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Abstract. Rotation Forest is a recently proposed method for building
classifier ensembles using independently trained decision trees. It was
found to be more accurate than bagging, AdaBoost and Random Forest
ensembles across a collection of benchmark data sets. This paper car-
ries out a lesion study on Rotation Forest in order to find out which of
the parameters and the randomization heuristics are responsible for the
good performance. Contrary to common intuition, the features extracted
through PCA gave the best results compared to those extracted through
non-parametric discriminant analysis (NDA) or random projections. The
only ensemble method whose accuracy was statistically indistinguishable
from that of Rotation Forest was LogitBoost although it gave slightly in-
ferior results on 20 out of the 32 benchmark data sets. It appeared that
the main factor for the success of Rotation Forest is that the transfor-
mation matrix employed to calculate the (linear) extracted features is
sparse.

Keywords: Pattern recognition, Classifier ensembles, Rotation Forest,
Feature extraction.

1 Introduction

Classifier ensembles usually demonstrate superior accuracy compared to that
of single classifiers. Within the classifier ensemble models, AdaBoost has been
declared to be the best off-the-shelf classifier [4]. A close rival to AdaBoost is bag-
ging where the classifiers in the ensemble are built independently of one another,
using some randomisation heuristic [3,5]. Bagging has been found to outperform
AdaBoost on noisy data [1] but is generally perceived as the less accurate of
the two methods. To encourage diversity in bagging, further randomisation was
introduced in the Random Forest model [5]. A Random Forest ensemble consists
of decision trees trained on bootstrap samples from the data set. Additional
diversity is introduced by randomising the feature choice at each node. During
tree construction, the best feature at each node is selected among M randomly
chosen features, where M is a parameter of the algorithm.

Rotation Forest [15] draws upon the Random Forest idea. The base classi-
fiers are also independently built decision trees, but in Rotation Forest each tree

M. Haindl, J. Kittler, and F. Roli (Eds.): MCS 2007, LNCS 4472, pp. 459–468, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



460 L.I. Kuncheva and J.J. Rodŕıguez

is trained on the whole data set in a rotated feature space. As the tree learn-
ing algorithm builds the classification regions using hyperplanes parallel to the
feature axes, a small rotation of the axes may lead to a very different tree. A
comparative experiment by Rodriguez et al. [15] favoured Rotation Forest to
bagging, AdaBoost and Random Forest. Studying kappa-error diagrams it was
discovered that Rotation Forest would often produce more accurate classifiers
than AdaBoost which are also more diverse than those in bagging.

This paper explores the effect of the design choices and parameter values on
the performance of Rotation Forest ensembles. The rest of the paper is organized
as follows. Section 2 explains the Rotation Forest ensemble method and the
design choices within. Sections 3 to 6 comprise our lesion study. Experimental
results are reported also in Section 6. Section 7 offers our conclusions.

2 Rotation Forest

Rotation Forest is an ensemble method which trains L decision trees inde-
pendently, using a different set of extracted features for each tree [15]. Let
x = [x1, . . . , xn]T be an example described by n features (attributes) and let
X be an N × n matrix containing the training examples. We assume that the
true class labels of all training examples are also provided. Let D = {D1, . . . , DL}
be the ensemble of L classifiers and F be the feature set.

Rotation Forest aims at building accurate and diverse classifiers. Bootstrap
samples are taken as the training set for the individual classifiers, as in bagging.
The main heuristic is to apply feature extraction and to subsequently reconstruct
a full feature set for each classifier in the ensemble. To do this, the feature
set is split randomly into K subsets, principal component analysis (PCA) is
run separately on each subset, and a new set of n linear extracted features
is constructed by pooling all principal components. The data is transformed
linearly into the new feature space. Classifier Di is trained with this data set.
Different splits of the feature set will lead to different extracted features, thereby
contributing to the diversity introduced by the bootstrap sampling.

We chose decision trees as the base classifiers because they are sensitive to
rotation of the feature axes and still can be very accurate. The effect of rotating
the axes is that classification regions of high accuracy can be constructed with
fewer trees than in bagging and AdaBoost. Our previous study [15] reported
an experiment whose results were favourable to Rotation Forest compared to
bagging, AdaBoost and Random Forest with the same number of base classifiers.
The design choices and the parameter values of the Rotation Forest were picked
in advance and not changed during the experiment. These were as follows

– Number of features in a subset: M = 3;
– Number of classifiers in the ensemble: L = 10;
– Extraction method: principal component analysis (PCA);
– Base classifier model: decision tree (hence the name “forest”).

Thirty two data sets from UCI Machine Learning Repository [2], summarized in
Table 1, were used in the experiment. The calculations and statistical
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Table 1. Characteristics of the 32 data sets used in this study

data set c N nd nc

anneal 6 898 32 6
audiology 24 226 69 0
autos 7 205 10 16
balance-scale 3 625 0 4
breast-cancer 2 286 10 0
cleveland-14-heart 5 307 7 6
credit-rating 2 690 9 6
german-credit 2 1000 13 7
glass 7 214 0 9
heart-statlog 2 270 0 13
hepatitis 2 155 13 6
horse-colic 2 368 16 7
hungarian-14-heart 5 294 7 6
hypothyroid 4 3772 22 7
ionosphere 2 351 0 34
iris 3 150 0 4

data set c N nd nc

labor 2 57 8 8
lymphography 4 148 15 3
pendigits 10 10992 0 16
pima-diabetes 2 768 0 8
primary-tumor 22 239 17 0
segment 7 2310 0 19
sonar 2 208 0 60
soybean 19 683 35 0
splice 3 3190 60 0
vehicle 4 846 0 18
vote 2 435 16 0
vowel-context 11 990 2 10
vowel-nocontext 11 990 0 10
waveform 3 5000 0 40
wisc-breast-cancer 2 699 0 9
zoo 7 101 16 2

Notes: c is the number of classes, N is the number of objects, nd is the number of
discrete (categorical) features and nc is the number of contiunous-valued features

comparisons were done using Weka [20]. Fifteen 10-fold cross-validations were
used with each data set.

Statistical comparisons in Weka are done using a corrected estimate of the
variance of the classification error [14].

The remaining sections of this paper address the following questions.

1. Is splitting the features set F essential for the success of Rotation Forest?
2. How does K (respectively M) affect the performance of Rotation Forest? Is

there a preferable value of K or M?
3. How does Rotation Forest compare to bagging and AdaBoost for various

ensemble sizes L?
4. Is PCA the best method to rotate the axes for the feature subsets? Since

we are solving a classification problem, methods for linear feature extraction
which use discriminatory information may be more appropriate.

3 Is Splitting Essential?

Splitting the feature set, F , into K subsets is directed towards creating diversity.
Its effect is that each new extracted feature is a linear combination of M = �n/K�
original features. Then the “rotation matrix”, R, used to transform a bootstrap
sample T of the original training set into a new training set (T ′ = TR) is sparse. 1

1 Here we refer to random projections broadly as “rotations”, which is not technically
correct. For the random projections to be rotations, the rotation matrix must be
orthonormal. In our case we only require this matrix to be non-degenerate. The
choice of terminology was guided by the fact that random projections are a version
of the rotation forest idea, the only difference being that PCA is replaced by a
non-degenerate random linear transformation.
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To find out how a sparse rotation matrix compares to a full rotation matrix
we used two approaches.

We call the first approach Random Projections. L random (nondegenerate)
transformation matrices of size n × n were generated, denoted R1, . . . , RL, with
entries sampled from a standard normal distribution ∼ N(0, 1). There is no loss
of information in this transformation as Ri can be inverted and the original
space restored. However, any such transformation may distort or enhance dis-
criminatory information. In other words, a rotation may simplify or complicate
the problem, leading to very different sizes of the decision trees in the two cases.

In the second approach, which we call Sparse Random Projections, sparse
transformation matrices were created so as to simulate the one in the Rotation
Forest method. The non-zero elements of these matrices were again sampled
randomly from a standard normal distribution. L such matrices were generated
to form the ensemble.

For ensembles with both pruned and unpruned trees, Sparse Random Projec-
tions were better than Random Projections on 24 of the 32 data sets, where 7
of these differences were statistically significant. Of the remaining 8 cases where
Random Projections were better than Sparse Random Projections, none of the
differences were statistically significant.

Next we look at the reasons why Sparse Random Projections are better than
Random Projections.

3.1 Accuracy of the Base Classifiers

One of the factors contributing to the accuracy of an ensemble is the accuracy of
its base classifiers. Hence, one of the possible causes for the difference between
the performances of Random Projections and Sparse Random Projections may
be due to a difference in the accuracies of the base classifiers. We compared the
results obtained using a single decision tree with the two projection methods.
As in the main experiment, we ran 15 10-fold cross-validations on the 32 data
sets. The results displayed in Table 2 show that

– Decision trees obtained with the projected data are worse than decision trees
obtained with the original data.

– Decision trees obtained after a non-sparse projection are worse than decision
trees obtained after a sparse projection.

One possible explanation of the observed relations is that projecting the data
randomly is similar to introducing noise. The degree of non-sparseness of the
projection matrix gauges the amount of noise. For instance, a diagonal projection
matrix will only rescale the axes and the resultant decision tree will be equivalent
to a decision tree built on the original data.

3.2 Diversity of the Ensemble

Better accuracy of the base classifiers alone is not sufficient to guarantee better
ensemble accuracy. For the ensemble to be successful, accuracy has to be coupled
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Table 2. Comparison of the results obtained with a single decision tree, using the
original and the projected data. The entry ai,j shows the number of datasets for which
the method of column j gave better results than the method of row i. The number in
the parentheses shows in how many of these cases the difference has been statistically
significant.

With pruning Without pruning
original non-sparse sparse original non-sparse sparse

original - 3 (0) 8 (0) - 4 (0) 9 (0)
non-sparse 29 (17) - 30 (13) 28 (15) - 28 (11)
sparse 24 (8) 2 (0) - 23 (7) 4 (0) -

with diversity. To study further the effect due to splitting the feature set, we
consider kappa-error diagrams with sparse and with non-sparse projections.

Kappa-error diagrams is the name for a scatterplot with L(L − 1)/2 points,
where L is the ensemble size. Each point corresponds to a pair of classifiers. On
the x-axis is a measure of diversity between the pair, κ. On the y-axis is the
averaged individual error of the classifiers in the pair, Ei,j = Ei+Ej

2 . As small
values of κ indicate better diversity and small values of Ei,j indicate better
accuracy; the most desirable pairs of classifiers will lie in the bottom left corner.

Figure 1 plots the kappa-error diagrams for two data sets, audiology and
vowel-context, using Random Projections and Sparse Random Projections with
pruned trees. The points come from a 10-fold cross-validation for ensembles of
size 10. We chose these two data sets because they are typical examples of the
two outcomes of the statistical comparisons of sparse and non-sparse random
projections. For the audiology data set, sparse projections are substantially bet-
ter while for vowel-context data the two methods are indistinguishable.

Audiology Vowel-context
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Fig. 1. Kappa-error diagrams for two data sets for sparse and non-sparse random
projections. The ensemble errors are marked on the plots.

The figure shows that the success of the sparse projections compared to non-
sparse projections is mainly due to maintaining high accuracy of the base clas-
sifiers. The additional diversity obtained through the “full” random projection
is not useful for the ensemble.



464 L.I. Kuncheva and J.J. Rodŕıguez

The results presented in this section show that splitting the feature set is
indeed essential for the success of Rotation Forest.

4 Number of Feature Subsets, K

No consistent relationship between the ensemble error and K was found. The pat-
terns for different data sets vary from clear steady decrease of the error with K
(audiology, autos, horse-colic, hypothyroid, segment, sonar, soybean, splice, ve-
hicle and waveform datasets), through non-monotonic (almost horizontal) lines,
to marked increase of the error with K (balance-scale, glass, vowel-nocontext and
wisconsin-breast-cancer datasets). The only regularity was that for K = 1 and
K = n the errors were larger than these with values in-between. This is not unex-
pected. First, for K = 1, we have non-sparse projections, which were found in the
previous section to give inferior accuracy to thatwhen sparseprojectionswereused.
Splitting the feature set intoK = 2 subsets immediately makes the rotationmatrix
50%sparse,which is a prerequisite for accurate individual classifiers and ensembles
thereof. On the other hand, if K = n, where n is the number of features, then any
random projection reduces to rescaling of the features axes, and the decision trees
are identical. Thus for K = n we have a single tree rather than an ensemble.

As with K, there was no consistent pattern or regularity for M ranged between
1 and 10. In fact, the choice M = 3 in [15] has not been the best choice in terms
of smallest cross-validation error. It has been the best choice for only 4 data sets
out of the 32, and the worst choice in 8 data sets! Thus M = 3 has not been a
serendipitous guess in our previous study. As Rotation Forest outperformed bag-
ging, AdaBoost and Random Forest for this rather unfavourable value of M , we
conclude that Rotation Forest is robust with respect to the choice of M (or K).

5 Ensemble Size, L

All our previous experiments were carried out with L = 10 ensemble members.
Here AdaBoost.M1, Random Forest and Rotation Forest were run with L vary-
ing from 1 (single tree) to 100. Only unpruned trees were used because Random
Forest only operates with those. Since the classification accuracies vary signifi-
cantly from dataset to dataset, ranking methods are deemed to provide a more
fair comparison [7]. In order to determine whether the ensemble methods were
significantly different we ran Friedman’s two-way ANOVA. The ensemble accu-
racies for a fixed ensemble size, L, were ranked for each dataset. Figure 2 plots
the average ranks of the four methods versus ensemble size, L. All results shown
are from a single 10-fold cross-validation. If the ensemble methods are equivalent,
then their ranks would be close to random for the different data sets. According
to Friedman’s test, the ensemble methods are different at significance level 0.005
for all values of L. However, the differences are largely due to the rank of bagging
being consistently the worst of the four methods. A further pairwise comparison
was carried out. With significance level of 0.1, Rotation Forest was found to be
significantly better than bagging for L ∈ {3, 6, 10− 100}, better than AdaBoost
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Fig. 2. The average ranks (R̄) of the four ensemble methods as a function of the
ensemble size (L)

for L ∈ {4, 7, 11, 12}, and better than Random Forest for L ∈ {1 − 5, 7, 8}. The
differences are more prominent for small ensemble sizes. However, we note the
consistency of Rotation Forest being the best ranking method across all values
of L, as shown in Figure 2.

6 Suitability of PCA

6.1 Alternatives to PCA

Principal Component Analysis (PCA) has been extensively used in statistical
pattern recognition for dimensionality reduction, sometimes called Karhunen-
Loéve transformation. PCA has also been used to extract features for classifier
ensembles [16, 17]. Unlike the approaches in the cited works, we do not employ
PCA for dimensionality reduction but for rotation of the axes while keeping all
the dimensions.

It is well documented in the literature since the 1970s that PCA is not partic-
ularly suitable for feature extraction in classification because it does not include
discriminatory information in calculating the optimal rotation of the axes. Many
alternative linear transformations have been suggested based on discrimination
criteria [11,9,13,19,18]. Sometimes a simple random choice of the transformation
matrix has led to classification accuracy superior to that with PCA [8].

To examine the impact of PCA on Rotation Forest, we substitute PCA by
Sparse Random Projections and Nonparametric Discriminant Analysis (NDA)
[12,10,6]. The Sparse Random Projections were all non-degenerate but were not
orthogonal in contrast to PCA.

We compared Rotation Forest (with PCA, NDA, Random Projections and
Sparse Random Projections), denoted respectively RF(PCA), RF(NDA), RF(R)
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and RF(SR), with bagging, AdaBoost, and Random Forest. We also decided to
include in the comparison two more ensemble methods, LogitBoost and Decorate,
which have proved to be robust and accurate, and are available from Weka [20].

6.2 Win-Draw-Loss Analysis

Tables 3 and 4 give summaries of the results.

Table 3. Comparison of ensemble methods

(2) (3) (4) 5) (6) (7) (8) (9) (10)∗

(1) Decision Tree 11/21/0 12/19/1 18/14/0 11/19/2 8/22/2 9/20/3 19/13/0 17/15/0 20/12/0
(2) Bagging 4/27/1 10/21/1 2/27/3 3/27/2 4/24/4 6/26/0 7/25/0 9/23/0
(3) AdaBoost 7/24/1 1/26/5 1/28/3 3/23/6 5/26/1 5/26/1 8/23/1
(4) LogitBoost 0/24/8 0/24/8 1/21/9 0/29/2 2/26/3 2/28/1
(5) Decorate 5/27/0 2/25/5 6/26/0 6/26/0 7/25/0
(6) Random Forest 2/26/4 6/26/0 8/24/0 9/23/0
(7) RF(R) 7/25/0 8/24/0 9/23/0
(8) RF(SR) 1/31/0 1/31/0
(9) RF(NDA) 0/32/0
∗(10) RF(PCA)

Table 4. Ranking of the methods using the significant differences from all pairwise
comparisons

Number Method Dominance Win Loss Average rank
(10) RF(PCA) 63 65 2 2.750
(4) LogitBoost 59 66 7 3.656
(9) RF(NDA) 50 54 4 3.938
(8) RF(SR) 44 49 5 4.219
(3) AdaBoost.M1 2 34 32 6.219
(6) Random Forest -19 21 40 6.281
(1) Bagging -23 22 45 6.500
(4) Decorate -25 19 44 6.844
(7) RF(R) -34 21 55 5.719
(1) Decision Tree -117 8 125 8.875

The three values in each entry of Table 3 refer to how many times the method
of the column has been significantly-better/same/significantly-worse than the
method of the row. The corrected estimate of the variance has been used in the
test, with level of significance α = 0.05.

Table 4 displays the overall results in terms of ranking. Each of the methods
being compared receives a ranking in comparison with the other methods. The
Dominance Rank of method ‘X’ is calculated as Wins–Losses, where Wins if
the total number of times method ‘X’ has been significantly better than another
method and Losses is the total number of times method ‘X’ has been significantly
worse than another method.

To our surprise, PCA-based Rotation Forest scored better than both NDA
and Random Projections (both sparse and non-sparse). It is interesting to note
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that there is a large gap between the group containing Rotation Forest models
and LogitBoost on the one hand and the group of all other ensemble methods on
the other hand. The only representative of Rotation Forest in the bottom group
is Random Projections, which is in fact a feature extraction ensemble. It does
not share one of the most important characteristic of the rotation ensembles:
sparseness of the projection. We note though that if the problem has c > 2
classes, LogitBoost builds c trees at each iteration, hence Lc trees altogether,
while in Rotation Forest the number of trees is L.

The last column of the table shows the average ranks. The only anomaly in
the table is the rank of RF(P) which places the method further up in the ta-
ble, before Adaboost.M1. The reason for the discrepancy between Dominance
and Average rank is that RF(P) has been consistently better than Adaboost.M1
and the methods below it but the differences in favour of RF(P) have not been
statistically significant. On the other hand, there have been a larger number of
statistically significant differences for the problems where Adaboost.M1, Ran-
dom Forest, bagging and Decorate have been better than RF(R). PCA seems to
be slightly but consistently better than the other feature extraction alternatives.
Sparse random projections are the next best alternative being almost as good
as NDA projections but substantially cheaper to run.

7 Conclusions

Here we summarize the answers to the four questions of this study

1. Is splitting the features set F into subsets essential for the success of Rotation
Forest? Yes. We demonstrated this by comparing sparse with non-sparse ran-
dom projections; the results were favourable to sparse random projections.

2. How does K (respectively M) affect the performance of Random Forest? No
pattern of dependency was found between K (M) and the ensemble accuracy
which prevent us from recommending a specific value. As M = 3 worked well
in our experiments, we propose to use the same value in the future.

3. How does Rotation Forest compare to bagging, AdaBoost and Random For-
est for various ensemble sizes? Rotation Forest was found to be better than
the other ensembles, more so for smaller ensembles sizes (Figure 2).

4. Is PCA the best method to rotate the axes for the feature subsets? PCA was
found to be the best method so far.

In conclusion, the results reported here support the heuristic choices made during
the design of the Rotation Forest method. It appears that the key to its robust
performance lies in the core idea of the method – to make the individual classifiers
as diverse as possible (by rotating the feature space) and at the same time not
compromising on the individual accuracy (by choosing sparse rotation, keeping
all the principal components in the rotated space and using the whole training
set for building each base classifier).
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References

1. E. Bauer and R. Kohavi. An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants. Machine Learning, 36:105–142, 1999.

2. C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

3. L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140, 1996.
4. L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–849, 1998.
5. L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.
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