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Abstract. We introduce a system called AMBER (Advanced Multi-
modal Biometric Emotion Recognition), which combines Electroencepha-
lography (EEG) with Electro Dermal Activity (EDA) and pulse sensors
to provide low cost, portable real-time emotion recognition. A single-
subject pilot experiment was carried out to evaluate the ability of the
system to distinguish between positive and negative states of mind pro-
voked by audio stimuli. Eight single classifiers and six ensemble classifiers
were compared using Weka. All ensemble classifiers outperformed the
single classifiers, with Bagging, Rotation Forest and Random Subspace
showing the highest overall accuracy.

1 Introduction

Affective computing covers the area of computing that relates to, arises from, or
influences emotions [14]. Its application scope stretches from human-computer
interaction for the creative industries sector to social networking and ubiquitous
health care [13]. Real-time emotion recognition is expected to greatly advance
and change the landscape of affective computing [15]. Brain-Computer Inter-
face (BCI) is a rapidly expanding area, offering new, inexpensive, portable and
accurate technologies to neuroscience [21]. However, measuring and recognising
emotion as a brain pattern or detecting emotion from changes in physiological
and behavioural parameters is still a major challenge.

Emotion is believed to be initiated within the limbic system, which lies deep
inside the brain. Hardoon et al. [4] found that the brain patterns corresponding
to basic positive and negative emotions are complex and spatially scattered. This
suggests that in order to classify emotions accurately, the whole brain must be
analysed.

Functional Magnetic Resonance Imaging (fMRI) and Electro Encephalogra-
phy (EEG) have been the two most important driving technologies in modern
neuroscience. No individual technique for measuring brain activity is perfect.
fMRI has the spatial resolution needed for emotion recognition while EEG does
not. fMRI, however, offers little scope for a low-cost, real-time, portable emo-
tion classification system. In spite of the reservations, EEG has been applied for
classification of emotions [1, 5, 19, 20]. Bos [1] argues that the projections of pos-
itive and negative emotions in the left and right frontal lobes of the brain make
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these two emotions distinguishable by EEG. He also warns that the granularity
of the information collected from these regions through EEG may be insufficient
for detecting more complex emotions. Different success rates of emotion recog-
nition through EEG have been reported in the recent literature ranging from
moderate [2] to excellent accuracy [10, 13]. The reason for the inconclusiveness
of the results can be explained with the different experimental set-ups, different
ways of eliciting and measuring emotion response, and the type and number of
distinct emotions being recognised.

Chanel et al. [2] note that, until recently, there has been a lack of studies on
combination of biometric modalities for recognising affective states. Some phys-
iological signals can be used since they come as spontaneous reactions to emo-
tions. Among other affective states, stress detection gives a perfect example of
the importance of additional biometric modalities. It is known that stress induces
physiological responses such as increased heart rate, rapid breathing, increased
sweating, cool skin, tense muscles, etc. This gives stress detection systems good
chances of success [9]. Considerable effort has been invested in designing low-
power and high-performance readout circuits for the acquisition of biopotential
signals such as EEG/EMG electrodes [16, 24, 25], skin conductance sensors [12],
temperature sensors and muscle tightness gauges. Finally, combination of EEG
and other biometric modalities has proved to be a successful route for affective
state recognition [1, 2, 10, 20].

Here we present a system for multi-modal biometric emotion recognition (AM-
BER) consisting of a single-electrode headset, an EDA sensor and a pulse reader.
These modalities were selected due to their low cost, commercial availability and
simple design. We evaluate state-of-the art classifiers, including classifier ensem-
bles, on data collected from the system. The goal is to assess the ability of the
classification methodologies to recognise emotion from signals spanning several
seconds.

2 Component Devices of AMBER

2.1 EEG Headset

We used a headset with single EEG electrode placed on the left of the fore-
head (The NeuroSky Mindset1, Figure 1(a)). Mindset is a typical commercial
EEG-headset of relatively low cost and good speed, suitable for real-time signal
acquisition. It connects to a computer via a Bluetooth adapter, configured as a
serial port. The data is received in variable sized packets and has to be recon-
structed into readable form by a packet parser. A packet parser was written in
Matlab to read and check the accuracy of the transmitted data.

2.2 EDA Sensor

Electro-Dermal Activity (EDA), also known as Galvanic Skin Response (GSR),
is the measure of electrical resistance between two points across the skin. In its
1 http:\www.neurosky.com

http:\www.neurosky.com
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(a)“Mindset” (b) EDA Circuit (c) Open wire (d) Analogue-to-digital
EDA sensor converter FEZ Domino

Fig. 1. Components of AMBER

most basic form, human skin is used as an electrical resistor whose value changes
when a small quantity of sweat is secreted. Figure 1(b) depicts the circuit, and
1(c) shows the electronic breadboard used in AMBER.

To feed the signal into the system we used a low-cost analogue to digital
converter, FEZ Domino, shown in Figure 1(d). The FEZ Domino enables elec-
trical and digital data to be controlled using the .NET programming language.
The digital output was transmitted to a computer using a TTL Serial to USB
converter cable.

2.3 Pulse Reader

Pulse sensors can determine levels of anxiety and stress, thereby contributing
to the recognition of emotion. A commercially available pulse monitor kit was
used for AMBER. The monitor uses a phototransistor to detect variances in
blood flowing through a finger. An infra-red light is emitted through a finger
and the level of light able to pass through to the other side is detected by the
phototransistor. The signal is fed to the FEZ Domino and further transmitted
to the computer.

The pulse sensor was attached to the middle finger on the right hand. The
EDA sensor was connected to the index finger and the ring finger of the left
hand. The EEG was positioned as recommended by NeuroSky. The sampling
rate of all three input devices of AMBER was set at 330 readings per second.

3 Data

3.1 The Data Collection Experiment

The experiment involved presenting auditory stimuli to the subject in twenty
60-second runs. The stimuli were selected so as to provoke states of relaxation
(positive emotion) or irritation (negative emotion). The positive audio stimuli
were taken from an Apple iPhone application called Sleep Machine. The compo-
sition was a combination of wind, sea waves and sounds referred to as Reflection
(a mixture of slow violins tinkling bells and oboes); this combination was con-
sidered by the subject to be the most relaxing. The negative audio stimuli were
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musical tracks taken from pop music, which the subject strongly disliked. The
three biometric signals were recorded for 60 seconds for each of the 20 runs: 10
with the positive stimuli and 10 with the negative stimuli.

Typical examples of one-second run of the three signals is shown in Figure 2.
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Fig. 2. Typical 1-second runs of the three input signals

3.2 Feature Extraction and Collating the Data Sets

Eight data sets were prepared by cutting the 60-second runs into sections of {3,
4, 5, 6, 10, 12, 15, and 20} seconds respectively. The sections were pooled to
form a data set. All sections from a positive run were labelled as positive, and
those from the negative runs were labelled as negative. For example, for the 5-
second sections, there were 10× 60/5 = 120 positive examples and 120 negative
examples.

Ten features were extracted from each section. The power spectrum of the
EEG signal was computed using the Welch method, and cut into 8 bands: delta
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(1-3Hz), theta (4-7Hz), alpha 1 (8-9Hz), alpha 2 (10-12Hz), beta 1 (13-17Hz),
beta 2 (18-30Hz), gamma 1 (31-40Hz) and gamma 2 (41-50Hz). The first 8
features for a particular section were the mean power within the respective fre-
quency bands. Figure 3 shows the frequency powers for the 8 bands and the
two classes, averaged across all examples from the respective class. The 4-second
data set was used for this illustration.2 The axes are omitted for clarity of the
plot and error bars of the 95% confidence intervals are displayed. Significant
differences between the curves for the two classes are observed in bands δ, γ1

and γ2.
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Fig. 3. Frequency powers for the 8 bands and the two classes

The remaining two features for the sections were the mean EDA signal and
the mean pulse signal.

4 Classification Methods

The most widely used classification method in neuroscience analyses is the Sup-
port Vector Machine classifier (SVM) [3, 11, 18, 22]. Our previous research con-
firmed the usefulness of SVM but also highlighted the advantages of multiple
classifier systems (classifier ensembles) [6, 7, 8].

All experiments were run within Weka [23] with the default parameter set-
tings. The individual classifiers and the classifier ensemble methods chosen for
this study are shown in Table 1.3 Ten-fold cross-validation was used to estimate
2 The curves for the remaining 7 data sets were a close match.
3 We assume that the reader is familiar with the basic classifiers and ensemble meth-

ods. Further details and references can be found within the Weka software environ-
ment at http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Table 1. Classifiers and classifier ensembles used with the AMBER data

Single classifiers

1nn Nearest neighbour
DT Decision tree
RT Random tree
NB Naive Bayes

LOG Logistic classifier
MLP Multi-layer perceptron

SVM-L Support vector machines withl inear kernel
SVM-R Support vector machines with Radial basis function (RBF) kernel

Ensembles

BAG Bagging
RAF Random Forest
ADA AdaBoost.M1

LB LogitBoost
RS Random Subspace

ROF Rotation Forest

the classification accuracy of the methods. All ensembles consisted of 10 single
classifiers (the default value in Weka).

Since Rotation Forest (ROF) is a relatively recent ensemble method [17], we
give a brief description here. ROF builds classifier ensembles using independently
trained decision trees. Each tree uses a custom set of extracted features created
in the following way. The original feature set is split randomly into K subsets
(the default value in Weka is K = 3), principal component analysis (PCA) is
run separately on each subset, and a new set of n linear extracted features is
constructed by pooling all principal components. Different splits of the feature
set will lead to different extracted features, thereby contributing to the diver-
sity introduced by the bootstrap sampling. The average combination method is
applied on the (continuous-valued) votes of the classifiers.

5 Results

Table 2 shows the correct classification (in %) for all methods and data sets.
The highest accuracy for each data set is highlighted as a frame box, and the
second highest is underlined. All highest accuracies are achieved by the ensemble
methods. The individual classifiers reach only one of the second highest accu-
racies while the ensemble methods hold the remaining 7 second highest scores.
This result confirms the advantage of using the classifier ensembles compared
to using single classifiers, even the current favourite SVM. In fact, SVM-R was
outperformed by all classifiers and ensembles, and SVM-L managed to beat only
the logistic classifier. A series of pilot experiments revealed that none of the
modalities alone were as accurate as the combination.
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Table 2. Classification accuracy from the 10-fold cross-validation

Data sets and number of instances

Method 3s 4s 5s 6s 10s 12s 15s 20s

400 300 240 200 120 100 80 60

1nn 62.84 64.89 63.44 62.04 61.11 60.87 56.48 59.93

DT 64.16 58.57 67.37 65.92 58.49 62.78 69.96 58.93

RT 60.02 63.02 61.9 62.63 57.11 66.66 66.75 57.10

NB 64.69 63.81 64.45 64.48 65.02 67.82 65.43 61.07

LOG 62.04 60.37 62.59 63.27 59.26 59.16 57.59 57.53

MLP 62.46 59.37 63.28 63.36 63.43 64.22 57.05 58.47

SVM-L 62.09 61.41 63.52 62.38 62.32 59.13 58.70 56.83

SVM-R 50.81 51.16 50.56 50.52 50.18 51.19 51.66 51.33

BAG 65.56 65.62 68.25 67.09 67.37 68.79 66.46 64.37

RAF 64.51 64.65 66.08 65.27 65.86 69.58 67.29 61.57

ADA 63.41 62.21 70.00 67.59 61.07 66.28 73.80 63.30

LB 65.34 62.92 68.78 68.05 62.04 64.02 68.27 60.70

RS 64.96 64.78 66.25 68.21 64.61 67.43 68.95 61.77

ROF 66.90 65.41 66.86 67.23 67.36 69.30 65.46 62.27

To visualise the results, Figure 4 shows the 14 ensemble methods sorted by
their overall ranks. Each method receives a rank for each data set. As 14 methods
are compared, the method with the highest classification accuracy receives rank
1, the second best receives rank 2 and so on. If the accuracies tie, the ranks are
shared so that the total sum is constant (1 + 2 + 3 + · · · + 14 = 105). The total
rank of a method is calculated as the mean across all 8 data sets. The total ranks
and the mean accuracies of the 14 classification methods are shown in the two
columns to the right of the colour matrix in Figure 4.

The colour matrix represents the classification accuracies of the methods
sorted by total rank. Warm colours (brown, red and yellow) correspond to higher
accuracy while cold colours (green and blue) correspond to lower accuracy. The
figure reveals several interesting patterns in addition to the already discussed su-
perior accuracy of ensembles over individual classifiers. First, the cooler colours
in the last column (20s data set) indicate relatively low accuracy compared to
the middle columns. This seems counter-intuitive because the frequency spec-
trum and the EDA and pulse averages are calculated from larger bouts of the
signal, and should be less noisy. The reason for this anomaly is most likely the
smaller number of data points to train the classification methods. Note that
the cooler colours in the first couple of columns is not unexpected. Three- and
four-second sections may be insufficient to noisy estimates of the features, hence
the lower accuracy. Second, the mixture of colours in the row corresponding to



324 L.I. Kuncheva et al.
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3s 4s 5s 6s 10s 12s 15s 20s Rank Average

2.9 66.69

3.4 66.35

4.0 65.87

4.9 65.60

5.1 65.96

5.4 65.02

6.3 64.60

7.9 63.27

9.5 61.45

9.8 61.46

10.1 61.90

10.6 60.80

11.3 60.23

14.0 50.93

Fig. 4. Colour matrix for the classification methods sorted by their average ranks.

Brown/red correspond to high accuracy; green/blue correspond to low accuracy.

AdaBoost (ADA) supports the finding elsewhere that AdaBoost’s performance
can vary considerably for noisy data. This row also contains the single dark
brown cell corresponding to the highest accuracy of 73.8% achieved in the whole
experiment.

6 Conclusion

This paper presents a case study of affective data classification coming from
three biometric modalities: EEG electrode, electrodermal sensor (EDA) and
pulse reader, embedded in a system called AMBER. The results indicate that
positive and negative emotional states evoked by audio stimuli can be detected
with good accuracy from a time segment spanning a few seconds. This work
serves as a first step in a developing an inexpensive and accurate real-time emo-
tion recognition system. Improvements on the hardware and the preprocessing
of the signals are considered. We are currently working towards preparing an
experimental protocol and the supporting software for gathering data from AM-
BER on a large scale. The new protocol will be based on a combination of visual,
audio and computer-game type of stimuli.
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