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A B S T R A C T

We consider a problem where a set X of N objects (instances) coming from c classes have to be classified
simultaneously. A restriction is imposed on X in that the maximum possible number of objects from each class
is known, hence we dubbed the problem who-is-there? We compare three approaches to this problem: (1)
independent classification whereby each object is labelled in the class with the largest posterior probability; (2) a
greedy approach which enforces the restriction; and (3) a theoretical approach which, in addition, maximises
the likelihood of the label assignment, implemented through the Hungarian assignment algorithm. Our
experimental study consists of two parts. The first part includes a custom-made chess data set where the pieces
on the chess board must be recognised together from an image of the board. In the second part, we simulate the
restricted set classification scenario using 96 datasets from a recently collated repository (University of Santiago
de Compostela, USC). Our results show that the proposed approach (3) outperforms approaches (1) and (2).

1. Introduction

One of the standard assumptions in classical pattern recognition is
that the data points to be classified come as an independent, identically
distributed (iid) sequence. In many problems, this assumption does not
hold. As an example, imagine the task of classifying all the pieces on a
chess board from a bird-view snapshot, without knowledge of the
course of the game up to that position. A classifier trained to recognise
each piece individually will not be aware that, say, there cannot be
more than two white bishops on the board. Thus a white pawn could be
misclassified as a white bishop without a penalty. Should the classifier
‘know’ the restriction, a mistake of this type will be less likely.

Consider a classification problem where an instance x may come
from one of the c classes in the set Ω ω ω= { , …, }c1 . Every instance is
described by the values of n features, so without loss of generality,

x ∈ n. Let X x x= { , …, }c1 be a set containing exactly one instance
from each class. A set-classifier Dset will label X with a permutation of
the c class labels and ensure the best match in terms of classification
accuracy [1,2]. We refer to this task as “who-is-who”.

This paper extends the above model to the more general case where
X consists ofm instances, and it is known that at most ki instances may
belong to class ωi, i c= 1, …, . Denoting k k k= + ⋯ + c1 , we require
that m k≤ . The who-is-who task is a special case where ki=1,
i c= 1, …, , and m=c.

Simultaneous classification of instances has been studied in various

contexts for non-i.i.d data:
1. Compound decision problem: Duda et al. [3] formulate the

problem where each class is represented in X by a specific number of
objects but without offering a solution. Taking inspiration from
labelling the chromosomes in a cell (karyotyping), Slot [4] proposes a
solution to this problem through maximising the log-likelihood of the
labelling of X by using 0–1 integer programming.

2. Multiple-instance classification: This problem arises in complex
machine learning applications where the information about the in-
stances is incomplete or ambiguous [5–9], for example, in drug activity
prediction [5]. The training examples come in “bags” labelled either
positive or negative. For a positive bag, it is known that at least one
instance in the bag has a true positive label. For a bag labelled negative,
all instances are known to be negative. The problem is to design a
classifier that can label as accurately as possible an unseen bag of
instances.

3. Set classification: In this problem, all the instances in a set are
assumed to have come from the same unknown class [10]. This
problem may arise in face recognition where multiple images of the
same person's face are submitted as a set.

4. Relaxation labelling: The m instances in set X should be labelled
using the label set Ω. There are relationships between the classes which
are specified by the so-called compatibility coefficients. Iterative
relaxation labelling algorithms have been developed to solve this
problem [11,12].
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Collective recognition: Collective recognition [13,14] can be
thought of as a special case of relaxation labelling. The instances
within the set are related, so that the dependencies can be used to
improve the classification accuracy. For example, in classifying web
pages into topic categories, hyperlinked web pages are more likely to
share common class labels than non-linked pages [14].

Who-is-who can be cast as a relaxation labelling problem. However,
the compatibility coefficients enforcing the constraint of one-per-class
are such that we cannot take advantage of the existing algorithms. In
fact, there is an exact algorithm to solve who-is-who, which is
preferable to the iterative alternatives.

5. Tracking of multiple objects: Simultaneous classification of a set
of instances is used in tracking algorithms for video sequences. For
example, a moving object can be regarded as a patchwork of parts [15],
a set of tracklets [16] or a structure with connected pieces such as parts
of a human face or body [17–20]. The parts are matched from one
image frame to the next. Tracking several people in a video [17,21,22]
also relies on simultaneous classification. The classification in tracking
is dominated by assessing the spatial location of the object/part using
algorithms such as Kalman filter, Probabilistic Data Association Filter
(PDAF) [23,24], mixture modelling, AdaBoost, particle filters [25,26],
temporal templates [17], the Hungarian algorithm [27,28], a game-
theory approach [22], a locomotion model [21] and so on.

The appearance-based component (which is the trained classifier in
our model) is deemed much less important [19]. Indeed, sometimes the
objects are indistinguishable, and the only way to identify them is using
their predicted and observed locations (for example, monitoring fruit
flies [28]). Typically, the appearance-based classifier uses silhouette,
texture [17], HSV colour histograms and edge detection [23,25].
Tracking piglets has been attempted by marking each piglet on the
back by a dye pattern [29,30] thereby empowering the appearance-
based classifier. The simultaneous classification model proposed here
can be regarded as an additional tool for improving the tracking
accuracy by making a better use of the objects' appearance.

While close, none of the problems and solutions above matches
exactly our formulation of the restricted set classification problem. The
closest set-up is the compound decision problem but in our case we
allow for up to ki objects from each class instead of a fixed number.
Potential applications of the restricted set classification scenario
include automatic attendance registration of students, karyotyping
[31–33,4], monitoring of animal behaviour (fruit flies [28], piglets
[29,30]), real-time labelling of the players in a game video stream
(football [26], hockey [25]).

The rest of the paper is organised as follows. Section 2 lays out the
theory behind the restricted set classification problem. Experimental
results are shown in Section 3, and a conclusion is offered in Section 4.

2. The restricted set classification problem

Definition 1. The restricted set classification problem is defined as
follows. Let X x x= { , …, }m1 be a set of instances such that at most ki
instances come from class ω Ω ω ω∈ = { , …, }i c1 . Find labels for all
elements of X so that the restriction holds.

Note that k k k m+ ⋯ + = ≥c1 .

Definition 2. A base classifier D is a classifier that assigns a class label
to an instance x ∈ n

D Ω: → .n (1)

We also require that D provides estimates of the posterior
probabilities P ω P ωx x( | ), …, ( | )c1 .

Definition 3. A super-label for set X is any collection of m labels from
Ω so that any instance Xx ∈ receives a single label. A super-label will
be called consistent if it satisfies the requirement that at most ki labels

are equal to ωi, i c= 1, …, .
Denote by the set of all possible super-labels of X. Let P p= [ ]ij be

a matrix of size m c× that contains the posterior probability estimates
obtained from the base classifier D applied to X. Entry pij is the
estimate of P ω x( | )j i . Let be the set of all matrices P.

Definition 4. A set classifier Dset assigns a super-label to any set X
using the output of classifier D, that is

D X D( , ): → .set (2)

We consider two type of estimates of the accuracy of Dset for a given
set X:

• AT, total accuracy: AT=1 if all labels are correctly assigned to the
instances in X, and AT=0, otherwise;

• AP, partial accuracy: AP is the proportion correctly labelled
instances in X.

Definition 5 (Independent (baseline) set classifier Di
set). This classifier

takes the labels suggested by D without any modification.

Definition 6 (Greedy set classifier Dg
set). Assume that D outputs the

true posterior probabilities P ω x( | )i , for i c= 1 …, and any x ∈ n. This
classifier labels the set X according to the following algorithm:

1. Initialise a set V = ∅ to store the assigned object-class pairs.
2. Identify the largest posterior probability P ω x( *| *)j j among the objects

and classes not assigned so far.
3. Remove ω*j from the list of available classes, and x*j from the list of

available objects, and add the pair to set V.
4. If there are no class-object pairs left, stop and return V. Else,

continue from step 2.
To derive the extended model for simultaneous classification we

will first introduce the two special cases: the who-is-who [1] and who-
is-missing [2].

2.1. Who-is-who?

A set of c objects have to be labelled into c classes so that there is
exactly one object in each class. Let p be the probability that D will label
correctly a randomly chosen instance x.
Di

set assumes that all instances are labelled independently. Then the
accuracy measures of Di

set are

A D p( ) =T
i c
set (3)

and

A D p( ) = .P
i
set (4)

The super-label assigned by Di
set may not be consistent, more likely

so for larger number of classes c. It is possible to improve especially on
A D( )P

i
set by ensuring that the super label is consistent, for example by

applying Dg
set.

2.1.1. Two classes
Let c=2 and X x x= { , }1 2 . Without loss of generality, assume that x1

was drawn from the distribution of class ω1, and x2 from ω2, hence the
true super-label is ω ω〈 , 〉1 2 . Suppose again that D is the perfect classifier
for the chosen feature space, and therefore we have knowledge of the
true posterior probabilities. To simplify notation, denote P P ω x= ( | )1 1 1
and P P ω x= ( | )2 2 2 .

The probability that Di
set will give the correct super-label of X is

A D X Pr P P( ( )) = ( > 0.5 & > 0.5).T
i
set 1 2 (5)

However, Dg
set will add to this two more cases. The super-label will be

correct also when P < 0.51 and P P> 1 −2 1, ensuring that ω2 will be
assigned first to x2, leaving the free label ω1 for x1. By the same logic,
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Dg
set will be right when P < 0.52 and P P> 1 −1 2. Since the cases are

mutually exclusive, the probability that Dg
set will give the correct super-

label of X is

A D X Pr P P Pr P

P P Pr P P P

( ( )) = ( > 0.5 & > 0.5) + ( < 0.5 &

> (1 − )) + ( > (1 − ) & < 0.5)
T

g
set 1 2 1

2 1 1 2 2 (6)

A D X A D X( ( )) ≥ ( ( ))T
g

T
i

set set (7)

The above expression reduces to

A D X Pr P P( ( )) = ( + > 0.5).T
g

set 1 2 (8)

As A D X A D X( ( )) ≥ ( ( ))T
g

T
i

set set for any X, the inequality is valid across the
whole space of pairs x x( , )1 2 .

To visualise the improvement due to the greedy strategy, consider
the two-dimensional data set shown in Fig. 1. We drew 10,000 random
pairs X x x= { , }1 2 ; x1 from ω1 and x2 from ω2..

The true probabilities P P ω x= ( | )1 1 1 and P P ω x= ( | )2 2 2 are used as the
coordinate axes in Fig. 2 where points corresponding to the 10,000
pairs are scattered. The region where Di

set gives the correct super-label
is shaded in light grey, and the number of points is shown. The regions
where Dg

set adds accuracy to that of Di
set are shaded in dark grey.

For this example, A D( ) = 80.80%T
i
set and A D( ) = 7.65+T

g
set

7.90 + 80.80 = 96.35% .

Proposition 1 ([1]). For 2-class problems,

A D A D( ) > ( ).P
g

P
i

set set (9)

The proof is shown in the Appendix.
The theory about the two-class who-is-who problem has been

illustrated by an earlier experimental study to demonstrate the results'
validity when D is not a Bayes classifier and the posterior probabilities
are only estimates [1].

2.1.2. c Classes
Let X x x= { , …, }c1 be the set of c objects where object xi is drawn

from the distribution of class ωi, independently of the other c − 1
objects. Then the likelihood of a super label S s s= 〈 , …, 〉c1 , s Ω∈i is

∏L S P s p ωx x( ) = ( | ) ( | ).
i

c

i i i i
=1 (10)

Since p ωx( | )i i does not depend on the super-label S, we can organise it
into a multiplicative constant P p ωx= ∏ ( | )X i

c
i i=1 , and rewrite the like-

lihood as

∏L S P P s x( ) = ( | ).X
i

c

i i
=1 (11)

The set of feasible super-labels is the set of all permutations of the
elements of Ω. The optimal super-label S* will be the one maximising
the L (equivalently Llog( )), that is

∑S P s x* = argmax log( ( | )),
S i

c

i i
∈ =1 (12)

where is the set of all permutations of the class labels in Ω. S*. Note
that the greedy set classifier Dg

set will not guarantee the optimal solution.

Definition 7 (Hungarian set classifier Dh
set). This classifier uses the

Hungarian assignment algorithm [34] to find S*.1 The input to the
algorithm is the matrix LP with the logarithms of the posterior
probabilities obtained from the individual classifier, and the output is
the optimal permutation S*, guaranteeing the maximum sum of
logarithms, as in Eq. (12).

Previous experiments have shown significant improvement of
A D( )T

h
set over both A D( )T

g
set and A D( )T

i
set [1].

2.2. Who-is-missing?

In this scenario, a set X of k c< objects have to be labelled into c
classes so that there is at most one object in each class [2]. As the
question of interest here is “who-is-missing”, it may be thought that the
correct assignment of the elements of X is not strictly necessary.
However, in order to maximise the likelihood of discovering the identity
of the missing classes, we still need to maximise the likelihood of the
assignments of the objects in X. Let S Ω⊂(−) and S Ω S= ⧹(+) (−) be
respectively the set of missing and the set of present classes. The
probability that S(−) is missing is the same as the probability that S(+) is
present. Therefore, by maximising the log-likelihood of the collection of
labels in S(+), we maximise the probability of discovering the correct S(−).
This allows for the who-is-missing problem to be cast as who-is-who.

We create v c k= − dummy objects z , …,1 zv, and assign probabil-
ities P ω cz( | ) = 1/i j for all i c= 1, …, and j v= 1, …, . Thus the matrix
with posterior probabilities P is of size c c× , and has v identical rows
with values c1/ . The optimal labelling (Eq. (12)) becomes

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟∑ ∑S P s

c
x* = argmax log( ( | )) + log 1 .

S i

k

i i
j

v

∈ =1 =1 (13)

The second term can be absorbed into a constant which does not
depend on S, and does not affect the optimal assignment of labels to X.
The Hungarian set algorithm Dh

set can be applied to P for finding S*. The
labels assigned to the dummy objects are the missing classes. Note that
the value of the constant we assign in place of the posterior prob-
abilities for the dummy objects does not matter. The same assignment
will be obtained for any value.

We carried a set of experiments for the who-is-missing problem [2]
with the UCI letter data set and an image data set of LEGO parts. The
results again strongly favoured the Hungarian set algorithm Dh

set before
the greedy Dg

set and the independent Di
set set algorithms.

2.3. Solution to the restricted set classification problem

Following the naming convention for the two special cases above,
we call the restricted set classification problem (Definition 1) ‘who-is-
there’.

Recall the example of who-is-there where the chess pieces on a
board are to be recognised from a bird-view snapshot. In this case,
there are 12 possible classes (pawn, bishop, knight, castle, king, queen;

Fig. 1. A two-dimensional data set with 10,000 points in each class.

1 Further developed by Kuhn and Munkres, also known as Kuhn–Munkres algorithm.
Proposed originally for c c× matrices, the Hungarian algorithm has been extended for
rectangular matrices [35].
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×2 for black and white) and up to 32 objects. The maximum number of
objects from each class is fixed by context. We assume that we do not
have prior knowledge of the moves leading to the current board
configuration.

To solve the who-is-there problem, we should be looking to
maximise the log-likelihood of the super-label. However, this time
the set of classes has to be augmented with ki copies of each class. The
posterior probabilities for the copies are the same as the one in the
original column. In addition, the set of objects also has to be expanded
to contain k objects altogether. The k m− dummy objects are assigned

c1/ posterior probabilities for all k possible class labels in the super-
label. The resultant matrix P is of size k k× . The example below
illustrates this arrangement.

Consider three classes denoted respectively •, ▵ and □. It is known
that X contains at most k=5 objects where at most 2 are from class •, at
most 1 is from class ▵ and at most 2 are from class □. Suppose that the
observed set X contains m=4 objects with the following posterior
probabilities provided by D:

Object P(•|x) P(△|x) P(◻|x)

x1 0.53 0.23 0.24
x2 0.55 0.36 0.09
x3 0.21 0.50 0.29
x4 0.50 0.33 0.17

We construct P as shown in Fig. 3. The assignment resulting from
applying Dh

set to P is also indicated in the figure.
The Hungarian set classifier Dh

set will assign super-label 〈□•▵•〉 to
the four objects in X, amounting to criterion value

ln(0.24) + ln(0.55) + ln(0.50) + ln(0.50) = − 3.4112.

The Greedy set classifier Dg
set, on the other hand, will assign super-label

〈••▵□〉, which gives

ln(0.53) + ln(0.55) + ln(0.50) + ln(0.17) = − 3.6978.

Both super-labels satisfy the constraints but Dh
set leads to a higher

(better) log-likelihood value compared to Dg
set. This is to be expected as

Dh
set guarantees the optimal assignment of labels with respect to the log-

likelihood criterion.

3. Experiments

Our hypothesis is that, for the restricted set classification problem,
both accuracy measures AT and AP should be maximised by applying
Dh

set compared to applying Dg
set and Di

set, for various models of the base
classifier D.

3.1. Chess pieces

For this experiment we used 46 bird-view snapshots of a chess
board. Each image was cropped and squared (Fig. 4(a)), and subse-
quently split into 64 squares. The task is to identify the chess pieces
and their positions (Fig. 4(b)). Fig. 4(c) shows examples of the training
data for the 13 classes: 12 classes for the chess pieces and one class for
empty squares (denoted by E). Five instances (image tiles) are shown
from each class..

We decided to use the following features on each tile:

• Entropy of the grey-level image.

• Standard deviation of the grey-level image.

• Difference between the mean grey intensity of (i) a square centred at
the tile centre, with side equal to half of the tile side, and (ii) the tile
area outside the square.

• 100 grey-level values obtained by resizing the image to 10×10 pixels.

The experiment was organised as 46-fold cross-validation where one
board was left aside in each fold. A classifier was trained for each fold,
and the posterior probabilities of the testing data were subsequently
calculated. The classifier models which we tried out as base classifier D
are shown in Table 1.2

The matrix with the posterior probabilities P was expanded as
demonstrated in Fig. 3. The three set classifiers: Di

set (B), Dg
set (G) and

Dh
set (H) were then applied giving the accuracies shown in Table 1.
Paired t-test was used to identify any significant differences

between AP for the proposed Dh
set against Dg

set at p < 0.001 for the
classifier models. The results favour Dh

set which is often the most
accurate set classifier. The greedy set classifier is the next best, and
the baseline set classifier (independent application of D) wins only
once, for the decision tree classifier. This is likely a result from the
notoriously poor approximation of posterior probabilities by the
standard decision tree classifier.

Looking at AT, the only base classifier which can be of any use in
recognising the whole set of chess pieces for this experiment is the
nearest neighbour. Even its accuracy AT is not sufficiently high. For the
purposes of demonstrating the advantage of using a proper set
classifier, we chose a difficult task. This can be observed in the small
example of the training set in Fig. 4(c). The position of the camera was
such that the same type of piece could be seen to “lean” up, down, left
or right, so much so that a distinguishing part of the top of the piece is
missing. We did not attempt to analyse whether the background of the
piece is black or white, and proceed to apply different classifiers
accordingly. If the aim of the paper was to recognise correctly all the

Fig. 2. 10,000 random pairs of points with super-label ω ω〈 , 〉1 2 drawn from the problem

in Fig. 1. The points are plotted the space of the true posterior probabilities P ω x( | )1 1 and

P ω x( | )2 2 . The number of points in the respective regions are displayed.

Fig. 3. Construction of matrix P (8×8) for the numerical example. The ellipses show the
assignment by Dh

set .

2 Own MATLAB code was used for the nearest neighbour classifier, the naïve Bayes
classifier and the random forest ensemble (RF). The MATLAB Statistic Toolbox was used
for the linear discriminant classifier, the decision tree classifier and the random tree base
classifier for RF. LibSVM library [36] was used for the multi-class SVM classifiers.

L.I. Kuncheva et al. Pattern Recognition 63 (2017) 158–170

161



pieces in this restricted set classification problem, we would have opted
for multiple cameras, more elaborate and context-related features,
advanced classifiers such as deep learning neural networks, and
calibration of the posterior probabilities. Our experiment is a proof of
concept. It demonstrates that the restricted set classification problem
needs special treatment beyond training a standard classifier D and
applying it independently to the elements of the set of instances X.

3.2. USC data

3.2.1. The data collection
In the second set of experiments we used a collection of datasets

chosen as a testbed for a comprehensive experimental evaluation of
179 classifiers from 17 families [37].3 Many of the datasets within the
collection are from the UCI Machine Learning Repository [38]. We
refer to this repository as USC after the host university (University of
Santiago de Compostela, Spain).

To enable a reasonable formulation of the restricted set classifica-
tion problem we had to ensure that there is sufficient variability within
each class we sampled from. Otherwise the results would depend too
much on a few instances. Therefore, we reduced the original 121
datasets to 96 datasets, and modified those retained according to the
following rule. Classes containing less than 50 examples were removed.
Hence, datasets without at least two classes with at least 50 examples in
each were discarded from the collection. The description of the data
collection that we used is shown in Table 2.

3.2.2. Experimental protocol
Two fold cross validation, repeated five times, was used to partition

the data into training and initial testing sets. From each of the ten
initial testing sets, 100 runs were carried out. Thus, for each dataset, we
carried out 1000 runs.

Fig. 4. A chess board example.

Table 1
Averaged partial accuracy AP and averaged total accuracy AT in % for the Baseline (B),
Greedy (G) and the Hungarian (H) set classifiers for the 46-cross-validation experiment
for the Chess data. Symbol •after the value in column Ap-H indicates that H is
significantly different from G at p < 0.001, and symbol − means that there is no
significant difference. The largest AP for each classifier type is underlined.

Classifier Partial accuracy AP Total accuracy AT

B G H B G H

Nearest neighbour 95.75 96.23 96.43 − 32.61 43.48 47.83
Linear discriminant

analysis
79.42 80.74 83.19 • 0.00 0.00 0.00

Naïve Bayes 39.64 59.68 64.20 • 0.00 0.00 0.00
Decision tree 87.13 85.67 86.01 − 4.35 4.35 4.35
SVM—linear 89.57 90.18 90.52 − 0.00 2.17 2.17
SVM—radial basis function

(RBF)
87.67 88.52 89.50 • 2.17 2.17 2.17

SVM—sigmoid kernel 67.46 67.53 67.46 − 2.17 2.17 2.17
SVM—polynomial kernel 87.57 88.76 88.82 − 0.00 0.00 0.00
Random forest 91.88 93.00 93.58 • 2.17 19.57 26.09

3 The repository is available at http://persoal.citius.usc.es/manuel.fernandez.delgado/
papers/jmlr/
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In each run, we commence by initialising the set to be labelled by
X = ∅. A random integer between 1 and 10 is drawn for each class to
serve as the limit on the number of possible objects from that class.
Denote by ki the number of objects allowed for class ωi. Then a second
random integer, ri, is drawn between 0 and ki, to determine how many
objects from ωi will actually be present in the set X. Note that we
include the possibility of a completely absent class. Next, we add to X ri
randomly selected testing objects whose true label is ωi. After
constructing the set X, Di

set (Baseline), Dg
set (Greedy) and Dh

set
(Hungarian) are applied to find the respective super-labels.

The following set of classifiers were tested as D:

• Nearest neighbour (1-NN)

• Linear discriminant analysis (LDA)

• Naïve Bayes (NB)

• Logistic regression (LOG)

• Decision tree (DT)

• Random forest (RF)

• Rotation forest (ROT)

3.2.3. Results
We have prepared a supplementary document which contains the

full numerical results from the experiments in seven tables, one for
each classifier. Here we reproduce only the table for the decision tree
classifier (Table 4).

The best and the worst base classifiers: We next give a graphical
illustration of the two methods which appeared to be the weakest and
the strongest in our experiment: Naïve Bayes (NB, the weakest) and
Rotation Forest ensemble (ROT, the strongest). Fig. 5 (a) shows the
improvement on AP of Di

set achieved by applying Dh
set to the restricted

set classification problem. To prepare the plot, we arranged the
datasets in ascending order of A D( )P

i
set . Then we plotted A D( )P

i
set and

A D( )P
h

set versus the dataset index. The differences between the two
curves are small and not clearly visible, especially for larger values of
A D( )P

i
set . Therefore, in order to show the consistency of the improve-

ment, we drew a vertical line upwards from each point (dataset) where
the strict inequality A D A D( ) < ( )P

i
P

h
set set held. Shown above the curves is

the number of datasets out of 96 which satisfy the inequality. For NB,
the partial accuracy A D( )P

h
set was higher than A D( )P

i
set for all 96 datasets.

In the same way, we plot together the curves for A D( )P
g

set and
A D( )P

h
set , this time sorting the datasets on A D( )P

g
set . The graph is shown

in Fig. 5(b). This time, there were datasets for which the opposite strict

Table 2
Characteristics of the datasets (#E: examples, #F: feautures, #C: classes).

Dataset #E #F #C

abalone 4177 8 3
acute-inflammation 120 6 2
acute-nephritis 120 6 2
adult 48 842 14 2
annealing 850 31 3
arrhythmia 295 262 2
balance-scale 576 4 2
bank 4521 16 2
blood 748 4 2
breast-cancer 286 9 2
breast-cancer-wisc 699 9 2
breast-cancer-wisc-diag 569 30 2
car 1728 6 4
cardiotocography−10clases 2126 21 10
cardiotocography−3clases 2126 21 3
chess-krvk 28029 6 17
chess-krvkp 3196 36 2
congressional-voting 435 16 2
conn-bench-sonar-mines-rocks 208 60 2
conn-bench-vowel-deterding 990 11 11
connect−4 67557 42 2
contrac 1473 9 3
credit-approval 690 15 2
cylinder-bands 512 35 2
dermatology 297 34 4
ecoli 272 7 3
energy-y1 768 8 3
energy-y2 768 8 3
glass 146 9 2
haberman-survival 306 3 2
hayes-roth 129 3 2
heart-cleveland 219 13 2
heart-hungarian 294 12 2
heart-va 107 12 2
hill-valley 1212 100 2
horse-colic 368 25 2
ilpd-indian-liver 583 9 2
image-segmentation 2310 18 7
ionosphere 351 33 2
iris 150 4 3
led-display 1000 7 10
letter 20000 16 26
low-res-spect 469 100 3
lymphography 142 18 2
magic 19020 10 2
mammographic 961 5 2
miniboone 130064 50 2
molec-biol-promoter 106 57 2

molec-biol-splice 3190 60 3
monks−1 556 6 2
monks−2 601 6 2
monks−3 554 6 2
mushroom 8124 21 2
musk−1 476 166 2
musk−2 6598 166 2
nursery 12958 8 4
oocytes-merluccius-nucleus−4d 1022 41 2
oocytes-merluccius-states−2 f 1022 25 3
oocytes-trisopterus-nucleus−2 f 912 25 2
oocytes-trisopterus-states−5b 898 32 2
optical 5620 62 10
ozone 2536 72 2
page-blocks 5445 10 4
pendigits 10992 16 10
pima 768 8 2
planning 182 12 2
ringnorm 7400 20 2
seeds 210 7 3
semeion 1593 256 10
soybean 362 35 4
spambase 4601 57 2

(continued on next page)

Table 2 (continued)

spect 265 22 2
spectf 267 44 2
statlog-australian-credit 690 14 2
statlog-german-credit 1000 24 2
statlog-heart 270 13 2
statlog-image 2310 18 7
statlog-landsat 6435 36 6
statlog-shuttle 57977 9 5
statlog-vehicle 846 18 4
steel-plates 1941 27 7
synthetic-control 600 60 6
teaching 102 5 2
thyroid 7200 21 3
tic-tac-toe 958 9 2
titanic 2201 3 2
twonorm 7400 20 2
vertebral-column−2clases 310 6 2
vertebral-column−3clases 310 6 3
wall-following 5456 24 4
waveform 5000 21 3
waveform-noise 5000 40 3
wine 130 13 2
wine-quality-red 1571 11 4
wine-quality-white 4873 11 5
yeast 1350 8 5
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inequality held, that is, A D A D( ) > ( )P
g

P
h

set set . For these datasets, we drew
the vertical lines downward, and show the number of datasets under
the curves. For this case, Method H was better than method G in 42
comparisons and worse in 13 comparisons, leaving 41 ties. We can
apply the sign statistical test whose p-value signifies reflects the
probability that such difference may happen by chance if the two
methods are, in fact, equivalent. For the results plotted in Fig. 5(b),
p = 6.66 × 10−5, suggesting that A D( )P

h
set is significantly better than

A D( )P
g

set .
Fig. 5 suggests that, even though AP is not as high as for the

remaining baseline classifiers D, the set classifier is able to improve on
it consistently. Moreover, the Hungarian algorithm should be preferred
to the greedy algorithm for its, albeit small, provably superior accuracy.

Fig. 6 is a matching example to Fig. 5 where the based classifier is
the Rotation Forest ensemble, the best overall set classifier. Method H
is again making a “clean sweep” against I. This time, however, the
number of results where method H is worse than method G rose to 38
versus 55 comparisons in favour of method H. This gives p=0.0180 for
the two-tailed sign test, which still supports the claim that there is
significant difference in favour of method H at p < 0.01.

The scaling of the figures was kept the same to allow for a visual

comparison of the accuracies. Clearly, ROT leads to better AP than NB
as all curves run higher in Fig. 6. The improvement on AP, however, is
more pronounced for NB. Part of this may be due to the fact that NB is
meant to approximate posterior probabilities (under the feature
independence assumption), and gives a ready-made matrix with
probabilities P. Rotation Forest, on the other hand, uses the voting
scores as approximation of the posterior probabilities, which is not
ideal, and may compromise the expected improvement on the accuracy
of the independent set classifier I,

Fig. 7 contains all the results for the total accuracy AT whereby we
require that all elements of X are classified correctly (correct super-
label). The p-values for the results in subplots (b) and (d) are
respectively 0.0820 and 0.4484. If we consider the right-tailed test
with null hypothesis about the medians G H≥ , and alternative H G> ,
then the p-value for subplot (b) is 0.0410, hence method H is better
than method G at p < 0.05..

Statistical testing for all results: Table 3 presents a summary of all
the results. Given the large number of datasets, we considered it
reasonable to display the average accuracies to support the statistical
test results. Note that we still used the non-parametric sign test for the
comparison. The results support the claim that the set classifier which

Fig. 5. Comparison between the partial accuracy AP of: (a) Di
set and Dh

set , and (b) Dg
set and Dh

set for the Naïve Bayes classifier and USC data collection. Upward vertical lines indicate that

method H is strictly better than its counterpart for the respective dataset, and downward vertical line indicate that it is strictly worse. The numbers of datasets which satisfy the
inequalities are shown in the respective parts of the plot.

Fig. 6. Comparison between the partial accuracy AP of: (a) Di
set and Dh

set , and (b) Dg
set and Dh

set for the Rotation Forest ensemble and USC data collection. Upward vertical lines indicate

that method H is strictly better than its counterpart for the respective dataset, and downward vertical line indicate that it is strictly worse. The numbers of datasets which satisfy the
inequalities are shown in the respective parts of the plot.
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uses the Hungarian assignment algorithm is consistently better than
the two rival algorithms. Admittedly, while consistent, the improve-
ment over method G is fairly small, as evidenced by Figs. 5–7, where

the curves for G and H visibly coincide. This raises up the question of
whether the Hungarian algorithm is really needed for this task or
satisfactory results can be obtained with the greedy algorithm?

Note that this paper is about the definition of the restricted set
classification problem. The crucial part of the proposed solution is the
expansion of the probability matrix P. This can be followed by the
optimal assignment algorithm (H) or a good suboptimal assignment
algorithm (G).

Analysis of the improvement of H over B: Fig. 8 illustrates the
improvement offered by method H over the baseline set classifier B for
both partial accuracy AP and total accuracy AT. For this example we
used all the results for the seven base classifiers. Each point corre-
sponds to a dataset, so there are 96 × 7 = 672 points scattered in total
in each sub-plot. The diagonal line is where the points should lie if H
and B had identical accuracies. The figure shows that, for both AP and
AT, H is better than B. Interestingly, the improvement on AP (sub-plot
(a)) depends on the base accuracy while the improvement on AT (sub-
plot (b)) is more uniform on the total accuracy of B. The set classifier
can correct individual errors better when the base classifier is not very
accurate, and less so when the individual accuracy increases. This
tendency exists but is less pronounced for the total accuracy AT..

In Fig. 9 we examine the relationship between the improvement on
the partial and the total accuracy. The 672 points obtained from all seven
classifier models and all datasets are scattered in the space A A(Δ , Δ )P T
where A A D A DΔ = ( ) − ( )P P

h
P

i
set set and A A D A DΔ = ( ) − ( )T T

h
T

i
set set . The lines

of no improvement are depicted in red. The figure shows that the total

Fig. 7. Comparison between the total accuracy AT of: (a) method H versus I, (b) method H versus method G for theNaïve Bayes classifier; (c) method H versus I, (d) method H versus
method G for the Rotation Forest ensemble, all for the USC data collection. Upward vertical lines indicate that method H is strictly better than its counterpart for the respective
dataset, and downward vertical line indicate that it is strictly worse. The numbers of datasets which satisfy the inequalities are shown in the respective parts of the plot.

Table 3
Average partial accuracy AP and total accuracy AT for the three set classifiers (B Baseline,
G Greedy and H Hungarian) for seven base classifier models with the USC data
collection. Method H was compared with I and G using the sign test at significance level
p < 0.001. The results are shown next to the H columns. The first symbol is the result of
the H I/ comparison, and the second symbol, the result from the H G/ comparison. A
bullet indicates that H is significantly better that the other set classifier, and a dash
indicates that there is no difference at the chosen significance level.

Classifier Partial accuracy AP Total accuracy AT

B G H B G H

Nearest neighbour
(1-NN)

76.05 77.57 78.14 • • 30.03 32.55 33.45 • •

Linear discriminant
analysis (LDA)

73.74 76.86 76.99 • • 27.67 30.97 31.06 • •

Naïve Bayes (NB) 72.83 75.86 75.95 • • 25.10 28.50 28.51 • −
Logistic Regression

(LOG)
75.13 78.43 78.74 • • 29.74 33.65 33.95 • •

Decision tree (DT) 77.81 79.85 80.27 • • 32.63 35.60 36.29 • •

Random Forest
(RF)

81.25 83.57 83.62 • • 40.16 44.03 44.14 • •

Rotation Forest
(ROT)

82.09 84.69 84.79 • − 42.80 47.05 47.14 • −
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Table 4
Results for the USC data for the decision tree classifier. Averaged partial accuracy AP and averaged total accuracy AT in % for the Baseline (B), Greedy (G) and the Hungarian (H) set
classifiers for the decision tree classifier. Symbol • after the value in column H indicates that H is significantly different from G at p < 0.01. The highest accuracy for each dataset is
indicated in boldface.

AP AT

Classifier B G H B G H

abalone 61.01 63.06 63.23 – 6.50 7.60 7.60 –

acute-inflammation 100.00 100.00 100.00 – 100.00 100.00 100.00 –

acute-nephritis 100.00 100.00 100.00 – 100.00 100.00 100.00 –

adult 76.34 79.90 79.95 – 28.10 34.80 35.00 –

annealing 90.64 91.60 91.99 – 52.10 56.10 57.50 –

arrhythmia 82.84 84.79 85.41 – 41.70 46.40 47.80 –

balance-scale 85.11 85.52 85.52 – 43.50 45.90 46.10 –

bank 64.79 71.92 71.94 – 18.60 23.90 24.70 –

blood 60.04 68.82 69.92 – 15.90 23.10 25.60 –

breast-cancer-wisc-diag 92.85 92.61 92.95 – 64.70 66.50 67.40 –

breast-cancer-wisc 94.26 94.34 94.32 – 70.50 72.50 72.40 –

breast-cancer 58.66 65.34 66.58 – 11.90 17.50 19.30 –

car 92.04 92.58 92.78 – 46.70 50.20 51.30 –

cardiotocography−10clases 74.96 74.96 74.77 – 0.50 0.60 0.60 –

cardiotocography−3clases 85.53 86.14 86.09 – 34.10 37.60 37.40 –

chess-krvk 73.36 74.25 74.48 • 0.00 0.10 0.10 –

chess-krvkp 98.99 99.04 99.09 – 94.70 95.30 95.70 –

congressional-voting 48.95 62.61 67.07 • 11.80 21.10 26.10 •

conn-bench-sonar-mines-ro 69.99 72.29 72.30 – 19.70 23.10 23.50 –

conn-bench-vowel-deterdin 81.38 81.22 81.60 • 1.70 1.80 1.90 –

connect−4 74.75 77.78 77.79 – 24.70 29.00 29.10 –

contrac 48.18 50.17 50.79 • 2.80 2.90 2.90 –

credit-approval 84.22 84.32 84.32 – 37.90 40.80 40.80 –

cylinder-bands 68.71 70.59 70.67 – 20.20 23.00 22.90 –

dermatology 96.86 96.81 96.93 – 73.40 74.70 74.90 –

ecoli 91.02 91.01 92.10 • 51.70 53.20 56.30 •

energy-y1 93.55 93.90 94.11 – 59.20 63.40 64.80 –

energy-y2 88.81 89.57 89.83 – 39.90 44.20 45.00 –

glass 73.44 75.24 75.70 – 23.10 26.80 27.90 –

haberman-survival 60.01 66.97 68.40 – 14.00 19.30 21.40 •

hayes-roth 61.75 65.71 66.39 – 15.50 19.50 20.30 –

heart-cleveland 68.21 73.01 73.63 • 19.70 24.40 25.40 •

heart-hungarian 76.13 78.80 79.00 – 26.80 31.20 31.90 –

heart-va 54.55 58.22 58.32 – 9.40 11.10 11.40 –

hill-valley 50.59 65.25 70.34 • 14.90 26.10 31.70 •

horse-colic 81.21 82.36 82.58 – 34.40 38.00 38.50 –

ilpd-indian-liver 52.41 63.11 65.28 – 11.60 19.70 22.60 –

image-segmentation 93.57 93.40 93.39 – 29.90 32.00 32.20 –

ionosphere 83.95 83.71 83.78 – 40.70 42.40 42.40 –

iris 92.99 92.73 92.97 – 60.40 62.20 63.20 –

led-display 70.21 70.25 70.20 – 0.10 0.10 0.10 –

letter 84.33 84.04 84.03 – 0.00 0.00 0.00 –

low-res-spect 80.94 81.65 81.76 – 23.60 26.40 27.20 –

lymphography 75.82 78.33 78.61 – 27.30 32.00 33.10 –

magic 82.35 83.81 83.78 – 38.60 42.80 42.80 –

mammographic 83.16 84.03 84.27 – 37.10 41.50 42.20 •

miniboone 87.53 87.72 87.72 – 48.60 50.80 50.80 –

molec-biol-promoter 74.64 76.13 76.48 – 28.10 31.00 31.90 –

molec-biol-splice 89.73 89.55 89.45 – 45.30 47.40 47.40 –

monks−1 83.45 86.07 87.22 – 47.00 52.70 54.80 –

monks−2 58.44 67.65 69.38 – 13.60 22.70 25.10 –

monks−3 96.97 97.26 97.32 – 83.30 85.60 85.80 –

mushroom 100.00 100.00 100.00 – 100.00 100.00 100.00 –

musk−1 76.64 77.30 77.79 – 27.80 31.20 32.30 –

musk−2 90.16 90.58 90.64 – 56.70 60.20 60.30 –

nursery 98.36 98.54 98.57 – 83.90 86.10 86.30 –

oocytes-merluccius-nucleu 64.59 68.07 68.11 – 16.20 19.10 19.60 –

oocytes-merluccius-states 83.63 83.30 83.31 – 28.90 30.30 30.60 –

oocytes-trisopterus-nucle 69.67 71.35 71.48 – 18.30 20.10 20.30 –

oocytes-trisopterus-state 85.77 86.15 86.19 – 43.90 47.20 47.60 –

optical 88.81 88.44 88.47 – 5.70 6.20 6.30 –

ozone 57.82 66.25 66.89 – 16.00 21.60 22.70 –

page-blocks 84.40 85.49 86.00 • 26.20 29.30 30.10 –

pendigits 95.13 94.83 94.84 – 27.90 29.10 29.00 –

pima 69.17 72.39 72.77 – 20.20 24.50 25.10 –

planning 51.08 65.87 71.35 • 12.80 25.40 30.80 •

ringnorm 89.81 90.05 90.18 – 53.90 57.30 57.30 –

seeds 90.40 90.55 90.49 – 49.10 51.80 52.20 –

semeion 72.11 71.62 71.73 – 0.10 0.10 0.10 –

soybean 86.94 87.47 87.94 • 28.10 30.90 32.50 •

(continued on next page)
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accuracy benefits even more than the partial accuracy (68.6% of the
points are above the diagonal line, that is A AΔ > ΔT P). We identified and
outlined by a triangle a dense region in the diagram containing
approximately 54% of all points plotted. For these points, a fairly small
improvement on the partial accuracy was sufficient to ensure a greater
improvement in the total accuracy, justifying overall the restricted set
classification approach. Larger improvements on AP lead to larger
improvement on AT too, but for most of these points, A AΔ > ΔP T (that

is, the points lie under the diagonal).
Another interesting observation from the figure is that even for

datasets where the partial accuracy of method H was worse than that of
method method B (left from the line AΔ = 0P ), the total accuracy of
method H was still better than that of method B ( AΔ > 0T ). Overall,

AΔ > 0T for 93.75% of the points, AΔ = 0T for 5.95% of the points, and
AΔ < 0T for 0.3% of the points. Note that this set of points includes all

seven base classifiers and all datasets.

Table 4 (continued)

AP AT

Classifier B G H B G H

spambase 90.87 91.19 91.14 – 58.10 61.70 61.80 –

spect 65.84 68.54 69.22 – 15.50 18.90 19.60 –

spectf 70.13 71.11 70.51 – 21.70 23.30 23.70 –

statlog-australian-credit 54.57 57.59 58.14 – 10.30 11.80 12.30 –

statlog-german-credit 62.43 66.31 66.25 – 13.80 16.60 16.60 –

statlog-heart 74.53 76.02 75.77 – 24.10 27.20 27.30 –

statlog-image 95.05 94.96 95.02 – 40.20 41.80 41.90 –

statlog-landsat 82.25 82.04 82.19 – 8.60 9.10 9.50 –

statlog-shuttle 98.15 98.25 98.18 – 79.30 81.00 80.60 –

statlog-vehicle 70.48 71.81 72.00 – 7.30 8.40 8.60 –

steel-plates 71.98 72.57 72.72 – 0.80 1.10 1.10 –

synthetic-control 87.35 86.84 87.24 – 14.20 15.00 15.60 –

teaching 58.33 62.62 62.83 – 9.60 12.70 13.30 –

thyroid 97.59 97.57 97.55 – 82.80 84.20 84.00 –

tic-tac-toe 91.11 91.69 91.64 – 61.00 64.60 64.50 –

titanic 68.37 75.28 76.43 • 22.40 32.50 34.60 •

twonorm 84.40 84.54 84.62 – 40.30 42.90 43.10 –

vertebral-column−2clases 76.37 78.38 78.63 – 29.30 33.30 33.70 –

vertebral-column−3clases 74.11 75.90 75.77 – 16.70 19.50 19.60 –

wall-following 99.13 99.13 99.18 • 90.00 90.50 91.00 –

waveform-noise 74.58 74.70 74.97 – 14.20 15.30 15.70 –

waveform 76.16 76.40 76.68 – 17.10 18.20 18.40 –

wine-quality-red 42.66 46.18 46.54 – 1.00 1.30 1.30 –

wine-quality-white 42.51 44.73 46.16 • 0.20 0.20 0.30 –

wine 94.15 94.03 94.48 – 71.80 73.60 75.10 •

yeast 57.58 58.41 58.62 – 1.20 1.20 1.20 –

Fig. 8. Improvement of method H over method B for the 96 USC datasets using the all 7 base classifiers. (a) Partial accuracy AP. (b) Total accuracy AT.
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Relationship of the improvement of H over B and the number of
classes. Fig. 10 plots the improvement AΔ P and AΔ T versus the number
of classes. The points in the scatterplots again correspond to the
datasets using all seven base classifiers.

There is no visible relationship between the number of classes and
the improvement of method H against method B. The problems with
two and three classes make up 75% of the USC collection.

It can be expected that more is to be gained if we have a large
number of classes compared to fewer classes, but this could not be
verified with this collection.

4. Conclusion

We propose a solution for the restricted set classification problem
which we also call “who-is-there”. The problem is to classify simulta-

neously a set of objects into c classes, ω ω, …, c1 , knowing that there are
at most ki objects from class ωi. The values of ki are specified in
advance and fixed. Our solution is to expand the matrix with posterior
probabilities given by the classifier so that we cover the possibility for
k k= ∑i

c
i=1 objects and labels, and apply the Hungarian assignment

algorithm on the logarithms of the posterior probabilities in the
expanded matrix. The simpler alternatives which we considered were
the standard approach of applying the trained classifier D individually
to each instance in the set X, and a greedy approach where objects and
classes are paired and eliminated from the set. Our experimental study
validates the proposed approach for various choices of base classifier
model D.

We demonstrated that the set classifier is better than the individual
classifier for the restricted set classification problem through a two-part
experiment. In the first part, we formulated the problem on a chess
dataset where the all pieces on a chessboard had to be recognised from
a bird-view snapshot. The second experiment was carried out using the
University of Santiago de Compostela collection of 96 data. We
constructed restricted set classification problems and applied the
proposed solution. The experiments favoured ensemble classifiers as
the base classifier D, and subsequently the Hungarian set classifier Dh

set
on the expanded probability matrix.

The scalability of the proposed framework is affected only by the
complexity of the Hungarian algorithm. Training of the base
classifier D is the same with or without the restricted set classifica-
tion framework. The complexity of the Hungarian algorithm for our
case is O k( )3 , where k is the maximum number of objects in the set.
The Hungarian algorithm may be impractical for very large k or
when rapid classification is needed, for example in tracking. In such
cases, the greedy set classifier can be used, sacrificing some accuracy
AP and AT.

An interesting question which we intend to address in the future is
that about possible dependencies in the set of objects X. The instances
in X may not be independently drawn from their respective classes. For
example, the snapshot of the chessboard has a certain illumination.
When classifying the pieces in the individual squares cropped from the
snapshot, we assume that they are drawn independently from their
respective classes. In other words, the fact that these sub-images have
similar illumination is not currently accounted for in the theoretical
model we propose here.

Fig. 9. Scatterplot of all datasets for all seven base classifiers in the plane A A(Δ , Δ )P T .

The blue triangle contains 54% of all points.

Fig. 10. Improvement of H over B for the partial accuracy ( AΔ P) and the total accuracy AΔ T ) against the number of classes for the respective problems.
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Appendix A. Proof of Proposition 1

Proposition 1. For 2-class problems,

A D A D( ) > ( ).P
g

P
i

set set (14)

Proof. For Di
set,

A D P P P P P P( ) = Pr( > 0. 5) Pr( > 0. 5) × 2
2

+ Pr( > 0. 5) Pr( ≤ 0. 5) × 1
2

+ Pr( ≤ 0. 5) Pr( > 0. 5) × 1
2P

i
set 1 2 1 2 1 2 (15)

A D P P( ) = 1
2

(Pr( >0.5) + Pr( >0.5))P
i
set 1 2 (16)

A D p( ) = ,P
i
set (17)

where p is the accuracy of D. For Dg
set,

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟A D P P P Pr P P P P P P P( ) = Pr( >0.5 Pr( >0.5 × 2

2
+ Pr( ≤ 0.5) ( > 0.5)Pr( > 1 − ) × 2

2
+ Pr( >0.5 Pr ≤ 0.5 Pr( >1 − × 2

2
.P

g
set 1 2 1 2 2 1 1 2 1 2

(18)

The ROC curve of a classifier for a two-class problem is constructed by nominating any of the two classes to be the ‘positive’ class and the other to be
the ‘negative’ class. The area under the ROC curve, AUC, gives the probability that the classifier will rank a randomly chosen positive instance higher
than randomly chosen negative instance [39]. Phrased differently, this is the probability that the classifier will make errors with less certainty
compared to the certainty when assigning a correct label. Formally,

AUC P P P P= Pr( >1 − ) = Pr( >1 − ).1 2 2 1 (19)

Denote by S Pr P= ( > 0.5)1 1 the sensitivity of D assuming that class ω1 is the positive class, and by S Pr P= ( > 0.5)2 2 the sensitivity of D assuming that
class ω2 is the positive class. Then

A D S S S S AUC S S AUC S S S S S S AUC( ) = + (1 − ) + (1 − ) = + ( + − 2 ) .P
g

set 1 2 1 2 1 2 1 2 1 2 1 2 (20)

For the Bayes classifier D, whereby the labelling is done by the largest posterior probability, AUC > 0.5. Therefore,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟A D S S S S S S S S p A D( ) > + + − 2 × 0.5 = 1

2
+ = = ( ). □P

g
P

i
set 1 2 1 2 1 2 1 2 set

(21)

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.patcog.2016.08.028.
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