An Intuitionistic Fuzzy RBF Network
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ABSTRACT: A radial-basis-function (RBF) network is considered with activation functions taking highly
nonsymmetric form, specific for each kernel, thereby making the attraction regions varying in shape and
size. The representation of the function is inspired by the intuitionistic fuzzy set theory which is used to
account both for activation and restraining potentials at a node. We believe that by using fewer hidden
nodes in such a configuration, we can approximate complex classification boundaries. The training
algorithm used here is a version of simulated annealing. The experimental results with the two-spirals
data set demonstrate the increased capability of the proposed RBF network.

1 INTRODUCTION

Radial Basis Function networks have been shown to surpass other network architectures with respect both
to classification accuracy and training ease. They have been proved to be asymptotically Bayes-optimal,
being "relatives” to Parzen’s density function estimators [Coultrip 1994]. ’

In general, RBF network use a radially symmetric kernel function K;i((z — ¢;)/0) at the hidden layer.
Usually, the closer z to ¢j, the higher the activation, whatever distance is used. Some studies show that
RBF networks have the universal arrpoximation capabilities. It has been shown elsewhere that many
kernel function models satisfy a set of conditions making RBF networks universal approximators property.
In particular, any function K(z), 2 € R™ can be used, provided it is integrable bounded, such that it is
continuous almost everywhere and its integral over the feature space R" is nonzero. The kernel functions
used at the hidden nodes are of the same type and with the same value of the smoothing parameter but
the result can be extended (and sharpened, [Park 1993]) to functions with varying o from node to node.
It turns out that the radial symmetry is not necessary for the proof.

Various RBF shapes have been considered in the literature: general exponential, Gaussian, elliptical
[Tattersal 1994), fuzzy [Kim 1995], cubic [Halgamuge 1995], B-spline [Brown 1995, etc. In these works
the same shape of the RBFs for all hidden units is implied with only the parameters modified. Here
We suggest the use of different shapes, specific for each hidden node. The representation of the function
is inspired by the intuitionistic fuzzy set (IFS) theory which is used to account both for activation and
restraining potentials at a node. We believe that by using fewer hidden nodes in such a configuration,
We can approximate complex classification boundaries. :
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The network structure and functioning is described in Section 2. Some experimental results are presented
in Section 3.

2 THE RBF NETWORK

Let z € R™ be a feature vector, and Q = {wy, ...,wp} be a set of classes defined over R™. The proposed
IFS RBF network is sparsely connected, i.e. each node at the hidden layer is connected with only one
output node. Each such node Nj,j=1,...,L witha corresponding center vector ¢; € R" is supplied with
two kernel functions: p(z, ;) for activation, and v(z, c;) for restraining, respectively, k(z,c5),v(z,cj) €
[0,1] . In the IFS theory there is a requirement that B(z,¢;) + v(z,cj) < 1, which corresponds to the
logical nature of the two degrees. Here we have overlooked this because we interpret p and v only as
components of the transition function and not in their logical context. A neuron at the hidden layer
renders certain degree of ”support” to the newcomer z for the class w;, which the neuron is responsible
for. This degree is formulated on the basis of y(z,c;) and v(z,c;). Output nodes simply sum up the
support given to the discussed object. The object z is labeled as belonging to the class with the maximal
support.

The output of the hidden-layer node N; is
¥ (€)= Fu(e, i), v(¢5), G=1,...,L, (1),

where F(.,.) is a function aggregating the activating and inhibitory potentials of the neuron. Note that
the aggregation can be asymmetric which corresponds to the known behavior of the biological neuron.

The output nodes perform the summation
L
i (z) =Y Ind(k,j) y}(z), k=1,..., M. : (2)
g=1

where Ind(k, j) is an indicator function that yields 1 if node N; corresponds to class wy, and 0, otherwise.
Obviously, u(z, ¢;) and v(z, ¢;) can be formulated in many ways. In this study the following two functions
are used

#(z,c5) = ezp(— [l z = ¢; [IZ,), (3)
where || £ — ¢;||., is the Euclidean norm in %", and
v(z,¢j) = 1—exp(— [z = ¢j |I1,), (4)

with || £ —¢; ||z, - the L; norm. In the proposed network the location of the seed points (centers of
the neurons at the hidden layer) is not changed. In order to make the two functions trainable we use a
weighted L, norm:

n
: 1
2= ¢ = {3 wnsle* ~ P}/ Q
k=1
where the tunable parameters are wy ;.

The aggregation function adopted here is:

p(z,c;), for v(z,cj) < K, 6)
p(z,¢i)(1 - v(z,cj)), otherwise

Flue,ep),v(a,) = {

where K, is a parameter. By this means we can obtain radial basis functions of quite exotic shapes. The
rationale behind the above equation is that when the inhibitory rate is greater than a certain threshold
the degree of support decreases proportionally.
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Obviously, when increasing the number of trainable parameters it can be expected that the classification
ability of the scheme will grow. On the other hand, it is not clear whether the particular way of using
the parameters can lead to good performance. The ability of the scheme to train is demonstrated in the
next section. As the training algorithm we used simulated annealing.

3 EXPERIMENTAL RESULTS

The ability of the IFS RBF to train are illustrated using the two-spirals data set, one of the artificial
benchmark data sets for neural network classifiers. As it can be seen in Fig. 1 the set con51sts of two
intertwined spirals representing two 2-D classes.
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Flgure 1: The two-spirals data set. The first and the second sets of prototypes are depicted by '*’ and

’o’, respectively

The original data set consists of two subsets: the training and test one with a negligible difference
between them. Therefore the generalization ability of the proposed model cannot be properly assessed
on this benchmark problem. The challenge in this problem is the classification boundary which is is
highly nonlinear and intricate. The string-like structure of the classes suggests that the nearest neighbor
technique (1 — NN) will be the perfect choice of a classifier. Indeed, both on the training set (with
leave-one-out) and on the test set, 1 — NN leads to 100 % correct recognition. If increasing the number
of neighbors (k — NN rule) the performance deteriorates. It follows that the more prototypes we retain,
the higher accuracy we can get. We emphasize here that the main objective has been to compare the
classifiers rather than to reach the highest possible accuracy. Two sets of centers of cardinality 10 have
been selected at random (called Set I and Set £, respectively). Three RBF configurations have been
compared:

(A.) RBF with activation function of the form:

yi(@) =ezp(~llz—c;lla) §=1..., L, (7)
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Table 1: Means and standard deviations (in %) with the 2-spirals data set (Prototype Set 1)

Cooling A B C
scheme | Training Test Training Test Training Test
1 55.08 55.12 || - 58.86 58.98 58.44 58.44
+0.8643 | +£1.1670 || +1.7473 | 4+2.4874 £5.1714 | £4.6560
2 57.02 55.74 59.80 59.70 60.90 60.10
+0.5848 | +1.6682 || +1.3620 | +1.6748 +2.6748 | +2.3206

(B.) RBF with activation function of the form:
y}’(x):e:cp(— ”:r—c_,- ”Lp) j=1,...,L, (8)
with tunable p, varying in the interval [0.5,3.5), and
(C.) The proposed IFS RBF model.

With each of these, 5 runs of the SA training algorithm, starting from different initialization, have been
performed.

Tables 1 and 2 contain the means and the standard deviations of the classification accuracy on the training
and on the test set with Set I and Set 2, respectively. Two cooling schedules of the simulated annealing
(SA) algorithm have been applied. In the second schedule twice more iterations at a temperature level
have been performed. Figure 2 shows the classification accuracy of the best runs with configurations A,
B, and C. ‘
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Figure 2: Classification accuracy with the 2-spirals data set (the best run with each configuration)

As expected, the results differ significantly for the two prototype sets. Since the choice of those sets has
been made completely at random, the results are not supposed to indicate the classification accuracy
achievable with the prototype sets of the considered cardinality.

It can be seen that the IFS RBF network can train better than its competitors. The variance of the
estimate of the classification accuracy is smaller with configuration A than that with B, or C. This means
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Table 2: Means and standard deviations (in %) with the 2-spirals data set (Prototype Set 2

[ Cooling A B C
scheme || Training Test, Training | Test Training Test
1 60.10 60.84 60.72 61.04 61.56 61.34
+1.3248 | £2.3597 || £2.2510 | +£1.6103 || 4+2.5967 +2.4946
P) 60.12 60.62 61.68 62.52 62.70 62.40
+1.2911] £1.7598 || +2.2174 | +3.0842 £3.2962 | £3.3489

that, perhaps, the training scheme lets the network A achieve the best result up to its capacity. Indeed,
with the second cooling scheme (which assures for a more extensive training), the results with the IFS
RBF network improve while the ones with the network A are virtually the same, with both prototype
sets. This Is an expected result, given that more parameters are tuned with networks B and C. Besides,
this improvement indicates that with a judicious selection of the cooling scheme better results can be
achieved.

CONCLUSIONS

In this paper we propose an RBF network configuration with tunable function shape based on IFS
representation. We illustfate the ability of the IFS RBF network to train by comparing it with two
other RBF network structures on the two-spirals data set. The same training scheme based on simulated
annealing algorithm has been used. The results show that the way we have incorporated the extra
parameters into the radial-basis function gives the network additional flexibility and increased capacity.
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