

43 100 100 100.0 100.0

44 95.7 95.7 94.7 95.3

45 95 95.0 94.9 95.0

46 97.1 97.1 97 96.8

47 97.5 97.5 97.5 97.6

48 87.1 87.1 86.6 86.6

49 75.7 75.7 75.5 75.5

50 40.4 40.5 39.9 38.3

51 80.8 80.2 79.8 79.8

52 87 86.8 87.1 87.1

53 89.5 89.5 89.1 88.9

54 96.1 96.1 96.1 96.4

55 99.9 99.9 99.9 99.9
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Table 3 continued Data MV WMV REC NB

56 98.4 98.4 98.2 98.2

57 75.9 75.9 76.2 76.2

58 95.8 95.8 95.8 96.4

59 89.8 89.9 91.6 93.2

60 93.2 93.2 93.3 93.3

61 52.4 53.1 53.9 52.3

62 77.2 76.7 77.1 77.1

63 86 86 86.2 86.2

64 87.7 87.6 87.9 87.9

65 72.4 72.4 71.6 72.5

66 89.4 89.3 89.4 89.4

67 95.6 95.5 95.5 95.5

68 80.4 80.4 80.4 85.3

69 81.2 81.3 81.3 85.2

70 83 83 83.0 83.0

71 59.1 59.1 59 59.1

72 91.9 91.9 91.7 91.8

73 91.4 91.2 91.3 92.8

average 83.01 83.03 82.64 83.04
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Fig. 7 Winning combiner for the 73 data sets. Circles markers denote NB and triangle markers denote WMV

5 Conclusions

This paper introduces a formal framework for classifier combination when the classifiers pro-
duce label outputs which are conditionally independent. Under this framework, we derive the
optimality conditions for four combination methods: majority vote (MV), weighted majority
vote (WMV), the recall combiner (REC) and Naive Bayes (NB). Simulations were carried
out to examine the combiners and highlight some practical concerns. Experiments with 73
benchmark data sets revealed that there is no dominant combiner. NB was the most successful
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combiner overall but the differences with MV and WMV were not found to be statistically
significant. NB has the widest optimality scope but also the largest number of parameters
to train among the four combiners. The simulation study showed that NB can suffer badly
from inaccurate estimates of its parameters. The experimental results with real data did not
show such anomalies with NB, suggesting that, in practice, the data are usually sufficient for
obtaining reasonable parameter estimates.

The differences between the performances of the four combiners in the simulation study
were blurred in the experiments with real data for at least two reasons. Beside the noise of
parameter estimates, the second reason for this is that the conditional independence assump-
tion may not be satisfied. It would be interesting to study to what extent this assumption
holds, and how it affects the combiners. Another direction for future research is how the
combiners are influenced by: the choice of base classifier, the ensemble sizes, the method
of producing the base classifiers and the ensemble diversity. It is also interesting to explore
other characteristics of the data sets and find better niches for the four combiners.
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