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Abstract

Cluster ensembles are deemed to be better than single clustering algorithms for
discovering complex or noisy structures in data. We consider different heuristics to
introduce diversity in cluster ensembles and study their individual and combined
effect on the ensemble accuracy. Our experiments with three artificial and three
real data sets, and 12 ensemble types, showed that the most successful diversifying
heuristic was the random choice of the number of clusters for each ensemble member.
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1 Introduction

Selecting a good clustering algorithm is more difficult than selecting a good
classifier. The difficulty comes from the fact that in clustering there is no
supervision, i.e., data have no labels against which to match the partition
obtained through the clustering algorithm. Therefore, instead of running the
risk of picking an unsuitable clustering algorithm, a cluster ensemble can be
used [24]. The presumption is that even a basic off-the-shelf cluster ensemble
will outperform a randomly chosen clustering algorithm. The question then
becomes whether we can guide the selection of a cluster ensemble.

The interest in cluster ensembles has been growing in the past few years [1,5,
7–11, 13, 19, 24, 25]. The aim of combining several partitions into a single one
is to improve the quality and robustness of the result.
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It is generally agreed that diverse classifier ensembles fare better than non-
diverse ensembles but it is also accepted now that the relationship between
diversity and accuracy at a close-up is not straightforward [17]. Thus the
known relationship is too coarse to be useful for the ensemble design and can
only be perceived as a guide statement. Here we are interested in cluster en-
sembles. We investigate the effect of various design heuristics on the ensemble
diversity and accuracy. Fern and Brodley [5] give an example showing that
more diverse ensembles offer larger improvement on the individual accuracy 1

than less diverse ensembles. Greene et al. [12] conclude that diversity among
the ensemble members is necessary but not sufficient for a good result, and
the strategy for combining the partitions plays an important role as well. We
draw upon these studies and try to quantify diversity in cluster ensembles in
two ways: diversity by design and obtained diversity. Then we look into the
relationship between these diversities and the ensemble accuracy.

We are interested in the following questions

(1) How do the ensembles based on different heuristics compare to one an-
other? Which is the best heuristic or combination of heuristics?

(2) Is ensemble diversity related to the ensemble accuracy?
(3) Is the level of diversity-by-design matched by the obtained diversity of

the ensemble?

The rest of the paper is organized as follows. Section 2 suggests heuristics
for building diverse cluster ensembles, explains the main ensemble algorithm
and explains the measure of similarity/diversity between partitions used in
this study. The choice of data sets and the experimental set-up are detailed
in Section 3. Section 4 contains the results and a discussion thereupon and
Section 5 concludes the study.

2 Diversity in cluster ensembles

2.1 Heuristics for building cluster ensembles

Let P1, . . . , PL be a set of partitions of a data set Z, each one obtained from
applying a clustering algorithm, or a ‘clusterer’. The aim is to find a resultant
partition P ∗ which best represents the structure of Z.

Cluster ensembles can be built in different ways, among which

1 By “accuracy” of a clustering algorithm we assume the degree of match between
some known cluster labels and the labels produced by the algorithm.
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• Use different subsets of features (overlapping or disjoint), called feature-
distributed clustering in [12,24].

• Use different clustering algorithms within the ensemble [14]. We shall
call such ensembles heterogeneous or hybrid.

• Randomize the clustering algorithm. Some clustering algorithms rely
on random choices. For example, k-means can be started from different
initializations which may lead to different partitions of the same data. The
classical hierarchical algorithms (single link, mean link, complete link, etc.)
are deterministic and will need external randomization.

• “Weaken” the clustering algorithm. Clustering methods are judged by
their stability, i.e. methods which are not too sensitive to data perturbations
are perceived to be better. In cluster ensembles it is important to have
diversity, so weaker clusterers have been considered. For example, we can run
just one iteration of k-means by initializing the cluster centroids randomly
and assigning the data points to these centroids [12]. Randomly projecting
the data on a low-dimensional space and running k-means in it is another
possibility being explored [5, 26].

• Use different a data set for each ensemble member, e.g. resampling with
or without replacement [3, 6, 9, 18,19].

Any combination of the above can be used as well.

We can construct the resultant partition following several approaches (called
“consensus functions”): direct (re-labeling) [6, 24, 29], feature-based approach
[27], hypergraph approach [24] and the pairwise approach [1,5,7–9,19]. We im-
plemented the pairwise approach because it has been a popular choice despite
its comaprativaly large computational complexity. The general version of the
pairwise cluster ensemble algorithm is outlined below.

(1) Given is a data set Z with N elements. Pick the ensemble size L and the
number of clusters c. Usually c is larger than the suspected number of
clusters so there is “overproduction” of clusters.

(2) Generate L partitions of Z with c clusters in each partition.

(3) Form a co-association matrix for each partition, M (k) =
{

m
(k)
ij

}

, of size
N ×N , k = 1, . . . , L, where

m
(k)
ij =











1, if zi and zj are in the same cluster in partition k

0, if zi and zj are in different clusters in partition k

(4) Form a final co-association matrix M (consensus matrix) from M (k), k =
1, . . . , L, and derive the final clustering using this matrix. A typical choice
for M is

M =
1

L

(

M (1) + M (2) + . . . + M (L)
)

.

3



The consensus matrix M can be regarded as a similarity matrix between the
points on Z. Therefore, it can be used with any clustering algorithm which
operates directly upon a similarity matrix. Viewed in this context, cluster
ensemble is a type of stacked clustering whereby we can generate layers of
similarity matrices and apply clustering algorithms on them. In our prelimi-
nary studies we found that the results were slightly better if we used M as a
new feature space and ran the single link clustering on that. This idea is not
novel in the pattern recognition and machine learning communities; treating
similarities between objects as the new feature space has been studied recently
by Pȩkalska et al. [20–22]

2.2 Diversity/Similarity between partitions

Various measures of similarity between two partitions have been proposed in
the literature. In our preliminary experiments we considered six indices: Rand
index [23], Jaccard index [4], adjusted Rand index [15], Correlation index [4],
the mutual information index used in [9, 24, 25] and the entropy [12]. Based
on the results, we chose the adjusted Rand index to measure both diversity
between clusterers and the ensemble accuracy.

Consider partitions A and B and their confusion matrix, where the rows cor-
respond to the clusters in A and the columns correspond to the clusters in
B. Denote by Nij the (i, j)th entry in this confusion matrix, where Nij is the
number of objects in both cluster i of partition A and cluster j in partition
B. Denote by Ni. the sum of all columns for row i; thus Ni. is the number of
objects in cluster i of partition A. Define N.j to be the sum of all rows for
column i, i.e. N.j is the number of objects in cluster j in partition B. Suppose
that the two partitions A and B are drawn randomly with a fixed number
of clusters and a fixed number of objects in each cluster (generalized hyper-
geometric distribution). There is no requirement that the number of clusters
in A and B should be the same. Let cA be the number of clusters in A and
cB be the number of clusters in B. The expected value of the adjusted Rand
index for this case is zero. The adjusted Rand index, ar, is calculated from
the values Nij of the confusion matrix for the two partitions as follows

t1 =
cA
∑

i=1

(

Ni.

2

)

; t2 =
cB
∑

j=1

(

N.j

2

)

; t3 =
2t1t2

N(N − 1)
; (1)

ar(A,B)=

∑cA

i=1

∑cB

j=1

(

Nij

2

)

− t3
1
2
(t1 + t2)− t3

, (2)

where
(

a

b

)

is the binomial coefficient a!
b!(a−b)!

.
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four-gauss easy-doughnut difficult-doughnut

Fig. 1. The three artificial data sets

We will use ar in two roles. First, the accuracy of an ensemble will be measured
as ar(P ∗, P t), where P ∗ is the ensemble decision and P t is the partition defined
by the true cluster labels. Second, ar measures the similarity between two
partitions, 1 − (ar(Pi, P

∗) will be used to measure the difference (diversity)
between an individual partition Pi and the ensemble output. Our previous
experiments led us to a measure for the ensemble quality defined as

D(P1, . . . , PL) =
1

2
(mean(ar(Pi, P∗) + std(ar(Pi, P∗))) (3)

Here ‘std’ denotes the standard deviation. We note that D may not be a
proper diversity measure because it includes ar(Pi, P∗) with a positive sign,
i.e., the closer the partition to the ensemble decision, the higher D is. This
counterintuitive choice was dictated by the dependency that we found between
the “proper” diversity (1 − mean ar(., .)) and the ensemble accuracy. This
study was a part of a larger project where we examined various diversity
measures, pairwise and non-pairwise, two of which were taken from the recent
literature [5, 12]. It truned out that if we combined the similiratiy to the
ensemble decision and the scatter about the mean similarity, as in (3), we
could see a pattern of relationship. Although we admit that this relationship
is not strong, the other measures studied showed even weaker relationship.

3 The experiment

3.1 Data sets

Figure 1 shows three artificial data sets called four-gauss, easy-doughnut and
difficult-doughnut, respectively. All three sets were generated in 2-D (as plot-
ted) and then 10 more dimensions of uniform random noise were appended to
each data set. A total of 100 points were generated from each distribution.

Three real data sets from UCI Machine Learning Repository Database 2 were
also chosen for this experiment: glass (9 features, 6 classes, 214 cases), iris
(4 features, 3 classes, 150 cases) and wine (13 features, 3 classes, 178 cases).
These data sets have often been picked for evaluating cluster ensembles, e.g.,

2 http://www.ics.uci.edu/∼mlearn/MLRepository.html
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in [16, 28], because they are relatively small, features are continuous-valued
and there are no missing values. We note that the correspondence between
the known labels and the labels obtained by clustering is not necessarily a
good measure of the quality of the clustering method because the class labels
may not correspond to natural groups in the data. Nevertheless, experiments
with real-life (labeled) data have been reported in most studies on clustering,
so here we follow this tradition.

3.2 Ensemble construction and diversity by design

Two clustering procedures were chosen for the experiments: the classical k-
means and the mean link (average link). k-means has been the most popular
choice for the base algorithm in cluster ensembles. Apart from being an intu-
itive choice, k-means has been shown to be a kind of a “center-stage” algo-
rithm on the landscape of a large spectrum of clustering algorithms [16]. On
the other hand, mean link has been found to be similar by performance to
single link in that both algorithms are sensitive to outliers. This instability is
not necessarily a drawback because it may be a basis for diversity when each
ensemble member is given a subsample of the data to cluster. Indeed, our ex-
periments show that mean link creates more diverse ensembles than k-means
does, which, curiously, are either much better or much worse than the k-means
ensembles.

To have a base for comparison, we ran the two chosen clustering procedures
as single clusterers using the following protocol.

• k-means. The number of clusters, c, was varied from 2 to 10. For each c we
ran the clustering algorithm from 10 different initializations and chose the
labeling with the minimum sum-of-squares criterion, Je [2]. To determine
the final number of clusters we took the minimum of the Xie-Beni index,
uXB(c), across c = 2, . . . , 10

uXB(c) =

∑c
j=1

∑

z∈Cj
||z− vj||

2

N(minj 6=l ||vj − vl||
2)

(4)

where vj is the centroid of cluster Cj, j = 1, . . . , c, and z ∈ Z.
• mean link. We built all the partitions from N down to 1 cluster. The largest

“jump” in the distance at which two clusters were merged was found and
this determined the final number of clusters. If this number appeared to be
too large, we conjectured that there is no reasonable structure in the data
and reassigned the final number of clusters to 1. We used a threshold of
80% of the total size of the data set, N . If the obtained number of clusters
was greater than the threshold, we abstained from identifying a structure
and labeled all the points as cluster 1.
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The ensembles were built according to the pairwise cluster ensemble procedure
in Section 2. When k-means was used as the base clusterer, we started each
ensemble member from a different initialization. Since mean link is a determin-
istic algorithm and does not depend on an initialization, we used a random
subsample from the data set for each ensemble member (sampling without
replacement). The length of the subsample was chosen randomly between N

2

and N .

The ensemble output was derived from the consensus matrix,M, by running a
single link on it. The final number of clusters was decided based on the largest
jump of the distance criterion as in the mean like procedure explained above.

All our ensembles consisted of L = 25 members.

With the base clustering techniques and the combination method fixed, we
tried the following diversifying heuristics

(1) Random number of overproduced clusters, c, for each ensemble member.
We varied c in the interval 2 ≤ c ≤ 22.

(2) Random subsample (Since this is the basic randomization heuristic for the
mean link ensembles, random sampling without replacement was applied
as an extra-heuristic to k-means ensembles only.)

(3) Noise injected in the data. For all data sets we used Gaussian noise with
mean 0 and standard deviation 0.1.

(4) Hybridization, whereby 13 k-means clusterers and 12 mean link clusterers
were pooled to make the ensemble.

The two single methods and the twelve ensembles in our experiments are
summarized in Table 1.

We can form sequences of cluster ensembles with progressively larger diversity-
by-design. For example, the following is a chain of ensemble types with increas-
ing number of heuristics

2 → 3 → 4 → 11 → 12 → 13 (5)

4 Results and discussion

Here we offer answers to the questions put up in the Introduction.
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Table 1
Types of cluster ensembles

Ensemble Structure Clustering Number of Sample Noise

number method clusters, c size, N

1 single k-means N/A

2 ensemble k-means 20 whole

3 ensemble k-means random whole

4 ensemble k-means random random

5 ensemble k-means random whole Y

6 single mean link N/A

7 ensemble mean link 20 random

8 ensemble mean link random random

9 ensemble mean link random random Y

10 ensemble hybrid 2 + 7

11 ensemble hybrid 3 + 7

12 ensemble hybrid 3 + 8

13 ensemble hybrid 4 + 8

14 ensemble hybrid 5 + 9

4.1 How do the ensembles compare to one another?

We compare the (assumed to be) true labels with the labels obtained through
the 14 clustering methods (Table 1). The ar index was calculated for the 14
methods and for the 6 data sets. Each value was averaged across 100 runs of the
respective ensemble method. Table 2 shows the best and the worst ensembles
for the 6 data sets, as well as the averaged number of clusters detected by the
respective ensemble (or single clusterer). The number in the brackets next to
the data set name is the (assumed) true number of clusters. The values of ar

for the best ensembles are highlighted in boldface.

The first curious result from Table 2 is the behaviour of ensemble 7 (mean

link ensemble where base classifiers are built on random subsets of the data).

While for three of the data sets 7 was found to be the best ensemble (easy-

doughnut, difficult-doughnut and glass) for the other three data sets (four-

gauss, iris and wine) 7 was the worst ensemble.
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Table 2
The best and the worst ensembles for the 6 data sets

Data set Best ensemble Worst ensemble

ensemble index clusters ensemble index clusters

four-gauss (4) 3 0.9410 3.90 7 0.4604 6.27

easy-doughnut (2) 7 0.9460 2.83 9 0.5465 8.04

difficult-doughnut(2) 7 0.6514 9.27 9 0.2521 10.19

glass (6) 7 0.2516 2.87 5 0.1329 3.63

iris (3) 11 0.5755 2.24 7 0.0947 2.94

wine (3) 1 0.3693 2.00 7 0.1179 8.40

Table 2 gives also an early inkling about the controversial role of diversity.

The most diverse ensembles according to diversity-by-design are 4 , 5 ,

9 , 12 , 13 and 14 . None of these appeared to be among the best

ensembles for any of the data sets. On the other hand, “diverse” ensembles

9 and 5 figure among the worst ensembles.

Next we calculated the ranks for the 14 clustering methods. We sorted the
values of ar for each data set and assigned a rank of 14 to the best method
and rank 1 to the worst method. Thus if one method was the best across all 6
data sets, it would get a total rank of 14× 6 = 84. If there was a single worst
method, it would get a rank of 1 × 6 = 6. Table 3 shows the 14 clustering
methods sorted by their total rank. The highest and the lowest ranks are
underlined, and the highest rank is shown in boldface.

Table 3
Ranks for the 14 clustering methods. The higher the rank, the better the method.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R 43 37 57.5 47 41 21.5 47 36 33 54 68 57 46 42

The performance results favor method 11 , a hybrid ensemble based on

13 k-means clusterers (started from different initializations and with random
number of overproduced clusters between 2 and 22) and 12 mean-link clus-
terers (run on random subsamples of the data set of size between half and
total size of the data). Ensembles based on k-means are generally better than

ensembles based on mean link. We found that 7 is a non-stable method

which may give excellent or disastrous results depending on the data set.

The pattern that starts showing through is that there are “lucky” heuris-
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tics and others, which may induce diversity that does not materialize as an
improvement on the performance. The best heuristic appears to be random-
ization of the number of overproduced clusters in the k-means ensembles. Hy-
bridization of the ensembles also seems to be good in certain cases (ensembles

11 and 12 ).

4.2 Is diversity related to the ensemble accuracy?

Figure 2 shows 6 accuracy-diversity plots, one for each data set. On the x-
axis is the obtained diversity D, (3), and on the y-axis is the accuracy of the
ensemble measured by ar(P ∗, P t). The ensemble methods are marked with
their numbers. The encircled numbers correspond to ensembles based on k-
means, the framed ensembles are based on mean link and the ensembles in
gray boxes are the hybrid models. Each point on the plot is the average of the
100 runs with the respective model.

The plots demonstrate the large variability of the diversity-accuracy pattern
or rather the lack of it.

First, there is no clear message indicating that largest diversity is best. The
only data set for which the accuracy-diversity relationship follows the expected
pattern is the wine data.

Interestingly, the four-gauss data also follows the pattern but only within the
‘model streak’. In other words, there is a “large diversity - better ensembles”
tendency separately for the k-means ensembles, for mean link ensembles and
for the hybrid ensembles, but not when we pool them together. This means
that accuracy-diversity relationship depends upon the way we construct the
ensemble and may not have a simple generalization. For example, suppose that
we have ensembles A, B and C to choose from for the four-gauss data set,
and that D(A) < D(B) < D(C). If we know that the construction method is
the same, we may choose C. However, if we know that, say, B uses k-means
whereas A and C use mean link, we should prefer B regardless of the diversity.
The expected monotone relationship holds also for the mean-link ensembles
for the iris data and for the k-means ensembles for the difficult doughnut
data. As the results in Figure 2 are averaged across 100 runs, we expected
a stronger relationship to appear in support of the general belief that more
diverse ensemble fare better.
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Fig. 2. Accuracy versus diversity. The ensemble methods are marked with their
numbers. The encircled ensembles are based on k-means, the framed ensembles are
based on mean link and the ensembles in gray boxes are the hybrid models.

4.3 Is the level of diversity-by-design matched by the obtained diversity of the
ensemble?

Next we examine the relationship between diversity by design, accuracy and
obtained diversity. To do this, we use the same type of plots as in Figure 2.
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Fig. 3. Accuracy versus diversity-by-design. The ensemble methods are marked with
their numbers.

The 6 plots corresponding to the data sets in this study are shown in Figure
3. For a better visual effect, we removed the coordinate axes. Depicted in
each subplot are the ensembles in the chain (5). They are linked in increasing

order of diversity-by-design, starting from 2 and finishing with 13 . The

x-coordinate is the diversity D, and the y-coordinate is the accuracy of the
respective ensemble, exactly as in Figure 2.

If there was a link between diversity-by-design and accuracy, the plots would
show all the ensembles aligned on a straight line with positive slope. None of
the subplots shows such a pattern. The non-monotonicity of the x-axis indi-
cates that diversity-by-design is not strongly related to the obtained diversity
either. Therefore, including more design heuristics does not necessarily lead
to more diverse or more accurate ensembles.

5 Conclusions

We studied 14 clustering methods: 2 individual methods and 12 ensemble
methods based on them. Our task was to try to evaluate the design heuristics
in terms of how diverse and how accurate ensembles they produce. Below we
give brief answers to the four questions of this study.

1. How do the ensembles compare to one another? Which is the best heuristic
or combination of heuristics?
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The best ensemble method was found to be 11 , a hybrid ensemble based on

13 k-means clusterers (started from different initializations and with random
number of overproduced clusters between 2 and 22) and 12 mean-link cluster-
ers (run on random subsamples of the data set of size between the half and
the total size of the data). Ensembles based on k-means are generally better
than ensembles based on mean link. However, the simple mean link ensemble

7 was found to be either a very good or a very bad choice depending on the

data set. Thus mean link ensembles appear to be a bit of a gamble. In real life
problems we will not have true labels to match our results against, and will
have to rely on other clues to find out whether the data at hand is a good one

or a bad one for a mean link ensemble. Ensemble 3 was the second best in

our study, based on only one “lucky heuristic” – the number of overproduced
clusters, c, is randomly chosen for each ensemble member. A simple ensemble

of type 3 could be a good practical choice.

2. Is diversity related to the ensemble accuracy?

We found that there is a general pattern such that diverse ensembles tend to
fare better but it does not hold for all data sets and all ensemble methods.

3. Is the level of diversity-by-design matched by the obtained diversity of the
ensemble?

There is no clear-cut relationship between the two. For example, ensembles

which are designed to have larger diversity, e.g., 4 , compared to 3 , actu-

ally have smaller values of obtained diversity for 4 out of the 6 data sets ( 4

is to the left of 3 in the top four plots in Figure 3).

We note that the pairwise cluster ensemble paradigm does not scale well for
large data sets. The co-association matrix M is of size N ×N , and running a
single-link clustering on it may be too time-consuming. We chose the pairwise
method because it has been a popular choice elsewhere. Also, the noise injec-
tion was not explored in depth, i.e. with different values of the noise variance.
It may turn out that for some specific value of the variance, noise injections
becomes one of the “lucky heuristics” too. Using different consensus functions
for obtaining the final partition is another option which we have not consid-
ered in this study. Finally, our study was limited to L = 25 ensemble members
and relatively small data sets which have been used as benchmark data sets
in cluster ensembles.
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