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Abstract 

In this paper we use a genetic algorithm (GA) for selecting the initial seed points (prototypes, 
kernels) for a Radial Basis Function (RBF) classifier. The chromosome is directly mapped onto 
the training set and represents a subset: it contains 1 at the ith position if the ith element of the set 
is included, and 0, otherwise. Thus the GA serves a condensing technique that can hopefully lead 
to a small subset which still retains relevant classification information. We propose to use the set 
corresponding to the best chromosome from the final population as the seed points of the RBF 
network. Simulated annealing is used to tune the parameters of the radial function without 
changing kernels location. Experimental results with IRIS and two-spirals data sets are presented. 

Keywords: Pattern recognition; Radial-basis-functions (RBF) networks; Genetic algorithms; K-NN condensing 
techniques; Nonparametric classifiers; Prototypes selection 

1. Introduction 

The background of the classifiers implemented as Radial Basis Functions (RBF) 
networks are the nonparametric techniques for probability density approximation. This 
relates the RBF classifiers to Parzen’s windows, potential functions, even to the 
k-Nearest Neighbors (k-NN) method [ 181. Being universal function approximators, RBF 
networks are asymptotically Bayes-optimal classifiers [15,21], and besides, are consid- 
ered to be an improved alternative of the classical multilayer neural networks in 
generalization ability, computational efficiency, and biological plausibility [5,21]. 
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Output layer (classes) 

Hidclen layer (prototypes) 

Input hyer (fea.twes) 

Fig. 1. RBF network configuration. 

According to its philosophy, an RBF network consists of an input layer, a hidden 
layer, and an output layer (Fig. 1). It has been shown that such a network is isomorphic 
to a classifier that uses Parzen’s estimation of the conditional probability density 
functions [5]. To keep this correspondence the network should be sparsely connected so 
that each node at the hidden layer is “responsible” for one class only. 

Compared to other nonparametric classifiers, RBF networks possess a larger set of 
tunable parameters: 
- the distance type; 
- the radial function type and parameters: Gaussian, exponential, elliptical [20], 

r-shaped fuzzy [24], cubic [lo], B-spline [3], triangular, etc.; 
- the kernels location; 
- the initial reference set of prototypes. 

Apart from this, various techniques for inferring the final decision of the network can 
be applied: weighted sum, product, OR-like operators, etc. All this could lead to a better 
performance in the finite-sample case at the expense of a certain lack of theoretical 
strictness. In other words, the heuristic schemes and techniques that have appeared 
useful in the finite-sample applications may defy asymptotic generalization and analysis. 

One of the most important problems in setting up an RBF classifier is that of seeding 
of the initial set of prototypes (kernels, centers). The type of the network determines in a 
high degree what strategy for prototype selection should be followed. For example, the 
sparse configuration adopted in this study requires that’each kernel domes with its class 
label. Therefore, separate clustering of the class data can be considered rather than 
clustering of the entire data set. 

Recently a relation of RBF networks to a class of fuzzy systems both for classifica- 
tion and linguistic knowledge extraction has been commented [4,10,19]. The analogy can 
be directly seen if the RBF value is regarded as a membership degree which the 
classification rule (the prototype) renders to the given object. What is worth mentioning, 
is that a fuzzy system with large number of rules does not comply with the main 
presumption, i.e. it loses its transparency. The task of selecting the most relevant rules is 
exactly dual to selecting the set of prototypes in RBF initialization. Reducing the 
reference set of uniformly distributed fuzzy rules by a GA has been extensively 
discussed by Ishibuchi and coworkers [ 11,121. 

In this paper we use a genetic algorithm (GA) for prototype selection prior to network 
training. Some preliminary results have been reported in [17]. They contrast the GA 
selection with the plain random choice. Here we give a more detailed experimental 
statement and discussion, together with further results obtained by extensive (heavy) 
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random search and clustering. In Section 2 the initialization problem is outlined. The 
GA for selection of the prototype set is presented in Section 3. The configuration and the 
training scheme of the RBF network are described in Section 4. Experimental results 
with the “two-spirals” and with IRIS data set are presented in Section 5. 

2. The problem of the RBF network initialization 

Unlike some other algorithms for training an RBF network, in the proposed scheme 
only the parameters of the radial basis functions are tuned without changing or moving 
the seed points, which puts a special emphasis onto the initial choice of prototypes. Five 
strategies for determining the set of prototypes can be detailed: 
1. Random selection. Pawlak and Ng [21] have proven that the random selection of 

prototypes from the data set does not affect the asymptotic optimality of the RBF 
classifiers. Although this is apparently a naive choice, sometimes it is more justifiable 
than the more sophisticated techniques. The reason is that, especially in small sample 
size problems, intricate algorithms can easily lead to overfitting. 

2. Clustering. This is perhaps the most widely used way of selecting prototypes. Most 
of the procedures operate on the whole data set thereby finding as cluster cemers the 
modes of the mixture density distribution rather than the modes of the conditional 
density distributions. This means that one cluster may correspond to more than one 
class. In the RBF network considered in this study we need labeled prototypes which 
can be obtained by separate clustering of the class data. 

3. Sequential growing. There are lots of heuristic algorithms for sequential growing 
and/or reducing of the prototype set by using various creating and fusing operations. 
They usually depend on the concrete implementation of the network since the 
prototype set is not set up in advance but is evolved in the process of tuning of the 
whole system. 

4. Systematic seeding. In some studies the prototypes are uniformly placed onto a grid. 
Other authors consider prototypes specified by experts, or by analyzing the function 
to be approximated (e.g., [23,131). 

5. Editing techniques (see [6,8]). A few papers describe prototype selection by editing 
techniques designed originally for reducing the reference data set for the k-Nearest 
Neighbors classifiers (e.g., [7,14]). 
In this paper we propose to use a genetic algorithm as a k-NN editing (condensing) 

technique for selecting a reference set of prototypes [16]. The algorithm is supposed to 
end up with a sufficiently small subset with high classification accuracy, as tested with 
the A-NN rule. We believe that this resultant subset contains relevant information about 
the whole training set. 

Why is an editing technique preferred to all the others listed above? 
It is clear that (21, (31, and (4) from the above strategies do not provide prototypes 

corresponding to real data items from the training set. We would like to keep the ability 
to map back the reference set to the initial domain, i.e. to be able to point out which set 
of real data items has proven to be a good reference set. This can be a first step towards 
a case-based knowledge extraction from the trained RBF network. The seed points 
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created by one of the other strategies may represent “impossible” objects, especially if 
the feature space dimensionality is high, and there are complex interdependencies 
between the features. 

Second, since we need labeled prototypes for the RBF network, it is easier to choose 
them form the preliminary labeled training set than to associate class labels to the 
artificial reference points afterwards. 

Another supportive argument is that a GA could provide a prototype set which is not 
related to a particular RBF network scheme. 

3. GA condensing technique 

Genetic algorithms (GAS) are viewed as robust and powerful searching techniques 
imitating natural reproduction [ 1,2]. In this study we consider the application of a GA to 
selecting a reference set for the k-NN rule [16]. 

Let Z= {Z ,, . . . ,Z,} be the set of equally distributed n-dimensional random vectors, 
each one coming from one of the predefined classes from the set 0 = {w , , . . . ,oM}. We 
are interested in selecting the “best” subset S* c Z in terms of a certain criterion 
F(S), S C Z. Each chromosome represents a subset of the initial training set Z, e.g., the 
chromosome S = [0101100010.. . I stands for the subset S c Z, S = {Z,,Z,,Z,,Z,, . . .}. 

The algorithm operates simultaneously on a set of ps chromosomes (population set) 
7i-={S ,, . . . ,S,,). The population set is subsequently evolved in order to find chromo- 
somes with as high as possible criterion value. 

The most natural criterion (fitness function) F(S) is a certain measure of the 
classification accuracy of the k-NN rule when using for reference only the subset 
corresponding to the chromosome S. Obviously, the criterion is not monotonic, i.e. 
S, C S, does not involve 9(S,) < F(S,), which can be considered a finite-sample 
effect. Clearly, if the condensing algorithm rules out all objects that do not belong to 
their own Bayesian classification regions, this will lead to improved finite sample 
accuracy [6,8]. The non-monotonicity, along with the large discrete searching space (2’) 
form the rationale for trying out a GA instead of some other condensing or searching 
technique. 

In this study we use the following criterion 

S(S) = 

1 

9cE( S) - Q ( curd( S) - limit) 2, if curd( S) > limif ; 
.Tca( S), otherwise, 

where curd( .) denotes cardinality, (Y is a coefficient, limit is the maximal desired 
cardinality of the reference set, and Fee(S) is the counting estimate of the probability of 
correct classification of the K-NN rule: 

(2) 
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where 

2-n 

hCE(S,Zj) = A, f ;tiz,.,.i;mctly chdkd 

Note that in the calculation of hc,(S,Zj) we use a pseudo-leave-one-out technique: if Zj 
is not in S, the whole S is used as the reference set, otherwise - the k-Nearest 
Neighbors are searched in S - {Zj). The second term of Eq. (1) (the penalty term) forces 
the algorithm to choose prototype sets that are either smaller or slightly exceeding the 
limit. 

1. 

2. 

3. 

4. 

5. 

The condensing GA is implemented as follows: 
Initializarion. Random generation of ps chromosomes. Usually, each bit in a chromo- 
some is set to either 0 or 1 with probability 0.5. In this study we use an external 
parameter to set up this probability in order to start with chromosomes of lesser 
cardinality. This prevents the algorithm from wasting initial iterations on processing 
chromosomes with lower survival perspective because of the heavy violation of the 
limit condition. Each chromosome is assessed by the fitness function (1). 
Consriruting the muting se? M. We use the entire population set T as the mating set 
in order to keep diversity and to avoid premature convergence. 
Selecting of parents and crossover. Parent couples are selected at random from the 
mating set (with replacement). The probability of crossover is set to 1.0, i.e. each 
couple produces two children, thus forming the offspring set 0. In order to reduce 
the inffuence of some eventual epistasis (dependence of the neighboring genes in the 
chromosome) we chose the uniform crossover operator [ 1,2]. 
Mutation. Each element of 0 is subjected to mutation. This operation inverts each bit 
in a chromosome with a predefined probability. The resulting offspring chromosomes 
are then evaluated by means of the fitness function. 
Combination. The two sets P and 0 are pooled together and only the “best” ps 
chromosomes, according to the criterion, survive as the next population 7~ (elitist 
strategy). 
The process is repeated from step 2 to 5 until the condition of a stop criterion is met; 

in our case it was a limit on the number of generations. The set of parameters of the GA 
forms the so called GA template. The concrete GA template for each set of experiments 
is presented together with the experimental results in Section 5. 

4. Configuration and training of the RBF network 

The proposed RBF network consists of three layers, as Fig. 1 shows. The input nodes 
only transmit the input values (feature values of the object x E 8’ to be classified) to 
all nodes at the hidden layer. The outputs correspond to the classes from 0. Each node 
at the hidden layer is connected with the output corresponding to its class label. Each 
such node Nj, j= I,..., L with a corresponding prototype vector cj E % ” is supplied 
with two kernel functions: p(x,cj) for activation, and u(x,cj) for restraining, respec- 
tively, pL( x,cj),v(x,cj) E [O,l]. A node at the hidden layer renders a certain degree of 
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“support” to the newcomer x for the class oi which the node is responsible for. This 
degree is formulated on the basis of E.L(X,Cj) and V( x,cj). Output nodes sum up the 
support given to x and label it as belonging to the class with the maximal support. 

The output of the hidden-layer node Nj is 

~~~(x)=F(~(x~cj)~v(x~Cj))t j=17*metLV (4) 

where F(. ; ) is a function aggregating the activating and inhibitory potentials of the 
node. Note that the aggregation can be asymmetric which corresponds to the known 
behavior of the biological neuron. 

The output neurons perform the summation 

y:(x) = iInd(k,j)y!(x), k= l,..., M, 
j= I 

(5) 

where Ind(k, j) is an indicator function such that 

W kd = :’ otherwise iv if the neuron Nj corresponds to class wk, 
(6) 

In the current study the following two functions are used 

~(X~cj)~tX~(~IIX~cjl12L,)~ (7) 

where 1) x - cjll L, is the Euclidean norm in % “, and 

v(X,c,)= 1 -exp(-llX-cjI/~I), (8) 

with IIX- cjllLI, the L, norm. In the proposed network the location of the seed points 
(centers of the neurons at the hidden layer) is not changed. In order to make the two 
functions trainable we use a weighted version of the L, norm: 

IIX- CjIIL,= t W,,jlXk - cjlp ( 
I/P 

t 
k= I 

where the tunable parameters are w~,~. 
The following aggregation function has been used: 

F( /-4( x,cj)?v( “9’j)) = 

p( x,c,), for V( x,cj) I K, 

p( x,c~)( 1 - V( x,cj)), otherwise 

(9) 

(‘0) 

where K, is a parameter. Using the above formula we can obtain radial basis functions 
of quite exotic shapes (the one used here is shown in Fig. 2). The rationale behind the 
above equation is that when the inhibitory rate is greater than a certain threshold the 
resultant activation potential decreases proportionally. Attaching 2n + 1 adjustable 
parameters to each n-dimensional prototype allows us to form attraction regions that 
differ both in size and in shape. This may lead us to approximate decision regions by 
storing fewer prototypes compared with other RBF networks. 
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0 

Fig. 2. The function sample: c = [3,3]‘, wu = [0.20,0.35]‘; wu = [0.40,0.10]7, K, = 0.67. 

Let W={wi~,w~,K,), i- l,..., n, j= l,..., L be the set of trainable parameters. L,et 
J,,,(W) be the criterion function for training the RBF network. As in the GA selection, 
it is reasonable to choose as a criterion a certain measure of the classification accuracy, 
so we chose the counting estimate of the probability of correct classification (analogues 
to Eq. (2)). The simulated annealing (SA) [9] has been adopted as the training algorithm 
because: it does not require any derivatives of the criterion function; being a random-type 
search it is supposed to avoid local extrema; and since a finite range for each parameter 
is used, the algorithm prevents unlimited growth of the parameter values. 

Briefly, the training algorithm operates as follows: 
1. Generate randomly a parameter vector W (each parameter takes a value in the 

respective range). Calculate JRBF (W >. Fix the initial value of temperature T = Tini > 0. 

Set the iteration counter t to 0. 
2. Conduct 1, trials at the current T: 

(a) generate a neighbor state W’ of W according to the current temperature 
spanning limitation; 
(b) calculate J,,,(W’); 

(c> calculate S = J,,,(W > - J,,JW’); 
(d) if S < 0 then W: = W’, else if rundom(O,l) < exp(-s/T’ then W: = W’. 

3. t:=r+l; T:=TT. 

The procedure stops when a predefined number of iterations t,,x is reached. Yn 
some versions of the SA algorithm the maximal value of the criterion is stored along 
with the parameters of the network with which this value has been reached. The output 
of the algorithm is set back to this point in the search space instead of the last point 
(where the system has frozen). Some previous experiments showed that the algorithm 
converged very slowly in problems like those considered in this study because the 
criterion surface seems to be quite irregular and multimodal. Therefore, we applied a 
modification of the algorithm which brings it closer to a kind of a random descent 
search. At the end of each step 2, the current point is set back to the point with highest 
criterion value encountered so far. 
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The set of SA parameters forms its cooling schedule. The cooling schedules used in 
each experimental setting are presented together with the experimental results in Section 
5. 

5. Experimental results and discussion 

It has been found that the plain random choice of prototypes is a weak competitor to 
the GA [ 151. In this study we compare GA selection with a heavy random search and 
with clustering. The heavy random search means that the random selection is given the 
same chance to choose a prototype set as the GA. In the latter case the final set has been 
subsequently evolved, while in the former one the same number of sets have been 
assessed (by the fitness value Y(S), Eq. (1)) but seeded purely at random. 

As it was mentioned earlier, the RBF network configuration adopted here requires 
that the nodes at the hidden layer are labeled. Therefore, we clustered the data 
separately, one class at a time, and pooled together the cluster centers as the prototype 
set. 

The following two data sets have been used: 
(A) The famous IRIS data. The set comprises of 150 four-dimensional vectors from 

three classes: Sestosa, Virginica, and Versicolor. Purposefully we have chosen perhaps 
the worst projection plane of the IRIS data: using the features X, (Sepal length) and x2 
(Sepal width). The data set is shown in Fig. 3. We used 75 vectors for training and the 
reminder (75) for testing, with crossvalidation. There are so many intriguing experimen- 
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Fig. 3. 2-D projection of the IRIS data set. 
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-6 -4 -2 0 2 4 6 

Fig. 4. Two-spirals training set. 

tal results reported on this set that, venturing to compare our results with some of them, 
many others will be inevitably neglected. Yet another reason why the comparison might 
not be fair is that the splitting of the sample into two parts always bears the risk that 
those two parts differ significantly in their probabilistic characteristics, thus making the 
training and the test results biased. This concerns especially the small sample size 
problems with highly overlapping classes. Therefore, current results are only reported 
and not contrasted with others on the IRIS data set. 

(B) The two-spirals data (Fig. 4). This set consists of two intertwined spirals, each 
one containing 96 points assigned the same class label. A test set with virtually the same 
structure is also available. The problem is meant to be a benchmark for neural networks 
because of the complex highly-nonlinear discrimination boundary [25]. What makes this 
set appealing for trying out neural networks on it is that the highest classification 
accuracy is known (lOO%>, which is an advantage of most artificial data sets, and 
therefore the accuracy of the network can be a measure of its capability on this type of 
data. Second, knowing exactly the structure we can avoid using beneficial network 
configurations (e.g., nodes with appropriately designed transition functions) corrupting 
thereby the comparison. 

We carried out two series of experiments with the IRIS data set, setting the limit of 
the prototype set to 12 and 15, respectively. The GA templates were as follows: 
+ 12 prototypes: 

- generation number = 45; 
- population size ps = 10; 
- initial seeding = 20%; 
- a = 0.005; 
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- limit = 12; 
* mutation rate = 0.03. 

- 15 prototypes: 
generation number = 25; 
population size ps = 30; 
initial seeding = 20%; 
(Y = 0.005; 
limit= 15; 
mutation rate = 0.015. 
both experimental settings, as well as in the experiments with the heavy random 

search and with clustering, the same cooling schedule has been applied: 
- 7j = 0.7; 
* 1,=5; 
- Tini = 30”; 

’ ‘MAX = 15. 
It can be seen that the above cooling scheme does not imply extensive training. This 

has been done because it appeared that the accuracy on the test set does not show the 
desired improvement with respect to the training iterations (this fact is commented 
further on). We used the whole. training set both for prototype selection and for training 
of the RBF network because of the comparatively small cardinality. Should we split 
further the training set into “training” and “validation” parts (as suggested in [22]), we 
will run to the peril to overtrain the network even more, or to deprive it of the ability to 
train at all. This will be caused by the biased estimates both of the training criterion 
value and the classification accuracy on the validation set. 

Five sets for each training/test partition have been selected by the GA and by the 
heavy random search. The GA has been rerunning five times for each template, and the 

Table 1 
Averaged classification accuracy and the standard deviations with the IRIS data set (in %) 

hototypes Test results 

I 1.2 (heavy random search) 

I-NN RBF 

15.20 76.610 

(zt2.54) (+ 6.36) 
12.0 (clustering) 74.00 74.950 

( + 4.69) 
1 I .5 (GA selection) 76.27 77.125 

(+ 5.57) ( z!z 4.86) 

13.9 (heavy random search) 73.81 73.410 

(k 2.55) ( zt 5.06) 
15.0 (clustering) 75.30 74.120 

( zk 3.34) 
14.5 (GA selection) 15.74 76.005 

( + 1.86) ( + 4.90) 

The whole sample 68.65 
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best chromosome has been nominated as the prototype set. The heavy random search has 
been done by five runs of 450 and 750 criterion evaluations, respectively, and the 
winning subset has been taken. On each prototype set two independent runs of the SA 
training have been performed, starting from different initialization of the parameters. 
Table 1 shows the average results on the test sets of the experiments with the GA, heavy 
random search, and clustering. For comparison, the results with the I-NN classifier are 
also shown. 

The results show that: 
All selected subsets surpass the whole sets with respect to the classification accuracy. 
This means that both data sets (used in mm for training and for test) contain large 
numbers of “redundant” objects. 
The large variance of the estimates does not allow us to draw up a firm conclusion 
but a slight predominance of the GA selection to the other two techniques can be 
seen. 
It seems that the RBF network does not lead to better accuracy than the I-NN 
classifier. The average training and test rates are shown in Fig. 5 with (a) and (b) 
standing for the two partitionings of the IRIS data set. In fact, the behavior of the test 
accuracy during the training process is quite random: neither the improvement nor the 
deterioration can be deemed a stable trend. 
There can be several reasons for the latter. First, we can think that the classification 

information is already “encoded” in some way in the set of prototypes, and any further 
exploitation of the same information would lead to overfitting. Second, the criterion 

GA selection (a) 

10 15 
GA selection (b) Random selection (b) Clustering (b) 

Fig. 5. Averaged classification accuracy with the IRIS data with respect to the iteration number. 



284 L.I. Kuncheua/NeurocomputinK 14 (1997) 273-288 

J,,,(W) is actually discrete (the number of correctly classified objects divided by N) 
and when it approaches its maximum on the particular data set it becomes insensitive to 
small variations. Third, a consequence of the above, it is also likely that the criterion 
function has multiple extrema of almost equal values. It can be expected that not all of 
these will generalize well, especially in small sample size problems. And, finally, the 
high starting values of the criterion on the training set which occurred in most of the 
experiments does not leave much room for training. This is yet another indication that 
the sets used as prototypes bear lot of classification power themselves. 

The two-spirals data set gives a better basis to check the current hypothesis. Several 
things are obvious: 
1. The 1-NN method will provide excellent results because the training and the test sets 

are almost identical. 
2. Since both classes have a string-like structure the classification rate will abruptly 

deteriorate with the number of k growing. 
3. Any clustering algorithm that looks for compact clusters (ellipsoidal or spherical) will 

fail to provide a good solution. 
Indeed, the test classification accuracy with 1, 3, 5, 7, 9, and 11 NN is as follows (in 

%): 100, 100,99, 59.4, 5 1 .O, and 41.7. From the above it can be concluded that the more 
prototypes we retain, the higher the classification rate will be. Therefore, the matter of 
interest is not the absolute value of the classification rate but the relative performance of 
the RBF initialized by means of the investigated techniques, putting the same limit (the 
choice here was 20) on the cardinality of the reference set. We did not perform 
cross-validation experiments with exchanging the training and test sets because the 
results would be practically the same. 

The experiments conducted with the two-spirals data sets followed the same scheme 
as these with the IRIS data. The difference was that, as recommended in [22], we split 
the training set into training and validation parts, both envisaged to be used in the 
training phase. The training part was used to tune the RBF parameters, and the 
validation one, to provide an estimate of the classification accuracy on an independent 
data set (as a pseudo-test). We considered three stopping criteria: C,: Stop when the 
limit number of iterations has been reached, C,: Stop at the highest validation rate, and 
C,: Stop at the highest sum of the training and validation rates. The idea of combining 
both estimates is rather old. It is known that the assessment on the independent data set 
is usually pessimistically biased while the assessment on the training set is optimistically 
biased. Since we monitor both rates we can eventually get advantage on this. 

The GA template was as follows: 
* generation number = 50; 
- population size ps = 10; 
- initial seeding = 9%; 
* a = 0.07; 
* limit = 20; 
- mutation rate = 0.02. 
and the cooling schedule: 
* ?-/ = 0.95. 

’ * 1,=5; 
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Table 2 

Averaoed classification accuracv and the standard deviations with the two-snirals data set (in %) 

Prototypes Test results 

I-NN RBF CC,) RBFfC,) RBF (C,) 

- 19.8 (heavy random search) 62.92 66.650 66.040 67.240 

(ir2.71) (+ 3.35) (k3.92) (k3.61) 

20.0 (clustering) 62.0 63.325 64.975 64.725 

(_+ 1.48) (* 1.45) (C 1.83) 

19.4 (GA selection) 65.95 69.650 69.130 69.810 

( + 2.50) (* 1.12) (+ 1.98) (+ 1.00) 

* q,i = 30”; 
* ZMAX = 70. 

The best five randomly seeded prototype sets have been taken after one run of 500 
criterion evaluations. 

The average results when applying the above criteria are presented in Table 2. 
Fig. 6 illustrates the training and the test rate with respect to the training iterations of 

the RBF network, and Fig. 7 shows the training, test, and validation rates for one of the 
randomly selected reference sets where the advantage of the stopping criterion C, can be 
seen. The average of the training and validation rates is also depicted. Not surprisingly, 
due to the highly coinciding training and test sets, the average rate follows quite closely 
the test accuracy. 

Slightly better results have been obtained with stopping criterion C,. This criterion 
can be expected to perform well not only with artificial but with real data sets, as well. 

Unlike the results from the experiments with the IRIS data set, here the advantage of 
selecting the prototypes by a GA is clear. The variance of the estimates is small, so the 
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Fig. 6. Averaged classification accuracy with the two-spirals data with respect to the iteration number. 
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Fig. 7. Classification accuracy with a single prototype subset selected from the two-spiral data by random 

search. 

hypothesis that the GA selection provides better prototype subsets compared to the two 

other techniques is empirically supported. 

6. Conclusions 

In this paper an application of a GA is considered for selecting prototypes for an RBF 
network. The network configuration and training scheme have been chosen so that the 
location of the seed points (the prototypes) is not changed. This makes the task of initial 

selection of prototype set very important. Two data sets have been used: the IRIS data 
and the two-spiral data set. The results from GA selection have been compared with 
those from a heavy random search and with clustering. 

It turned out that the prototype sets selected from the IRIS data provided good 

classification results by simply using I-NN classifier, and the RBF did not lead to an 
improvement. Due to the small sample size, the variance of the estimates appeared to be 
high, so the slight predominance of the GA selection of prototypes could not be deemed 

experimentally supported. 
On the contrary, with the two-spirals data sets, the results clearly showed the 

improvement of the RBF network classification rate when the prototype set has been 

selected by a GA. Along with the higher classification accuracy, the variance turned out 
to be smaller than that with the random search and with clustering. From the three 
stopping criteria for the RBF network training we would recommend to use the average 
(or a weighted average) of the training and validation rate (criterion C,) which can be 

thought less biased. 
It can be expected that if the cardinality of the reference set is to be kept 

comparatively small and the initial set is small itself, the heavy random search 
performance will approach that of the GA. This is because the number of the random 
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trials will be large enough to eventually hit some good solution. Alternatively, the 
clustering performance may not improve because confining the set to fewer clusters, we 

may “invent” some centers that will not correspond to the real data structure. This 
effect may occur with the sets like the two-spirals one. 

If we can afford to retain a large reference set (e.g., due to having a large training 
set), the clustering seems to be a better competitor of the GA than the heavy random 
search. In this case the GA could appear ineffective and can be run in a cascade way on 
disjoint subsets. 
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