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Abstract—Evaluation of keyframe video summaries is a noto-
riously difficult problem. So far, there is no consensus on guide-
lines, protocols, benchmarks and baseline models. This study
contributes in three ways: (1) We propose a new baseline model
for creating a keyframe summary, called Closest-to-Centroid, and
show that it is a better contestant compared to the two most
popular baselines: uniform sampling and choosing the mid-event
frame. (2) We also propose a method for matching the visual
appearance of keyframes, suitable for comparing summaries of
egocentric videos and lifelogging photostreams. (3) We examine
24 image feature spaces (different descriptors) including colour,
texture, shape, motion and a feature space extracted by a pre-
trained convolutional neural network (CNN). Our results using
the four egocentric videos in the UTE database favour low-level
shape and colour feature spaces for use with CC.

Index Terms—Video summarisation, Keyframe selection, Ego-
centric video, Image feature descriptors, Closest-to-Centroid
baseline model, Keyframe evaluation protocol.

I. INTRODUCTION

Keyframe summary of a video is a collection of frames
which reflects the content of the video in a succinct and ex-
pressive way. One common problem faced by researchers is the
evaluation of a keyframe summary [1]–[8]. At present, authors
often develop a bespoke experimental set-up in which their
proposed method for keyframe selection compares favourably
to one or two alternative methods.

The methods for obtaining a keyframe summary vary dra-
matically depending on the type of the video. Egocentric
videos and life-logging photo streams are especially difficult to
summarise because of the large variability within the content
of the units (events) [8]. This calls for tailor-made methods
for summary evaluation. One component of the evaluation
protocol is the choice of alternative methods to compare
against. Typical choices for such baseline methods are Random
(R), Uniform (U), and Mid-Event (ME). For R and U, the
number of frames K must be fixed in advance. For R, K
frames are randomly picked from the video regardless of their
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temporal position. For U, the video is split into K segments of
equal length and the middle frame in each segment is taken for
the summary. The Mid-Event summarisation method requires
that the video is already split into temporally coherent units
(events), either by an user or by an automatic method. The
middle frame (time-wise) is chosen to summarise this event.
These three baseline methods have been widely used (almost
exclusively) as the rival methods in evaluating a proposed
summary: Random (R) [3], [9], [10], Uniform (U) [3], [5],
[10]–[12], and Mid-Event (ME) [12]–[15]. Arguably, these
baselines are quite easy to beat. A new summarisation method
is naturally expected to rate better in comparison to these
baselines. However, an experiment confined only to R, U and
ME still leaves open the question of how the new method
compares to the state of the art.

Here we propose a new baseline summarisation method
termed Closest-to-Centroid (CC) which is meant to serve as a
competitor stronger than R, U and ME. The CC approach has
been used in the past either as a baseline or as a part of the
new method proposed within the respective study [1], [3], [4],
[10], [16]–[21]. Here we develop CC into a baseline keyframe
selection method by choosing among a large variety of feature
descriptors, thereby ensuring that CC is a higher quality
summary compared to U and ME (R is not taken forward
because it is deemed to be the weakest baseline anyway). In
order to evaluate the merit of the keyframe summaries we
design a generic matching protocol.

The rest of the paper is organised as follows. Section II
introduces the proposed baseline method. The feature spaces
are discussed in Section III. Our experiment with the UTE
egocentric video database [12]1 is presented in Section IV.
Finally, Section V gives our conclusions.

II. CLOSEST-TO-CENTROID BASELINE

The information required by the R and U baseline methods
is only the number of frames in the video / photo stream.
This is why R and U have been widely used in the evaluation
parts of many studies. The ME method requires knowledge
of the units to be represented in the summary (events, shots,

1http://vision.cs.utexas.edu/projects/egocentric/978-1-5386-1842-4/17/$31.00 ©2017 IEEE



scenes, segments, etc.). Segmenting the video into such units
is a difficult task in its own right, even more so for egocentric
and life-logging data [8].

Our proposal requires a further assumption. The frames
of the video must be described in some feature space. Let
V = 〈f1, . . . , fN 〉 be the video data, where each frame is
indexed by its time tag, and is represented by a feature vector
an n-dimensional space, x(fi) ∈ Rn. (To simplify notation, we
will use just xi to represent frame fi) . Let Ik ⊂ {1, 2, . . . , N}
be the index set of consecutive time tags identifying event k
from the total of K events, k = 1, . . . ,K. The baseline model
proposed here is to return the frame closest to the centroid
for each event. We refer to the events as “clusters” although
they may not form a conventional cluster structure in Rn.
Formally, the summary is the collection of ordered indices
J = 〈j1, . . . , jK〉 where

jk = arg min
m∈Ik

{d(xm, ck)}, (1)

d(., .) is a chosen distance metric in Rn, and

ck =
1

|Ik|
∑
j∈Ik

xj

is the centroid of cluster (event) k.
The CC approach has been widely used either as the sole

selection method, as a component thereof, or as a baseline,
sometimes under different names. For example, if d is the
Euclidean distance, it can be easily shown that the minimum
distance method of Bolaños et al. [10] is, in fact CC.

III. FEATURE SPACES

A crucial component of any keyframe selection method is
the chosen feature space. Following the literature, we consider
two groups: features which are meant to describe the content
of the frame, and features used to evaluate its quality. Note
that the two groups are not completely non-intersecting; they
likely share low-level features. Here we are interested in the
former group.

The content type feature spaces can be further divided into
low-level (context-free) and high-level (context-involved or se-
mantic). Quite often, the original feature space is transformed
further through Principal Component Analysis (PCA).

The boundary between low-level and high-level features
is somewhat blurred as many feature extraction methods are
designed with a view to enable detecting semantic content.
A perfect example are feature spaces extracted through deep
learning neural networks (e.g., Convolutional Neural Networks
(CNN)). In some studies, CNN output, taken before the last
fusion layer, is classed as low-level, while in others, as high-
level. In any case, CNN is the leading feature extraction
method for video summarisation [5], [10], [22], and therefore
we include it in our experiments.

The more context-involved the feature space is, the less
useful it is likely to be for a baseline method with wide

applicability. This is why we chose for our study a wide variety
of mostly low-level features as summarised in Table I.

The colour descriptors are as follows: Auto Colour Cor-
relogram (ACC) [23], Colour and Edge Directivity Descrip-
tor (CEDD) [24], Colour Layout Descriptor (CLD) [25],
Fuzzy Colour and Texture Histogram (FCTH) [26], Fuzzy
Opponent Histogram (FOH) [27], GIST [28], HSV Colour
Histogram (HSVch), Joint Composite Descriptor (JCD) [29],
RGB Colour Histogram (RGBch) [30], RGB Colour Mo-
ments (RGBcm), Scalable Colour Descriptor (SCD) [25].
For encoding shape information, we use the Pyramid of
Histogram of Oriented Gradients (PHOG) [31]. The descrip-
tors for encoding texture properties are: Edge Histogram
Descriptor (EHD) [25], Gabor features [32], Local Binary
Patterns (LBP) [33], Rotation Invariant Local Binary Pat-
terns (LBPriu2) [33], Tamura features [34].

The HSVch features refer to a colour histogram computed
only from the hue value (H) of the HSV colour space after
its uniform quantization into 32 colour bins. The RGBcm

colour moment features were extracted as follows: each frame
was divided uniformly into a 3-by-3 grid of blocks and then
we computed the mean and the standard deviation for each
block and each colour (9 blocks × 3 colour × 2 statistics
= 54 features). For extracting the GIST features, we used
the Lear’s GIST implementation2. All the other descriptors
were extracted using the LIRE library3 [35]. In addition to
such descriptors, we considered four other descriptors also
provided in the LIRE library, named as Basic Features (BF),
Jpeg Coefficient Histogram (JCH), Joint Histogram (JH), and
Luminance Layout Descriptor (LLD).

Also, we evaluated a mid-level representation based on
visual dictionaries, called Fisher Vectors (FV) [36], which
encodes local features as visual words. To create the visual
dictionary, local patches were extracted with a Hessian-affine
detector and described by SIFT descriptors [37], which were
reduced using Principal Component Analysis (PCA) and then
used to create a codebook with 64 visual words learned by
Gaussian Mixture Models (GMM). A global representation of
a video frame is obtained by accumulating the residual vectors.
The difference of each reduced SIFT descriptor and the mean
vector of the Gaussian distribution assigned to each visual
word was calculated. These differences were concatenated into
a single feature vector, which was subsequently power-law
normalised and then L2-normalised. The GMM computation
and FV encoding were performed using the Yael library4 [38].

For the Convolutional Neural Networks (CNN) we used
MatConvNet [39]. The 4096 deep features were extracted right
before the classification (soft-max) layer, from the response of
the Fully Connected layer (FC7) of the CNN. The runner-up

2The Lear’s GIST implementation is available at: https://lear.inrialpes.fr/
src/lear gist-1.2.tgz (As of March 2017)

3The LIRE library is available at: http://www.lire-project.net (As of March
2017)

4The Yael library is available at: http://yael.gforge.inria.fr (As of March
2017)



in ILSVRC 2014, known as VGGNet architecture [40], was
chosen to train the network. This network contains 16 hidden
(Conv/FC) layers.

We also considered a spatio-temporal descriptor to encode
motion information, known as Histogram of Motion Pat-
terns (HMP) [41].

TABLE I
THE MAIN CHARACTERISTICS OF THE EVALUATED FEATURE

REPRESENTATIONS.

Feature Visual
Type Information

Acronym Size

Low-Level

Colour

1. ACC 1024
2. CEDD 144
3. CLD 118
4. FCTH 192
5. FOH 576
6. GIST 960
7. HSVch 32
8. JCD 168
9. JCH 192
10. JH 576
11. RGBch 512
12. RGBcm 54
13. SCD 64

Texture

14. BF 8
15. EHD 80
16. Gabor 60
17. LBP 256
18. LBPriu2 36
19. LLD 64
20. Tamura 18

Shape 21. PHOG 630
Mid-Level Corners and edges 22. FV 4096
High-Level People and objects 23. CNN 4096
Low-Level Motion 24. HMP 6075

IV. AN EXPERIMENT WITH THE UTE EGOCENTRIC VIDEO
DATABASE

The purpose of this experiment is to identify a feature
representation among the chosen 24 representations in Tab. I
where CC is markedly better than U and ME. In doing so, we
also contribute a method for comparing keyframe summaries
based on the visual appearance of the frames.

The assumptions in this experiments are

1) The video has been already segmented into temporally
coherent events.

2) One frame per event is selected in the summary.
3) There is a ground truth of representative frames (one per

event).

A. Data

The UTE dataset [12] contains 4 videos (each lasting about
3-4 hours) of subjects performing their daily activities such
as driving, shopping, attending lectures and eating.5 The data

5This benchmark dataset has been used as a sole experimental test bed in
many studies on egocentric video summarisation.

set is challenging because it contains frequent changes of
the illumination and the camera position. The videos were
recorded at 15 frames/second with 350 × 480 resolution per
frame. We sub-sampled each video taking one frame per four
seconds, thus reducing the number of frames as follows:

• P01 , 3464 frames, 14 events.
• P02 , 4566 frames, 19 events.
• P03 , 2696 frames, 10 events.
• P04 , 4446 frames, 16 events.

Each video was segmented into events using SR-clustering
[42]6.

A ground truth summary was constructed for each video.
A user picked a frame for each event so that the events are
faithfully represented and still discernible within the video.

B. Matching procedure

Our matching procedure is intended to pair two frames
for the same event with respect to their visual appearance.
While there are many possibilities, we chose SURF features
[43] on the grey image to match objects and shapes as done
before [13], [15], and HSV histograms (following the protocol
by De Avila et al. [44]) to match the colour distribution.

Let f1 and f2 be the frames being compared. Denote by p1
and p2 the number of SURF points of interest in the respective
frames. Let m1 be the number of matches found from f1 to f2,
and m2, the number of matches from f2 to f1. The matching
score from the SURF features is taken to be

SSURF =
m1 +m2

p1 + p2
.

The two frames are considered matching on SURF features if
SSURF > θSURF, where θSURF ∈ [0, 1] is a threshold.

For the HSV feature space, a 32-bin histogram of the hue
value was calculated for each frame. The bin counts were
normalised so that the sum was 1 for each histogram. Let
Bj = {bj,1, . . . , bj,32} be the normalised histogram for fj ,
j = 1, 2. The L1 distance was calculated by

DH =

32∑
i=1

|b1,i − b2,i|.

The two frames are considered matching on HSV features if
DH < θH , where θH ∈ [0, 2] is a threshold.

To ensure that the frames are a true visual match they must
be a match on the objects/shapes (SURF) as well as colour
(HSV). Because of this conservative rule, we pick threshold
values which will allow for a fairly liberal match on each
components: θSURF = 0.05 and θH = 0.6.

To illustrate the matching method, we show in Fig. 1 the
results for matching the ground truth and the uniform, mid-
event and CC (PHOG) summaries of video P03. The matched
frames are highlighted in red.

6https://github.com/MarcBS/SR-Clustering



Finally, the match between the summaries can be calculated
as the F-measure, which in this case reduces to the proportion
of matches. For the examples in Fig. 1, F = 1

10 = 0.1 for U
and ME, and F = 5

10 = 0.5 for CC with PHOG features.

C. Results

We identified the CC summary for each feature space,
and quantified its proximity to the ground truth using the
above matching procedure. Additionally, we prepared three
alternative versions for each feature space. We applied PCA
and retained components explaining respectively 95%, 90%
and 80% of the variability of the data. The the CC summaries
were obtained, and the F-measure was calculated for these
additional feature spaces. The results are shown in Table II.
The higher the values, the better the feature spaces. We have
shown for comparison the F-measures for the two baseline
methods we contrast CC against: the uniform summary (U)
and the mid-event summary (ME). Ideally, all F-values for
CC will be higher than those for U and ME.

The results show that many feature spaces lead to CC which
matches the ground truth better than U or ME. The effect of
PCA is not consistent. Sometimes the F measure increases
with the transformation and retaining the fewer features, and
sometimes the effect is the opposite, both for the same feature
space and different videos (e.g., the Gabor feature space).
To show the overall performance of the feature spaces, we
averaged the F values across the videos and the 4 variants of
each feature space (across the columns of the table). Figure 2
shows the averaged values for the CC baseline method for the
24 feature spaces. The U and ME baselines are represented by
horizontal lines as they do not depend on the feature spaces.

With small exceptions, the feature spaces are suitable for
the CC baseline as the F-values for CC are higher than those
for U and ME. The best feature space in this experiment
happens to be PHOG. This can be explained with the fact that
the SURF features used as a part of the matching procedure
also account for the shapes in the frames. The same argument
can be put forward for HSVch. The highly acclaimed CNN
feature space showed a modest improvement of CC over U
and ME. Note that lower values of the F-measure do not mean
that the respective feature space is flawed. The F-values give
us grounds for recommending a particular feature space for
the CC baseline against which “proper” keyframe selection
methods should be compared. Based on the results of this
experiment, we recommend 21. PHOG, 1. ACC, 15. EHD, 7.
HSVch and 4. FCTH.

V. CONCLUSION

Here we address one of the most acute problems in video
summarisation: automatic evaluation of keyframe summaries.
We propose a baseline model, Closest-to-Centroid (CC) and
advocate its use instead of the weaker baselines widely used
thus far – the Uniform and the Mid-event selections. In ad-
dition, we propose an evaluation framework to compare sum-
maries where each event is represented by a single keyframe.

The main limitations of CC and the matching procedure
are as follows: the video must be already split into events; the
matching procedure addresses only visual similarity between
the frames.

Future experiments may refine the choice of a feature
space for CC and the parameter values for the matching
procedure. The CC can be applied to semantic feature spaces
provided that those can be suitably quantified and equipped
with a distance metric. To make the CC baseline even more
competitive, an image quality component can be added to the
closest-to-centroid criterion.
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