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Designing Classifier Fusion Systems by
Genetic Algorithms
Ludmila I. Kuncheva and Lakhmi C. Jain

Abstract—We suggest two simple ways to use a genetic algorithm
(GA) to design a multiple-classifier system. The first GA version
selects disjoint feature subsets to be used by the individual clas-
sifiers, whereas the second version selects (possibly) overlapping
feature subsets, and also the types of the individual classifiers. The
two GAs have been tested with four real data sets: Heart, Satimage,
Letters, and Forensic glasses (tenfold cross validation, except for
Satimage where we used only two splits). We used three-classifier
systems and basic types of individual classifiers (the linear and
quadratic discriminant classifiers and the logistic classifier). The
multiple-classifier systems designed with the two GAs were com-
pared against classifiers using: 1) all features; 2) the best feature
subset found by the sequential backward selection (SBS) method;
and 3) the best feature subset found by a GA (individual classifier!).
We found that: 1) the multiple-classifier system derived through
the GA, Version 2, yielded the smallest training error rate in all ex-
periments; and 2) with Satimage and Forensic glasses data, it also
produced the smallest test error rate. Generalizing on the basis of
these experiments is not straightforward because the differences
between the error rates in the comparison appeared to be too small.
GA design can be made less prone to overtraining by including
penalty terms in the fitness function accounting for the number of
features used.

Index Terms—Classifier fusion, feature selection, genetic algo-
rithms, multiple classifiers.

I. INTRODUCTION

L ET be a set of class labels, e.g,
gray-cell tissue, white-cell tissue, tumor mass, skull,

background. Let be an -dimen-
sional column-vector1 describing an object which, for the
example above, can be a particular sample of magnetic reso-
nance image (MRI) of a brain. Each component ofexpresses
the value of afeature, such as length, temperature, number of
prickle per cm, concentration of cadmium, etc. Aclassifieris
any mapping

(1)

i.e., the output is a -dimensional vector whoseth com-
ponent denotes the “support” for the hypothesis thatcomes
from class .

In multiple-classifier systems (Fig. 1) the outputs of a set of
classifiers are combined to produce the final classification deci-
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sion. The combination is sought as anaggregationof the outputs
of individual classifiers, i.e.,

(2)

where is an aggregation operator. If a single class label is
needed for , the class with the highest support is chosen.

In the long run, the combined decision is supposed to be better
(more accurate, more reliable) than the classification decision of
the best individual classifier. This idea appears under a variety
of names in the literature: classifier fusion [1], [2], classifier
combination [3]–[7], mixture of experts [8]–[11], committees
of neural networks [12], [13], consensus aggregation [14]–[16],
voting pool of classifiers [17], classifier ensembles [13], [18],
etc.

As the gray lines and ellipses in Fig. 1 show, multiclassifier
systems differ by the following.

1) Thenumber of individual classifiersused.
2) Thetype of the individual classifiers. Some combination

scheme use classifiers of the same types, e.g., neural net-
works [17], [9], linear classifiers [19], nearest neighbor
classifiers [20], and other schemes use sets of different
classifier models [6].

3) The feature subsetsused by the individual classifiers
[21]–[24] (denoted by the gray ellipses in Fig. 1).

4) The aggregationof the individual decisions [25]. Ex-
amples of these are majority vote [26]; naive Bayes
[7]; behavior-knowledge space (BKS) [27]; simple ag-
gregation connectives like average, product, minimum,
maximum [4], [24]; fuzzy integral [28], [1], [2]; trained
linear combinations [29]–[31]; neural network aggrega-
tion [32], [10]; Dempster–Shafer aggregation [33], [34],
[7], etc.

5) Thetraining data setsfor the individual classifiers [20],
[13].

6) The type of trainingof the two-level scheme (cf. [25]):
a) training of the individual classifiers and applying
aggregation that does not require further training (e.g.,
aggregation techniques like average, minimum, product,
maximum, etc.); b) training of the individual classifiers
followed by training the aggregation; c) simultaneous
training of the whole scheme.

Usually the individual classifiers are chosen ad hoc on the
basis of their accuracy (the higher the better). When the para-
digm is trained as a whole (e.g., [19]), the parameters of the in-
dividual classifiers are varied along with the parameters of the
aggregation scheme.

1089–778X/00$10.00 © 2000 IEEE
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Fig. 1. Combination of multiple classifiers (classifier fusion). Gray lines and ellipses indicate possible ways of altering the classifier fusion system.

In this paper, we use a genetic algorithm (GA)2 for selecting
the feature subsets for the individual classifiers. In the first GA
version, we select disjoint feature subsets for a fixed set of clas-
sifiers [see item 3) above]. The second version does not restrict
the overlap between the feature subsets. Embedded in the chro-
mosome in the second version is also a substring for selecting
the type of each individual classifier from a set of prespecified
models [items 2) and 3) from the above list].

Section II describes the classifier fusion system in detail. Sec-
tion III provides our reasons for choosing a genetic algorithm
for designing multiple-classifier systems, and presents the two
GA versions. Section IV contains our experimental results, and
Section V, our conclusions.

II. COMBINATION OF CLASSIFIERS

The details of the classifier fusion system used here are as
follows.

1) Number of Individual Classifiers:In this study, we limited
the number of individual classifiers to three, but the GAs

2For an explanation of GAs the reader is referred to [35], [36].

that we propose can be used for any number of classifiers
. The chromosome length of GA Version 1 is(number

of features), and does not depend on. In GA Version
2, the chromosome length is , and since usually

, the length is not affected much by the increase
of . However, the number of integers that a position
in a chromosome can assume grows exponentially (),
thereby determining an even higher rate of expansion of
the search space. This shifts the (limited-)integer-valued
GA algorithm used in this study toward real-valued GAs.
For this large search space, extensive experiments have
to be carried out in order to obtain consistent results, e.g.,
multiple runs of the GA with different initialization and
parameter values. This could be a computationally de-
manding task. Also, small values ofare used by many
authors because a larger number of classifiers is likely to
contain highly correlated classifiers which might deterio-
rate the performance of the combination.

2) Type of the Individual Classifiers:In Version 1 of the
GA, all individual classifiers are of the same (preselected)
type. The choice of classifier type is among thelinear,
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quadratic, andlogisticmodels. The individual classifiers
differ only by the features they use. In Version 2, the clas-
sifier type is encoded into the GA. Each individual clas-
sifier can be picked from the three options above.

3) Feature Selection:In Version 1, the GA selects disjoint
feature subsets for the three classifiers. In Version 2, the
feature subsets for the individual classifiers are not re-
stricted, i.e., each of the three classifiers can use any fea-
ture subset.

4) Aggregation:We use eithermajority voteordecision tem-
plates(DT’s) [25], both detailed below.

5) Training Data Sets:The same training sets are used for
all individual classifiers.

6) Training: Both GA versions train the classifier fusion
system as a whole [subitem 6c) above].

Majority vote is a popular and easy-to-implement method.
The individual classifiers “vote” with class labels for, and the
class label with most votes is assigned to. In some studies,
the class label is assigned if the majority ofclassifiers, i.e., at
least classifiers, vote for that class. In such cases, if
there is no winner, the combined classifier makes no decision.
Let be the output of
classifier for input . The entry denotes the
support that renders for the hypothesis thatcomes from
class . To find the class vote of classifier , we hardenthe
classification decision by themaximum membershipformula

choose class (3)

By this rule, we can formulate the hardened classification de-
cision of each as the binary vector ( stands for “hard-
ened”) containing 1 at positionand 0 elsewhere, i.e.,

if
otherwise.

(4)

Themajority voteaggregation is given by

(5)

and

if

otherwise.

(6)

The result is a binary vector with element 1 corresponding
to the most supported class, and 0 elsewhere. More than one
element with value 1 means a tie. To find a single class label for

, the ties are broken randomly. In two-class problems ( ),
an odd number of classifiers precludes any ties.

Another approach to aggregation of classification decisions is
decision templates(DT’s). It is a simple, intuitive, and robust ag-
gregation idea that evolved from thefuzzy templates[25], [37],
[38]. Let be the set of classifiers. The classi-
fier outputs can be organized in adecision profile(DP) as the
matrix shown in (7) at the bottom of the page.

Let , , be the crisply labeled
training data set. Thedecision templateDT of class is
the matrix with a th element 3 computed
by

(8)

where is an indicator function with value 1 if has
a crisp label , and 0 otherwise [38]. To simplify the notation,
DT will be denoted by DT.

The decision template DTfor class is the average of the
decision profiles of the elements of the training setlabeled in
class . When is submitted for classification, the DT
scheme matches DP to DT , , and produces the
soft class labels

DT DP (9)

where is interpreted as asimilarity measure. The higher the
similarity between the decision profile of the currentDP
and the decision template for class (DT ), the higher the
support for that class ( . Notice that we use the word
“similarity” in a broad sense, meaning “degree of match” or
“likeness,” etc. Regarding the arguments ofas fuzzy sets
on some universal set with elements, various fuzzy mea-
sures of similarity can be used. Letand be fuzzy sets on

3dt is used to denote the entries in the matrix DT. Although composed of two
letters,dt designates a single element.

output of classifier

DP
(7)

support from classifiers for class
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Fig. 2. Architecture of the decision templates classifier fusion scheme.D is theith classifier in the pool, DP(xxx) is the decision profile for the current inputxxx,
DT is the decision template for class! , andS is a measure of similarity between two fuzzy sets.

. In this study, we used the measure of
similarity based on union and intersection [39]:

(10)

where denotes the relative cardinality of the fuzzy seton
:

(11)

Fig. 2 illustrates how the DT scheme operates. The input
vector is submitted to all classifiers, and each one pro-
duces a -dimensional vector with support for the classes from

. Pooling the outputs, the decision profile DP for thatis con-
stituted as an matrix. The DP is then compared via sim-
ilarity measure with the decision templates DT DT
which are matrices of the same size, calculated in advance using

in (8). The result of the comparison, i.e., the values of, are
submitted to the Max collector, and the class label of the closest
decision template is assigned to.

Example: Consider as an example a three-class problem
with four individual classifiers (the dimensionality of the
feature space is irrelevant for the example). Let the classifier
outputs for some be

Majority Vote: First, we design the hardened vectors as

and then the aggregated vector is

according to which is labeled in class .
Decision Templates:Prior to classifying we have to calcu-

late the DT’s for the three classes using the training data. As-
sume that we have obtained the following results:

DT DT

DT

The decision profile is formed from the classifier outputs as

DP

The similarities between DP and the three DT’s are, respec-
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tively,
DP DT

DP DT

DP DT
which labels in class .

As the example shows, the two aggregations can lead to dif-
ferent class labels. Our previous studies found that DT’s rate
high among a number of aggregation techniques [25]. In the
course of this study, we found experimentally that majority vote
is a good option for two-class problems with predominantly bi-
nary features and logistic model as individual classifiers.

III. GENETIC ALGORITHMS FORCLASSIFIERFUSION DESIGN

GAs have been used in various pattern recognition problems.
There is a huge body of literature on neural-network classifiers
optimized by GAs and other evolutionary algorithms which
is beyond the scope of the current study (see, e.g., [40],
[41]). Using GAs for nearest neighbor editing is proposed in
[42]–[43]. The most popular pattern recognition niche for GAs
has been feature selection because

• the encoding of a feature subset into a chromosome is
straightforward

• the function that is optimized does not need to be smooth
and can, therefore, be directly the classification accuracy
(direct error minimization); classification accuracy/error
is a notoriously difficult optimization criterion, making
feature selection the most challenging task in pattern
recognition [44]–[46].

Although many authors advocate feature selection by GAs
[47]–[51], others are skeptical [52], and warn that the results are
often not as good as expected, compared with other (simpler!)
feature selection algorithms [53].

Kuncheva [22] uses GAs to select features for the individual
classifiers in a classifier fusion scheme. The subset of features
used by an individual classifier is encoded as a chromosome.
The GA evolves the feature subsets so that each population
consists of highly accurateindividual classifiers. The elitist se-
lection procedure was modified slightly so that the classifiers
which produce the highest accuracyas a combination(by ma-
jority vote) are retained together with the offspring that have
the highest individual fitness. In other words, individual fitness
and group fitness were applied simultaneously. The group fit-
ness was responsible for retainingmembers of the popula-
tion, whereas the individual fitness was applied to select the rest
of the population. Notice that, using the standard elitist proce-
dure, the individual classifiers from the best combination could
be dropped because they are not necessarily the best individual
classifiers. This selection scheme, however, has no mechanism
to prevent degeneration of the population toward the same best
individual classifier. Therefore, when the GA converges, the
combined classifier is most likely to have identical constituents,
so no improvement over the individual accuracy is achieved.

In this study, we try two different ideas in which the fitness
function is the accuracy of thecombination, and not that of the
individual classifiers. Why do we think that genetic algorithms
are good for this problem? It is clear that no optimization al-
gorithm is a panacea [54], and the choice should depend on the

type of problem we are solving. We believe that feature selection
for multiple-classifier systems is a proper task for GAs. First,
the same set of arguments for using GAs for feature selection
(listed at the beginning of the section) hold for the multiclassi-
fier model. Second, in feature selection, there are a number of
good suboptimal algorithms that avoid extensive search (e.g.,
sequential forward and backward search and their extensions,
floating selection methods, etc.), whereas in selecting features
for a multiple-classifierscheme, there are no such methods.
Presumably, the fitness function (accuracy of the combination)
is highly multimodal, which impedes using deterministic opti-
mization methods effectively. Third, encoding of the problem in
terms of GAs is straightforward in contrast with, e.g., optimiza-
tion by GAs of the weights of a neural network, or the member-
ship functions of fuzzy if–then systems.

Version1—SelectionofDisjointFeatureSubsets:Dependence
between the individual classifiers in a multiple classifier system
can be a good or a bad thing. If we can make use of this depen-
dence,e.g.,whenthecorrelation isnegative, thiscanleadtohigher
accuracy than when using independent classifiers. On the other
hand, when the classifiers are dependent so that they misclassify
the same vectors, then nothing can be done, and the combination
can be even worse than the single best classifier. Often, when we
have no information about the individual classifiers, we hope for
independent classifiers because this guarantees higher accuracy
than the best individual (if we use majority vote) or we can en-
force a probabilistic model and use a Bayes-optimal aggregation
(e.g., probabilistic product). Version 1 of the GA selects disjoint
subsets of features, hoping that this will contribute toward inde-
pendence of the classifiers.

The chromosome consists of positions, one for each
feature. The th position can take one of the following values

, where 0 means that theth feature is not used,
and an integer , means that theth feature is used
by classifier . This encoding ensures that classifiers use
disjoint feature subsets. Mutation is performed by taking one
of the possible values at random.

Version 2—Selection of Classifiers and (Possibly Overlap-
ping) Feature Subsets:We use the following encoding. The
first positions in the chromosome correspond to thefea-
tures. The string is augmented bypositions which specify
the type of each individual classifier. A possible encoding for
a three-classifier system and ten features is presented in Fig. 3.
The Venn diagram shows the semantic of the codes for the first

positions. Each feature can be used inways (not used, used
by any single classifier, used by any two, and by all three), the
possible values for the example are .

The two GA versions differ only by the encoding. Their im-
plementation follows the traditional pattern given below.

The GA Algorithm:

1) Pick the parameters of the GA:

a) population size (even)
b) terminal number of generations
c) mutation probability .

2) Generate a random population of chromosomes and
calculate their fitness values.
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Fig. 3. A possible encoding for a three-classifier system for a ten-dimensional problem.

3) For :

a) assuming that the whole population is the mating
set, select /2 couples of parents from the curfrent
population (repetitions are allowed)

b) perform (one-point) crossover to generateoff-
spring chromosomes

c) mutate the offspring according to the mutation prob-
ability

d) calculate the fitness values of the mutated offspring
e) pool the offspring and the current population, and

select as the next population thechromosomes
with the highest fitness.

4) End .

The limit number of generations, population size, and muta-
tion probability are the tunable parameters of this GA model.
We assume that the whole population is allowed to reproduce,
the crossover probability is set to 1.0, and since elitist selection
is used, the generation gap is not fixed. This drives the model
closer to a random search, with the main emphasis being on ex-
ploration. The choice was guided by the assumption that the fit-
ness function is highly multimodal, and the algorithm should be
given a chance tohit a good solution rather thanelaborateone.

IV. EXPERIMENTS

The hypothesis was that, using GAs for designing the classi-
fier fusion system, we can achieve better results than that pro-
duced by the best single classifier of a prespecified type. Notice
that our aim was not to show that the combined decision is better
than that of any of theconstituents(this would be easy!). The
experiments with GA Version 1 and Version 2 were confined to
three basic types of classifiers: 1) linear discriminant classifier
(LDC), 2) quadratic discriminant classifier (QDC) [44], and 3)
logistic classifier [55].

The following data sets were used:

1) Heart Data: This data set was taken from the UCI
machine learning database (deposited by Dr. Robert De-
trano, V.A. Medical Center, Long Beach and Cleveland
Clinic Foundation). The data set is denoted as “Cleveland
database” in the technical report by Prechelt [56]. The
problem is to distinguish between cases with and without
heart disease on the basis of 18 features (13 binary
and 5 continuous valued) from clinical and laboratory
examination of the patient. The database contains 303
cases, with no missing values. Previous results reported
in the database description find the misclassification rate
to vary between 21 and 26%.

2) Satimage Data:These data have been generated from the
Landsat Multi-Spectral Scanner image data. They consist
of 6 435 patterns (pixels) with 36 attributes (4 spectral
bands 9 pixels in a 3 3 neighborhood). Pixels are
labeled in one of six classes, and are presented in random
order in the database. The classes are: red soil (23.82%),
cotton crop (10.92%), gray soil (21.10%), damp gray
soil (9.73%), soil with vegetation stubble (10.99%), and
very damp gray soil (23.43%). What makes this database
attractive is the large sample size; numerical, equally
ranged features; no missing values; and compact classes of
approximately equal size, shape, and prior probabilities.

3) Letters Data:This set was taken from the UCI machine
learning database. The objective is to classify distorted
black and white images of the 26 letters from English al-
phabet. Each image is described by 16 continuous-valued
features. The total number of images is 20 000. The best
error rate reported in the database description is a little
lower than 20%. We found a test error (tenfold cross val-
idation) of 11.50 1.13% with the quadratic discrimi-
nant classifier (QDC). Since the majority of the classes
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are easy to recognize, we decided to take only the two
most often confused classes, which turned out to be the
letters “H” and “K.”

4) Forensic Glasses Data:This data set consists of 214
nine-dimensional vectors, each describing the chemical
content of a fragment of glass. The glasses are labeled
into six classes [57]: window float glass (32.71%),
window nonfloat glass (35.51%), vehicle window glass
(7.94%), containers (6.07%), tableware (4.21%), and
vehicle headlamps (13.55%). We tried to reproduce the
tenfold cross-validation experiments from [57] using the
same tenfold partition of the data set. The disadvantage
of this data set is the small proportions of three of the six
classes, which leads to an error rate between 23.4% for
the nearest neighbor classifier (in our experiments, we
obtained 27.62%) and 38% for the linear discriminant
classifier (our result is 39.56%).

With the Satimage data, we used hold-up experiments split-
ting the set into two halves, and using the first half (3218 cases)
for training and the second half (3217 for test). With the other
data sets tenfold cross validation was used.

For comparison with the GA-designed combination scheme,
we tried simple classifier models: linear discriminant classifier
(LDC) and quadratic discriminant classifier (QDC) assuming
normal densities, Parzen classifier, the nearest neighbor clas-
sifier (1-nn) (all described in [44]), and the logistic classifier
(LOG) [55]. For all classifiers, the PRTOOLS toolbox for
Matlab [58] was used. Table I shows the training and test
error rates with the four data sets. Showing training results is
important here because a comparison on test results only can
be misleading. Too versatile classifiers can be overtrained, and
if test results are the only testimony, such classifiers will be
marked as unsuccessful. An example is the radial-basis function
(RBF) neural network. Applied to the Heart data, with at most
200 nodes at the hidden layer, the RBF classifier resulted in an
average of 4.11% training error (four times smaller than the
error rate with the logistic classifier used here) and 45.21% test
error (more than twice the LOG classifier test error). This poor
generalization does not invalidate the RBF model, but shows
that both training and test results have to be displayed and
analyzed, especially when novel models are considered.

With each data set, we picked one of the simple classifiers,
and proceeded with the following further experiments.

1) A feature selection by the sequential backward selection
(SBS). The error of the classifier was used as the criterion
function . The procedure starts with the whole set of
features (of cardinality ), and discards one feature at
each step, as shown in Fig. 4.

2) A GA for feature selection [53], [55]. The GA described
in Section III is used, where the fitness function is the
classification accuracy using the feature subset repre-
sented as a chromosome. The chromosome is a binary
string of length . The th bit takes values 0 if the feature
is not in the subset or 1 if the feature is in the subset.

3) Version 1 of GA with the fitness function being the clas-
sification accuracy of thecombination, either by majority
vote or by decision templatesDT .

4) Version 2 of GA with the same fitness function.

TABLE I
AVERAGED ERRORRATES (IN%) AND STANDARD DEVIATIONS FROM TENFOLD

CROSS-VALIDATION EXPERIMENTS AND FIVE BASIC CLASSIFIER MODELS.
COVARIANCE MATRIX CLOSE TOSINGULAR (EITHER TOO FEW DATA OR TOo
LITTLE INTERCLASSVARIANCE. TOO MANY BINARY VARIABLES. THE

DATA SET IS TOO LARGE AND COMPUTATIONALLY DEMANDING

The results with the individual data sets are given in Ta-
bles II–V. The lowest error is marked in boldface.

All GAs were run with the following set of parameters:

• population size
• terminal number of generations
• mutation probability .

We initialized the ten runs in the cross-validation experiment
in the same way, so that each GA started from the same config-
uration (feature subset or set of classifiers), and used different
training and testing data. We used decision templates for aggre-
gation for the Satimage, Letters, and Forensic glasses data, and
majority vote for the Heart data. This was decided on the basis
of the improvement of the combination accuracy over the best
individual accuracy in a series of preliminary experiments with
the training data.

V. DISCUSSION ANDCONCLUSIONS

1) Training Error Rate:With all four data sets, GA Version
2 yielded the smallest training error rate. This shows that
the GA has done the job for which we have been using it:
based on the training data, the multiple-classifier system
designed by the GA appeared to be more accurate than
the best individual classifier (not necessarily used as one
of the constituents of the system).

2) Test Error Rate:A good training rate is often at the
expense of some deterioration of generalization (over-
training). The experiment with the RBF network with
200 hidden nodes and the Heart data is an example of
this phenomenon. Ideally, the classifier should have
both small training and test errors. With the Satimage
and Forensic glasses data, the system designed by the
GA (Version 2) gave better test results than the other
classifiers. With the other two sets, the GA appeared
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Fig. 4. Sequential backward selection (SBS) algorithm for feature selection.

TABLE II
AVERAGE RESULTS (IN%) FROM TENFOLD CROSS-VALIDATION

EXPERIMENTS WITH HEART DATA

to be slightly overtrained. Since the classifiers that
were used both individually and in combination were
simple models, the overtraining is not very high (see, for
comparison, the RBF example). GAs offer an option to
reduce overtraining. We can include penalty terms in the
fitness function accounting for the dependency between
the individual classifiers (assuming that independent
classifiers will form a group that does not overtrain
much) and for the number of features used (smaller
subsets should be preferred).

3) Small Differences:It is a postulate in pattern recognition
that we cannot expectone model to do dramatically
better than all other models on all data sets. Therefore,
the more classifiers and the more data sets we bring
in the comparison, the blurrier the comparison picture
becomes. Multiple-classifier systems have the advantage
that, if we reduce all individual classifiers to thebest
individual classifier, then the system will be no better and
no worse than the best individual classifier. Therefore,

TABLE III
AVERAGE RESULTS (IN%) FROM TWOFOLD CROSS-VALIDATION

EXPERIMENTS WITH SATIMAGE DATA

the combination aims at a lower error rate than that
of the best individual classifier. Although theoretically
proven, this is only a possibility, depending on the
success (or luck!) in designing the two-level scheme.
By and large, multiple-classifier systems outperform the
best individualconstituentclassifier, but if compared
with another individual classifier, the relationship could
be the reverse. For example, if the multiple-classifier
system uses LDC as the individual classifiers, then it is
very likely that it will be outperformed by an individual
neural network classifier (a multilayer perceptron). This
is a possible explanation of the small differences in our
experiments between the multiple-classifier systems and
the best individual classifiers.

4) Why Was GA Version 1 Not Successful Here?:Selecting
disjoint subsets of features increases the chance of ob-
taining a group of independent classifiers, but it also can
lead to degraded performance of the individual classifiers
if too few features are used. In the data sets used here,
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TABLE IV
AVERAGE RESULTS (IN%) FROM TENFOLD CROSS-VALIDATION

EXPERIMENTS WITH LETTERSDATA

there were few or no redundant features, which is demon-
strated by the good error rates of classifiers using all of
the features or using the selected by SBS subsets. There-
fore, almost all features were necessary for achieving a
low error rate, and splitting them into three subsets was
not a successful line of designing the multiple-classifier
scheme. We expect that this version of the GA will be
very useful in problems with higher dimensionality (hun-
dreds of features) where using all features together will
be infeasible, and selecting a single subset can ignore
good alternative solutions which are potentially good con-
stituents of a multiple-classifier system. In any case, GA
Version 1 is simpler and more intuitive, and is worth
trying first on such problems.

GAs have various tuning parameters (e.g.,, , and ).
We did not explore the effect of changing these parameters on the
GAs. The execution times are high, as with any GA, compared to
these for the individual classifiers. This, however, is not a serious
obstacle if we design a multiple-classifier system off line.

The main message of this study is that GAs and other evolu-
tionary algorithms offer an intuitiveautomaticway to design
multiple-classifier systems instead of picking the classifier
types and selecting the combination ad hoc by the designer.
The GA-designed systems in our experiments were, in most
cases, more accurate than the best individual classifier in the
system, and also outperformed a number of other classifier
designs. For now, we have considered the selection of features
for a preliminary fixed (small) number of classifiers, and the
selection of classifier types from a (small) set of basic models.
This GA-based design scheme can be extended straightfor-
wardly to a higher number of classifiers ( ) and classifier
models. The chromosome length does not increase withfor
GA Version 1, and increases as for GA Version 2, but the
search space does expand exponentially. Extensive experimen-
tation with the GAs in such cases could prove computationally
demanding. Therefore, optimization in terms of execution time

TABLE V
AVERAGE RESULTS(IN%) FROM TENFOLD CROSS-VALIDATION EXPERIMENTS

WITH FORENSICGLASSESDATA

of the algorithm and the corresponding software is an important
future research topic.
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