
www.elsevier.com/locate/patrec

Pattern Recognition Letters 27 (2006) 830–837
On the optimality of Naı̈ve Bayes with dependent binary features

Ludmila I. Kuncheva *

School of Informatics, University of Wales, Dean Street, Bangor, Gwynedd LL57 1UT, UK

Received 20 July 2005; received in revised form 7 November 2005
Available online 30 January 2006

Communicated by Prof. F. Roli
Abstract

While Naı̈ve Bayes classifier (NB) is Bayes-optimal for independent features, we prove that it is also optimal for two equiprobable
classes and two features with equal class-conditional covariances. Although strict optimality does not extend for three features, equal
covariances are expected to be beneficial in higher-dimensional spaces.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Naı̈ve Bayes classifier (NB), called also ‘‘idiot’s
Bayes’’, continues to receive a lot of praise in the literature
due to its simplicity and accuracy (Langley et al., 1992;
Hand and Yu, 2001; Jamain and Hand, 2005). NB is
Bayes-optimal, i.e., guarantees minimum classification
error, when the features in the problem are independent.
However, it is well documented that NB is consistently
good far beyond this optimality condition. The word most
used to describe its performance is ‘‘surprising’’. Many
studies look for explanations for this phenomenon and
try to establish necessary and sufficient conditions for the
optimality of NB. While important arguments and results
have been already formulated (details are given in Section
2 below), there is no generally valid set of such necessary
and sufficient conditions.

This study looks for further insights into optimality of
NB for binary features. The motivation came from a prob-
lem from veterinary medicine where the signs measured on
cattle are binary and the diagnosis is one of two possible
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classes, BSE or not BSE. BSE is a notifiable fatal neurode-
generative disease in cattle which has no known cure. There
was a BSE epidemic in Britain in the 1990s and with the
first BSE case diagnosed in the USA at the end of 2003,
the problem becomes one of global importance. The curi-
ous aspect of this problem was that there was no data set
as such but only estimates of the class-conditional proba-
bilities by domain experts. Given are only the marginal
probabilities, P(xi = 1jxk), where xi is the ith sign (feature).
Value 1 means that the sign is present in the animal, and xk

is the class label (BSE or not BSE). As no further infor-
mation is available, the features must be considered as
independent, hence NB can be applied as the optimal clas-
sifier. Assuming that the probability estimates are the exact
probabilities, the question is how different is NB from the
true optimal Bayes classifier? As there is no data set, an
experimental verification is not possible. This prompted
the question of how much dependence NB can tolerate
and still be optimal.

The rest of the paper is organized as follows. Section 2
gives a brief account of some important results from the lit-
erature explaining why NB works when the independence
assumption does not hold. In Section 3, a two-feature
two-class problem is considered. We prove that NB is opti-
mal if the dependencies between the two features are the
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1 We shall denote probability mass functions by capital P.
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same for both classes. Unfortunately, this result does not
extend beyond two features. Section 4 looks into three bin-
ary features and brings into the study non-pairwise mea-
sures of dependence: Q123, divergence and two distances
between probability distributions. Section 5 summarizes
the results and outlines other possible explanation routes.

2. Naı̈ve Bayes: why is it so successful?

Let x = [x1, . . . ,xn]T be a feature vector. To label it in
one of the c classes of the problem, x1, . . . ,xc, we use the
posterior probability P(xkjx). Choosing the class corre-
sponding to the largest posterior probability for the respec-
tive x guarantees minimum error across the whole space
spanned by the n features. We shall call this the Bayes clas-
sifier, and the corresponding error, the Bayes error, EB.
The posterior probabilities are calculated as P ðxkjxÞ ¼
pðxjxkÞPðxkÞ

pðxÞ , where p(xjxk) is the class-conditional probability

density function (pdf) conditioned on xk, P(xk) is the prior
probability for xk and p(x) is the unconditional pdf. Naı̈ve
Bayes classifier (NB) assumes conditional independence
between the features and calculates the class-conditional
pdf as a product of n individual pdf’s

pðxjxkÞ ¼
Yn

i¼1

pðxijxkÞ. ð1Þ

If the independence assumption does not hold, then the
approximation of p(xjxk) is inaccurate, which may lead to
misclassifications. The surprising success of NB has been
attributed to various estimation properties (Hand and
Yu, 2001; Domingos and Pazzani, 1997).

• NB estimates fewer parameters than other popular mod-
els, therefore it is less prone to overtraining, especially
for small sample sizes.

• The traditional pre-selection of features tends to elimi-
nate correlated features anyway therefore the indepen-
dence assumption may nearly hold for the remaining
feature subset.

The most important explanation though lies in the fact
that the conditional independence is only a sufficient but
not a necessary condition for optimality of NB (Hand
and Yu, 2001; Domingos and Pazzani, 1996, 1997; Zhang,
2004; Rish, 2001; Rish et al., 2001). Indeed, the accuracy of

approximation is irrelevant as long as for any x the largest
posterior probability corresponds to the same class as with
the true posterior probabilities. In fact, if there are more
than two classes, even the order of the other posterior
probabilities is irrelevant. It seems though that the quest
for quantifying the degree of dependence which NB can tol-
erate, started by Langley et al. (1992), is still on-going.
Domingos and Pazzani (1996, 1997), Rish (2001), Rish
et al. (2001), Zhang (2004) and others have identified cases
where NB is optimal and other cases where it is not. Con-
sider for example continuous-valued variables and two
Gaussian classes. If the covariance matrices for the classes
are diagonal, then the features are independent and NB is
the optimal model. The class-conditional pdf’s can be
decomposed into individual Gaussians and calculated as
in (1). If the features are dependent, and the covariance
matrices are equal, R1 = R2, then NB will also recover
the correct (linear) classification boundary despite of the
flawed approximation of the pdf’s. There are however,
limits on the abilities of NB to reach near-optimal per-
formance. Take for example a linearly separable pair of
non-Gaussian classes. A linear classifier trained by the per-
ceptron algorithm is guaranteed to learn the classification
boundary while NB is not.

3. Optimality of NB for two binary features

Let x = [x1,x2]T where x1, x2 2 {0,1}. We assume that
we have complete knowledge of the true probabilities in
the problem, i.e., all P(xjxj), j = 1,2, are given1 for all four
values of x. To facilitate the algebraic manipulations, the
eight probabilities are denoted as a,b, . . . ,h as shown in
Table 1(a) and (b).

While dependence is not defined in a unique commonly
agreed way in the space of categorical variables, for quan-
titative variables such measures exist. To evaluate depen-
dence, we shall treat the ‘‘0’’ and the ‘‘1’’ as numbers and
will calculate covariance between the two binary features,
separately for each class. The mean for x1 given class x1

is l1 = 0 · (a + b) + 1 · (c + d) = c + d. The mean for x2

is respectively l2 = b + d. The covariance is the expectation
of (x1 � l1)(x2 � l2) (summed across the four values and
weighted by the respective probability)

Covðx1; x2jx1Þ ¼ að0� ðcþ dÞÞð0� ðbþ dÞÞ
þ bð0� ðcþ dÞÞð1� ðbþ dÞÞ
� cð1� ðcþ dÞÞð0� ðbþ dÞÞ
þ dð1� ðcþ dÞÞð1� ðbþ dÞÞ ¼ ad � bc.

ð2Þ
Proposition. Let x = [x1,x2]T where x1, x2 2 {0,1}, and let

x1 and x2 be the classes of interest with P ðx1Þ ¼ P ðx2Þ ¼ 1
2.

If Cov(x1,x2jx1) = Cov(x1,x2jx2), then the Naı̈ve Bayes

classifier (NB) is optimal for this problem.

Proof. For NB to make a mistake for some x, one of the
following must be true:

P ðxjx1ÞPðx1Þ > P ðxjx2ÞP ðx2Þ and

P ðx1jx1ÞP ðx2jx1ÞP ðx1Þ < P ðx1jx2ÞP ðx2jx2ÞPðx2Þ

or

P ðxjx1ÞPðx1Þ < P ðxjx2ÞP ðx2Þ and

P ðx1jx1ÞP ðx2jx1ÞP ðx1Þ > P ðx1jx2ÞP ðx2jx2ÞPðx2Þ.



Table 1
Class-conditional probability mass functions for classes x1 and x2 for two
binary features

x2 = 0 x2 = 1

(a) Class x1

x1 = 0 a b

x1 = 1 c d

a + b + c + d = 1

(b) Class x2

x1 = 0 e f

x1 = 1 g h

e + f + g + h = 1
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Without loss of generality, consider x = [0, 0]T and let

a > e. ð3Þ
For NB to make a mistake and assign x2 to x = [0,0]T, we
must have

1

2
Pðx1 ¼ 0jx1ÞPðx2 ¼ 0jx1Þ

<
1

2
P ðx1 ¼ 0jx2ÞP ðx2 ¼ 0jx2Þ; ð4Þ

ðaþ bÞðaþ cÞ < ðeþ f Þðeþ gÞ;
ðaþ bÞðaþ cÞ � ðeþ f Þðeþ gÞ < 0;

a2 þ acþ abþ bc� e2 � eg � ef � fg < 0. ð5Þ

From the equivalence of the covariances,
ad � bc = eh � fg,

bc ¼ ad � ehþ fg. ð6Þ
Substituting in (5),

a2 þ acþ abþ ad � ehþ fg � e2 � eg � ef � fg < 0;

aðaþ cþ bþ dÞ � eðeþ f þ g þ hÞ < 0;

a < e. ð7Þ

The above result contradicts (3) therefore (4) cannot be
true and NB makes the same decision as the Bayes classifier
ENB – EB
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Fig. 1. Scatterplot of the error difference between Naı̈ve Bayes classifier (NB)
(a) Equal covariances and (b) no restrictions.
would. The same argument will hold for the other three
values of x. h

Unfortunately, this optimality argument does not hold
even for the simple case when the two classes are not equi-
probable. Denote p = P(x1) and respectively 1 � p =
P(x2). An error will occur for x = [0, 0]T if pa > (1 � p)e
and p(a + c)(a + b) < (1 � p)(e + g)(e + f). The former is
equivalent to

a� 1� p
p

� �
e > 0. ð8Þ

Developing the latter leads to

a� 1� p
p

� �
e <

2p � 1

p
ðeh� gf Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
the covariance

ð9Þ

In order to force a contradiction, the right-hand side of (9)
should be required to be negative. For this to hold, we need
either p > 0.5 and negative covariance or p < 0.5 and posi-
tive covariance. Notice that if the covariance is zero (inde-
pendence), then the contradiction is in place for any p, and
NB is optimal.

It is interesting to find out whether there are conditions
on p and the sign of the covariance for which NB is guar-
anteed to be optimal. Suppose that we do require that
p > 0.5 and the covariance is negative. In this case, for
a > e, NB is guaranteed to make the correct decision
because (8) and (9) cannot hold simultaneously. It is possi-
ble that pb > (1 � p)f (can be shown by an example),
therefore

b� 1� p
p

� �
f > 0. ð10Þ

The corresponding inequality for NB is

b� 1� p
p

� �
f < � 2p � 1

p
ðeh� gf Þ. ð11Þ
ENB – EB

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p
(b)

and the Bayes (optimal) classifier versus the prior probability for class x1.
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As the RHS is positive, this inequality may or may not hold
together with (10). This argument shows that there is no
simple condition that guarantees optimality of NB for
two classes, two binary features and equal class-conditional
covariances when prior probabilities are not equal.

To evaluate the extent to which prior probability influ-
ences the optimality of NB in the two-feature two-class
case, simulation experiments were carried out. 10000 ran-
dom sets of probabilities a,b, . . . ,h and p were generated
so that the class-conditional covariances were equal.
Fig. 1(a) shows the scatterplot of the differences between
NB error and Bayes error, ENB � EB, for the 10000 data
points versus the prior probability p. Another set of
10000 sets of probabilities was generated, this time without
the restriction of equal covariances. The scatterplot is given
in Fig. 1(b). It is clear that the restriction of equal covari-
ances, although not guaranteeing optimality, brings NB
very close to the Bayes (optimal) classifier. For equiproba-
ble classes, p = 0.5, NB is indeed optimal, as seen in
Fig. 1(a). If covariances are not equal, the largest discrep-
ancies between NB and the optimal classifier occur for p

about 0.5.
We also calculated the mean ENB � EB. For equal

covariances, this value was 0.0018 (std 0.0066) and for
the unrestricted probabilities, the mean was 0.0135 (std
0.0320). NB was not optimal in about 13% of the cases with
equal covariances and in about 32% of the cases with no
restriction. This shows that equal covariances are a strong
prerequisite for near-optimal performance of NB.
4. Optimality of NB for three binary features

It is interesting whether the results from the previous
section carry forward for more than two features.

Let x = [x1,x2,x3]T, where x1,x2,x3 2 {0,1}. Consider
again the two-class problem with Pðx1Þ ¼ P ðx2Þ ¼ 1

2
.

Assume that the pairwise covariances are equal across the
two classes for all pairs of features, i.e.,

Covðxi; xjjx1Þ ¼ Covðxi; xjjx2Þ ¼ Cij;

i ¼ 1; 2; 3; j ¼ 1; 2; 3; i 6¼ j. ð12Þ
Table 2
Joint and marginal class-conditional probability mass functions for classes x1 a

x1 x2 x3 P(x)

(a) Class x1

0 0 0 0.2706
0 0 1 0.0235
0 1 0 0.2435
0 1 1 0.2070
1 0 0 0.1164
1 0 1 0.0428
1 1 0 0.0291
1 1 1 0.0671
0.2554 0.5467 0.3404

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pðxi¼1jx1Þ
The following example demonstrates that NB is not

optimal for this case. Table 2 shows the class-conditional
probability mass functions for the two classes.

The class-conditional pairwise covariances are equal for
x1 and x2 and are as follows: �0.0434 between x1 and x2,
0.0230 between x1 and x3, and 0.0880 between x2 and x3.

The marginal distributions are given as the bottom row
in Table 2. Using these, we have

P ð½0; 0; 0�Tjx1Þ < P ð½0; 0; 0�Tjx2Þ ð0:2706 < 0:2856Þ
and

P ðx1 ¼ 0jx1ÞP ðx2 ¼ 0jx1ÞP ðx3 ¼ 0jx1Þ
> P ðx1 ¼ 0jx2ÞP ðx2 ¼ 0jx2ÞP ðx3 ¼ 0jx2Þ
ð0:2226 > 0:1974Þ.

While the Bayes classifier will label x = [0,0,0]T in x2, NB
will label it in x1. This shows that having equal class-
conditional covariances is not a sufficient condition for
optimality of NB for three features even for equiprobable
classes.

To estimate the effect of equal covariances on the opti-
mality of NB, we carried out a simulation study for the
problem with three binary features and two equiprobable
classes. 10000 random sets of probability mass functions,
P(xjx1) and P(xjx2), were generated where the three
covariances C12, C13 and C23, were the same for both clas-
ses. (The details of the generation procedure are given in
Appendix A.) Fig. 2 shows the sorted values of ENB � EB

for the 20000 points. The curve with the equal covariance
restriction lies underneath the curve where the distributions
were generated without the restriction indicating that equal
covariances are beneficial. In about 92% of the cases gener-
ated without restriction NB makes at least one mistake out
of the eight possible values for x. For the equal covariances
case this figure is about 57%. Also, the mean error differ-
ences are 0.0564 (std 0.0486) for the unrestricted case and
0.0157 (std 0.0294) for the equal covariances case.

The results show that equal dependencies of second
order are insufficient to guarantee optimality of NB for
three features. An additional measure of dependency may
therefore be useful. Our first choice was the three-way Q
nd x2 for three binary features and equal covariances across the two classes

x1 x2 x3 P(x)

(b) Class x2

0 0 0 0.2856
0 0 1 0.0233
0 1 0 0.1104
0 1 1 0.2464
1 0 0 0.0989
1 0 1 0.1214
1 1 0 0.0654
1 1 1 0.0486
0.3343 0.4708 0.4397

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P ðxi¼1jx2Þ
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Fig. 2. Sorted values of the error differences for the 10000 points with and
without equal covariances.
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statistic (Yule, 1900). Consider the two-way table with
probabilities as in Table 1(a). The odds ratio is r = ad/bc.
Q is meant to serve as a correlation measure varying
between �1 and 1 with value 0 corresponding to indepen-
dence. The transformation which achieves this is (r � 1)/
(r + 1), leading to

Q ¼ ad � bc
ad þ bc

. ð13Þ

The numerator of Q is the covariance between x1 and x2 as
in (2), so for independent variables Q = 0. For a three-way
table, there are two odds ratios, r1 and r2, e.g., for x3 = 0
and x3 = 1, respectively. Their ratio, r1/r2 is now normal-
ized to give the three-way Q. Denote by Puvw the probability
that x1 = u, x2 = v and x3 = w, where u, v, w 2 {0,1}. Then

Q123 ¼
P 111P 001P 010P 100 � P 000P 011P 101P 110

P 111P 001P 010P 100 þ P 000P 011P 101P 110

. ð14Þ
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Fig. 3. Scatterplot of the error difference between Naı̈ve Bayes classifier (NB
without equal covariances for the two classes. (a) Equal covariances and (b) n
The information included in Q123 is additional to the two-
way Q’s, which is the reason to include it in this study. The
question is whether similar values of Q123 for x1 and x2

correspond to NB being close to optimal. Fig. 3(a) plots
the value of the error differences, ENB � EB, against the dif-
ference Q123(x1) � Q123(x2) for the 10000 data points with
equal covariances and (b) gives the plot for the unrestricted
case.

The equal covariances case shows a marked pattern
whereby similar Q123’s for the two classes bring NB close
to optimality (lower error difference). This pattern is not
clearly visible for the general case in Fig. 3(b). The pattern
in Fig. 3(a) suggests that there might be an optimality con-
dition where the corresponding class-conditional covari-
ances are equal and also Q123(x1) = Q123(x2).

Distances between distributions have been extensively
used in pattern recognition for estimating bounds for the
Bayes error of classifiers and specifically as criteria for fea-
ture selection (Webb, 1999; van der Heijden et al., 2004;
Devijver and Kittler, 1982). We carried out simulation
experiments as before with three distances in place of
Q123: divergence, Bhattacharyya distance and Matusita dis-
tance. All three of them estimate how far apart the joint
distribution is from the distribution reconstructed through
the independence model. The farther apart these distribu-
tions are, the larger the dependence between the features.
Let M1 and M2 be the values of such a measure for x1

and x2, respectively. Again, we want to find out whether
similar values of M1 and M2 mean that NB is close to
optimality.

Let x be a discrete variable. We consider two probability
mass functions:- the true joint distribution, P*(x), and the
distribution derived through the independence model,
PNB(x). NB uses the latter while Bayes classifier uses the
former. Divergence is a popular measure akin to Kull-
back–Leibler divergence (Webb, 1999; van der Heijden
et al., 2004). We used the discrete calculation
ENB – EB
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ðP �ðxÞ � P NBðxÞÞ log
P �ðxÞ

P NBðxÞ

� �
ð15Þ

The results with the Bhattacharyya and Matusita dis-
tances were very similar to these with divergence so we left
them out of this paper. Fig. 4 shows the scatterplots of
ENB � EB versus Divergence(x1) � Divergence(x2). Inter-
estingly, there is no evidence that similar degrees of feature
dependence for the two classes brings NB close to optimal-
ity for either the general case or the case of equal covari-
ances. This comes to show that Q123 indeed complements
the covariances in that it provides additional insight into
possible optimality conditions for NB. Divergence, on the
other hand, is not indicative in this respect. The span of
the divergence differences is only slightly reduced for the
distributions with equal covariances. The difference
between plots (a) and (b) in Fig. 4 merely shows what we
already observed, that NB is closer to the optimal classifier
when covariances between features are mirrored for the
two classes.
5. Conclusions

This paper looks for optimality conditions for the Naı̈ve
Bayes classifier (NB). In Section 3 we prove that for two
binary features and two equiprobable classes NB is optimal
for dependent features as long as the covariances for the
two classes are equal. We also show that this optimality
does not hold for different prior probabilities for the
classes. Despite not optimal, NB is close to the optimal
classifier for the case of equal covariances (Fig. 1). Unfor-
tunately this optimality condition does not carry forward
to three features as shown in Section 4. Equal covariances
again ensure that NB is closer to optimality than it is in the
general case but there is ‘‘outstanding dependency’’ of
higher order not accounted for by the pairwise covariances.
We pick four measures of (non-pairwise dependency and
look into the hypothesis that similar values of these mea-
sures for the two classes may complement our optimality
condition. Only the three-way Q123 showed potential to
be considered for the optimality condition (Fig. 3). Disap-
pointingly, the popular divergence measure did not appear
to be useful (Fig. 4). The above results are intended as a
step in the on-going quest for building a set of optimality
conditions for NB (Langley et al., 1992; Domingos and
Pazzani, 1997; Hand and Yu, 2001).

One problem with this topic is that, while the notion of
independence is well defined, there is no agreed measure of
dependency between two discrete features. We could have
taken the Q statistic or the correlation between the vari-
ables, or a myriad of measures available in the statistical
literature (Sneath and Sokal, 1973). The problem is even
worse when it comes to measuring dependency for three
or more features.

There are several issues here. First, the fact that a rela-
tionship cannot be proven beyond the case of two features
using pairwise correlations does not mean that such a rela-
tionship does not exist. A relationship may exist with
another measure.

Second, we found an interesting pattern for Q123 which
may prove to be a way forward in expanding (or rather
relaxing) the sufficient optimality conditions for NB. How-
ever, this seems to be a dead end as there is no definition of
higher order Q’s.

Third, divergence (Bhattacharyya and Matusita dis-
tances as well) did not show any potential worthy of
further exploration. According to these measures NB opti-
mality does not depend on how similar the feature depen-
dencies are in the class-conditional distributions. The lack
of direct relationship between feature dependence and clas-
sification accuracy of NB has been well documented in the
literature through extensive experimental studies. Although
it has been hypothesized that the distribution of depen-
dencies is more important than the magnitude of the
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dependencies itself (Zhang, 2004), there is little evidence in
support of this.

Fourth, as Q is limited for up to three features and diver-
gence-like measures are not particularly responsive, it is not
clear how an optimality condition can be formulated in the
general case. We can speculate that mirrored covariances
for the two classes will be beneficial in the higher-dimen-
sional cases. It is possible that different optimality condi-
tions hold for odd and even number of features.

Defining rigorous and general conditions to explain why
NB behaves as the optimal classifier is an intriguing
research topic fuelled by curiosity rather than practicality.
When a data set is available, it is easier to train and test NB
than to calculate measures to estimate the chances of NB
being optimal. The intuition is different when we come
back to the veterinary problem which inspired this study.
Since there is no data set, and NB is the only reasonable
option, it will be reassuring to discover further conditions
which might hold in reality and under which NB is optimal.

Acknowledgements

I am grateful to Dr. Peter D. Cockcroft, Department of
Clinical Veterinary Medicine, University of Cambridge,
UK, for introducing the BSE problem and data to our
group. I also would like to thank Chris Whitaker, School
of Psychology, University of Wales, Bangor, for the very
helpful discussion on the Q statistic.

Appendix A

The algorithm below was used to generate randomly
class-conditional distributions for 2 classes and 2 binary
features such that the pairwise covariances are equal for
x1 and x2. The probability mass function (pmf) for class
x1 for three binary features is shown in Table 3.

Denote the corresponding pmf values for class x2 by
capital letters A, . . . ,H.

Step 1. Generate A, . . . ,H from a uniform random distri-
bution within the unit interval and normalize so
that the sum is 1.

Step 2. Form the two-way tables and find the covariances,
C11, C12 and C13 for x2. For example, the table for
x1 and x2 will have entries (A + E), (B + F),
Table 3
Class-conditional probability mass functions for class x1 for three binary
features

x2 = 0 x2 = 1

x3 ¼ 0
x1 = 0 a b

x1 = 1 c d

x3 ¼ 1
x1 = 0 e f

x1 = 1 g h
(C + G) and (D + H), and the respective covari-
ance will be

C12 ¼ ðAþ EÞðDþ HÞ � ðBþ F ÞðC þ GÞ:
Step 3. Find the pmf for class x1, i.e., calculate a,b, . . . ,h.

As these eight parameters are bound by three equa-
tions for the covariances and one normalizing
equation, there are four parameters out of the eight
that can be drawn randomly. Suppose we pick ran-
domly e, f, g and h and scale them so that their sum
equals a random number between 0 and 1. This
scaling is needed so that there is room for the other
four parameters between 0 and 1. a, b, c and d are
obtained as the solution of the following system of
simultaneous equations:

ðaþ eÞðd þ hÞ � ðbþ f Þðcþ gÞ ¼ C12;

ðaþ bÞðg þ hÞ � ðcþ dÞðeþ f Þ ¼ C13;

ðaþ cÞðf þ hÞ � ðbþ dÞðeþ gÞ ¼ C23;

aþ bþ cþ d þ eþ f þ g þ h ¼ 1.

The solution is

Z1 ¼
ð1� e� f � g � hÞðg þ hÞ � C13

eþ f þ g þ h
;

Z2 ¼
ð1� e� f � g � hÞðf þ hÞ � C23

eþ f þ g þ h
;

d ¼ C12 � ð1� Z1 � Z2 � f � g � hÞh
þ Z1Z2 þ Z1f þ Z2g þ fg;

a ¼ d � Z1 � Z2 þ 1� e� f � g � h;

b ¼ Z2 � d;

c ¼ Z1 � d.

Step 4. Being probabilities, a, . . . ,h must be between 0 and
1. This is not guaranteed by the solution of the sys-
tem at Step 3. Therefore the last step is to check
whether all values are in [0,1]. If not, the new
pmf (a, . . . ,h) is discarded and the procedure starts
from Step 1.
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