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Abstract

We offer an algorithm for random generation of classifier outputs with specified individual accuracies and pairwise

dependencies. The outputs are binary vectors (correct/incorrect classification) for a hypothetical data set. The generated

team output can be used to study the majority vote over multiple dependent classifiers. � 2002 Elsevier Science B.V.

All rights reserved.
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1. Introduction

Combining classifiers is now an established
research area known under different names in the
literature: committees of learners, mixtures of
experts, classifier ensembles, multiple classifier
systems, consensus theory, etc. (Ng and Abram-
son, 1992; Xu et al., 1992).

Majority vote is a popular method for com-
bining classifier outputs and has been studied for
the case of independent classifiers (Battiti and
Colla, 1994; Lam and Krzyzak, 1994; Lam and
Suen, 1997; Xu et al., 1992).

Let D ¼ fD1; . . . ;DLg be a team (set, commit-
tee, mixture, pool, ensemble) of classifiers such
that Di : Rn ! X, where X ¼ fx1; . . . ;xcg is a set

of class labels. For a given input x 2 Rn, the
majority vote assigns x the class label supported by
the majority of the classifiers Di.

Finding independent classifiers is one aim in
combining classifiers because, theoretically, the
majority vote accuracy Pmaj over independent
classifiers, each of accuracy p > 0:5, exceeds p.
More interestingly, when dependent classifiers are
combined, Pmaj can be higher than p, and also
higher than the accuracy of an independent team.
However, dependent classifiers may also render
Pmaj < p (Kuncheva et al., submitted; Kuncheva
et al., 2000). One question that is generally not
answered yet is how Pmaj will be affected if classifier
accuracies differ by a small fraction or when the
pairwise dependencies between classifiers are dif-
ferent. For example, suppose we are interested in
the behavior of majority vote of L ¼ 5 classifiers
when degrading the individual performances of
three of them but keeping the diversity of the team
the same. This task is hardly feasible if we have to
build the classifiers on real-life data. Therefore, for
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studying empirically the relationship between di-
versity and majority vote, a simulation routine is
needed where we specify the target individual ac-
curacies and pairwise relationships and produce
the classifier outputs.

In this paper we offer an algorithm for gener-
ating randomly a set of L classifier outputs over a
hypothetical data set of N elements. The Q statistic
for pairwise dependency is introduced in Section 2.
The formulas for generating two classifiers of
specified accuracies and dependency between them
are derived in Section 3. The procedure for L
classifiers is discussed in Section 4 and some results
are given in Section 5.

2. The Q statistic for pairwise dependency

Let Z ¼ fz1; . . . ; zNg be a labeled data set,
zj 2 Rn coming from the classification problem in
question. We can represent the output of any
classifier Di as an N-dimensional binary vector
yi ¼ ½y1;i; . . . ; yN ;i�T of correct classification, such
that yj;i ¼ 1, if Di recognizes correctly zj, and 0,
otherwise, i ¼ 1; . . . ; L.

There are various statistics to assess the simi-
larity of two classifier outputs yi and yk (Sneath
and Sokal, 1973). The Q statistic (Yule, 1900) for
two classifiers is

Qi;k ¼
N 11N 00 � N 01N 10

N 11N 00 þ N 01N 10
; ð1Þ

where Nab is the number of elements zj of Z for
which yj;i ¼ a and yj;k ¼ b (see Table 1).

For statistically independent classifiers (and
N ! 1), Qi;k ¼ 0. Q varies between )1 and 1.
Classifiers that tend to recognize the same objects
correctly will have positive values of Q, and those
which commit errors on different objects will ren-
der Q negative.

Shown below are four 2
 2 tables with the re-
spective Q’s and individual accuracies p̂p1 ¼ p̂p2 ¼ p
for N ¼ 100 objects.

Our previous studies (Kuncheva and Whitaker,
2001) picked the Q statistic from a set of 10 mea-
sures of classifier diversity for the following rea-
sons: Q depends to a less degree on the individual
accuracies than the other 9 measures do, and Q has
a specific value 0 for statistically independent
classifiers. A formal relationship between Q and
the limits of the majority vote has been shown in
(Kuncheva et al., submitted).

The aim is to generate L binary vectors of
length N, y1; . . . ; yL. The input is the number of
data points N, a vector with desired individual
accuracies p ¼ ½p1; . . . ; pL�T, and a symmetric ma-
trix Q ¼ ½Qi;k�, where Qi;k is the desired dependency
between classifiers Di and Dk, i; k 2 f1; . . . ; Lg.

Generating independent classifiers of accuracies
in p is easy. However, when a certain dependency
has to be modeled, the generation is not trivial.
Below we offer a solution to this problem without
claiming that this is the best or the only possible
one.

3. The generating algorithm for two classifiers

Consider first two classifiers, Di and Dk, and
their respective output vectors yi and yk.

Let Di have accuracy A, so that approximately
N 
 A elements of yi are 1s and N 
 ð1� AÞ
elements are 0s. Assume that we alternate each

Table 1

A 2
 2 table of the relationship between a pair of classifiers

Dk correct (1) Dk wrong (0)

Di correct (1) N 11 N 10

Di wrong (0) N 01 N 00

Total, N ¼ N 00 þ N 01 þ N 10 þ N 11.
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element 1 of yi with probability P1 and each ele-
ment 0 with probability P2. The result will be a
new output vector, say, yk, whose accuracy Anew

can be calculated from A, P1, P2, and N. The
number of ones in yk will be those that did not
change, approximately N 
 A
 ð1� P1Þ, and also
those coming from previous zeros, i.e., approxi-
mately N 
 ð1� AÞ
 P2. Thus, the new accuracy
will be

Anew ¼ 1

N
ðNAð1� P1Þ þ Nð1� AÞP2Þ

¼ Að1� P1Þ þ ð1� AÞP2: ð2Þ

Example. Consider a binary output vector
yi ¼ ½0 0 1 0 1 1 0 1 1 1�T of size 10, coming from
classifier Di with accuracy A ¼ 0:6. If P1 ¼ 0 and
P2 ¼ 0, then the new output yk that we produce
using yi will be identical to yi. Now assume that
P1 ¼ 0:3 and P2 ¼ 0:1. To form the new vector, yk,
we generate 10 random numbers, r1; . . . ; r10, one
for each component of yi. The jth component of
yk is obtained by comparing rj with P1 if yj;i is 1,
and with P2 if yj;i is 0. If rj is greater than the
respective probability, then we rewrite the jth bit
in the new vector. Otherwise, we alternate it. The
table below shows an example of producing yk
from the above yi

The only bit that changed was y3;i. The (pre-
dicted) new accuracy, (2), is

Anew ¼ 0:6
 ð1� 0:3Þ þ ð1� 0:6Þ 
 0:1 ¼ 0:46:

Indeed, the observed value of Anew from this ex-
ample is 0.5. We need two values, P1 and P2, so
that not only the new accuracy is targeted but also
the dependency between the outputs of the basic
classifier and the new one.

We need P1 and P2 so that Dk is derived by
this alternating procedure from Di, and the de-
sired accuracies are pi ¼ A and pk ¼ Anew while also
fixing the desired Qi;k. Noticing that approxi-
mately:

N 11 ¼ NAð1� P1Þ;
N 10 ¼ NAP1;

N 01 ¼ Nð1� AÞP2;
N 00 ¼ NAP2;

ð3Þ

and applying (1), we obtain through algebraic
manipulations

Qi;k ¼
ð1� P1Þð1� P2Þ � P1P2
ð1� P1Þð1� P2Þ þ P1P2

¼ 1� P1 � P2
1� P1 � P2 þ 2P1P2

: ð4Þ

Substituting pi ¼ A and pk ¼ Anew in (2) and solv-
ing simultaneously (2) and (4) for P1 and P2, we
obtain

P1 ¼ 1� P2 �
pk
pi

þ P2
pi
;

P2 ¼
� 1� Qi;k þ 2Qi;kðpi � pkÞð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffi
Discr

p

4Qi;kð1� piÞ
;

ð5Þ

where

Discr ¼ 1ð � Qi;k þ 2Qi;kðpi � pkÞÞ2

� 8Qi;kð1� piÞpkðQi;k � 1Þ:

For Qi;k ¼ 0 (independent Di and Dk), P1 ¼
1� Anew and P2 ¼ Anew.

Using the above equations, 50 pairs of classifi-
ers Di, Dk were generated with desired values
pi ¼ 0:6, pk ¼ 0:8, Qi;k ¼ �0:3, and N ¼ 1000. The
mean and the standard deviations found through
the experiment are

p̂pi ¼ 0:6024� 0:0136; p̂pk ¼ 0:7991� 0:0131;

Q̂Q ¼ �0:2946� 0:0803:

It is important to keep in mind that the derived
relationships are only approximate. The accuracy
of the approximation will depend on the chosen
sample size N. Small values of N might lead to
spurious results. At a glance, the size of N might
not look to be too much of a problem. As we are

yi ¼ 0 0 1 0 1 1 0 1 1 1
rj’s 0.30 0.54 0.15 0.70 0.38 0.86 0.85 0.59 0.50 0.90
yk ¼ 0 0 0 0 1 1 0 1 1 1
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generating the data, we can afford to generate a
series of ensembles, and then judge and pick the
closest approximation to our target values. The
argument against this is that sampling from real
data will hardly produce small sets of classifier
outputs with an exact representation of the accu-
racy and dependency. Thus, our (small) data set
with perfect representation of the target values will
not be an adequate model of a real-life problem of
the same size. It is recommended therefore to use
large values of N.

4. The generating algorithm for L classifiers

When more than two classifiers are needed, the
generation is not straightforward. The random
alternating of the output of one classifier (called
the basic classifier) to get the output of another
classifier (called the subsequent classifier) has to be
‘‘shared’’ between all L classifiers. If we first
generate Di and use it to obtain Dk through the

alternating procedure described in Section 3, and
then use either of Di or Dk to produce another
classifier Dl, there is no guarantee that the classifier
left aside and Dl will have the desired Q value. The
idea proposed here only partly solves the problem.
First, for each pair of classifiers Di;Dk 2 D, we
calculate P1ði; kÞ and P2ði; kÞ using (5). 1 Next, for
each data point zj 2 Z, a random permutation of
the integers from 1 to L is generated. It is used to
pick the order in which the classifiers will be
selected as the basic and the subsequent ones. For
example, take the permutation ð3; 5; 2; 1; 4Þ for 5
classifiers. First, classifier D3 is nominated as the
basic one and D5 as the subsequent one. The
output value of D3 for zj is generated randomly: 1
with probability p3 or 0 with probability 1� p3.
Next, D3 is used to set the output value for D5 (for

Fig. 1. A pseudo-code for generating the array with the classifier outputs from the vector of accuracies p and the matrix of pairwise

dependencies Q.

1 These are P1 and P2 from the two-classifier case. They now

need to be indexed with respect to the two classifiers, as we

consider a pool of L classifiers with LðL� 1Þ=2 possible pairs.
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this particular zj) using the probabilities in P1ð3; 5Þ
or P2ð3; 5Þ. Further, D5 is taken to be the basic
classifier and D2 is picked as the subsequent one.
Using P1ð5; 2Þ or P2ð5; 2Þ we set the value of D2.
The final pair for this example will be D1 and D4.
This generation process is repeated N times, so
that L binary column vectors of length N are ob-
tained. The random nomination of the basic clas-
sifiers spreads the ‘‘responsibility’’ over the whole
D assuming that eventually every two classifiers
will have enough entries in the respective output
vectors obtained from one another, so that the
desired Q between them is approached.

The pseudo-code for the algorithm is shown in
Fig. 1.

5. Simulation results

Case 1. The proposed algorithm was run 100
times with L ¼ 3 classifiers and input parameters as

follows:Qi;k ¼ b 8i; k ¼ 1; 2; 3, i 6¼ k; and ðQi;i ¼ 1Þ,
where b 2 f�1;�0:9; . . . ; 1g; and p ¼ ½a; a; a�T, for
a 2 f0:6; 0:7; 0:8; 0:9g. Thus 21
 4 tables were
constructed and the results in each cell were calcu-
lated as an average of 100 experiments (total of 8400
generations of data sets). In all experiments, the
data set generated contained N ¼ 200 points.

The means and the standard deviations of the
individual accuracies âa obtained from the gener-
ated sets of classifier output, regardless of the
target Q, are:

p ¼ 0:6; p̂p ¼ 0:600 ð�0:021Þ;

p ¼ 0:7; p̂p ¼ 0:701 ð�0:020Þ;

p ¼ 0:8; p̂p ¼ 0:800 ð�0:018Þ;

p ¼ 0:9; p̂p ¼ 0:900 ð�0:013Þ:

Fig. 2 shows the deviations of the individual accu-
racies from the target value, p̂p � ptarget, for target

Fig. 2. Deviations of the individual accuracies from the target values 0.6, 0.7, 0.8 and 0.9 versus the target values of the diversity Q.
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values of diversity Qtarget 2 f�1:0; . . . ; 1:0g. The
figure shows that the individual accuracies are
slightly less precise toward bigger values of the
Qtarget.

Shown in Table 2 are the averaged pairwise Q̂Q’s,
and their standard deviations for the generated
data.

Plotted in Fig. 3 are the deviations of the gen-
erated Q’s from the target values. If the generation
was perfect, all the points should have been on the
diagonal line. However, as the graphs show, the
generation is biased. First, higher values of Q are
more closely modeled than lower values. Second,
the standard deviations in Table 2 and the
graphical output in Fig. 3 indicate that the vari-
ability of Q̂Q increases with p.

The imprecision of the generating algorithm is
unpleasant but is not a serious problem. If we want
to generate the outputs of, say, M, classifier teams
with a prespecified Q, we can use the algorithm as
it is and accept only those teams whose Q and p
are sufficiently close to the desired values. The al-
gorithms should be run until we reach the number
M of such teams. As the figure shows, it will not

always be possible to keep both Q and p precise
and generate all values of Q at the same time. The
time needed to generate M teams will depend on
the assignment of the target parameters. Values of
Q close to 0 will be easily reached whereas values
close to )1 might need a lot of time. Some modi-
fications of the code led us to more accurate values
for Q but this destroyed severely the precision of p
and therefore these modifications were dismissed.

With bigger number of data points N, the
variance of the estimate decreased but the Q values
were similarly biased.

Case 2. While in Case 1 the classifiers were of
the same accuracy and dependency, in Case 2
different values were tried. The proposed algo-
rithm was run 100 times with input parameters

ptarget ¼ ½0:6; 0:9; 0:8; 0:7�T;

Qtarget ¼

1 �0:2 0:5 �0:6
�0:2 1 �0:2 0:1
0:5 �0:2 1 �0:4
�0:6 0:1 �0:4 1

2
664

3
775; ð6Þ

N ¼ 1000:

Table 2

Means and standard deviations of the pairwise Q̂Q’s of the generated classifier outputs

Target QðbÞ pðaÞ

0.6 0.7 0.8 0.9

)1.0 )0.579 (�0.032) )0.550 (�0.059) )0.541 (�0.115) )0.651 (�0.234)

)0.9 )0.526 (�0.042) )0.497 (�0.062) )0.501 (�0.107) )0.562 (�0.245)

)0.8 )0.460 (�0.051) )0.444 (�0.069) )0.437 (�0.116) )0.521 (�0.236)

)0.7 )0.409 (�0.053) )0.407 (�0.075) )0.417 (�0.118) )0.462 (�0.254)

)0.6 )0.342 (�0.069) )0.361 (�0.078) )0.359 (�0.111) )0.464 (�0.232)

)0.5 )0.304 (�0.067) )0.304 (�0.085) )0.323 (�0.114) )0.408 (�0.251)

)0.4 )0.249 (�0.058) )0.248 (�0.094) )0.271 (�0.123) )0.300 (�0.257)

)0.3 )0.178 (�0.080) )0.183 (�0.089) )0.209 (�0.129) )0.283 (�0.262)

)0.2 )0.129 (�0.073) )0.140 (�0.079) )0.139 (�0.133) )0.225 (�0.262)

)0.1 )0.062 (�0.078) )0.082 (�0.092) )0.074 (�0.125) )0.187 (�0.258)

0.0 0.006 (�0.088) 0.005 (�0.102) )0.025 (�0.134) )0.149 (�0.278)

0.1 0.080 (�0.078) 0.056 (�0.097) 0.048 (�0.130) )0.061 (�0.252)

0.2 0.147 (�0.094) 0.121 (�0.103) 0.118 (�0.136) 0.075 (�0.225)

0.3 0.220 (�0.091) 0.211 (�0.099) 0.197 (�0.131) 0.154 (�0.208)

0.4 0.291 (�0.091) 0.300 (�0.104) 0.302 (�0.120) 0.209 (�0.217)

0.5 0.381 (�0.085) 0.375 (�0.093) 0.364 (�0.120) 0.310 (�0.194)

0.6 0.475 (�0.083) 0.480 (�0.077) 0.488 (�0.108) 0.419 (�0.174)

0.7 0.606 (�0.076) 0.581 (�0.082) 0.591 (�0.087) 0.563 (�0.134)

0.8 0.706 (�0.057) 0.689 (�0.067) 0.702 (�0.075) 0.677 (�0.112)

0.9 0.846 (�0.040) 0.844 (�0.040) 0.829 (�0.046) 0.828 (�0.075)

1.0 1.000 (�0.000) 1.000 (�0.000) 1.000 (�0.000) 1.000 (�0.000)
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The means and the standard deviations of the
individual accuracies are as follows:

p̂p ¼ ½0:602; 0:900; 0:801; 0:701�T;

std ¼ ½0:015; 0:009; 0:012; 0:012�T:
For each of the 100 classifier teams, we calcu-

lated the squared error between the entries in the
target matrix Qtarget and the obtained Q̂Q. The
smallest value of the squared error (0.1537) was
identified and the respective classifier team was

taken as the best approximation. Table 3 shows
the averaged matrix Q̂Q, the best matrix, Q̂Q� and
Qtarget for comparison. The individual accuracies
for the best team are p̂p ¼ ½0:635; 0:902; 0:806;
0:700�T.

The accuracy of the approximated Qi;k depends
on how many times Di and Dk have been picked as
the pair (basic and subsequent) classifiers. For each
point in the data set, L of the possible LðL� 1Þ=2
pairwise relationships is being fixed. With the pro-
posed algorithm, the remaining relationships tend

Fig. 3. Deviations of the diversity Q̂Q from the target values Qtarget for individual accuracies a 2 f0:6; 0:7; 0:8; 0:9g.

Table 3

The diversity matrices: the averaged over 100 experiments (Q̂Q), the best matrix found (Q̂Q�) and the target (Qtarget)

Averaged (Q̂Q) Best (Q̂Q�) Target (Qtarget)

1.00 )0.09 0.28 )0.32 1.00 )0.17 0.40 )0.40 1.00 )0.20 0.50 )0.60
)0.09 1.00 )0.13 0.07 )0.17 1.00 )0.08 0.09 )0.20 1.00 )0.20 0.10

0.28 )0.13 1.00 )0.22 0.40 )0.08 1.00 )0.29 0.50 )0.20 1.00 )0.40
)0.32 0.07 )0.22 1.00 )0.40 0.09 )0.29 1.00 )0.60 0.10 )0.40 1.00
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to ‘‘drag’’ the team toward independence (Q values
closer to 0). Therefore, for smaller L we could ex-
pect more accurate estimates of Qi;k than for larger
L. Designing a probabilistic model similar to that
for the case of 2 classifiers is not straightforward
when L > 2. As mentioned before, a natural option
to overcome the imperfect generation will be to pick
only those teams whose parameters are close to the
targets and dismiss the rest.

6. Conclusions

This paper proposes an algorithm for generat-
ing L classifier outputs for a hypothetical data set
of N elements. The outputs are binary and indicate
correct/incorrect classification. We derive formulas
according to which two classifiers can be generated
with specified accuracies and dependency Q be-
tween them. Next, an algorithm for generating
multiple classifiers is proposed based on the for-
mulas. The degree of dependency of the generated
classifier outputs is smaller by absolute value than
the prespecified one which is a flaw of the gener-
ation strategy. A selection procedure can be ap-
plied to remedy this. The algorithm can be used for
simulation of classifier outputs in studies of the
majority vote accuracy of a pool of dependent
classifiers.
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