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Abstract--In a previous paper the use of GAs as an editing technique for the k-nearest neighbor (k-NN) 
classification technique has been suggested. Here we are looking at different fitness functions. An experimental 
study with the IRIS data set and with a medical data set has been carried out. Best results (smallest subsets with 
highest test classification accuracy) have been obtained by including in the fitness function a penalizing term 
accounting tbr the cardinality of the reference set. (C 1997 Pattern Recognition Society. Published by Elsevier 
Science Ltd. 
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1. INTRODUCTION 

It has been recognized that an appropriate editing of the 
reference set for the k-Nearest Neighbors (k-NN) rule can 
lead both to better computational efficiency and to higher 
classification accuracy (non-error rate). (1) Let 
Z = {Zt . . . .  ,ZN} be the set of reference objects (also 
called "design set" or "set of prototypes") for the k-NN 
rule. Each object has a known class label from the set 
f~ - ( W l , . . . ,  Wg}.  Let ~ ( Z )  denote the power set of Z. 
An editing technique is supposed to select a set 
S*C ~ ( Z )  subject to a criterion function J(S). The 
challenge stems from the fact that, as a rule, J(S) is 
not monotonic on nested sets from .~(Z), neither is it 
monotonically increasing on the cardinality of S. 

Among many editing methods, the following two have 
been proved to yield optimal results: 

• A condensing technique that provides the minimal 
consistent subset has been developed by Dasarathy. (2) 
The method results in a set S~i n which guarantees the 
correct classification of all objects of Z using S~i n as 
the reference set, and 1-NN classification rule 
(consistency). Moreover, the cardinality of S'mi n is 
the smallest one among these of all consistent 
S c C .~(Z).  

• An editing algorithm called MULTIEDIT has been 
developed by Devijver and Kittler. (3'4) The algorithm 
consists in iterative reduction of the reference set until 
finding compact clusters. MULTIEDIT has been pro- 
ven to be asymptotically Bayes-optimal, i.e, when N 
tends to infinity, and when the number  of repetitions of 
the reduction process tends to infinity too, the 1-NN 
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classification on the so reduced reference set will lead 
to Bayesian classification decision. 

If Z contains all possible objects then Dasarathy's 
condensing algorithm is obviously optimal. Otherwise, 
it would need an estimation of how the algorithm gen- 
eralizes. MULTIEDIT stands at the other extreme-- i ts  
finite-sample performance needs investigation. The ra- 
tionale of the majority of other editing techniques is some 
kind of heuristics about searching through ~(Z) .  

Whatever the algorithm is, however, the criterion 
function inevitably contains, explicitly or not, some 
estimate of the classification accuracy (or, alternatively, 
the error rate) P,:. It turned out that just a wrong assump- 
tion of independence in calculating this accuracy inva- 
lidated the optimality proof of Wilson's editing 
technique. ~3'5) 

In this paper we consider the formulation of the fitness 
function [criterion J(S)] for a genetic algorithm (GA) 
used as an editing technique. (6'7) In Section 2, the GA is 
described, and some fitness functions are proposed. 
Section 3 contains the description of the experiments 
with the IRIS data set and with a medical data set. The 
results are discussed in Section 4. 

2. FITNESS FUNCTIONS 

The problem of editing of the reference set can be 
formalized as follows: 

Find S*, such that J(S*) = max  J(S) .  (I)  
Sc,~(Z) 

The two major problems are: 

(a) How to construct J(S)? 
(b) How to search through .~(Z)? 

Leaving the combinatorial problem (b) to the GA, as 
described in Section 2.1., the main concern here is the 
formulation of J(S). 
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2. I. GA as editing technique 

GAs are powerful searching techniques in discrete 
spaces, suitable for large-scale problems with complex 
multimodal criterion functionsJ s) Recently they have 
been applied to editing of the reference set for the 
k-NN rule. (6"7) 

Every S E .~(Z) is represented as a binary string called 
"chromosome" of length card(Z). It contains "0"  at the 
ith position if Zi is not included in S, and "1"  otherwise. 
(We will denote the chromosome and the set it represents 
by the same letter.) 

Briefly, the GA used here consists in the following 
steps: 

1. Initialization. A set of "ps"  randomly generated 
chromosomes is constituted, called "population set" 
II = {&, . . . ,  Sin}. Chromosomes are evaluated through 
the fitness function. 

2. Forming of  the mating set M. Classically, the 
mating set M is formed on a "roulette" principle: each 
chromosome has as many copies in M, as proportional to 
its fitness value. In the current implementation M coin- 
cides with I1. 

3. Crossover. Parent couples are randomly selected 
out of the elements of M. Every couple produces two 
offspring chromosomes by exchanging parts of their 
codes as depicted below: 

parent 1 l 0 l 0 0 childj 1 0 1 0 1 
parent 2 1 1 0 I 0 1 ~ child2 1 1 0 0 0 

The cut-off point is selected at random. The offspring 
chromosomes form the set O. 

4. Mutation. Each bit of each offspring chromosome 
alternates (mutates) with a predefined probability (muta- 
tion rate). All elements of O are then evaluated through 
the fitness function. 

5. Combination. Yl and O are pooled together and the 
best ps individuals survive, i.e. they stand as the new H 
(elitist strategy). 

The algorithm continues from step (2) until a stop 
condition is met. 

2.2. The fitness Junction 

The most natural choice of the fitness function is some 
measure of the classification performance of the k-NN 
rule using S as the reference set. Expectedly, best results 
can be obtained if we denote the true value of the 
Bayesian probability of correct classification as J(S). 
Since this is practically impossible, some estimate has 
to be used. One can put an arbitrarily complex esti- 
mate,(9 12) preferably of low bias, small variance, sui- 
table for small-sample-size problems, etc. Along with 
this, the fitness function must be computationally fea- 
sible. 

The general form of the fitness function used here is 

N 

J(S) = ~_, hs(Z,), (2) 
j t 

where hs(Z:) expresses the amount that Zj contributes to 
the overall assessment of the criterion, given S, and using 
the k-NN classification rule. 

The following fitness functions correspond to the most 
widely used estimators of the probability of correct 
classification: 

• Counting estimator (CE). (9) By using 

CE ~ 1, if Zj is correctly classified on 
h s (Zj) S - { Z j }  b y k  NN, (3) ( 0, otherwise, 

equation (2) coincides with the counting estimator of the 
probability of correct classification up to a multiplying 
coefficient (I/N). 

• Posterior probability estimator (PC) based on classi- 
f ied data. (1233) Let 

PU h s (Z:) = ki, wi is the class label of Z:, (4) 

where ki is the number of neighbors of Zj which belong to 
class ~i, among the k nearest to Zj elements of S - {Zj}. 
Then equation (2) corresponds to the posterior probabil- 
ity estimator on classified data up to a coefficient l/(N.k). 
The equivalence is easily checked stipulating that (ki/k) is 
an estimate of the posterior probability P(wJZi). 

• Smoothing modification. ~9:3) Let ~2 = {wl,w2} be 
the set of classes, and let ~(x) be certain discrimination 
function such thatx is allocated to class wl if ~,,(x) > 0, 
and to class w2, otherwise. The smoothing modifica- 
tion is implemented by equation (2) with 

h~M(Z/) 
0 if g (~)  _> a and Z: ~ w2, 

0 if g(Zj) < - - a  and Zj E w., 

_ ,~(z:)~,, if - a < ~(Zj) < b - a and Zj ~ ~1, 
b 

klz:)-, i f a - b < ~ , ( Z j )  < a and ~ c w2, b 

I otherwise. 

(5) 

The corresponding fitness function can be viewed as 
a "discrete version", e.g. by substituting 

kl - k2 
g,(Zi)= k a =  1; b = 2 .  

Then equation (5) becomes 

h]M(zj) 
l ~ if kl = k and Zj E w2, 

i f k 2 = k a n d Z j c w l ,  

= if - 1 < (k~ - k2)/k < 1 and Zj E w~, 

] k~ if - 1  < (k, k2)/k < l  and Zj E w2, 
( 1 otherwise. 

(6) 

Clearly, equation (6) is equivalent to the posterior 
probability estimator calculated through equation (4). 
It should be mentioned that the same formula fits the 

setting of the smoothing modification for multiple 
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classes given by Tutz, (~4) except for the part that requires 

continuity. 

• A k-NN estimator of  the I-NN performanceJ 15) 

k - N N  1 M 
h s ( ~ ) =  1 k . ( k - l )  E k i ( k  ki). (7) 

i=1 

The latter estimate has been reported to lead to very 
good results even in very small sample sets. °5) 

In the light of utilization of the data set it has to be 
mentioned that equation (2) is a combination of the 
leave-one-out method (for the elements of S) and the 
hold-out method (for the rest of Z). This holds for any hs. 

It is reasonable to force the algorithm to select smaller 
subsets. Here we propose to use an additive term in 
equation (2), thus modifying the fitness function. There 
are different ways to introduce the penalty term. The 
following two have been considered here: 

N 

J(S) = Z h s ( ~ )  - a .  card(S), (8) 
j - I  

where card(-) denotes cardinality, and c~ is a coefficient; 
and 

N 

J(S) : Z hs(Zj) - a . P(S), (9) 
j l  

where 

P(S) = { 0 if card(S) < limit, 
[card(S) - limit] 2 otherwise. (10) 

In this paper we have carried out experiments with 
fitness functions equation (2) with hs cE and hks NN, and 
equations (8) and (9) with hcE. 

3. E X P E R I M E N T A L  S E T T I N G  

3.1. Data sets 

The Fisher's IRIS data set has been used. Since there 
are many experimental studies on this classical bench- 
mark set we will not contrast our results with others'  
because many other excellent results might be neglected. 

The data set contains 150 four-dimensional feature 
vectors from three classes: Sestosa, Virginica, and Ver- 
sicolor. Using all four features, most of the studies 
reported only two or three misclassified samples. Purpo- 
sefully we have chosen the worst two-dimensional pro- 
jection of the data set, i.e. that with the highest 
overlapping of the classes: Sepal Length versus Sepal 
Width. The two-dimensional scatterplot is shown in 
Fig. 1. The data set is divided at random in two parts, 
used in turn for training and for test. In sequel we will 
refer to the two partitions as IRIS 1 and IRIS2. The results 
from the two hold-out experiments are then averaged. 

The second data set is from the database PROBEN1 

( t i p : / / f t p . i r a . uka .de /pub /neu ron /p roben  I .tar.gz). 

A detailed description can be found in the Technical 
Report by Prechelt. °6) The data set, called here heart, has 
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Fig. I. Two-dimensional projection of IRIS data. 

been supplied by Dr Robert Detrano, V. A. Medical 
Center, Long Beach and Cleveland Clinic Foundation. 
The problem is to predict whether or not at least one of 
four major coronary blood vessels of a patient is reduced 
in diameter by more than 50%. For the current experi- 
ments we used only the following five continuous-valued 
features: 

• age 
• resting blood pressure 
• cholesterol serum 
• maximum heart rate achieved 
• ST depression induced by exercise relative to rest 

The three partitions of the set into training and test 
parts are the same as those used by Prechelt. (16) Each one 

consists of 228 training samples and 75 test ones. The 
respective partitions will be denoted by heartl ,  heart2, 
and heart3. Since we are not using all the features, the 
recognition accuracy might be inferior to that reported 
elsewhere. 

3.2. Editing techniques 

The following experiments have been carried out. 
1. Whole sample. The whole training sample has 

been used as the reference set for 1-, 3-, 5-, 7- and 9- 
NN. The results on the test sets, and the averaged results 
are presented in Tables 1 and 2. 

2. Random selection. Five reference sets of cardin- 
ality l have been generated with l=  10, 15, 20 . . . . .  70 for 
each partition of the IRIS data. Ten sets of each cardin- 
ality 10, 20, 30 . . . . .  110, 140, 170, 220 have been gener- 
ated for each partition of the heart data. The 1-NN rule 
has been applied with the respective reference sets, and 
the Pc. on the test set has been averaged on the respective 
five (ten) runs. The piecewise linear functions of P,. 
versus card(S) are shown in Figs 2~i. 
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Table 1. k-NN results with the whole set as reference (IRIS data) 

Partition Classification accuracy on the test set % 

k -  I k-3  k=5 k=7 k=9 

IRIS 1 69.3 72.0 76.0 74.7 80.0 
IRIS2 76.0 70.7 78.7 74.4 74.4 
Average 72.65 71.35 77.35 74.70 77.35 

Table 2. k-NN results with the whole set as reference (heart data) 

Partition Classification accuracy on the test set % 

k= 1 k=3 k=5 k=7 k--9 

heart I 66.7 65.3 68.0 64.0 64.0 
heart2 68.0 73.3 73.3 69.3 73.3 
heart3 66.7 66.7 70.7 70.7 74.7 
Average 67.13 68.43 70.67 68.00 70.67 
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• GA selection (counting estimator) 
O MULTIEDIT (after the third iteration) 

Fig. 2. Experimental results with partition IRISI. 

3. MULTIEDIT. It turns out that with the IRIS data, 
MULTIEDIT algorithm tends to rule out all objects from 
one or two of the classes, if applied as prescribed. Five 
independent runs have been performed because of the 
random component. Table 3 shows the number of the 
iteration at which the algorithm converged, along 
with the number of objects retained, and the classes 
having been ruled out. We tried to stop the algorithm 
after the third iteration, and to test the performance of 
the remaining reference sets on the test sets. The 
results are visualized in Figs 2 and 3 as points with 

coordinates (card(S), P,.). Averaged results are presented 
in Table 4. 

With the heart data, MULTIEDIT converges success- 
fully (holding both classes). The average accuracy, car- 
dinality and number of iterations needed by the algorithm 
to converge are presented in Table 5. 

4. Wilson's methods. Wilson's editing technique was 
also applied. Indeed, the asymptotic optimality of this 
method has been disproved. Some previous experiments 
indicated, however, that this technique yields good re- 
sults in finite-sample-size problems. The results with 1-, 
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Fig. 3. Experimental results with partition IRIS2. 
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3-, 5-, and 7-NN training (and 1-NN test) are shown in 
Table 6. 

5. GA [counting estimator equation (3)]. Five inde- 
pendent runs with each training-test setting have been 

performed. It should be emphasized that the number of 
neighbors is not restricted to a certain value, as it is in 
other editing techniques. It has been pointed out O) that 
the generalization of the editing methods to more than 1 - 
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Fig. 5. Experimental results with partition heart2. 
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Fig. 6. Experimental results with partition heart3. 
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NN is not trivial. On the contrary, GA can be trained 
without any change in the procedure on an arbitrary 
number of neighbors. The only limitation might be 
connected to the size of the sample set. We tried 1- 

NN for training and 1-, 3-, 5-, 7-NN for test. 
The averaged results are shown in Table 7. In order to 
estimate the relative performance of the algorithm, 
poims (card(S), Pc) from the five runs ( k : 3  for training 
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Table 3. Results from MULTIEDIT editing algorithm (l-Sestosa, 2-Versicolor, 3-Virginica) 

1047 

Partition Experiment No. Iterations to convergence Cardinality of the resultant set Classes ruled out 

1 2 3 

IRISI 

I 7 25 • 
2 9 32 • 
3 11 25 • • 
4 8 25 • • 
5 5 36 • 

6 6 44 
7 7 43 

IRIS2 8 13 24 • • 
9 13 35 • • 

l0 12 35 

Table 4. Averaged results from MULTIEDIT with IRIS data, 
stopped after the third iteration 

Table 5. Averaged results from MULTIEDIT with heart data 

Partition Iterations to 1-NN Cardinality 
Partition I-NN accuracy in % Cardinality convergence accuracyin % 

IRIS 1 70.94 37.4 heart I 11.2 68.80 97.8 
IRIS2 73.60 44.0 heart2 13.6 76.00 91.8 
Average 72.27 40.7 heart3 13.2 72.52 98.0 

Average 12.67 72.44 95.87 

Table 6. Results from Wilson's method trained with 1-, 3-, 5-, and 7-NN 

Partition 1-NN accuracy % (cardinality) 

k=l  k=3 k 5 k~-7 

IRISI 70.7 (611 74.7 (58) 76.0 (56) 73.3 (60) 
IRIS2 84.0 (48) 81.3 (48) 78.7 (48) 78.7 (511 
Average 77.35 (54.5) 78.0 (53) 77.35 (52) 77.35 (52) 

heartl 65.3 (137) 70.7 (1441 70.7 (1501 69.3 (1501 
hea~2 77.3 (136) 77.3 (1471 72.0 (1551 70.7 (152) 
heart3 74.7 (139) 72,0 (1481 70.7 (1501 70.7 (1591 
Average 71.43 (137.3) 73.33 (146.3) 71.13 (151,71 70.23 (153.7) 

Table 7. Averaged results from GA editing with counting estimator as the fitness function 

Partition Cardinality Classification accuracy, % 

k=l k -3  k -5  k - 7  

IRIS l 37 74.68 71.20 75.18 75.46 
IRIS2 40.2 72.80 72.8(I 75.54 77.08 
Average 38.6 73.74 72.00 75.46 76.27 

heartl 101 67.46 66.14 66.92 66.14 
heart2 95.4 75.20 73.36 77.34 77.06 
heaH3 106.6 68.26 7(I.66 69.08 70.92 
Average 101 70.31 70.05 71.11 71.37 

and k = l  for test with IRIS data, and k = l  both for 
training and test with heart data) are visualized in 
Figs 24i .  

6. GA [k-NN estimate equation (7)]. With this 
fi tness function we performed five independent  runs 

with 3-NN training for each training-test splitting. 
The averaged results are shown in Table 8. Figures 
2 -6  contain (card(S), P,) pixels corresponding to those 
five runs of  the GA with 3-NN est imate and 1-NN 
for test. 
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Table 8. Averaged results from GA editing with k-NN 
estimator as the fitness function 

Partition Cardinality Classification accuracy, % 

IRISI 33.8 81.08 
IRIS2 43.0 72.54 
Average 38.4 76.81 

heartl 107.6 68.52 
heart2 107.0 75.48 
heaa3 109.6 70.12 
Average 108.1 71.37 

Table 9. Averaged results from GA editing with counting 
estimator and a penalizing term in the fitness function (IRIS 

data) 

Partition Cardinality I-NN accuracy, % 

0.03 

0,05 

0.08 

IRIS1 13.8 78.66 
IRIS2 12.6 74.40 
Average 13.2 76.53 

IRISI 11.6 77.60 
IRIS2 11.6 75.44 
Average 11.6 76.52 

IRIS 1 13.4 74.12 
IRIS2 12.6 69.62 
Average 13.0 71.87 

7. GA (counting estimator with a penalizing term). - 

Here the experiments have been confined to 1-NN only, 
because of the assumption that GA will ultimately select 
small-size sets. The averaged results from five indepen- 
dent runs with IRIS data are reported in Table 9 with 
~=0.03,  0.05, and 0.08. The respective points with 
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• Virginica 

Fig. 7. One of the reference set selected from IRIS data with a 
penalizing term in the fitness function. 

Table 10. Averaged results from GA editing 
estimator and a penalizing term in the fitness 

data) 

with counting 
function (heart 

Limit Partition Cardinality Classification 
accuracy, % 

10 

20 

heartl 9.2 67.2 
heart2 9.8 71.72 
heart3 10.8 71.46 
Average 9.93 70.13 

heart I 19 64.47 
heart2 20.4 71.74 
heart3 20.6 71.74 
Average 20.0 70.32 

c~=0.05 are shown in Figs 2 and 3. The scatterplot of 
one of the sets selected with the penalizing term is shown 
in Fig. 7. We tried a fitness function with a penalizing 
term equation (9) on the heart data. In the experiments 
we fixed c,=0.0045. The limits on the cardinality have 
been set to 10 and 20. In order to prevent GA from an 
unnecessary initial search among highly nonfeasible 
solutions we used "sparse" initialization. We set 10% 
of the genes to 1 and the rest to 0 with limit : 10, and 
20% 1-s with limit = 20. The results are shown in 
Table 10, and visualized in Figs 4-6. 

It appeared that random breaking of ties led to a minor 
improvement of about 1%. For the sake of purity, and 
without losing generality, in all experiments the tied 
votes were considered as misclassification. 

4. ANALYSIS AND C O N C L U S I O N S  

• The most interesting (and somewhat surprising) result 
is that the best fitness function was that with the 
penalizing term equation (8) or (9). It led to best 
reference subsets (small size and high Pc) in all the 
runs in all training-test settings. This can be explained 
by the fact that the fitness function forces the GA to 
select true prototypes of the classes without any 
redundancy. Obviously, the choice of the coefficient 
c~ determines greatly the overall performance. Note 
that the a priori probabilities of the classes are not 
explicitly used. The algorithm itself decides the "bal- 
ance" of the objects so that the performance remains 
unaffected. The approaches that reduce the reference 
set by clustering require a procedure to solve the 
cluster validity problem, or simply requires the num- 
ber of clusters to be set up in advance. Using a GA, this 
problem is supposed to be solved empirically, (or even 
adaptively) during the run. 

• It turned out that the two fitness functions based on 
equations (3) and (7) did not differ substantially. Being 
a more robust estimate, the k-NN fitness function (7) 
appeared to be slightly better. 

• Without limiting the cardinality, all methods selected 
subsets of cardinality close to half of the original 
o n e .  
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• Generally,  Wi lson ' s  technique provided high P,. at the 
expense  of  larger cardinality. Slightly h igher  values 
have been  reached with k = 3  for training, which  coin- 
cides with the reconunenda t ion  of  the author of  the 
t echn iqueJ  5) 

• M U L T I E D I T  in its pure form tended to rule out one or 
two classes in few steps when  the classes are highly 
over lapping  (IRIS data). With  the heart data, the 
a lgor i thm yielded very good reference sets but still 
of  a comparat ively  h igh  cardinality. 

• It seems that the control led initial seeding facili tates 
the edit ing by a G A  when  the fi tness funct ion contains  
a penal iz ing  term. 

All this lends support  to our c la im that using GAs  as 
edit ing techniques  we can signif icantly reduce the re- 
ference set wi thout  losing the classif icat ion accuracy. It 
seems promis ing  to combine  not  only the count ing 
es t imator  with a penal iz ing term in the fi tness funct ion 
equat ions (8) and (9) but other  es t imates  too. The  pena-  
l izing coefficient  can be made to vary along with the 
generat ions.  
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