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Abstract

Error-correcting output codes (ECOC) are used to design diverse classifier ensembles. Diversity within ECOC is tra-

ditionally measured by Hamming distance. Here we argue that this measure is insufficient for assessing the quality of

code for the purposes of building accurate ensembles. We propose to use diversity measures from the literature on clas-

sifier ensembles and suggest an evolutionary algorithm to construct the code.
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1. Introduction

ECOC are developed for pattern recognition
problems with multiple classes (Aha and Blankert,

1997; Dietterich and Bakiri, 1991, 1995; Masulli

and Valentini, 2000a,b; Shapire, 1997; Windeatt

and Ghaderi, 2001, 2003). The idea is to avoid

solving the multiclass problem directly and to

break it into dichotomies instead. Each classifier

in the ensemble discriminates between two (possi-
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bly compound) classes. Consider an example

where X = {x1, . . . , x10} is the set of class labels.

We can break X into X = {X(1), X(0)} where
X(1) = {x1, . . . , x5} and X(0) = {x6, . . . , x10},

called a dichotomy. Discriminating between X(1)

and X(0) will be the task of one of the classifiers

in the ensemble. Each classifier is assigned a differ-

ent dichotomy.

Diversity between the classifiers is a highly

desirable characteristic of the ensemble. The pre-

sumption in using ECOC is that diverse classifiers
are obtained from diverse dichotomies. While

minimum Hamming distance is the traditional

measure for diversity in ECOC, in this paper we

propose to use diversity measures originally
ed.
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devised for classifier outputs. Minimum Hamming

distance guarantees the error-correcting capability

of the code. However, we may wish to compromise

on this guarantee in order to get a more diverse

ensemble on the average, as explained later by an
example. This idea brings in diversity measures

used in classifier combination (Kuncheva and

Whitaker, 2003).

The paper is organized as follows. Section 2 ex-

plains ECOC and gives some code generating

methods. While minimum Hamming distance is a

traditional measure for the error-correcting quality

of a code, Section 3 looks into the need for another
measure of the quality of the code when used for

classifier ensembles. Section 4 suggests an applica-

tion of diversity measures to evaluating ECOC.

Section 5 proposes an evolutionary algorithm for

ECOC construction, using a diversity measure as

its fitness function. Section 6 gives our comments

and conclusions.
Table 1

Exhaustive ECOC for c = 4 classes (L = 7 classifiers)

D1 D2 D3 D4 D5 D6 D7

x1 0 0 0 1 0 1 1

x2 0 0 1 0 0 0 0

x3 0 1 0 0 1 0 1

x4 1 0 0 0 1 1 0
2. Error-correcting output codes (ECOC)

Let X = {x1, . . . , xc} be a set of class labels.

Suppose that each classifier codes the respective

compound class X(1) as 1 and compound class

X(0) as 0. Then every class xj, j = 1, . . . , c, will have
a binary ‘‘profile’’ or a codeword. For example,
suppose that there are 5 classifiers. A possible class

profile (codeword) for x1 is [0, 1, 1, 0, 1]T. This

means that x1 is in the respective X(1) sets for clas-

sifiers D2, D3, and D5 and in the respective X(0) sets

for classifiers D1 and D4.

2.1. The code matrix

We can represent each dichotomy as a binary

vector of length c with 1�s for the classes in X(1)

and 0�s for the classes in X(0). The set of all such

vectors has 2c elements. However, not all of them

correspond to different splits. Consider

[0, 1, 1, 0, 1]T and [1, 0, 0, 1, 0]T. Even though the

Hamming distance between the two binary vectors

is equal to the maximum possible value, 5, the two
subsets are identical, only with swapped labels.

Since there are two copies of each split within

the total of 2c splits, the number of different splits
is 2(c�1). The splits {X, ;} and the corresponding

{;, X} are of no use because they do not represent

any discrimination task. Therefore the number of

possible different splits of a set of c class labels into

two non-empty disjoint subsets (dichotomies) is
2(c�1) � 1.

Let L be the chosen number of classifiers in the

ensemble. The class assignments for the ensemble

(the dichotomies) can be represented as a binary

code matrix C of size c · L. The (i, j)th entry of

C, denoted C(i, j) is 1 if class xi is in Xð1Þ
j or 0, if

class xi is in Xð0Þ
j . Thus each row of the code matrix

is a codeword and each column is a classifier
assignment. An example of a code matrix for

c = 4 classes with all possible 2(4�1) � 1 = 7 differ-

ent dichotomies is shown in Table 1.

Let [s1, . . . , sL], si 2 {0, 1}, be the binary output

of the L classifiers in the ensemble for a given input

x. The Hamming distance between the classifier

outputs and the codewords for the classes is calcu-

lated as
PL

i¼1jsi � Cðj; iÞj. In the standard set-up
the input is labeled in the class with the smallest

distance (decoding phase). Ties are broken ran-

domly. A more sophisticated decoding strategies

are discussed by Windeatt and Ghaderi (2001,

2003).

To take the most advantage of an ECOC

ensemble, the code matrix should be built accord-

ing to two main criteria.
Row separation. In order to avoid misclassifica-

tions, the codewords should be as far apart from

one another as possible. We can still recover the

correct label for x even if several classifiers have

guessed wrongly. A measure of the quality of an

error-correcting code is the minimum Hamming

distance, Hc, between any pair of codewords.

The number of errors that the code is guaranteed
to be able to correct is bHc�1

2
c. (Here bac denotes

the ‘‘floor’’, i.e., the nearest integer smaller than a.)
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Column separation. It is important that the

dichotomies given as the assignments to the

ensemble members are as different from each other

as possible too. This will drive the ensemble to-

wards low correlation between the classification er-
rors which will hopefully increase the ensemble

accuracy (Dietterich and Bakiri, 1995). The dis-

tance between the columns must be maximized

keeping in mind that the complement of a column

gives the same split of the set of classes. Therefore,

the column separation should be sought by

maximizing

HL ¼min
i;j;i6¼j

min
Xc

k¼1

jCðk; iÞ�Cðk;jÞj;
Xc

k¼1

j1�Cðk; iÞ
(

�Cðk;jÞj
)
; i;j2 f1;2; . . . ;Lg: ð1Þ
Table 2

Exhaustive ECOC for c = 4 classes (L = 7 classifiers)

D1 D2 D3 D4 D5 D6 D7

x1 1 1 1 1 1 1 1
2.2. ECOC generation methods

One-per-class. The standard ECOC is the so

called ‘‘one-per-class’’ code. This encoding is com-

monly used as the target output for training neural
network classifiers for multiple classes. The target

output for class xj is a codeword with c elements,

containing 1 at position j and 0�s elsewhere. Thus
the code matrix is the identity matrix of size c

and we only build L = c classifiers. This encoding

is of low quality because the Hamming distance

between any two rows is 2, and so the error-cor-

recting power is b2�1
2
c ¼ 0.

All pairs. In this model every pair of classes is

taken as X(1) and the remaining c � 2 classes form

X(0).

There are L ¼ cðc�1Þ
2

classifiers (columns). 1 Con-

sider the codeword for class xi. There will be c � 1

ones, while all the remaining positions will be

zeros, because class xi appears exactly in c � 1

pairs. Every pair of codewords share one and only
one 1, that is, only one classifier. Suppose that

codewords C1 and C2 shared 2 classifiers, D1 and

D2. This means that classifier D1 has both x1

and x2 in its X(1) set, and so does classifier D2.

Since we assumed that every pair of classes forms
1 Valid for c > 4.
the X(1) set for one and only one classifier, having

D1 and D2 with the same X(1) set contradicts our

construction assumption. On the other hand, the

two codewords cannot be void of a common clas-

sifier (a 1 at the same position) because if this is the
case, the pair of classes whose codewords we are

considering will have no dedicated classifier. This

again contradicts our set-up. Thus any two code-

words mismatch at the c � 2 ones in codeword

C1 not shared by codeword C2 and also at the

c � 2 ones in codeword C2 not shared by code-

word C1. Since this argument applies to any pair

of codewords, the minimum Hamming distance
across the whole code is 2(c � 2). Therefore the

power of the �all pairs� code is b2ðc�2Þ�1

2
c ¼ c� 3.

Both one-per-class and all-pairs codes are equi-

distant because the Hamming distances between

every pair of codewords are the same (Windeatt

and Ghaderi, 2003).

Exhaustive codes. Dietterich and Bakiri (1995)

give the following procedure for generating all
possible 2(c�1) � 1 different classifier assignments

for c classes. They suggest that exhaustive codes

should be used for 3 6 c 6 7.

(1) Row 1 is all ones.

(2) Row 2 consists of 2(c�2) zeros followed by

2(c�2) � 1 ones.

(3) Row 3 consists of 2(c�3) zeros, followed by
2(c�3) ones, followed by 2(c�3) zeros, followed

by 2(c�3) � 1 ones.

(4) In row i, there are alternating 2(c�i) zeros and

ones.

(5) The last row is 0, 1, 0, 1, 0, 1, . . . , 0.

The exhaustive code for c = 4 obtained through

this procedure is given in Table 2. Note that Table
2 presents the same ensemble as Table 1. Columns

1, 2, 3 and 5 of Table 1 (the classifier assignments)

have the 0�s and the 1�s swapped, thus keeping the
x2 0 0 0 0 1 1 1

x3 0 0 1 1 0 0 1

x4 0 1 0 1 0 1 0
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same dichotomies, and the columns are permuted

as [4, 6, 7, 3, 5, 2, 1]. 2

For 8 6 c 6 11 Dietterich and Bakiri (1995)

suggest to select columns from the exhaustive code

by an optimization procedure. Note that for c = 3
the exhaustive code will be the same as the one-

per-class code which shows that problems with a

small number of classes might not benefit from

the ECOC approach. For values of c larger than

11, random code generation is recommended.

Random generation. Authors of studies on

ECOC ensembles share the opinion that random

generation of the codewords is a reasonably good
method (Dietterich and Bakiri, 1995; Shapire,

1997; Windeatt and Ghaderi, 2003). Although

these studies admit that more sophisticated proce-

dures might lead to better codes, they also suggest

that the improvement in the code might have only

marginal effect on the ensemble accuracy.
3. Why is minimum Hamming distance insufficient

for ECOC classifier ensembles?

Minimum Hamming distance looks into the

worst-case scenario. It guarantees that a given

amount of errors can be corrected. This makes

the minimum Hamming distance an attractive

measure for deriving bounds on the error. As
noted by Windeatt and Ghaderi (2003), high min-

imum distance between any pair of codewords im-

plies a reduced bound on the generalization error.

Maximizing the minimum Hamming distance will

work particularly well for equidistant codes. How-

ever, sometimes reducing bounds on the error,

which may be quite loose to start with, is not very

practical. We may wish to design a code which is
allowed to fail occasionally in recovering the true

class label for a small number of objects but which
2 The Matlab line C=[num2str(ones(2
^
(c-1)-

1,1)) 0; dec2bin(0:2
^
(c-1)-2) 0] produces a code

matrix (of string type) for a given c. Since there are exactly

2(c�1) � 1 different assignments, the exhaustive code is obtained

by enumerating the numbers from 0 to 2(c�1) � 2, converting

them from decimal to binary and appending a string of 1�s to be

the first row of the code matrix.
on average will perform better than a code with a

larger minimum Hamming distance.

To illustrate this point, consider a problem with

5 classes and 5 classifiers. Two code matrices are

shown in Fig. 1. The minimum and average Hc

are also displayed.

The matrices with the pairwise Hamming dis-

tances between the codewords (rows of the code

matrices), Hc, are given underneath. The minimum

Hc for ensemble 1 is 2, and the minimum Hc for

ensemble 2 is 1. According to the maximum

minHc criterion, we will prefer ensemble 1 to

ensemble 2. A simulation was run to estimate clas-
sification accuracies of the two ensembles under

the following assumptions: Each of the 5 classes

comes with the same probability of 1
5
. Each classi-

fier makes a mistake with probability p = 0.2. (A

�mistake� here means that the 0�s and the 1�s in

the column for the respective classifier are

swapped.) The mistakes made by the classifiers

are independent.
We simulated 10,000 objects and kept a count

of the number of objects classified correctly. The

simulation procedure for a single object was as

follows.

(1) Pick a class label with probability 1
5
. Call it

‘‘the true label’’, and denote it by i, i 2
{1, 2, 3, 4, 5}.

(2) Copy the code matrix in another matrix, C.

For each classifier, decide with probability

p = 0.2 whether it will make an error for this

object. If yes, swap the 0�s and the 1�s in the

corresponding column of C.

(3) If there were no misclassifications, the code-

word for this object would be row i of the orig-

inal code matrix. With the misclassifications
made by the classifiers, the codeword now is

the ith row of C, denoted Ci. We calculate

the Hamming distances between Ci and each

row of the original code matrix.

(4) The class label assigned by the ensemble is

determined by the minimum of the five dis-

tances. In case of a tie, the assigned label is

decided with equal probability between the
tied labels. If the assigned label matches the

true label, i, we increment the count for

the correct classification.



Fig. 1. An example of two ECOC ensembles. Maximizing the minimum Hamming distance will give preference to ensemble 1 which is

less accurate on average.
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The simulation was run separately for each of

the two code matrices. The 95% confidence inter-

vals (CI) for the accuracies of the two ensembles

are shown in Fig. 1. Ensemble 2 outperforms

ensemble 1 by a large margin, showing that the

minimum Hamming distance may not be the best

criterion.
4. Using diversity measures for ECOC

The idea of this study is to augment the set of

measures of the quality of an ECOC for classifier
ensembles with row- and column-separation meas-

ures based on classifier diversity. For this study
we chose the ‘‘disagreement’’ measure of diver-

sity (see Kuncheva and Whitaker, 2003). The

‘‘disagreement’’ measure between codewords Ci

and Cj is equivalent to the relative Hamming

distance

Di;j ¼
N 01 þ N 10

N 00 þ N 11 þ N 01 þ N 10
¼ N 01 þ N 10

L
; ð2Þ

where Nmn is the number of bits for which Ci has

value m and Cj has value n, where m, n 2 {0, 1},

and L is the length of the codeword (total number



Table 3

H and D for ECOC generated by the one-per-class and all-pairs methods, and for the two code matrices from Fig. 1

Row separation (codewords) Column separation (dichotomies)

One-per-class (=Codematrix 1) Hc = 2 HL = 2

Dc ¼ 2
cð¼ 0:4Þ DL ¼ 2

c ð¼ 0:4Þ

All-pairs Hc = 2(c � 2) HL = min{2, c � 4}, cP 4

Dc ¼ 4ðc�2Þ
cðc�1Þ DL ¼ c3�5c2þ22c�32�jc�8jðc2�5cþ6Þ

2cðc2�c�2Þ

Codematrix 2 Hc = 1 HL = 1

Dc = 0.6 DL = 0.32

3 The details of the derivations for Table 3 can be found at

http://www.informatics.bangor.ac.uk/~kuncheva/data_public/

ecoc_derivations.pdf.
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of classifiers). D varies between 0 and 1. Larger

values of D are desirable.

We should note that when we measure diversity

between codewords (rows), we use directly (2).

However, when column separation is measured

(diversity between dichotomies), we must take into

account that the inverse of a binary vector repre-

sents the same dichotomy. Therefore the diversity
between classifiers Di and Dj (columns of the code

matrix) is

Di;j ¼ min
N 01 þ N 10

c
;
N 00 þ N 11

c

� �
: ð3Þ

To measure the total diversity between the code-

words, we take the average across all pairs

Dc ¼
2

cðc� 1Þ
X
i<j

Di;j; i; j ¼ 1; . . . ; c: ð4Þ

For the total diversity between the dichotomies

(columns of the code matrix), we average the cor-

responding pairwise diversities (3) as

DL ¼
2

LðL� 1Þ
X
i<j

Mi;j; i; j ¼ 1; . . . ; L: ð5Þ

The new measures suggested here, Dc and DL, ac-

count for the overall diversity in the ensemble.

Table 3 shows the values of H and D for ECOC

generated by the one-per-class and all-pairs meth-

ods as functions of the number of classes c. We

also give the values of the measures for the two

code matrices in the example in Fig. 1. Codematrix

1 produced values as given in the One-per-class
section (Dc = DL = 0.4). The calculations for the

one-per-class method are straightforward. The
all-pairs method needs some combinatorial and

algebraic manipulations. 3

To formulate one criterion function (maximum

H or D), we have to combine the row- and column-

separation measures. The simplest way to do so is

to take the average for D, D ¼ 1
2
ðDc þ DLÞ, so as to

have a combined measure in the same range of val-

ues and the same interpretation. For H we use
H = Hc + HL.

According to D from Table 3, ensemble 2

should be preferred to ensemble 1 because the

sum of the two disagreement values is larger. Con-

versely, H would choose ensemble 1. The results

from the simulation experiment clearly favoured

ensemble 2.
5. Generating ECOC by an evolutionary

algorithm (EA)

Random search or guided variants of random

search can be used to generate ECOC. We propose

to use an evolutionary algorithm as opposed to

pure random search. The reason is that the evolu-
tionary procedure is effective yet simple and might

lead to better ECOCs than pure random search.

The ‘‘chromosome’’ is the whole code matrix,

with its rows concatenated into a vector of dimen-

sionality L · c (L classifiers and c classes). The

procedure starts with generating and evaluating a

set of m chromosomes, called the population.

http://www.informatics.bangor.ac.uk/~kuncheva/data_public/ecoc_derivations.pdf
http://www.informatics.bangor.ac.uk/~kuncheva/data_public/ecoc_derivations.pdf


Fig. 2. H and D as functions of the number of generations in the EA (average from 100 runs; 95% confidence intervals displayed).
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The population is duplicated into an offspring set.

Each bit of each offspring chromosome is mutated

with a specified probability Pmut. Each offspring

chromosome (a code matrix) is evaluated. The

population and the offspring sets are then pooled
and the best m of the chromosomes survive to be

the next population. The loop is run for a specified

number of times, called ‘‘generations’’.

The evaluation of a chromosome is done by first

breaking it, rearranging back the code matrix and

then calculating the chosen measure M (H or D).

We ran the EA for c = 50 classes and L = 15 clas-

sifiers. One hundred runs were carried out starting
from different initialization. The parameters of the

algorithms were as follows: m = 10, Pmut = 0.15,

number of generations was 100. The averaged

measures across the 100 runs of EA together with

the 95% confidence intervals are shown in Fig. 2.

As expected, the measure being maximised

shows higher mean and smaller variation about

the mean. The 95% confidence intervals for the
mean are calculated as l� 1:96 rffiffiffiffiffi

100
p .
6. Comments and conclusions

In this paper we propose to use diversity meas-

ures for ECOC design in addition to the standard

minimum Hamming distance measure H. We look
into the disagreement measureD, which is the aver-

aged Hamming distance. The motivation for the

new measure came from the fact that maximizing
the minimum H is not necessarily optimal with re-

spect to the overall correctness of the ECOC. This

was demonstrated by an example in Section 3. An

evolutionary algorithm was implemented to design

ECOCs using the measures as the fitness function.
It is true in general that more diverse classifiers

make a better ensemble than less diverse classifiers

but the relationship is not straightforward (Kun-

cheva andWhitaker, 2003). Besides, having diverse

dichotomies does not automatically mean that the

classifiers built to solve these dichotomies will be

diverse. Thus the rationale for improving the diver-

sity relies on a chain of intuitive assumptions.
There is no direct experiment by which we can

compare different criteria. The EA will optimize

whichever criterion we set as its fitness function.

Therefore it is not surprising that the best values

of measure M were found by running EA with

M as the criterion function (M standing for D or

H). The ultimate test for the proposed criteria is

the performance of ensembles built using the cor-
responding ECOCs. A set of experiments can be

carried out using real multiclass data sets. The er-

rors can be compared across the two design crite-

ria for ECOC (H and D).

There is no issue of training and generalization

in this study. This is because the goal is to devise a

concrete structure (ECOC) which can then be used

in training and testing classifier ensembles.
It is worth investigating the relative importance

of the two components of the total diversity (Mc

and ML). Unequal weights can be assigned to
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these. It is possible that different measures are suit-

able for the row separation and column separa-

tion. The same search algorithm can be applied

with a correspondingly modified fitness function.
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