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Abstract 

An aggregation operator of quantitative opinions about the acceptance or rejection of a certain alternative is proposed. 
The main idea is to include a degree of consensus between the experts in computing the final value. We aim at 
strengthening the acceptance or rejection rate if the experts agree in their assessments. The proposed operator is directly 
applicable to the two-level classification paradigm where a pool of classifiers is used to infer the decision. The operator 
allows us to form a complex classification boundary in the space of experts' (classifiers') decisions expressed in terms of 
degrees of membership. The connective can easily be extended to define a classifier with a "refuse-to-decide" option. 
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I. Introduction 

The aggregation theme in fuzzy decision making 
is a broad one [10] comprising a lot of aggregation 
connectives, both general and specific, single-level 
and hierarchical [-7, 19], covering nearly the whole 
range from totally pessimistic through totally opti- 
mistic ends of the scale. This variety stems from the 
difference in aims, strategies, and hypotheses with 
respect to the type of opinions, their interrelations 
and relevance. 

One class of aggregation paradigms is based on 
the notion of consensus. Consensus (general agree- 
ment on an opinion) has figured prominently in 
decision making since the early ages of develop- 
ment of humanity, determining social and political 
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changes, life imprisonment, vital medical con- 
clusions, etc. It has been pointed out by Day I-8] 
that consensus models are potentially fertile and 
can be applied in various domains. 

Consensus methods concern predominantly 
voting schemes but their scope has been expanded 
to preference relations [4, 11-18, 29, 31], Bayesian 
inference and group decisions [28], rank ordering 
[30], structures [6, 9], linguistically defined assess- 
ments [24], direct estimates [14,20-23], Boolean 
phrases I-5], etc. Considering the problem of finding 
a set of acceptable (due to a certain consensus 
criterion) alternatives in a probabilistic setting (re- 
placing "alternatives" with "events", and "prefer- 
ence" with "certainty") the so called consensus 
theory can be applied [1-3,25].  It studies the 
combination of probabilities obtained from differ- 
ent sources (e.g., experts) into a single probability 
distribution on the set of events. 
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Although consensus is traditionally meant as 
a full and unanimous agreement we will adhere to 
a more relaxed view stating that consensus is 
a measurable parameter whose highest value cor- 
responds to unanimity, and the lowest one - to 
a complete disagreement. It seems not necessary to 
bring more arguments to support the need of a con- 
tinuous-valued degree of consensus: many excellent 
arguments have been reported in the literature (see, 
e.g., [18]). The main aim in defining a measure of 
consensus is twofold. The first aspect is to assess 
how far the group of experts (or decision makers) 
is from the unanimous agreement, thus giving 
a tool to monitor the evolution of group prefer- 
ences [4,6,24,29,31]. The second aim is to form 
a set of alternatives (issues, options, decisions, vari- 
ants) that obey certain consensus requirements. 
This set may either be considered as the overall 
solution or, in turn, searched through. Taking into 
account the nonstatistical nature of the experts' 
assessments, the most appropriate mathematical 
tool to handle calculations of this type appears to 
be fuzzy set theory. A notion of fuzzy linguistic 
majority has been used in [15, 16] to derive a fuzzy 
set of alternatives satisfying statements such as 
"Most experts are convinced of accepting this alter- 
native". This view has further evolved into a so- 
called "soft" consensus that may be expressed by 
the statement "Most of the important experts agree 
on almost all of the relevant alternatives" 
[11-13, 17, 18]. 

In this paper we propose an aggregation con- 
nective that contains explicitly the degree of con- 
sensus between the decision makers. We define an 
axiomatic framework based on some heuristic 
rationale. A two-level pattern recognition para- 
digm is considered where each first-level decision 
maker yields a degree of support in the interval 
[0,1] for the hypothesis that the object being 
classified belongs to a given class. By applying 
the proposed operator we aim at a better classi- 
fication performance than that of a two-level 
classifier with the same topology and a classical 
aggregation connective. A refuse-to-decide 
option is considered and the classification perfor- 
mance is evaluated in this aspect. The degree of 
consensus is estimated using some operations on 
fuzzy sets. 

2. Consensus aggregation operator 

Let us consider the following statement drawing 
a parallel between multi-classifier pattern recogni- 
tion and decision making. Let (2 ={col . . . .  , ~OM} be 
the set of classes (alternatives) and let x be an object 
generated by one of them. The problem to be solved 
is to choose the correct class knowing the classifica- 
tion decisions (individual preferences) of n classi- 
fiers (decision makers). Let R = {R1, ..., R,} be the 
set of classifier and let r/j denote the assessment of 
the ith classifier with respect to the jth class. In the 
trivial case the first-level classifier is supposed to 
indicate one class label, i.e., rij E {0, 1 }, and 

M 

2 r i j  = 1, i =  1, . . . ,n 
j = l  

(the orthogonality condition). 

We call the matrix [rlj] the "decision profile" 
[21, 23]. The problem of inferring the correct class 
is literally the one of choosing the best alternative. 
Depending on what rij means different techniques 
should be applied. Constituting a probabilistic 
framework, one could use the consensus theory 
mentioned in the introduction. Looking at the 
values r~j as degrees of acceptance, support, compli- 
ance, typicality, severity, strength of confirmation, 
etc., fuzzy aggregation operators appears to be 
more appropriate. 

In what follows we will process one alternative 
(classification hypothesis) at a time. We stipulate 
that we can consider classes separately, i.e., their 
mutual dependence (not necessarily exclusiveness) 
can be handled at a higher decision level. In other 
words, the support for one class will be inferred 
regardless of the support which the classification 
scheme renders to other classes. There are a lot of 
practical problems that are either essentially two- 
class (e.g., signature verification [26]), or multiclass 
with not mutually exclusive classes. The latter 
means that an object may belong with different 
degrees to more than one class. Many such exam- 
ples could be drawn from medical diagnosis where 
numerous diseases may occur simultaneously, and 
where formulating of mutually exclusive classes is 
both computationally ineffective and medically not 
interpretable. The interrelations between such 
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classes are more complex than mutual exclusive- 
ness because one disease may provoke, prevent, 
complicate, impede, etc. another one. This fact de- 
termines our choice to decompose the M-class 
problem, thus aiming at a refining of the single- 
class decision before passing it to the higher level 
analysis. 

The problem is to label x as a member (or non- 
member) of a given class o~. The decision profile 
reduces to a vector y = [Yl . . . .  , yn]T~ [0, 1]" with 
Yi denoting the degree of support provided by the 
ith classifier for the hypothesis that x belongs to co. 
The greater the value, the stronger the evidence for 
the class. The ensuing task is to aggregate the 
outputs in order to obtain a final degree of support. 
This degree can then be compared with a certain 
threshold in order to make the final decision. 

Let us assume that an aggregation connective 
has already been chosen depending on the charac- 
ter of the classification decisions. We propose to 
include explicitly the degree of agreement (called 
degree of consensus) between the decision makers 
into the computation of the final decision. This idea 
is based on the following rationale: 
• if the decisions agree on an aggregated value 

above certain threshold T from (0, 1) we could 
increase the strength of support; 

• if the decisions agree on an aggregated value 
below T we could even more "depress" the 
support; 

• if the decisions disagree (regardless if the result- 
ant value is greater or less than T)  there are no 
reasons to change the aggregated value in either 
direction. 
Obviously, the behavior of the consensus ag- 

gregation operator is drastically different below 
and above the threshold. Using a "standard" ag- 
gregation operator the agreement between the par- 
ticipants can hardly be captured. 

Let us denote by K(A(y), COO), T) ~ [0, 1] the 
consensus aggregation operator with A being the 
aggregated value and C, the degree of consensus. 

It is reasonable for K(A(y), COO), T) to comply 
with the following axiomatic properties (see, e.g., 
[27]): 

(i) Symmetry. Let y '  be a vector containing an 
arbitrary permutation of the components of y. 
We impose symmetry on K(A(y),C(y),T),  i.e., 

K(AOO'), COO'), T) = K(AOO), COo), T). If both the 
aggregation operator and the consensus measure 
are symmetric, the above is satisfied since K is not 
a direct function ofy.  

(ii) Selective monotonicity on the degree of 
consensus. K(AOO),C(y), T) is a nondecreasing 
function of COO) provided A o o ) = c o n s t >  T; 
K(AOO), COO), T) is a nonincreasing function of COO) 
provided AOO) = const < T . 

(iii) Unanimity of the aggregation. Let Yl = Y2 
. . . . .  y, = t. Then 

(ill.l). AOO)= t. This stems from the unanimity 
property (idempotency) of the aggregation [27]); 

(iii.2). COO) = 1; and 
(iii.3). K(t, 1, T) = t. 
(ilia) Strengthened Unanimity of the aggrega- 

tion. Let Yl = Y2 . . . . .  Yn = t. Then 
(iiia.1). A(y) = t; 
(ilia.2). COO)= 1; and 
(iiia.3). K(t, 1, T) > t, for t > T; K(t, 1, T) < t, 

for t < T; K(T, 1, T) = T. 
Obviously, the properties (iii) and (iiia) can be 

satisfied only alternatively. The strengthened una- 
nimity corresponds to a certain degree to the 
Archimedean property which underlies strict 
operations [10]. 

It deserves mentioning that the above set of ax- 
ioms differs from the usual setting for an aggrega- 
tion connective because the participating values 
A(y), COO), and T are meant to play completely 
different roles in the operator. 

The rule may be constructed in different ways. 
Three formulas are presented below: 

K(AOO), COO), T) = T + (A(y) - T)C(y). (1) 

Calculated in this way K(A(y), COO), T)  belongs 
to [0, 1] because 

K(A(y), C(y), T) = T + A(y)C(y) -- TC(y) 

= (1 - C(y))T + A(y)C(y) >~ O, 

Since K(A(y), C(y), T) is a convex combination 
of T and AOO) (both less than 1) with the coefficients 
summing up to 1, the following inequality holds: 

0 ~< min{A(y), T} ~< K(A(y), C(y), T) 

~< max{A(y), T} ~< 1, VC(y) e [0, 1]. 
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Its symmetry is guaranteed by definition, since 
K depends explicitly only on A and C and not on 
their arguments. 

K satisfies (ii) (selective monotonicity) because 

8K/SC(y)= AO, ) -  T < O  f o r A ( y ) <  T, 

3K/OC(y) = A ( y ) -  T > O f o r A ( y ) >  T. 

Unanimity property is obviously satisfied. A sim- 
ilar formula that satisfies the strengthened unanim- 
ity property is as follows: 

S = T + sgn(A(y) - T)f([A(y) - TI)C(y), 

where f ( .  ) is a monotonic function of its argument. 

This can be, e.g. x / rA(Y)-  T[, or more generally 
[A(y) - T[ l/p, with p > 1. Then 

1, if S~> 1, 

K(A(y), C(y), T)  = O, if S ~< 0, 

S, otherwise. 

(2) 

Another formula that obeys the same axioms is: 

K(A(y), C(y), T) 

1 - T  
1 + ~ e x p ( -  ~C(y)(A(y) - T)) 

(3) 

where ~ is a scaling constant. 
The symmetry of the above operator is obvious. 

Since the derivative of K on C(y) is positive for 
A(y) > T and negative otherwise, the axiom for the 
selective monotonicity is satisfied. We introduce 
this expression since it practically satisfies the 
strengthened unanimity for large values of ~, and 
moreover, it is differentiable. 

Fig. 1 shows the behavior of K versus A(y) with 
four different values of C(y) and with threshold 
value T = 0.4. From the figure it appears that if we 
introduce certain threshold of acceptance of the 
alternative (e.g., Ta¢cep, = 0.76) the decisive para- 
meter is the degree of consensus. For  example, 
using Eq. (1), with AIy) = 0.67, the alternative will 
not be accepted whatever the consensus is. Accord- 
ing to Eq. (2) the alternative will be accepted only if 
the consensus is 0.7 or higher. Similarly, Eq. (3) with 
c~ = 10 allows for acceptance of the alternative if the 

K 
1 

0.5 

Acceptance 

~ ~/~"~--~- eq. (1) 

threshold 

A0) 
0 

0 0.5 1 

K 
1 

0.5 

K 

~ _  Acceptance 
/ -----'--~ " threshold j . . /  . . . . .  

-~ - - -~  e q .  ( 2 )  

J --J~ A(y) 

0 0.5 1 

0.5 

~ _  Acceptance 
threshold 

0 0.5 1 

eq. (3) ACy) 

Degrees of consensus C(y) 
- 0.2 

. . . .  0.5 
- -  0.7 

Fig. 1. 

degree of support has been achieved with a consen- 
sus degree greater than, e.g., 0.6. 

This graphical example highlights the ability of 
the decision operator to be influenced directly by 
the degree of consensus regardless of the aggreg- 
ated value A(y). The higher the degree of consensus, 
the more certain the decision, either positive or 
negative. 

The considerations up to here were focused on 
the formal expression of the fuzzy consensus ag- 
gregation rule. The questions remaining outside the 
exposition are the one of selection of the aggrega- 
tion connective A (y), and the one of measuring the 
degree of consensus C(y) among the n degrees of 



support  of the alternative. Numerous  comprehens- 
ive studies on fuzzy aggregation can be found, and 
the selection of a proper connective can be based on 
some initial information available in the task. In 
what follows we will use some of the most widely 
used aggregation operations and some consensus 
measures from [21] where the problem of assessing 
the degree of consensus is addressed (without being 
exhaustively studied). 

3. A graphical  i l lustrat ion 

0.8 

Ace, a.ce 

0.6 

0.4 
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In order to clarify the idea we will provide 
a graphical illustration of the ability of the pro- 
posed operator  to form more complex, and at the 
same time intuitively pleasing, decision boundaries 
in the space of individual assessments when com- 
pared with some of the classical aggregation rules. 

Let us consider the following settings: 
(1) L e t y  = [yl,Y2] T G [0, 1] 2 be the vector con- 

taining the decision support  for the alternative pro- 
vided by two first-level decision makers (classifiers). 
Let Yi = 0 denote total rejection and Yi = 1, total 
acceptance, i = 1, 2. This will enable us to visualize 
the results on the 2-D plane. 

(2) Since there are many different ways to intro- 
duce competence levels of the experts (classifiers) 
we will confine the discussion to the case of equal 
competence. 

(3) After calculating the degree of support  we 
have to make a crisp decision either accepting or 
rejecting the alternative. We wish also to supply the 
rule with the ability to reply "refuse-to-decide" 
which can be an advantage in the multi-alternative 
(multiclass) case. This can simply be done by choos- 
ing two thresholds: Taccept and Trejec, and imple- 
menting the rule: 

Final Decision = 

I accept, if FS > Taccept , 
reject, if FS < Treject, 

,refuse to decide, otherwise. 

The notation FS is used here for the value of the 
final support. In the case of classical aggregation 
connectives it will be A (y). In our case FS stands for 
K(A(y), C(y), T). 

0.2 

0 0.2 0.4 0.6 0.8 1 

- -  Eq.(1) 

Eq.(2) 

Eq.(3) 

Fig. 2. 

(4) As a measure of consensus we will use the 
highest discrepancy [21] which for the current state- 
ment is: 

C(y) = 1 - [Yl - Y21. 

Figs. 2-4  show the isoquants of K(A(y),C(y), T)  
with the values for the constants T,c¢~pt = 0.8, 
Trejo~t = 0.3, and T = 0.5. The aggregation rules 
depicted are as follows: 
• Fig. 2. The minimum aggregation rule, A ( y ) =  

min(yl,Y2). The areas for acceptance and rejec- 
tion are highlighted in order to make the com- 
parison of the proposed formulas with the orig- 
inal aggregation rule more visible. The Eqs. 
(1)-(3) have been used to calculate the res- 
pective curves for K(A(y), C(y), T) = T,~¢ept and 
K(A(y) ,C(y) ,T)  = Treject. The square root is 
used as the function f in (2) 

• Fig. 3. The maximum aggregation rule, A(y) = 
max(yl,Y2). 

• Fig. 4. The average aggregation rule, A(y)= 
0.5(y+,y2). 
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Fig. 3. Fig. 4. 

The regions for acceptance and rejection, and the 
isoquants for K calculated with the three equations 
are shown in all three figures in the same style. 
Purposefully we have chosen one example from 
each attitude category [10]: the conjunctive, dis- 
junctive and compromise attitudes. 

Fig. 5 shows the decision surface of the average 
aggregation rule and its "distortion" with the pro- 
posed formulas. 

What can be seen from the example is that: 
1. The fuzzy consensus operator in general 

provides more complex boundaries of the decision 
regions for acceptance and rejection that hope- 
fully expresses better the human insight on the 
problem. 

2. It can be observed in all three figures that the 
first rule (Eq. (1)) defines a subdomain of the initial 
region. That means that the rule is more "strict", or 
restrictive. It accepts or rejects the alternative only 
if the value of the background aggregation rule is 
appropriate and the degree of consensus between 
the decision makers is acceptable. 

3. The two rules defined by the Eqs. (2) and (3) 
exhibit a more "generous" behavior due to the 
strenothened unanimity property. Thus an alterna- 
tive may be accepted even if the value of the ag- 
gregation rule is below the acceptation threshold 
but if the decision makers agree on it. On the other 
hand, taking the consensus into account results 
into cutting out the farthest parts of the acceptance 
and rejection regions. 

4. As it can be expected, Fig. 3 is the dual of Fig. 
2. The noncompensative character of the aggrega- 
tion rules (Figs. 2 and 3) is preserved in the pro- 
posed fuzzy consensus operator. 

By introducing certain multiplicative and/or 
power coefficients expressing different competence 
of experts we can "skew" the pictures but the char- 
acter of the behavior will be the same. 

4. E x p e r i m e n t a l  e x a m p l e  

The proposed rule is hardly comparable with the 
aggregation rules based on consensus since they 
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A(y) K Eq.(1) 

1 ~  1 1 ~  l 
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u,o 0,4 (~ " - ~ ' ~  0.2 0.4-- 0.2 0.2 
0.2 0 0 " 0 0 

Fig. 5. 

operate on preference relations while the con- 
sidered one uses direct assessments of the support 
of the classification hypothesis. Furthermore, they 
do not explicitly use the degree of consensus in 
calculating the final value. Finally, one can always 
find data that support one's claim of superiority of 
the proposed rule to the others. Having this in 
mind, an illustrative example is presented using 
a small real data set from neonatal medicine. 

The problem of detecting a hyaline membrane 
disease of a newborn is of vital importance because 
this decision determines ultimately the further 
manipulations necessary to save the life of the 
infant. Normally, the clinic manifestation of the 
disease is highly obscured, the relevant X-ray exam- 
ination is informative only after the disease is in its 
late stages, the great bulk of the easily measurable 
parameters are quite nonspecific. All this outlines 
the complexity of the diagnostic task. The experi- 
ment presented in this paper has only an illustrative 
meaning and is not supposed to be medically 
sound. 

There is a high risk a preterm newborn to be 
affected by this particular disease due to the imma- 
turity of the lungs. The problem is to predict if the 
newborn will suffer from hyaline membrane disease 
or not, i.e. we have to distinguish between two- 
classes: affected and healthy. The set of features 
used here include: gestation age, morphological 
maturity, and the Apgar index at two subsequent 
time moments after delivery. We will refer to the 
features as X1, X2, X3, and X 4. The sample consists 
of 99 cases: 51 healthy and 49 affected, each one 
described by values of the features and by the 
respective class label. 

Each feature will be considered as an "expert". In 
order to form the first-level decisions we built 
a classifier on each individual feature using linear 
discriminant analysis (LDA). The degree of support 
of the hypothesis of being affected was measured by 
the posterior probability as estimated by the LDA 
program. The output values of these single-feature 
classifiers are regarded as yi's: the individual classi- 
fication decisions subject to aggregation. 
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The main goal of the experiment was to compare 
the behavior of the proposed operator with that of 
the respective aggregation connective embedded in 
the formula. As in the previous illustration we will 
assume that the experts (classifiers) are equally 
competent. 

The integral highest discrepancy measure of con- 
sensus [21] has been used which for this case is 

C(y) = l - max lYi - 2/I i=l ..... 4 

where y is the mean value of yi's. 
The following aggregation connectives have been 

tried: minimum, maximum, and average. Each op- 
erator has been applied first individually, and then 
through the proposed fuzzy consensus aggregation 
operators corresponding to Eqs. (1)-(3), and de- 
noted K1,Kz ,  and Ks, respectively. Having fixed 
the acceptance and rejection thresholds, each ag- 
gregation technique has been used to infer the crisp 
decision for any of the objects. The points for which 
FS (K or A(y)) exceeded Taccept have been assigned 
"accept" (corresponding to class affected) while 
those below Trej~ct have been assigned "reject" (cor- 
responding to class healthy). The points in-between 
have been designated for refuse. We counted the 
apparent classification accuracy Pc for the objects 
admitted to classification 

Pc = Nc/Nnot-refused 

where Nc is the number of correctly classified ob- 
jects (those with a preliminary label affected and 
being assigned "acceptance" by the classifier, and 
those with label healthy and being assigned "re- 
ject"), and Nnot.refuse d is the number of all objects 
adopted for a crisp classification decision. 

Since the classification accuracy strongly de- 
pends on the threshold values, the experiment con- 
sisted in a smooth changing of the acceptance and 
rejection thresholds in a conjugated manner, i.e. 
Taccept = 1 - Treject , s o  that Taccept increases from 
0.5 to 1, and Treject decreases. In order to assess the 
classification performance accounting simulta- 
neously for classification accuracy and refuse rate, 
the following criterion has been used: 

U = )~Pc + (1 -- 2)(1 -- R), 

U(average) A(y) = M i n i m u m  

0.72 

0.68 
0.55 0.7 0.85 

U(average) A(y) = Average 

0.79 

0.75 

0.71 )v 
0.55 0.7 0.85 

U(average) A(y)  = M a x i m u m  
0.74 

0.7 ....................... - ~ ~  
0.66 / .1 / 

0.62 )~ 
0.55 0.7 0.85 

- -  K, Eq.(3) K, Eq.(1) 
K, Eq.(2) ~ A(y) 

Fig. 6. 

where R is an estimate of the overall probability of 
refuse, and 2 is a parameter in [0, 1]. By fixing 2 and 
changing monotonically Taccept (respectively Trej,ct) 
a Pc(R) curve is obtained for each aggregation 
connective. In order to assess the curve we meas- 
ured the average values of U for different 2, i.e., with 
different prevalence of the accuracy to refuse rate. 
The higher the value of U, the better the two-level 
classifier, and, consequently - the aggregation con- 
nective used. We restricted the refuse rate R to vary 
up to 0.8 since for its higher values the assessment 
of the accuracy is based on too few objects and the 
result may be spurious. Fig. 6 shows the average 
values of U as a function of 2 for the accu- 
racy-refuse curves obtained with the aggregation 
operators under investigation. It can be seen that 
for certain values of 2 the proposed operator 
strongly dominates the embedded rule, whichever 
of the three formulas is used. This is especially 
persuasive with the maximum aggregation con- 
nective. It should be mentioned that the presented 
example is not a sufficient background to formulate 
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general conclusions but only a piece of evidence in 
support of the main idea. 

5. Conclusions 

In this paper a fuzzy consensus aggregation oper- 
ator has been proposed which aims at providing 
a more flexible tool to aggregate pointwise expert 
assessments for a certain alternative. The main 
rationale underlying the proposed operator is that 
the degree of consensus should be directly used in 
the computation of the final support. Three for- 
mulas have been proposed in a heuristically defined 
axiomatic framework. The ability of such an oper- 
ator to generate complex decision boundaries in 
the space of individual decisions has been illus- 
trated. The operator seems to yield plausible results 
since the regions where the decision makers highly 
disagree, the crisp decision (either acceptation or 
rejection) becomes less likely to be made. On the 
other hand, the formula is more "generous" in cases 
where the decision makers agree, even though with- 
out much confidence into the crisp decision. The 
considerations have been supported by an experi- 
mental illustration showing the possibility of the 
proposed fuzzy consensus aggregation operator to 
yield superior result when compared with classical 
aggregation operators. 
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