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Abstract—Classification of brain images obtained through
functional magnetic resonance imaging (fMRI) poses a serious
challenge to pattern recognition and machine learning due to
the extremely large feature-to-instance ratio. This calls for revi-
sion and adaptation of the current state-of-the-art classification
methods. We investigate the suitability of the random subspace
(RS) ensemble method for fMRI classification. RS samples from
the original feature set and builds one (base) classifier on each
subset. The ensemble assigns a class label by either majority
voting or averaging of output probabilities. Looking for guidelines
for setting the two parameters of the method—ensemble size
and feature sample size—we introduce three criteria calculated
through these parameters: usability of the selected feature sets,
coverage of the set of “important” features, and feature set diver-
sity. Optimized together, these criteria work toward producing
accurate and diverse individual classifiers. RS was tested on three
fMRI datasets from single-subject experiments: the Haxby et al.
data (Haxby, 2001.) and two datasets collected in-house. We found
that RS with support vector machines (SVM) as the base classifier
outperformed single classifiers as well as some of the most widely
used classifier ensembles such as bagging, AdaBoost, random
forest, and rotation forest. The closest rivals were the single SVM
and bagging of SVM classifiers. We use kappa-error diagrams to
understand the success of RS.

Index Terms—Classifier ensembles, functional magnetic res-
onance imaging (fMRI) data analysis, multivariate methods,
pattern recognition, random subspace (RS) method.

I. INTRODUCTION

D ECIPHERING brain patterns, or “mind reading,” fea-
tures in fiction and science alike, raising challenges, new

horizons, and ethical debates. Functional magnetic resonance
imaging (fMRI) is currently the most advanced technology
at the disposal of cognitive neuroscience. It measures blood
oxygenation level-dependent (BOLD) signal and tries to dis-
cover how mental states are mapped onto patterns of neural
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activity. State-of-the-art of pattern recognition and machine
learning have been explored for suitable techniques to help
in this quest [41], [42]. Feature selection has been recast as
voxel selection, i.e., determining voxels in the brain relevant for
discrimination between mental states. While feature selection
and classification are intrinsically related, they are often per-
formed separately. For example, relevant voxels can be selected
through a univariate statistical method [15], and any classifier
model can then be applied. Feature selection and classification
of fMRI data have been described as a formidable analytic
challenge [17]. The difficulties, compared to conventional
pattern recognition, come from at least four sources:

1) the feature-to-instance ratio is extremely large, in the order
of 5000:1, while in a typical pattern recognition problem it
is expected to be much smaller than 1;

2) there is a spatial relationship between the features that
needs to be taken into account;

3) the SNR is low;
4) there is great redundancy in the feature set.
Feature selection answers one of the main questions of fMRI

data analysis by identifying regions of the brain that respond
to different stimuli. Striving for good classification accuracy is
driven by a slightly different motivation1. One aspect of it is
answering the question “what is the maximum information en-
coded in a given voxel set?” Second, classification accuracy be-
comes of paramount importance for on-line physiological self-
regulation of the local BOLD response [35]. This technique,
known as neurofeedback, tries to establish voluntary control of
circumscribed brain areas. Abnormal activity in such areas may
be suppressed through neurofeedback, thereby serving as a psy-
chophysiological treatment [25], [51], [52].

Various classifier models have been applied for fMRI clas-
sification [41], [42]. Preferences tend to be for linear classi-
fiers because they are simple, fast, accurate (with or without the
underlying assumptions being strictly met), and interpretable.
The spectrum of linear classifiers applied to fMRI data include
the linear discriminant classifier (LDC) and penalized versions
thereof [17], the maximum-uncertainty linear discriminant anal-
ysis [45], the Gaussian Naïve Bayes [36] (linear if all variances
are assumed to be equal), sparse logistic regression [54], and
more. The favorite, however, has been the support vector ma-
chine (SVM) classifier [9]–[11], [30], [37]–[39], [50], [55] ap-
plied across different problems including categorizing emotions
[20], [56], understanding brain patterns of forming subjective
values in different decision scenarios [8] or reading hidden in-
tentions from the fMRI images [23]. Ku et al. [27] compared
several classifier models for fMRI. While no clear winner has

1“Classification accuracy” is the ability of a classifier or an ensemble of clas-
sifiers to label correctly objects unseen during training. Accuracy is estimated
as the proportion of correctly labeled objects from a testing dataset.
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been declared across all the classification tasks, SVM appeared
to have an edge over the other classifiers. SVM is originally de-
signed for two class problems. The key to SVM’s success is
that the decision boundary it builds is furthest away from both
classes, which ensures good generalization performance [7].

Classifier ensembles are deemed to be better than individual
classifiers [6], [28], and ensembles of SVM classifiers have been
shown to live up to this promise for high-dimensional data [48],
[49]. One popular ensemble method is the random subspace
(RS) ensemble [24]. The idea is simple and intuitive: instead
of using all features for each classifier in the ensemble, we
sample from the feature set. The ensemble operates by taking
the majority vote of a predefined number of classifiers, each
classifier built on a different feature subset sampled randomly
and uniformly from the original feature set. RS ensembles have
been tried for problems with large dimensionality and excessive
feature-to-instance ratio [46], e.g., problem arising from mi-
croarray data analysis [1], [31] and face recognition [57]. Here,
using three different single-subject datasets, we show that RS
ensembles work for fMRI data better than the single SVM and
also examine the reasons behind the improved accuracy. The
rest of the paper is organized as follows. Section II explains
the RS method and looks into the relationship between its pa-
rameters (number of classifiers and size of the selected feature
subsets). The data description and the experimental protocol are
given in Section III. Section IV contains the experimental results
and the discussion.

II. RANDOM SUBSPACE ENSEMBLES

Let be the set of features (voxels). To
construct an RS ensemble with classifiers, we collect sam-
ples, each of size , drawn without replacement from a uniform
distribution over . Each feature subset defines a subspace of

of cardinality , and a classifier is trained using either the
whole training set or a bootstrap sample thereof [24]. The final
ensemble decision is made by majority vote. Thus RS ensembles
offer an elegant answer to the problem of very large dimension-
ality . Classifiers can be trained more easily in smaller sub-
spaces, and the feature-to-instance ratio improves substantially.
The accuracy of classification is not adversely affected due to re-
placing a single classifier with an ensemble. The RS ensemble
requires two parameters: the ensemble size and the cardinality
of the feature subset . Here, we try to shed a light on the choice
of the parameter values from a theoretical perspective.

In fMRI analysis, the relevant information appears as sparse
irregular patterns of responsive voxels in the brain. Hence, it is
possible that a small number of voxels contain most of the infor-
mation, and the rest will contribute only noise to the classifier.
While in reality all voxels can be deemed important, with some
contributing considerably less discriminative information con-
tent than others, the mathematical abstraction needed to perform
classification requires assumptions. We shall assume that there
are “important” voxels, set , , where

, and the remaining voxels are random
noise. We also assume that the cardinality of the subspaces
is much smaller than . The question is whether we can select
“optimal” and , given and hypothesising .

We start from the postulate that accurate and diverse indi-
vidual classifiers make the best ensembles [5], [6], [28]. The

subset of features, on which the individual classifiers are built,
can serve as indirect indication for the accuracy and diversity
of these classifiers. If a classifier uses only “noise” features, its
accuracy will be no better than random chance. Also, classifiers
that use the same “important” features will be similar or iden-
tical, therefore redundant in the ensemble. Finally, we would
like the whole of to be covered, so that important information
is not lost. In other words, we would like each to be se-
lected at least once in the samples of features.

Definition 1: A classifier is called usable if its feature subset
contains at least one “important” voxel .

Definition 2: The usability of the ensemble is measured
as the proportion of usable classifiers out of . An ensemble
is called completely usable if it contains only usable classifiers

.
Definition 3: Feature set diversity (FSD) between
, is measured by the cardinality of the set of nonshared features

contained within . Two classifiers are nonidentical
if their feature subsets differ by at least one “important” voxel.

We address the following three questions. Given , , , and
.
1) Usability. What is the probability that the selected en-

semble is completely usable?
2) Coverage. What is the probability that the whole of will

be covered (complete coverage)?
3) Diversity. What is the probability that the usable classifiers

in the ensemble will be nonidentical (FSD)?

A. Usability

Denote by the number of important voxels within a single
sample (without replacement) of size from . is a random
variable with hypergeometric distribution. (To help with the ter-
minology, consider that the sample is taken from an urn with
a total of marbles, of which are black, and the remaining

are white. The number of selected marbles in one sample
is . Then is the number of black marbles within the sample.)
The probability mass function of is

Then the probability of having a usable classifier is

Therefore, since the subsets are sampled independently, the
probability of having a completely usable ensemble is

(1)

The ratio of the two binomial coefficients can be simplified for
computational purposes to give

(2)
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Since we assumed , the equation can be simplified fur-
ther to

(3)

This approximation is equivalent to approximating the hyperge-
ometric distribution with a binomial distribution. The intuition
is that the population from which the sample is taken is so vast
that sampling with replacement will be approximately equiva-
lent to sampling without replacement. If sampling is done with
replacement, will have a binomial distribution with parame-
ters and , and the probability of a usable classifier
will be . Then the probability of a completely
usable ensemble will be as in (3).

B. Coverage

For calculating the probability that the whole of will be cov-
ered, we will again use the binomial approximation to the hy-
pergeometric distribution. This approximation implies that the
features within the selected subset of size are sampled inde-
pendently. Consider an important feature . The probability
that a particular feature in is hit in trials is . There-
fore, the probability of not selecting in any of the classifiers
of the ensemble is . The probability of
being in one or more of the selections is , and the
probability of all features being covered is

(4)

C. Feature Set Diversity

As argued earlier, we approximate the hypergeometric distri-
bution that underpins the selection without replacement with a
binomial distribution, where we consider the features selected
with replacement. This is reasonable for very large population

, and small and (rule of thumb is 20 times smaller than
).
Let and be subsets of , both of cardinality . Denote

by and the respective subsets of “important”
features within and . Define FSD by

Each feature may or may not contribute to the FSD. A
value of 1 will be added if is in either set but not in both. Then
the expected diversity for any pair of subsets and is

Since all features in have identical chance of to be se-
lected in a subset of size , and the subsets are drawn indepen-
dently

(5)

The probability of selecting randomly two identical classi-
fiers ( , regardless of the nonimportant features) is

Finally, the probability of having an ensemble where every pair
of classifiers are nonidentical is

(6)
This calculation disregards nonusable classifiers. So an en-
semble can be diverse even if it contains nonusable classifiers
for which .

D. Simulation Results

To view the effect of the two parameters and on the
three criteria (usability, coverage, and FSD), Fig. 1 plots the sur-
faces of the criteria as functions of and for and

. The surfaces are calculated using (3), (4), and (6).
The higher the probability, the better the criterion value. Under-
neath each theoretical surface, we plot a Monte Carlo simulation
surface [50 examples for each pair ]. The plots indicate
that the three criteria reach their maxima for different pairs of

and , hence a compromise should be sought. The plots also
suggest that although some usability may be sacrificed, larger
values of both and are preferable. However, this is not true
for smaller values of , e.g., 30, where FSD will be very low for
large values of either or , or both. To illustrate this effect,
we calculated the same surfaces for (a typical fMRI
brain image) and . While the ranges for and in
the first example were from 10 to 100, in this experiment, we al-
lowed them to vary up to 1000. Fig. 2 shows the three surfaces2.

This time the three criteria largely disagree on the best choice
of and . The figure indicates that the best compromise
should be sought for relatively large and small . Usability
and diversity will be favored at the expense of coverage. The
figure suggests that there is no suitable pair that will
reconcile all three criteria.

What is more interesting though, is which of the desiderata
will be most related to the ensemble accuracy. The answer to
this question will suggest meaningful weights for a combined
optimization of the three criteria. We note that a full examina-
tion of this relationship needs a separate study. Hence, without
knowing the value of , we take forward the wisdom that rela-
tively small and relatively large are preferable.

2All calculations and simulations were done using MATLAB version 7.6.
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Fig. 1. Theoretical (top row) and empirical (bottom row) surfaces for usability (3), coverage (4), and FSD (6) of the RS ensemble (� � ���� and � � ���) in
the space spanned by ensemble size � and feature sample size � .

Fig. 2. Theoretical surfaces for usability (3), coverage (4), and FSD (6) of the RS ensemble (� � ����� and � � ���) in the space spanned by ensemble size
� and feature sample size � .

III. MATERIAL AND METHODS

In the experimental part of this study, we seek answers to the
following questions.

1) Is RS better than: a) single classifiers, b) the most widely
used classifier ensembles?

2) Is there an empirical explanation of why RS works well for
fMRI data?

3) How successful is RS for different parameter values and
for different levels of the contrast-to-noise ratio (CNR)?

Judging by the substantial disagreement between the three
criteria, it will be difficult to construct a viable ensemble if
we sample from the whole voxel set. Therefore, we decided to
follow previous studies [11], [42] that suggest carrying out a
preselection of individually important voxels in the hope that
the relevant voxels will be contained within this set. The
classification is carried out using only the preselected subset.
In our experiment, we used .

A. Data

1) Haxby Data: We used Haxby’s eight-category dataset
[22] provided as an example within the MVPA MATLAB

Toolbox3. The data are obtained from a single subject under-
going functional magnetic resonance imagery. The subject
underwent ten imaging runs during which they were presented
with visual stimuli from eight different image categories:
1) faces; 2) houses; 3) cats; 4) bottles; 5) scissors; 6) shoes;
7) chairs; and 8) “nonsense pictures,” which were random
textures. In each functional image run, all eight categories were
presented in random order. Exemplars of each image type were
displayed in a block, onscreen, for 22.5 s with a 12.5-s period
of fixation (rest) separating subsequent image blocks. A sample
of brain activation, one instance in the dataset, was taken every
2.5 s (scan repetition time ms). The brain sample
at every TR was taken as one instance in the dataset, with class
label corresponding to the stimuli of that TR. Thus each run
produces 72 data points, (categories) . The whole
dataset (10 runs) contains 720 data points, 90 from each class.
The total number of features (voxels) for this data is 43 193.
Taking every TR as an instance implies that the testing data are
not independent, identically distributed (i.i.d.). Some degree of

3Princeton multivoxel pattern analysis manual, https://compmem.princeton.
edu/mvpa_docs/
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correlation exists between the instances belonging to the same
block. However, the data points were labeled independently of
one another. Since the classifiers were trained leaving a whole
run out, the accuracy may be underestimated due to a possible
parameter fluctuation affecting all the points in the testing
run. The alternative is to aggregate the data so that instances
corresponds to TR blocks (temporal compression [39]). In this
case, the data set would be less noisy but inadequately small.

2) Bangor 1 Data: The participant was a 35-year-old right-
handed male with corrected to normal vision. The participant
had no history of neurological or psychiatric illness. Prior to
the start of the experiment informed consent was obtained. The
experimental protocol was approved by the ethics committees
of the School of Psychology, Bangor University, and the North
West Wales NHS Trust. The participant’s task was to passively
view a set of “emotionally charged” images in a block type de-
sign while BOLD sensitive images were collected on a 3 Tesla
Philips Achieva MR scanner ( s ms, 30
slices, mm mm, 3 mm thick).
Each block of images consisted of pictures of a single-emotional
valence type, either positive, negative, or neutral. The images
were selected from the International Affective Picture System
[32], which have been pretested in normative samples for their
valence (emotion evoked in participants with a scale of 1 to 9,
ranging from “unhappy” to “happy”) and arousal (scale from 1
to 9, ranging from “calm” to “excited”).

The data we used in this study were obtained from a single
run. The participant viewed 12 blocks of positive valence type
and 11 of negative type. Each block of images lasted for a pe-
riod of 6 s (four pictures presented for 1.5 s) followed by a pe-
riod of fixation (12 s duration). The presentation order of the
image blocks was pseudorandomized to account for history ef-
fects. Preprocessing of the data was performed using Brainvoy-
ager QX (Braininnovation, Maastricht, The Netherlands). The
data were corrected for intrasubject angular and translational
motion and filtered to remove long-term drift [25].

To construct the dataset, we averaged the brain responses,
recorded in the five scans around the peak of the predicted
hemodynamic response function (HRF)4 to the stimulus pre-
sentation of each block of images. This way we have applied
“temporal compression,” found to be a useful preprocessing
heuristic in single-subject experiments [39]. The resultant
dataset contains instances voxels (features).

3) Bangor 2 Data: This dataset consisted of fMRI data
collected on a 1.5 T Philips Achieva MR Scanner (

s ms, 20 slices, ,
FoV cm, 5 mm thick). It was obtained while the par-
ticipant viewed blocks of visual stimuli from the following
three categories: faces, places, and objects, plus a “control”
block of fixation. For each category and fixation period, in
each functional run, there were four presentations of each type.
Within each block, the individual stimuli were presented at a
rate of 1 Hz. Block order was counterbalanced so as to prevent
any confound due to order effects, and the stimuli presentation
order within each block was random [26]. Three runs were

4The HRF models the expected changes in bloodflow that follows a neural
event.

carried out, resulting in a total of 36 presentations of stimuli, 12
from each category. The total number of voxels for this dataset
was 106720.

Similarly to the first dataset, we applied temporal compres-
sion using the 2 TRs prior to the peak as well as the peak of the
HRF response. Due to the style and the timing of the presen-
tation of the stimuli, the 2 TRs following the HRF peak were
deemed not as important as the ones preceding the peak. The
TRs following the peak were rather reflecting the transition be-
tween the responses from one stimulus to the next.

B. Question 1: RS Versus Single and Ensemble Classifiers

1) Experimental Protocol: Haxby and Bangor 2 data came
from repeated runs with a shuffled presentation of the stimuli.
We decided to use the runs as the cross-validation folds. Thus,
we carried out a tenfold cross-validation with the Haxby data,
and a threefold cross-validation with Bangor 2 data. On the
other hand, the data for Bangor 1 was obtained from one run.
Given the small number of examples, the leave-one-out version
of cross-validation was used for this dataset. For all the experi-
ments in this part, we used the Weka system [53]5. The testing
data (folds left aside in the cross-validation experiments and ob-
jects in the leave-one-out experiment) was not seen during any
part of the feature selection, training of the classifiers or training
the ensembles.

2) Voxel Selection Methods: To increase the chances of cap-
turing the important voxels within the preselected set, we
chose five voxel selection methods. All methods produced a
ranking of the voxels, and the top voxels were se-
lected as the feature set . All the classifiers except RS en-
semble were trained using the voxels. For the RS, we sampled

voxels from , where was chosen to be 50% of , which
is the standard choice adopted in Weka. The five voxel selection
methods are listed here.

1) Analysis of variance (ANOVA). The voxels are ranked in
ascending order according to the -value of this test.

2) SVM. An SVM classifier is constructed for each class, dis-
criminating between that class and the rest. The voxels are
sorted in descending order according to the absolute values
of the weights. For two classes, the top voxels are re-
turned as the selection. For more than two classes, there is
a separate ranking for each class. The rankings are merged
in the following way. Starting with an empty selection set,
the classes are visited in a cyclic order, and the current top
voxel from for each class is moved to the selection set. The
selection set grows until it reaches size .

3) Recursive feature elimination, RFE [18]. A ranking of the
voxels is done according to the SVM method. A percentage
of voxels are eliminated, and the procedure continues re-
cursively with the remaining voxels. (In this paper, we re-
move 5% of the number of remaining voxels.) In the resul-
tant ranking, the voxels that were eliminated in the same
iteration occupy contiguous positions. They all have the

5Weka is a collection of machine learning algorithms developed at
the University of Waikato, New Zealand. It is open source software
issued under the GNU General Public License, available online at
http://www.cs.waikato.ac.nz/ml/weka/.
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TABLE I
INDIVIDUAL AND ENSEMBLE CLASSIFICATION METHODS CHOSEN FOR THE EXPERIMENT (ARRANGED ALPHABETICALLY)

ranks that are higher than the ranks of all the voxels elim-
inated in the previous iterations. Within an iteration, the
voxels are ranked according to the corresponding SVM
weights.

4) [11]. First, a larger subset of the voxels
is selected according to the voxels’ activation6. To arrive

at with the desired cardinality , RFE is applied next. In
this work, the cardinality of was chosen to be 2000.

5) . First a subset of the voxels, , is selected
through RFE. Then, Sequential Forward Selection [47] is
applied to to build starting with an empty set and
adding one voxel at a time. A correlation-based criterion
is used for evaluating the subsets in the process of growing

[19].
3) Classifiers: Fifteen classification methods were consid-

ered: 7 single classifiers and 8 classifier ensembles as shown
in Table I. (The reader is referred to the relevant literature for
details about the classifiers and the ensembles.) We used the
standard implementation and the default parameter values of all
these methods from Weka. For this experiment we chose the
ensemble size to be 100. The default value of for the RS
method in Weka is 50% of the original space size, in our case

.

C. Question 2: Empirical Insights About RS: Kappa-Error
Diagrams

A kappa-error diagram is a visualization tool for classifier en-
sembles [33]. It is a scatterplot of all pairs of classifiers in an en-
semble, and typically looks like a “cloud” of points. Each point
on the graph corresponds to a pair of classifiers. The -coordi-
nate of the point is a measure of diversity between the outputs of
the two classifiers, kappa . The smaller the value, the more
different the classifiers. Fleiss [13] defines the pairwise as

(7)

where is the proportion of objects labeled correctly by both
classifiers, is the proportion labeled incorrectly by both clas-
sifiers, is the proportion labeled correctly by the first classifier
but mislabeled by the second one, and is the proportion misla-
beled by the first classifier and labeled correctly by the second
classifier. The minimum possible value of kappa is negative and
depends on the accuracy of the two classifiers [29]. A negative
kappa signifies the best case of diversity, because the classifiers

6“Activation” of a voxel is the BOLD signal at that voxel, measured as the
gray-level intensity of the fMRI.

will tend to label the objects differently, thereby creating the
possibility of correcting misclassifications. The -coordinate of
the point is the averaged individual accuracy of the pair of clas-
sifiers . Thus each ensemble is responsible for a “cloud” of

points. In a tenfold cross-validation experiment,
there are ten different ensembles, one trained on each fold. The
individual accuracies and diversities are calculated from the re-
spective testing folds. If we pool all the diagrams together, the
cloud of points will contain ten times the number of classifier
pairs for a single ensemble. Better ensembles will be the ones
whose “cloud” of points is near the left bottom corner of the
graph (high-diversity and low-individual error).

D. Question 3: Dependency on and CNR

We calculated the usability, coverage, and diversity for
and , varying from 1 (single classifier) to 200

and show curves for different number of important voxels . To
examine the sensitivity of RS to its parameter values, we varied

from 5% to 95% and stored the testing ensemble accuracy
for the five voxel selection methods.

The CNR is considered an important parameter in fMRI
studies [16]. CNR is typically calculated on the temporal signal.
For a two-class “static” data, CNR is defined using the means
and the standard deviations for the classes, separately for each
voxel. For voxel , CNR is ,
where is the mean and is the standard deviation of

for class . The higher the CNR, the more separable the two
classes are using only voxel . In our experiment, we simulated
two-class datasets with precalculated CNR. To make the data
close to reality, we took classes 1 and 2 (faces and places)
from Bangor 2 data and calculated CNR for each voxel. The
voxels were then sorted in descending order of their CNR. The
means and the covariance matrices for the two classes of the
top voxels were stored and subsequently used to simulate
the important features in the data. We simulate multivariate
Gaussian distributions for each class, using the Statistics
toolbox of MATLAB. The remaining features were
simulated as independent random noise with mean zero and
standard deviation equal to the mean CNR for the important
features. The largest CNR value in the data was 3.123, and the
smallest was 0. Fig. 3 shows the histogram of the CNR values.
The thresholds for selecting 20, 100, and 200 voxels are marked
with vertical dashed lines. By replacing the remaining voxels
with zero-mean noise, we substitute the part of the histogram
to the left of the cutoff point with a single bar at CNR about 0.

The parameters were varied in the following ranges: took
20 equally spaced values from 1 to 1000, took values 10, 100,
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Fig. 3. Histogram of the CNR values of the voxels in Bangor 2 dataset. The
cutoff points for selecting � � ��, 100, and 200 voxels are indicated.

TABLE II
CLASSIFICATION ACCURACY OF THE 15 CLASSIFICATION METHODS

FOR THE HAXBY DATA

and 200, and took values 20, 100, and 200. For each combina-
tion , we generated 30 datasets with 20 training ex-
amples (10 per class) and 200 testing examples (100 per class).
The small size of the training data was chosen to mirror that of
real datasets. For each , we calculated the RS_SVM
ensemble error and also estimated the SVM error using all fea-
tures. The 30 error estimates for RS_SVM were paired with the
error estimates for the SVM classifier. Paired test was run at
significance level 0.05. Significant differences in favor of the RS
ensemble would highlight its merit in comparison to the SVM
classifier.

IV. RESULTS AND DISCUSSION

A. Answer 1

Table II shows the classification accuracy of the 15 classifi-
cation methods for the Haxby data and the five voxel selection
methods. The highest accuracy for each voxel selection method
(column in the table) is underlined. For comparison, the last
column of the table shows the classification accuracy with all
features7. Tables III and IV contain the results for data Bangor
1 and Bangor 2, respectively, in the same format.

The RS with SVM is the best classification model for the
Haxby data with all voxel selection methods. Bangor 1 data is
nondiscriminative as the classification accuracy is quite high.
For this dataset, SVM, BagSVM, and RS_SVM share the
top position. The results with Bangor 2 data are mixed, and
RS_SVM is again on the par with SVM and BagSVM. While
the first dataset benefits from an RS ensemble, the latter two

7Not all classification methods could be run on the original set due to com-
putational complexity.

TABLE III
CLASSIFICATION ACCURACY OF THE 15 CLASSIFICATION

METHODS FOR THE BANGOR 1 DATA

TABLE IV
CLASSIFICATION ACCURACY OF THE 15 CLASSIFICATION METHODS

FOR THE BANGOR 2 DATA

TABLE V
RANKS OF THE 15 CLASSIFICATION METHODS FOR THE THREE DATASETS

For a given dataset, each method receives a rank for each of the 5 voxel
selection methods (the lower the rank, the better the method). The overall
rank for a classification method is calculated as the average of its 5 ranks.

datasets favor the single SVM just as much. We note that using
the ensemble does not spoil the accuracy. Table V shows the
ranks of the classification methods for the three datasets as well
as the total ranks. To calculate the ranks for a given dataset,
we first sort the classifier methods in descending order of their
accuracy, separately for each voxel selection method. The top
ranked method receives rank 1, the second best receives rank 2,
etc. If there is a tie, the ranks are shared. For example, two
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Fig. 4. Kappa-error diagrams for the best two ensembles (RS with SVM and Bagging with SVM) for: (a) Haxby data and (b) Bangor 2 data. Each point corresponds
to a pair of classifiers in the ensemble. The �-coordinate of the point is the pairwise diversity �, and the �-coordinate is the averaged individual accuracy of the
pair �.

Fig. 5. Usability, coverage, and FSD for � � ���� and � � ��� as a function of the ensemble size �, for values of �, as indicated in the plots.

classifiers with the same accuracy that need to share place 4
and 5 will both be assigned rank 4.5. The overall rank for a
classification method is calculated as the average rank across
the five voxel selection methods. The lower the rank, the better
the method. RS_SVM has the lowest overall rank. Conversely,
RS ensembles of decision trees (DTs) rate very low, possibly
because of the low accuracy of the single DT classifier.

The poor results with all voxels (last columns of the tables)
emphasize the importance of the voxel preselection step. An ad-
ditional voxel preselection, taking place prior to the selection by
the five methods considered here, may also help the classifica-
tion. The brain or a region of interest can be segmented from the
3-D image by an expert, to be used in the further analyses. This
study takes a “brute force” approach whereby the whole data
(the training set with all voxels) is fed to the filter to select the

relevant voxels. This approach aids reproducibility
of the experiment but does not guard against artefacts, so voxels
of spurious locations may enter the preselected set. However,
the classification methods should be sufficiently robust to ig-
nore such voxels.

B. Answer 2

Fig. 4 shows the kappa-error diagram for the two leading en-
sembles for the Haxby data and Bangor 2 data: RS with SVM

Fig. 6. Classification accuracy as a function of� in� for the 5 voxel selection
methods (Haxby data).

and Bagging with SVM. The reason why Bangor 1 data is not
shown is that the evaluation of the classification accuracy and
diversity of a pair of classifiers (on the testing data) is infeasible
for the leave-one-out protocol. The error could only be 0 or 1,
and kappa will be undefined. The difference in the testing data

Authorized licensed use limited to: University of Wales Bangor. Downloaded on February 9, 2010 at 05:40 from IEEE Xplore.  Restrictions apply. 



KUNCHEVA et al.: RANDOM SUBSPACE ENSEMBLES FOR FMRI CLASSIFICATION 539

Fig. 7. Simulation results with the RS ensemble versus a single SVM classifier, using all features. The data for each class were 1000-dimensional Gaussian with
the first � features generated with the estimated means and covariance matrices of dataset Bangor 2, and the remaining � � � features generated as Gaussian
noise. The circled points indicate that the ensemble error is significantly lower than the SVM error � � ����.

sizes is the reason for the strikingly different appearance of the
two diagrams in Fig. 4. For Bangor 2 dataset, the testing set (one
run) consists of 12 instances, so the error rate of a classifier could
take 13 discrete values: 0/12, 1/12, ,12/12. As the classifiers
are supposed to be reasonably accurate, making fewer than 12
mistakes, the number of distinct values is further reduced. The
averaged error rate of a pair of classifiers will also take discrete
values (there were eight distinct values for the Bangor 2 data).
The number of points in both plots is of a similar scale: for the
Haxby data, there are , while
for the Bangor 2 data, we have .
The points for Bangor 2 data are concentrated at a point on the
right edge of the plot, where kappa is 1 (pairs of identical classi-
fiers with error , more so for the Bagging (65%
of all points) than for the RS ensemble (47% of all points). Even
though the distribution of kappa is heavily skewed for both en-
sembles, we plot also the means of the clouds of points as a guide
to the tendency. The means are indicated for both datasets. RS
produces slightly less accurate individual classifiers but more di-
verse ensembles (clouds for RS are more to the left, signifying
lower kappa, hence higher diversity), which seems to be the key
to the better overall ranking of RS.

C. Answer 3

Why does Weka’s default choice of work? For this
value of , the three criteria are easily satisfied for a moderate
values of . Fig. 5 gives the calculated usability, coverage, and
FSD for and , as functions of , parameter-
ized by . Even though the conditions for the approximation of
the hypergeometric distribution with binomial distribution are
not met, the tendencies of the criteria can be seen from the re-
spective equations as well as from the figure. Starting with cov-
erage, since , the probability of complete coverage
depends only on and . For (most likely satisfied
for fMRI data) and ensemble sizes of (adopted here),

(complete coverage) quickly shoots up to 1, as shown in the
middle plot of Fig. 5. The other two criteria are also high and
stable for and .

Fig. 6 plots the empirical testing accuracy of RS_SVM for
different values of given as percentage of , for
for the Haxby data. There is a pronounced maximum of the
classification accuracy for RS_SVM with the SVM preselection
method at . The convex shape of the curve is matched
by the other selection methods but with lower classification ac-
curacy. (The respective curves for Bangor 1 and Bangor 2 data
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Fig. 8. Slices with the largest content of relevant voxels (out of 500) derived
from the RS_SVM ensembles. For this example, only the first two classes for
each dataset were used.

were flat, which, again can be explained with the small size of
the testing data, which obstructs fine distinction between similar
methods). The chosen value of 50% for is not the optimal
value. However, the drop of the accuracy for from 30% on-
ward is not large, signifying the robustness of the RS ensemble
method with respect to .

Fig. 7 shows the results from the simulation experiment
where the CNR was kept similar to that of a real dataset. The
graphs show the SVM and RS_SVM error rates as functions
of for different values of and . Significant differences
are marked with circles in the plots. The results indicate that
the RS ensemble is consistently better than SVM for a large
range of values of for and , regardless
the ensemble size . For small , the ensemble is not well
trained, because the individual classifiers may not be usable,
hence the high error rate ( is shown as the leftmost
point on the graph). On the other hand, for approaching the
number of features , the classifiers in the ensemble become
progressively more similar and finally become identical to SVM
for . The results support the recommendation we made
for relatively large and moderate . Note that the advantage
of the ensemble is more prominent for larger , which, in
our experiment, entails larger CNR. Contrary to intuition, the
SVM classifier becomes worse with larger CNR. We did not
optimize the regularization parameter of SVM, and this may
be responsible for the anomaly. On the other hand, the same
(nonoptimized) SVM classifiers were used in the RS_SVM
ensemble without adversely affecting its performance.

Finally, Fig. 8 shows the voxel sets selected from the
RS_SVM ensembles for the three datasets. Two classes were
considered from each dataset, as indicated in the figure. The
selection was done following Lai et al.’s method [31]. The
weights of the SVM classifiers were used to rank the features
of the respective subset. The top-ranked feature received rank
500, and the bottom-ranked feature received rank 1. All features
not selected in the subset received rank 0. An overall rank was
computed for each feature by summing up the ranks from the
ensemble members. The features were sorted by the total ranks
and the best 200 were chosen for displaying. We searched on
all three axes and picked the slices with the largest number of
selected voxels. The blue hair cross in the plots indicates the
cutoff position of the displayed slices.

V. CONCLUSION

We argue that RS ensembles are a useful classification tech-
nique for fMRI data. The concepts of usability, coverage, and
FSD are introduced to seek relationship between the parame-
ters of RS ensembles: , the ensemble size, and , the number
of features sampled from the original set . We follow the in-
tuition that an ensemble is better if it consists of accurate and
diverse classifiers, that use up all the information, assumed to
be contained within “important” features. We give theoretical
and simulation results that demonstrate such a relationship. The
results suggest that there is no easily available pair of values

that caters for all three criteria together. It seems that
small and large are preferable for problems of the size of
fMRI. An experimental study demonstrates the success of the
RS ensemble over individual classifiers and ensemble methods.
RS with SVM was found to have the highest rank across the
three fMRI datasets used here. To explain its success, we use
kappa-error diagrams and observe its robustness with respect
to and . A simulation was carried out, where the CNR
matched that of Bangor 2 dataset. The results demonstrate the
stability of RS_SVM for different in contrast to that of a
single SVM classifier.

Stepping upon the concepts introduced here, we are planning
to study how the classification accuracy of the ensemble is re-
lated to the three criteria. This, in turn, will suggest how the cri-
teria should be optimized in a conjugated way to predetermine

and . Given the extremely large feature-to-instance ratio in
fMRI analysis, it is important to bring theoretical, even subjec-
tive, recommendations for parameter values. We view our study
as a step in this direction.

Spatial relationship between the voxels can be introduced to
the RS ensemble. Instead of sampling the voxels uniformly
across the voxel set, a set of “seeds” can be sampled. The
surrounding voxels of each seed are then added to make up
the cardinality of the selected set similarly to the searchlight
method. It is unclear whether this modification will lead to better
ensemble accuracy, but it may help identifying more consistent
and interpretable clusters of voxels compared to the standard RS
version.
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