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Abstract

Functional magnetic resonance imaging (fMRI) is becoming a forefront brain–computer interface tool. To decipher brain patterns, fast,
accurate and reliable classifier methods are needed. The support vector machine (SVM) classifier has been traditionally used. Here we argue
that state-of-the-art methods from pattern recognition and machine learning, such as classifier ensembles, offer more accurate classification.
This study compares 18 classification methods on a publicly available real data set due to Haxby et al. [Science 293 (2001) 2425–2430]. The
data comes from a single-subject experiment, organized in 10 runs where eight classes of stimuli were presented in each run. The
comparisons were carried out on voxel subsets of different sizes, selected through seven popular voxel selection methods. We found that,
while SVM was robust, accurate and scalable, some classifier ensemble methods demonstrated significantly better performance. The best
classifiers were found to be the random subspace ensemble of SVM classifiers, rotation forest and ensembles with random linear and random
spherical oracle.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Determining how mental states are mapped onto patterns
of neural activity has been identified as a key challenge to
cognitive neuroscience [1]. Functional magnetic resonance
imaging (fMRI) measures blood oxygenation level-depen-
dent (BOLD) signal, thereby providing quantitative data to
infer such patterns. Pattern recognition has helped to identify
brain patterns that correspond to simple categories such as
faces, tools and houses [2]; unseen natural images [3]; even
intention [4] and emotion [5]. While pattern recognition and
machine learning have already lent a spectrum of tools to
fMRI data analysis [6], there are state-of-the-art methods and
approaches that have not been explored yet.

The two pattern recognition themes relevant to fMRI
analysis are feature selection and classification. Feature
selection translates into identification of a set of voxels in
the brain that can recognize with the highest accuracy the
categories in the fMRI experiment, e.g., positive vs.
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negative emotion or tools vs. houses or faces [7–8]. In
this scenario, the voxels become the features, the stimuli
become the class labels, and the brain responses to the
stimuli become the instances (objects to classify). Once
identified, these voxels are fed into a classifier model,
which is trained to predict the category as accurately as
possible. While feature selection and classification are
intrinsically related, they are often performed separately.
For example, relevant voxels can be selected through a
univariate statistical method [9] and any classifier model
can then be applied. The feature selection aspect of fMRI
analysis is difficult for at least two reasons: (i) the feature-
to-instance ratio is extremely large, in the order of 5000:1,
while in a typical pattern-recognition problem it is expected
to be much smaller than 1; (ii) there is a spatial relationship
between the features which needs to be taken into account.
Multivariate methods have been developed that are more
time consuming than the univariate methods but offer
higher accuracy and deeper insight into distributed patterns
of brain functionality [1,2,6,10,11]. In fact, due to the
extremely large dimensionality of the feature space, these
methods are pseudo-multivariate. Although a classifier is
trained on the large feature set, the weights (parameters of
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1 Princeton multivoxel pattern analysis manual, https://compmem.
princeton.edu/mvpa_docs/.

Fig. 1. Construction of the data set from one run of the Haxby et al. [2]
experiment.
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the trained classifier) are used individually to determine the
importance of a feature. In true multivariate methods the
merit of a feature subset should be measured by the
classification accuracy of the whole subset, and not by the
sum of the individual weights. The reason for this is that a
voxel with a low weight may be a key component of a
subset, and without that voxel the subset is not as relevant
as it appears. For example, SVM will assign low weights to
correlated voxels. So if there is a group of extremely
important but correlated voxels, they may be left out of the
selection in favor of individual uncorrelated voxels of
lower relevance. Pereira et al. [6] give a warning to that
effect too.

Why is classification important? The primary focus of
the fMRI data analysis seems to be finding the activation
patterns in the brain representing certain mental states [6].
Classification accuracy takes priority when the mental state
needs to be labeled, for example, to provide feedback to the
participant in the experiment or to the observing neurosci-
entist. Accurate recognition is of paramount importance
when considering on-line physiological self-regulation of
the local BOLD response [12]. This technique, known as
neuro-feedback, tries to establish voluntary control of
circumscribed brain areas. Abnormal activity in such areas
may be suppressed through neurofeedback thereby serving
as psychophysiological treatment [13,14].

A set of classifier methods used for fMRI classification,
including the linear discriminant classifier (LDC), the
support vector machine (SVM) classifier [15] and the
Gaussian naïve Bayes (NB) [16], have been recently
compared [17]. No clear winner has been declared for all
the classification tasks; however, SVM appeared to have an
edge over the other classifiers across different tasks. Sparse
logistic regression has also been shown to be successful in
voxel selection and classification, but comparisons with
other classifiers have not been provided [18]. SVM [19]
has three major advantages over other classifier models: (i)
the weights of the trained classifier can be used to rank the
features (voxels); this is also true for the LDC and the
logistic classifier [20]; (ii) SVM is robust and accurate; and
(iii) SVM can be trained and run on thousands of features
in reasonable time, which is not true for most other
classifier models.

In this article, we argue that pattern recognition and
machine learning can offer more accurate classifiers than
the currently used ones at the expense of a little increase of
the computational complexity. The training of the
classifiers may take longer, but the real-time operation
will not be adversely affected. Classifier ensembles have
proved to be consistently more accurate than individual
classifiers across a variety of benchmark and real-life
problems [21,22]. Here we use a real dataset from a single-
subject fMRI experiment [2]. We apply seven standard
voxel selection methods and compare 18 classifier models
(seven single classifiers and 11 ensembles) to the currently
favorite SVM classifier.
2. Materials and methods

2.1. Data

We used the eight-category data set of Haxby et al. [2]
as provided within the MVPA MatLab Toolbox.1 The data
consists of 10 runs of presenting visual stimuli, in the form
of images with different types of content, to a single
subject. One sample of the whole brain is collected every
TR seconds. ‘TR’ has been accepted in the fMRI literature
to mean a ‘discrete time point.’ There are eight types of
stimuli in the experiment (the c=8 classes in our data set):
(i) faces, (ii) houses, (iii) cats, (iv) bottles, (v) scissors, (vi)
shoes, (vii) chairs and (viii) ‘nonsense pictures,’ which were
random textures. In each experiment, all eight categories
were presented in random order. Each image was held for
nine TRs, followed by five TRs of rest. The brain sample at
every TR was taken as one instance in the data set, with
class label corresponding to the stimuli of that TR. Thus
each run produces 72 data points, 8 (categories)×9 (TRs).
The whole data set (10 runs) contains 720 data points, 90
from each class. Fig. 1 shows how the data set from one run
was constructed. The total number of features (voxels)
was 43,193.
2.2. Classifier methods

Eighteen classifier methods have been examined. They
are listed below and also illustrated in Figs. 2 and 3. Fig. 2
shows the classification regions of the seven individual
classifier models on a toy data set with two banana-shaped
classes. The error estimated on an unseen testing set is given
in parentheses underneath the respective plot. The classes are
not linearly separable; hence the error of the classifiers that
build a linear boundary, including LDC and SVM, is high.
The result for the most popular choice— the SVM classifier
— is framed for emphasis. Fig. 3 shows the classification
regions for the same toy problem obtained from the 11 en-
semble methods considered here. The results with the
ensemble methods are not consistently better than those
with the individual classifiers, which reinforces the postulate
that no classifier model is ideal for all problems.
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Fig. 2. Classification regions of the 7 individual classifier models on a toy
data set with two banana-shaped classes. The testing classification error is
given in parentheses.
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In the list below, we only give the intuition of the
classification methods; the reader is referred to the relevant
literature for further details. In the past, classifier models
were grouped into parametric and nonparametric [20].
Parametric classifiers were those where we assume the
type of the underlying probability distributions and only
estimate the parameters of these distributions, which
amounts to training the classifiers. Nonparametric classifiers
do not require any assumption of the underlying densities.
Fig. 3. Classification regions of the 11 ensemble classifier models on the
The ‘parametric vs. nonparametric’ distinction causes some
confusion because ‘parameters’ are estimated through
training of both types of classifiers, and the term ‘parametric’
seems to apply to both groups. Recently, a new grouping has
been proposed which roughly covers the former grouping—
generative, for the parametric group, and discriminative, for
the nonparametric group [23]. There is no clear indication as
to which group should work better with the fMRI data, so we
have tried both.

2.2.1. Individual classifiers

2.2.1.1. Linear discriminant classifier. LDC [20] belongs
to the generative group of classifiers. The classes are
assumed to have normal distributions and equal covariance
matrices. Under this assumption, the optimal classifier
reduces to calculating linear discriminant functions, one for
each class (stimulus in an fMRI experiment). The class label
of a given object x (brain state at a given time) is determined
by the tag of the largest discriminant function.

2.2.1.2. Logistic classifier. The logistic classifier (Log)
[20,23–25] is often chosen as the representative example of
the group of discriminative classifiers because it approx-
imates the posterior probabilities directly. It is also
considered to be “semiparametric” because it does rely on
an assumption about the posterior probability densities. The
assumption is that for any pair of classes in the problem, the
logarithm of the ratio of the two posterior probabilities can be
modeled as a linear function of the input variables. Let x=[x1,
x2,…xn] be the n-dimensional input and P(ωi|x) be the
toy data set. The testing classification error is given in parentheses.
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probability that the true class of the given object x is ωi.
Then the assumption for which the logistic classifier is
optimal is

log
P ωi jxð Þ
P ωj jx
� � =

Xn
k =1

bkxk ; bkaℜ: ð1Þ

Training of the logistic classifier is carried out by
choosing an arbitrary class as the ‘baseline’ (ωj) and finding
individual sets of β's for each of the other classes. The
discriminant functions for a given x are evaluated as a linear
combination of the inputs using the bespoke class weights
[right hand side of Eq. (1)]; the value for the chosen baseline
class is 0. The class label of x is again assigned as the tag of
the largest discriminant function. The class regions are
separated by piece-wise linear borders, as with LDC.

While the underlying assumptions for LDC and Log may
not hold, both classifiers have been found to be fairly robust
and accurate.

2.2.1.3. Support vector machines. SVMs [19] have a long
history as the most popular classifier for fMRI data analysis,
both for classification and feature selection [7,10,26–28].
The most useful version is the one with the linear kernel,
whereby the discriminant function between two classes is a
linear combination of the inputs. The importance of a feature
is associated with the absolute value of the corresponding
weight in the linear combination. SVM is originally derived
for two classes. If there are c classes, a separate SVM can be
trained for each pair of classes, and the c(c−1)/2 classifiers
are used in conjunction to make up a multiclass SVM
classifier. The classification boundary between the two
classes is a hyperplane constructed in such a way that it is
furthest away from the nearest points from the opposite
classes. This maximizes the margin of the classifier, which
translates into a better generalization performance. SVM is
suitable for large dimensionality of the feature space.

2.2.1.4. Decision tree classifier. The small sample size and
the large feature dimensionality make it difficult to construct
a single accurate decision tree (DT) classifier [29]. We
included DT in the experiment because classifier ensembles
using DTs have been very successful. DT classifier lends
itself to the ensemble paradigm because it is both fast and
accurate across a wide range of problems. DT shows the
second lowest error on the toy example in Fig. 2 but, being
only two-dimensional and with relatively large training data,
the example is not indicative to the problems of fMRI data.

Both SVM and DT belong to the discriminative group of
classifiers because they do not attempt to model the class-
conditional density but try to approximate the classification
boundaries. While LDC, Log and SVM produce linear
discriminant functions, and therefore linear boundaries
between the classes, the standard DT composes the
boundaries between the classes using hyperplanes orthogo-
nal to the coordinate axes.
2.2.1.5. Naïve Bayes. NB [16,25] is optimal when the
features are conditionally independent, i.e., when the
probability density function for class ωi, denoted p(x|ωi),
can be decomposed as p x jxið Þ = Qn

k = 1 p xk jxið Þ. In this
case, the densities can be estimated separately for each
feature (voxel) which simplifies the training and makes NB
feasible for very large feature sets. NB has been deemed
“surprisingly accurate” [30] even when the independence
assumption is clearly false. NB may produce linear
boundaries between the classes. This will happen if the
individual densities are assumed to be Gaussian with the
same variance (called Gaussian NB with shared variance
[16]). Only the means for the c classes need be estimated for
each feature. Alternatively, variances for the classes can be
estimated together with the means (Gaussian NB with
distinct variance).

2.2.1.6. Nearest neighbor. Nearest neighbor (1−nn) is a
discriminative classifier that does not need any training
beyond specifying a reference labeled data set. The label
assigned to x is the label of the nearest neighbor of x from the
reference set.

2.2.1.7. Multilayer perceptron. Neural networks are ver-
satile and powerful classifiers, but they rely on a number of
parameter choices to specify the network architecture and to
control the training process. The good result in the toy
example is a likely outcome of a serendipitous choice of
parameter values. The deficiency of training examples in
fMRI experiments as well as the abundance of features
makes tuning of the multilayer perceptron (MLP) [31]
parameters very difficult.

2.2.2. Ensembles of classifiers
Classifiers that are not very accurate individually but tend

to make mistakes on different objects may form a very
accurate ensemble [21]. Different routes have been explored
in a quest to explain why ensembles work better than single
classifiers. Ensembles were found to increase the classifica-
tion margin, hence reduce the chances of a classification
mistake [32], exploit diversity to recover from individual
classifier's mistakes [33–35] and reduce both the bias and
the variance of a single classifier model [36–39]. Valentini
and Dietterich [40] investigate the bias-variance decompo-
sition of the error of the SVM classifier and how ensembles
of SVMs may lead to higher accuracy. While the literature
offers insights and recommendations for constructing
classifier ensembles for ‘standard’ classification problems,
the case of a very small set of examples and massive feature
dimensionality (such as fMRI data) has not been fully
investigated. Here we take an experimental approach and
compare various classifier ensembles of SVMs and DTs to a
single SVM classifier.

2.2.2.1. Bagging [37]. This ensemble approach uses a
predefined number of classifiers, each one trained on a



Fig. 4. Classification regions of a classifier with random linear oracle
(Subplot A) and the spherical oracle (Subplot B) with SVM as the base
classifier.
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bootstrap sample of the training data. The label for an object
x is decided by the majority vote between ensemble
members. Other combination methods have also been
developed [21]. The ‘base’ classifier model could be any,
but the ensemble benefits most from diverse and accurate
classifiers. Hence classifiers whose training is affected by
small changes in the training data are more suitable than
‘stable’ classifiers. Decision trees and MLP ate typical
choices for base classifiers, but bagging SVM classifiers
have been shown to work well too [41].

2.2.2.2. AdaBoost [42]. This approach builds the ensemble
sequentially, one classifier at a time, until a predefined number
of classifiers is reached. Each subsequent classifier is trained
on a sample explicitly focused on the instances misclassified
by the previous classifiers. The ensemble decision is made by
weighted voting. The weights are determined by the
individual accuracies. Let p be the accuracy of classifier C
in the AdaBoost ensemble. The weight for C is calculated as
log(p/(1−p)). AdaBoost has been found to be very useful but
too sensitive to noise in the data [39].

2.2.2.3. Random subspace [43]. Each classifier in the
ensemble is trained on a random subset of features. The
subsets can be intersecting or disjoint. The outputs are
aggregated by majority vote. Like Bagging and AdaBoost,
the random subspace method is only a ‘shell’ and can be used
with any base classifier. Classifiers that are stable with
respect to small changes in the training data may become
diverse if trained on different subsets of features, for
example, 1−nn. The poor results with the toy example,
with both types of base classifiers, are due to the fact that
with n=2 features, there are only three different nonempty
subsets of features, and the ensemble will consist of multiple
copies of the same classifiers. A version of the random
subspace method has been considered for large-scale feature
selection and classification [44].

2.2.2.4. Random forest [45]. This is a version of bagging
where the base classifier is a modified DT, termed “random
tree”. The difference is in the training of the classifier: while
DT is a deterministic classifier, random tree is not. Hence
substantially different trees can be constructed from identical
training data. This introduces additional diversity in the
ensemble without compromising the classification accuracy
of the individual classifiers. In the toy example, we consider
random forests of 100 and 1000 trees.

2.2.2.5. Rotation forest [46]. The base classifier is again a
DT. Each tree is built on a bootstrap sample from the data
rotated in a random way. To classify a given x, the feature
values undergo the rotation specific for each DT and the
instance is subsequently classified. Let there be L classifiers
in the ensemble. Each classifier produces estimates of the c
posterior probabilities P(ωi|x), i=1,…,c. Denote the posterior
probability for class ωi estimated by classifier j by Pj(ωi|x),
i=1,…,c. The outputs of the classifiers are combined using
the average of the posterior probabilities for the classes. The
class label assigned to an object x is the one corresponding to
the maximum on i of

PL
j = 1 Pj xi jxð Þ.

2.2.2.6. Random oracle [47,48]. Random oracle ensem-
bles can be constructed with any base classifier. The idea is
that the training data for each classifier is randomly split into
two parts of the space and a separate classifier is trained for
each part. The split can be done through a random
hyperplane (linear oracle) or a hypersphere (spherical
oracle), or in any other way. Thus each ensemble member
is itself a mini-ensemble with two classifiers. Since the
random oracle ensemble methods are less well known, we
include an example using the two-class toy data. Fig. 4
shows examples of the classification regions produced by
classifiers built using the linear and the spherical oracle. The
base classifier for both is SVM. In each subspace, SVM
builds a linear boundary between the classes. Due to the split,
the classification boundary is no longer linear in the whole
space, which illustrates the flexibility introduced by the
random oracle. The individual accuracies are similar to that
of SVM, which begs the question why we are using the
oracle at all. The answer is that the oracle induces diversity.
Different random splits will produce diverse classification
regions with little or no reduction of individual accuracy.
Diversity is a desirable property of the ensemble, which is
demonstrated by the better ensemble results on the toy
example in Fig. 3.

Classifier ensembles are not designed with a view to
approximate probability density functions, so they can be
considered in the discriminative group of classifiers.

2.3. Evaluation of performance and comparing classifiers

Ideally, the classifiers will be trained on part of the data
and tested on unseen part of the data. Since the sample size is
extremely small compared to the feature dimensionality, in
most cases, having a separate unseen data set for testing is a
luxury. “Peeking” refers to using the testing data in the
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training process [6], be it just for normalization of the data, or
even worse, for preselection of active voxels, on which
refined selection methods are subsequently tested.

In a K-fold cross-validation procedure (CV), one fold of
the data is set aside, and all the training (voxel selection and
classification) is done on the other K−1 folds pooled as one
training set. This set can be split further into training and
pseudo-testing parts, but the fold that was left out should not
be seen for any testing or parameter tuning.2 Golland and
Fischl [49] criticize the use of the cross-validation tests for
comparing classifiers. They point out that, while the mean
classification accuracy across the CV folds is an unbiased
estimate of the true accuracy, the variance may be
optimistically biased for many classifiers. This leads to
discovering differences that do not exist. The authors
propose to use (nonparametric) permutation tests.

Similar argument is raised by Nadeau and Bengio [50]
who propose a correction for the variance that reduces or
eliminates the optimistic bias. The new estimate of the
variance is more conservative and leads to a test with a
specified size (chosen level of significance) and good power
(low error rate in accepting that there is no difference if there
is one). Consider a sample of K testing accuracies produced
from a K-fold cross-validation. Let σμ be the sample standard
deviation and rl ̂ be the standard error of the mean
traditionally calculated as rl ̂ =

rlffiffiffi
K

p . Nadeau and Bengio
[50] propose instead

rl ̂ = rl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

+
Ntesting

Ntraining

s
ð2Þ

where Ntraining and Ntesting are the sizes of the training and the
testing sets, respectively

Ntraining = K − 1ð Þ × fold size

Ntesting = fold size:

This correction is implemented in the Weka system [51],
which we use for all the experiments.3

2.4. Experimental protocol

2.4.1. Number of voxels
Univariate selection methods are widely used because of

the easy way to attach statistical significance to the
individual voxels. A test statistic is calculated to express
the discriminative power of the voxel, e.g., t test or
Wilcoxon rank-sum test (ANOVA and Kruskal–Wallis for
multiple classes). A threshold is then applied to select the
2 The terms ‘testing set’ and ‘validation set’ have been used in the
literature to denote both the unseen testing data and the surrogate testing
data cut from the training set. To avoid confusion, we suggest to call the
fold set aside the testing data and the part cut from the training data, the
pseudo-testing data.

3 Weka is a collection of machine learning algorithms for data mining
tasks. It is open source software issued under the GNU General Public
License.
most relevant subset of voxels. The threshold can be the
chosen significance level or a corrected value thereof.
Correction methods include the Bonferroni correction for
multiple comparisons, false discovery rate, random field
theory [9] and more. It is difficult for the nonexpert to decide
on the test statistic, significance level and correction method.
Palatucci and Carlson [52] argue that depending on these
choices, one may end up with a dramatically different
number of selected voxels. The authors question the ability
of such feature selection criteria to produce a highly
discriminative, robust and interpretable voxel selection and
propose an alternative criterion based on order statistics. In
our experiments, we were faced with this problem too. We
calculated the ANOVA p value for all 43,193 voxels. With
no correction, at significance level .05, there were 37,422
significant voxels. This number was calculated as the
average across 10-fold cross-validation run of the data,
where one run was left aside, and ANOVA was calculated on
the remaining nine runs. With Bonferroni correction for the
total number of voxels, we got 14,368 relevant voxels. We
applied further Bonferroni correction for the number of
pairwise comparisons between the classes (28), which left us
with 10,264 voxels. If, however, we calculated ANOVA for
each class vs. all other classes together (t test for this case),
did not correct for multiple comparisons, and took the
intersection of voxels at significance level .05, the average
dropped to 33 voxels. These results reveal the variability of
the size of the selected set and led us to using a preset
numbers of voxels, as also proposed in Ref. [6]. The sizes
that we chose were M={5,20,50,100,200,1000}. The
average size picked by the intersection method (33 voxels)
was also included.

2.4.2. Voxel selection methods
We chose the seven voxel selection methods explained

below.
Let v1,…,vn be the voxels in the brain image and ω1,…,ωc

be the classes (corresponding to stimuli). Denote bymi(v) the
mean of the values of voxel v for class i, and by σi(v) the
standard deviation for the class, where i=1,2,…,c. Denote by

Ai vð Þ = mi vð Þffiffiffiffiffiffiffiffiffiffiffi
r2i vð Þ
Ni

s

the “activation” of voxel v with respect to class ωi, where Ni

is the number of objects from that class. To construct reduced
voxel sets we used two measures of activation [8].

(a). Activation (sum). Choose the M top-ranked voxels
according to

Pc
i = 1 Ai vð Þ.

(b). Activation (per class). The voxels are ranked
individually for each class using Ai(v). The ranked lists
are merged and the top M voxels are selected as the final
voxel set.
(c). ANOVA. The voxels are sorted in ascending order of
the p value and the top M voxels are selected.
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(d). SVM. An SVM classifier is trained using all voxels.
The weights of the trained classifier (one for each voxel)
are sorted in descending order of their absolute values.
The voxels corresponding to the top M weights are
selected. For multiple classes, the voxels are ranked
separately for each class, using a one-vs.-all method. The
rank lists are merged and the top M voxels are selected.
(e). RFE. The recursive feature evaluation method (RFE)
[53] starts by training an SVM classifier on all the voxels.
A prespecified number of voxels T, with the smallest
weights, are discarded. Another SVM classifier is trained
on the remaining voxels, and the elimination step is
carried out again. The training-elimination steps are run
until the remaining set of voxels cannot be reduced
further. This means that if T voxels are taken away, the
remaining set will contain fewer voxels than the desired
number M. For this last set, we can either eliminate one
feature at a time or simply take away the excess number of
voxels in one step. In our experiment, T varies from one
step to the next; at each iteration, we eliminate 5% of the
remaining voxels.
(f). Activation+RFE (SVM). As recommended by De
Martino et al. [8], we apply RFE to the 2000 voxels
selected through the activation (per class) method
explained above.
(g). RFE+SFS. In this method, we first apply RFE to
preselect 2000 voxels and then reduce the set using the
sequential forward selection (SFS) procedure [54]. SFS
operates by constructing the feature set progressively,
starting from an empty set and ending with a set with M
features. The first feature that enters the set is the
individually best feature. The second feature is the one
that makes the best pair with the already selected feature.
In order to do that, all pairs containing the already
selected feature are examined. Thus if we start with 2000
features, after selecting the best feature, 1999 pairs need
to be examined. A third feature is added in the same way,
and so on until M features are selected. In the smaller
scale problems, the merit of a subset of features is
typically evaluated by the classification accuracy of a
chosen classifier using only that subset of features. For
large dimensionality, as in this study, simpler evaluation
criteria are employed [55]. SFS has quadratic complexity
on the number of features, which makes it infeasible on
the whole brain data.

We acknowledge the existence of many more voxel
selection methods and approaches. Note that the purpose of
this study was not to examine voxel selection methods but to
compare classification methods on an already selected
voxel subset.
4 Weka can be downloaded from http://www.cs.waikato.ac.nz/ml/
weka.

5 All tables with the values of the classification accuracy, averaged
across the cross-validation folds, are available from the authors.
2.4.3. Classifiers
The 18 classifier models detailed above were used in

cross-validation experiments. We ran a 10-fold CV, whereby
one run of the data was set aside in each CV fold, and the
nine remaining runs were pooled as the training data. No
pseudo-training was carried out. All classifiers were trained
using their default parameter values in Weka. Note that
Weka offers two SVM implementations called SMO and
LIBLINEAR [56]. We found that better results were
obtained with LIBLINEAR, so we used that version in all
the comparisons. Rotation forest has recently been added to
Weka.4 Random oracle classifier ensembles, however, are
not distributed with the standard Weka version. Java
implementations of the oracle ensemble methods, compat-
ible with Weka, are available by request from the authors.

The classification accuracy was calculated as the average
across the cross-validation folds. All classifiers were
compared to the SVM using the corrected variance [50].
3. Results

We carried out 18 (classifiers)×7 (selection methods)×7
(voxel set sizes)=882 CV experiments. The accuracy of each
classifier is stored in a 7×7 table. The rows of the table are
the voxel selection methods, and the columns are the voxel
set sizes. As an illustration, Table 1 shows the tables with
values of the classification accuracy, averaged across the
cross-validation folds for the single SVM classifier and the
random spherical oracle ensemble.

Instead of including an overwhelming number of tables,
we decided to visualize the data in a nontraditional way.
Tables 2–4 present the results. The matrix on the left gives a
color-coded result from the comparison between the given
classifier and SVM. As in Table 1, the columns are the seven
voxel set sizes, and the rows are the voxel selection methods
(a)–(g). The comparison is done using the t test with the
corrected variance. A red square indicates that the classifier
for the table is significantly better than SVM (significance
level .05) for the respective pair of set size and selection
method. Green shading indicates that the classifier has been
more accurate than SVM in the experiment, but the
difference was not found significant. Black indicates that
the SVM classifier was significantly better than the classifier
of the table.5 Therefore, if the predominant color of a table is
red or green, the classifier is consistently better than SVM.

Clearly, the accuracy of the classifiers depends on the
voxel selection method. Counterintuitive as it may be, in
order to get a summarized view over the classifier
performance, we averaged the classification accuracies
across the seven selection methods (took the average of
each column) and called this the ‘overall accuracy’. Thus
each classifier is represented by seven values of overall
accuracy corresponding to the voxel set sizes. To the right of
each subtable we plot the SVM overall accuracy (black dots)

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka


Table 1
Classification accuracy for the SVM and the random spherical oracle

The column headings are voxel set sizes; (a)–(g) are voxel selection
methods. Each entry is the testing accuracy averaged across the cross-
validation folds. The shaded values indicate that the random spherical oracle
is significantly better than SVM.

Table 3
Comparison of ensemble classifiers using DTs to the single SVM classifier

590 L.I. Kuncheva, J.J. Rodríguez / Magnetic Resonance Imaging 28 (2010) 583–593
as well the overall accuracy of the classifier of the table (red
stars), as functions of the logarithm of the voxel set sizes.
Classifiers are better than SVM when the red curve is
consistently above the black one.

In addition, we plot in Fig. 5 the voxel set responsible for
the best testing classification accuracy, 73.19%, obtained by
the random forest ensembles with 1000 trees, using 200
voxels selected through one run of the plain SVM [voxel
selection method (e)]. We took the intersection of the 10 sets
of 200 voxels obtained in the cross-validation experiment
and obtained 93 voxels common for all the selections. To
Table 2
Comparison of individual classifiers to SVM
display the result, we scanned the brain slices on all three
axes and chose the slice with the largest number of selected
voxels to show in the figure. The blue hair-cross in the plots
indicates the cut-off position of the displayed slices.

Finally, in order to draw up a numerical ranking of the 18
classification methods, we calculated the average rank of
each method. Consider the 49 comparisons in each table as
independent tests. Each classifier obtains a rank for each cell,
i.e., for each combination of voxel selection method (row)
and number of voxels (column). The accuracies are arranged
in descending order. The most accurate classifier receives
Rank 1, the second best receives Rank 2, and so on. If there is
a tie, the ranks are shared, so that the total sum of the ranks is
the same (171 for 18 methods). Then the average rank for
each classifier is calculated across the 49 tests. The best
Table 4
Comparison of ensemble classifiers using SVM to the single SVM classifier



Fig. 5. The voxel subset with the best testing classification accuracy [random
forest with 1000 trees on 200 voxels selected through SVM method (d)].

Table 5
Average ranks of the 18 classification methods

Method Rank

Random subspace (SVM) 4.97
Rotation forest 5.57
Random spherical oracle (SVM) 6.12
Random linear oracle (SVM) 6.41
Random forest (1000 trees) 7.51
Bagging (SVM) 7.58
Multilayer perceptron (MLP) 8.85
Boosting (DT) 8.90
Linear discriminant classifier (LDC) 9.34

SVM 9.59

Random subspace (DT) 9.76
Naïve Bayes (NB) 9.92
Random forest (100 trees) 10.06
Boosting (SVM) 10.94
Bagging (DT) 10.96
Logistic classifier 11.88
Decision tree (DT) 16.33
Nearest neighbor (1−nn) 16.33
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classifier will be the one with the lowest average rank.
Table 5 shows the result from this calculation.
4. Discussion

Looking for a “best” classifier is an ill-posed problem
because there is no one classifier that is best for all types of
data. The results reveal that ensemble classifiers are not
universally better than SVM. As expected, SVM is among
the best single classifier models studied here. It dominates
demonstrably the 1−nn classifier and the DT classifier,
which are often praised for their accuracy and robustness.
This is seen in Table 2, where the subtables for 1−nn and DT
contain copious black cells, indicating that SVM is
significantly better than the classifier of the table. SVM is
also better than the logistic classifier: while there are 12 out
of 49 comparisons where SVMwins with a significant result,
there is none where Log wins. SVM is roughly on the par
with NB and the LDC. However, both NB and LDC fail
badly on the largest voxel set (1000 voxels). SVM scales
quite well with the number of features which makes it the
current favorite for fMRI data. The only single classifier that
showed a consistently better result than SVM in this
experiment was the MLP. MLP could be very accurate or
could be lost if its parameters are not well tuned. MLP
appeared to be the slowest method to train among all
classifiers including the classifier ensembles. We used the
default parameter setting in Weka: one hidden layer where
the number of neurons is the average of the number of
features and the number of classes; learning rate 0.3;
momentum 0.2, 500 training epochs.

Ensemble classifiers are expected to fare better than single
classifiers. Ensembles with DTs live to this expectation but
invariably come worse than SVM on the largest voxel subset,
regardless of the voxel selection method (Table 3). The
overall accuracy curves reinforce this observation by the
drop of the very last point of the ensemble curve in each
graph. This is indicative of the possibility to overtrain
sophisticated classifiers, such as ensembles, while single
classifiers could be immune to overtraining for similar
feature set sizes. The best among the DT ensembles were the
rotation forest [46] and random forest with 1000 DTs.
However, only the rotation forest ensemble from this group
scores more significant wins (5) than suffers significant
losses (3) out of the 49 comparisons with SVM. All the
losses are for the largest voxel subset, which gives food for
thoughts about modification of the rotation forest method
that will scale better with the feature set size.

The best ensemble group is the one where SVM is used as
the base classifier in the ensemble (Table 4). Apart from
boosting, all ensembles are better than the single SVM
(green cells correspond to better but nonsignificant accuracy,
while the red cells indicate significant difference in favor of
the classifier of the subtable). The graphs on the right may
suggest that the ensemble is only marginally better than
SVM, but significant differences were found for the
individual voxel selection methods, even by the conservative
correction of the variance. Boosting, declared in the past to
be “the best off-the-shelf classifier” [57], fails, suggesting
that the data contains substantial noise. Boosting has been
known for its low tolerance to noise [39]. The best ensemble
in this group was the spherical random oracle [48] with 11
wins, 0 losses and 38 draws, of which only eight
comparisons were in favor of SVM, while in the remaining
30 comparisons the random oracle was better.
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The overall ranking places the random subspace ensemble
with SVM classifiers on the top of the list, followed by
rotation forest and the two types of random oracles. SVM is
in the middle of the table, leaving behind most individual
classification methods and most ensembles with DTs. This
shows that, among the single classifiers, SVM is justly
favored for the fMRI data analysis. SVM had a definite
advantage to single classifiers and ensembles alike for large
voxel set sizes, which raises the question and the perspective
for developing more scalable classifiers and ensembles. On
the other hand, recent ensemble methods were found to be
better than SVM in our experiments.

Computational complexity of ensemble classifiers is
obviously higher than that of a single SVM classifier but
not by much. Note that training complexity is not an issue
here because we are looking for a classifier that can be run
on-line in an fMRI experiment. Running time of an ensemble
of classifiers is determined by the time of calculating the
outputs of multiple SVMs plus a little overhead for the
combination of the individual decisions. Ensembles lend
themselves naturally to parallel computing, so the running
complexity is not likely to be an obstacle.

We found that different voxel selection methods led to
dramatically different classification accuracies. This can be
seen in Table 1, where the classification accuracy for 200
selected voxels varies from 17% to 71% for the same
classifier, depending on the voxel selection method. We did
not set off to compare voxel selection methods but rather to
apply some popular choices and compare classification
methods on these.

Modern machine learning and pattern recognition can
offer sophisticated classifiers, but there is no reason to stop at
this. There are intricate and accurate feature selection
methods, for example, floating search [58], which are yet
to be extended to cope with large feature sets and rival the
currently favorite RFE-based methods.
References

[1] Norman KA, Polyn AM, Detre GJ, Haxby JV. Beyond mind-reading:
multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 2006;10:
424–30.

[2] Haxby JV, Gobbini M, Furey ML, Ishal A, Schouten JL, Pietrini P.
Distributed and overlapping representation of faces and objects in
ventral temporal cortex. Science 2001;293:2425–30.

[3] Kay KN, Naselaris T, Prenger RJ, Gallant JL. Identifying natural
images from human brain activity. Nat Lett 2008;452:352–5.

[4] Haynes J-D, Sakai K, Rees G, Gilbert S, Frith C, Passingham RE.
Reading hidden intentions in the human brain. Curr Biol 2007;17:
323–8.

[5] Hardoon DR, Mourao-Miranda J, Brammer M, Shawe-Taylor J.
Unsupervised analysis of fMRI data using kernel canonical correlation.
NeuroImage 2007;37(4):1250–9.

[6] Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and
fMRI: a tutorial overview. NeuroImage 2009;45(1, Supplement 1):
S199–209.

[7] Liang LC, Cherkassky V, Rottenberg DA. Spatial SVM for feature
selection and fMRI activation detection. Proceedings of the IEEE
International Joint Conference on Neural Networks, Vancouver,
Canada; 2006. p. 1463–9.

[8] De Martino F, Valente G, Staeren N, Ashburner J, Goebel R,
Formisano E. Combining multivariate voxel selection and support
vector machines for mapping and classification of fMRI spatial
patterns. NeuroImage 2008;43(1):44–58.

[9] Friston K, Ashburner J, Kiebel S, Nichols T, Penny W, editors.
Statistical Parametric Mapping: The Analysis of Functional Brain
Images. London: Academic Press; 2007. p. 465–9.

[10] Clithero JA, Carter RM, Huettel SA. Local pattern classification
differentiates processes of economic valuation. NeuroImage 2009;45
(4):1329–38.

[11] Kamitani Y, Tong F. Decoding the visual and subjective contents of
the human brain. Nat Neurosci 2005;8:679–85.

[12] Mitchell T, Hutchinson R, Just M, Niculescu R, Pereira F, Wang X.
Classifying instantaneous cognitive states from fMRI data. American
Medical Informatics Association Symposium; 2003. p. 465–9.

[13] Weiskopf N, Scharnowski F, Veit R, Goebel R, Birbaumer N,
Mathiak K. Self-regulation of local brain activity using real-time
functional magnetic resonance imaging (fMRI). J Physiol 2004;98
(4-6):357–73.

[14] Weiskopf N, Sitaramb R, Josephsa O, Veitb R, Scharnowskid F,
Goebele R, et al. Real-time functional magnetic resonance imaging:
methods and applications. Magn Reson Imaging 2007;25:989–1003.

[15] Cox DD, Savoy RL. Functional magnetic resonance imaging (fmri) :
detecting and classifying distributed patterns of fmri activity in human
visual cortex. NeuroImage 2003;19(2):261–70.

[16] Mitchell T, Hutchinson R, Niculescu R, Pereira F, Wang X, Just M,
et al. Learning to decode cognitive states from brain images. Mach
Learn 2004;57(1-2):145–75.

[17] Ku S-P, Gretton A, Macke J, Logothetis NK. Comparison of pattern
recognition methods in classifying high-resolution BOLD signals
obtained at high magnetic field in monkeys. Magn Reson Imaging
2008;26(7):1007–14.

[18] Yamashita O, Sato M-A, Yoshioka T, Tong F, Kamitani Y. Sparse
estimation automatically selects voxels relevant for the decoding of
fMRI activity patterns. NeuroImage 2008;42:1414–29.

[19] Burges CJC. A tutorial on support vector machines for pattern
recognition. Data Min Knowl Discov 1998;2(2):121–67.

[20] Duda RO, Hart PE, Stork DG. Pattern Classification. 2nd ed. New
York: John Wiley & Sons; 2001.

[21] Kuncheva LI. Combining Pattern Classifiers. Methods and Algo-
rithms. N.Y.: John Wiley and Sons; 2004

[22] Brown G. Ensemble learning. In: Sammut C, Webb G, editors.
Encyclopedia of Machine Learning. Springer; 2009. http://www.
springer.com/computer/artificial/book/978-0-387-30768-8.

[23] Ng A, Jordan M. On discriminative vs. generative classifiers: a
comparison of logistic regression and naive Bayes. Advances in Neural
Information Processing Systems (NIPS); 2001. p. 841–8.

[24] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical
Learning. New York: Springer; 2001.

[25] Mitchell T.Machine learning,McGrawHill, 1997, draft chapter (2005):
generative and discriminative classifiers: naive Bayes and logistic
regression. http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf.

[26] LaConte S, Strother S, Cherkassky V, Anderson J, Hu X. Support
vector machines for temporal classification of block design fmri data.
NeuroImage 2005;26(2):317–29.

[27] Mourao-Miranda J, Bokde AL, Born C, Hampel H, Stetter M.
Classifying brain states and determining the discriminating activation
patterns: support vector machine on functional mri data. NeuroImage
2005;28(4):980–95.

[28] Mourao-Miranda J, Reynaud E, McGlone F, Calvert G, Brammer M.
The impact of temporal compression and space selection on SVM
analysis of single-subject and multi- subject fMRI data. NeuroImage
2006;33(4):1055–65.

[29] Quinlan JR. C4.5: Programs for Machine Learning. San Mateo, Calif:
Morgan Kaufmann; 1993.

http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf


593L.I. Kuncheva, J.J. Rodríguez / Magnetic Resonance Imaging 28 (2010) 583–593
[30] Hand DJ, Yu K. Idiot's Bayes — not so stupid after all? Int Stat Rev
2001;69:385–98.

[31] Bishop C. Neural Networks for Pattern Recognition. Oxford:
Clarendon Press; 1995.

[32] Allwein EL, Schapire RE, Singer Y. Reducing multiclass to binary: a
unifying approach for margin classifiers. J Mach Learn Res 2000;1:
113–41.

[33] Tumer K, Ghosh J. Error correlation and error reduction in ensemble
classifiers. Connect Sci 1996;8(3/4):385–404.

[34] Kuncheva LI, Whitaker CJ. Measures of diversity in classifier
ensembles. Mach Learn 2003;51:181–207.

[35] Kuncheva L,Whitaker C, Shipp C, Duin R. Limits on the majority vote
accuracy in classifier fusion. Pattern Anal Appl 2003;6:22–31.

[36] Friedman N, Geiger D, Goldszmid M. Bayesian network classifiers.
Mach Learn 1997;29(2):131–63.

[37] Breiman L. Bagging predictors. Mach Learn 1996;26(2):123–40.
[38] Domingos P, Pazzani M. On the optimality of the simple Bayesian

classifier under zero-one loss. Mach Learn 1997;29:103–30.
[39] Bauer E, Kohavi R. An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants. Mach Learn 1999;36:
105–42.

[40] Valentini G, Dietterich TG. Bias-variance analysis of support vector
machines for the development of SVM-based ensemble methods. J
Mach Learn Res 2004:725–75.

[41] Valentini G. Random aggregated and bagged ensembles of SVMs: an
empirical bias-variance analysis. In: Roli F, Kittler J, Windeatt T,
editors. Fifth International Workshop on Multiple Classifier Systems,
Vol. 3077. Lecture Notes in Computer Science; 2004. p. 263–72.

[42] Freund Y, Schapire RE. Experiments with a new boosting algorithm.
Thirteenth International Conference on Machine Learning. San
Francisco: Morgan Kaufmann; 1996. p. 148–56.

[43] Ho TK. The random space method for constructing decision forests.
IEEE Trans Pattern Anal Mach Intell 1998;20(8):832–44.

[44] Lai C, Reinders MJ, Wessels L. Random subspace method for
multivariate feature selection. Pattern Recogn Lett 2006;27(10):
1067–76.
[45] Breiman L. Random forests. Mach Learn 2001;45:5–32.
[46] Rodríguez JJ, Kuncheva LI, Alonso CJ. Rotation forest: a new

classifier ensemble method. IEEE Trans Pattern Anal Mach Intell
2006;28(10):1619–30.

[47] Kuncheva L, Rodríguez JJ. Classifier ensembles with a random linear
oracle. IEEE Trans Knowl Data Eng 2007;19(4):500–8.

[48] Rodriguez JJ, Kuncheva LI. Naïve Bayes ensembles with a random
oracle. Proc 7th International Workshop onMultiple Classifier Systems,
MCS'07, Vol. LNCS 4472, Prague, Czech Republic; 2007. p. 450–8.

[49] Golland P, Fischl B. Permutation tests for classification: towards
statistical significance in image-based studies. Proceedings of the
International Conference on Information Processing in Medical
Imaging (IPMI); 2003. p. 330–41.

[50] Nadeau C, Bengio Y. Inference for the generalization error. Mach
Learn 2003;62:239–81.

[51] Witten IH, Frank E. Data Mining: Practical Machine Learning Tools
and Techniques. 2nd ed. San Francisco (CA): Morgan Kaufmann;
2005.

[52] Palatucci M, Carlson A. On the chance accuracies of large collections
of classifiers. Proceedings of the 25th International Conference on
Machine Learning; 2008. p. 744–51.

[53] Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer
classification using support vector machines. Mach Learn 2002;46:
389–422.

[54] Stearns S. On selecting features for pattern classifiers. 3-d
International Conference on Pattern Recognition, Coronado, CA;
1976. p. 71–5.

[55] Hall MA. Correlation-based feature subset selection for machine
learning, Ph.D. thesis, University of Waikato, Hamilton, New Zealand
(1998).

[56] Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J. LIBLINEAR—
a library for large linear classification. http://www.csie.ntu.edu.tw/
~cjlin/liblinear/2008.

[57] Breiman L. Arcing classifiers. Ann Stat 1998;26(3):801–49.
[58] Pudil P, Novovičová J, Kittler J. Floating search methods in feature

selection. Pattern Recogn Lett 1994;15:1119–25.


	Classifier ensembles for fMRI data analysis: an experiment
	Introduction
	Materials and methods
	Data
	Classifier methods
	Individual classifiers
	Linear discriminant classifier
	Logistic classifier
	Support vector machines
	Decision tree classifier
	Naïve Bayes
	Nearest neighbor
	Multilayer perceptron

	Ensembles of classifiers
	Bagging [37]
	AdaBoost [42]
	Random subspace [43]
	Random forest [45]
	Rotation forest [46]
	Random oracle [47,48]


	Evaluation of performance and comparing classifiers
	Experimental protocol
	Number of voxels
	Voxel selection methods
	Classifiers


	Results
	Discussion
	References




