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Abstract 
A two-level pattern classification scheme is 

considered. At its first level the scheme labels the input 
object as "doubtful" or "certain" and at the second one 
applies the respective classification rule. Complicating 
the classifier in such a way we aim at a more accurate 
result than that obtained through either of the 
classification rules itself. A fuzzy neural network with 
linguistically interpretable inputs has been applied to 
detect the boundaries of the "doubtful" region(s) in the 
feature space. A fuzzy k-Nearest Neighbors rule with k=1 
and k=5 has been used at the second level for the 
"doubtful" and "certain" regions, respectively. The idea 
has been demonstrated on a generated data set (two 
separable classes with uniform distribution). The results 
show the tendency of improvement of the classification 
accuracy. 
 
 
1: Introduction 
 

Two-level classification schemes are heuristic 
pattern recognition tools that are supposed to yield better 
classification accuracy than single-level ones at the 
expense of a certain complication of the classification 
structure [1-4]. 

There are different strategies to build a two-level 
classification scheme. The most widely used one is to 
include several classifiers in parallel at the first level and 
to aggregate their decisions at the second level. Another 
approach, called 'change-glasses', consists in switching to 
another classification rule if the current one leads to a 
decision with low certainty for the object being classified 
[2]. This strategy corresponds to the well known medical 
practice to summon a consultation if there is some 
ambiguity which the current staff has no competence to 
resolve. A different hypothesis underlies the two-level 

scheme in [4]. The feature space is preliminarily 
partitioned into subspaces and only one rule is authorized 
to make the decision for each subspace. Hopefully, each 
such rule is the most 'competent' one for the respective 
region. Here we use a combination of this last approach 
and the 'change-glasses' one.  

The problem of partitioning the feature space into 
appropriate regions is considered in the literature (usually 
implicitly) in a different context. In fact, every rule-based 
classifier performs a partitioning through antecedent 
clauses and assigns a classification rule to each region 
through the implication. In the fuzzy classification rule 
described in [5,6] the partitioning is uniform, i.e. the 
regions continue to be split until a sufficiently high 
certainty of the rule, generated by each region, is 
achieved. In this way, the decision boundary is 
approximated as precisely, as necessary. The problem is 
how to guarantee that the generalization capability of the 
classifier is sufficiently high if the regions contain only 
few objects. Trying to prevent this case, we suggest to use 
only two regions designated as 'doubtful' and 'certain', 
respectively. Note that each of these may not necessarily 
be compact and may consist of more than one disjoint 
subregions. These regions are then treated by different 
classification rules. 

For the purposes of partitioning we used a 
previously developed technology based on a neural 
network with fuzzy inputs [7,8]. The details are 
summarized in Section 2. Some considerations about the 
choice of the classification rules for both regions are 
presented in Section 3. Section 4 contains an experimental 
illustration. 
 
2: A fuzzy neural network for partitioning the feature 
space 

Let Ω = {ω1 ,..., ωM} be the set of classes, X = {X1 
,..., Xn} be the set of features and x = [x1 ,...,xn]T be the 



 

vector representing an object in the feature space. The 
fuzzy multi-layer perceptron (MLP) partitions the feature 
space in terms of the linguistic properties low, medium 
and high, represented as π-functions. The centres and 
radii of these three π-functions along each feature axis are 
determined automatically from the distribution of the 
training patterns [8]. An n-dimensional input feature 
space is therefore partitioned into 3n overlapping regions. 
In this work we evaluate, in turn, the classification 
accuracy of the network for pattern points belonging to 
each of these 3n partitions. The output class labels of the 
training set are used to determine the particular region 
(expressed in terms of center c and radius r of the π-
function) whose pattern points yield poor classificatory 
performance. This is designated to be the 'doubtful' 
region. Note that a threshold could be established to 
generate one or more such 'doubtful' regions. Then the 
boundaries of the doubtful region are computed as [c - 
r/2, c + r/2] along each feature axis. The remaining 
portion of the feature space constitutes the 'certain' region. 
 
3: Choice of the classification rules for the two regions 
 

The choice of the classification rules for the two 
regions is the next question which has to be investigated. 
Due to its robustness, feasibility of implementation, and 
good practical results, we decided to apply variants of the 
k-Nearest Neighbors (k-NN) rule for both regions but 
with different parameters.  

Some heuristic considerations can be used to guide 
the choice. From statistical pattern recognition theory it is 
known that for the asymptotic case with k → ∝ and N → 
∝ the probability of error tends to the optimal (Bayesian) 
one. For a finite sample, however, there should be some 
reasonable ratio k/N. Here we rely on the hypothesis that 
the class structures for the certain regions are more or less 
compact, so that the network has generated rules with 
high certainty. Therefore, we could achieve better results 
if we use k-NN with k>1 as compared to the 1-NN rule. 
On the contrary, for the doubtful region, we suppose that 
the decision boundary is eventually more complex and the 
interconnection between the objects in the same class is 
not high. Therefore the 1-NN rule would be more 
appropriate. Furthermore, it is reported in different papers 
that distance-based k-NN rules [9] can outperform the 
crisp k-NN for a finite data set. 

Then the two-level classifier operates as follows. 
The object is analyzed in order to detect whether it 
belongs to the doubtful region or not. The second level 
turns on the one of the rules depending on the first-level 
decision. 
 

4: Data sets, statement of the experiments, and results 
 
Two data sets have been generated to illustrate the 

two-level scheme. Two classes, ω1 and ω2,,are 
considered, both from the same uniform distribution. Two 
numerical features are used so that the data is in the 
region [0,1]x[0,1] and can be easily visualized. The 
decision boundary is 

f = - 0.25 sin (7πx1
3) + x2 - 0.5 

Note that, since the boundary is fixed, the theoretical 
probability for correct classification for the asymptotic 
case is 1. 

The first set consists of 200 cases (Fig. 1) and is 
used as the training set, while the second one contains 
1000 more cases and is meant to be the test set. The 
second set has been generated in order to avoid an 
optimistic bias in assessing the classification accuracy. 

Crisp and fuzzy k-NN rules are performed for the 
training set, and the classification accuracy is assessed 
both on the training and the test sets. The leave-one-out 
method was used for the training set. The results for k 
=1,3,5, and 7are presented in Table 1.  

For a comparison, the linear discriminant analysis 
has been performed on the training set and its 
classification accuracy assessed both on the training and 
the test sets. For the training set, the resubstitution method 
for assessing the classification accuracy yields 81.1 % for 
ω1, 85.1 % for ω2, and 83.0 % for both. For the test 
sample, the results are 88.0 %, 81.6 %, and 85.4 %, 
respectively.  

Then the neural network described in Section 2 is 
used to separate the doubtful and certain regions. The 
partition high, medium (along the first and second feature 
axes respectively) is found to constitute the doubtful 
region. The centres and radii along the two axes are 
determined to be c1 = 0.754, r1 = 0.471 and c2 = 0.525, r2 
= 0.461 respectively, from the training set. The detected 
doubtful region is depicted in Fig 1. as a dashed-line 
rectangle. 

Further experiments have been performed separately 
on the two sets, subject to first testing whether each object 
falls into the doubtful region or not. We apply 1-NN for 
the doubtful region, and 5-NN for the undoubtful one. 
The result for the doubtful region is 80.0 % correctly 
classified objects (196 cases out of 245) and 97.9 % (739 
cases out of 755) for the certain region. The overall 
classification accuracy is 93.5 %. 
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Fig. 1. The training set (200 cases) 
and the detected "doubtful" region.  

 
Table 1. Classification accuracy with the crisp and fuzzy 
k-NN [%] on the training and the test sets 

 Crisp k-NN Fuzzy k-NN 
k Training 

set 
Test set Training 

set 
Test set 

1 93.5 92.8 93.5 92.8 
3 90.5 93.0 92.5 92.9 
5 91.0 92.5 93.0 92.9 
7 92.0 90.6 93.0 92.4 

 
5: Discussion and conclusions 
 

Considering the whole sample, it appeared that the 
results from discriminant analysis were worse than those 
obtained through k-NN. This fact has been expected 
because the classes are neither Gaussian, nor are they 
linearly separable. The k-NN rule (in its pure version, or 
with distance-based modifications), being a robust 
technique, is recommended in the two-level classification 
scheme under consideration. 

It can be seen from Fig. 1. that the region, detected 
as 'doubtful' through the fuzzy neural network is really the 
region with the most complex classification boundary.  

Furthermore, according to the results from the last 
experiments, it appeared appropriate to apply different 
rules to the objects from the different regions. The 
accuracy, as assessed on the test set, was 93.5 % versus 
92.8 % using the plain 1-NN. It should be mentioned that 
a choice k = 3, or k = 7 is also successful because the 
overall accuracy is 93.0 % and 93.2 %, respectively. 

Although the improvement in this example is not high, the 
tendency can be observed. 
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