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“Fuzzy” Versus “Nonfuzzy” in Combining Classifiers
Designed by Boosting

Ludmila I. Kuncheva

Abstract—Boosting is recognized as one of the most successfultreating combining classifiers as a branchstdtistical pattern
techniques for generating classifier ensembles. Typically, the recognition sometimes brings about an unwelcome attitude
classifier outputs are cor_nblned by the weighted majority vote. tqward using fuzzy combiners. The purpose of this study is to
The purpose of this study is to demonstrate the advantages of Some .. - mine experimentally how useful fuzzy combiners are for

fuzzy combination methods for ensembles of classifiers designedb d bles b . ith | f
by Boosting. We ran two-fold cross-validation experiments on six P00Sted ensembles by a comparison with popular nonfuzzy

benchmark data sets to compare the fuzzy and nonfuzzy combi- COmbiners.
nation methods. On the “fuzzy side” we used the fuzzy integral ~ The difficulty in choosing a suitable combination method
and the decision templates with different similarity measures. for the problem at hand has been recognized and highlighted
On the “nonfuzzy side” we tried the weighted majority vote as  nymerous times in the literature on combining classifiers. So
well as simple combiners such as the majority vote, minimum, o' \ve 4o not have a sufficient body of theory to explain the
maximum, average, product, and the Naive—Bayes combination. . o
In our experiments, the fuzzy combination methods performed success Qf ensemblgs compared to single classifiers aﬂd match
consistently better than the nonfuzzy methods. The weighted COmbination strategies and methods to a problem. Pieces of
majority vote showed a stable performance, though slightly theory developed hitherto rely on simplifications and assump-
inferior to the performance of the fuzzy combiners. tions, and consider mostly special cases [7], [17], [24], [28],
Index Terms—Adaboost, classifier combination, decision tem- [36]: [37], [39]-[41]. However, even a discipline as mature as

plates, ensembles of classifiers created by Boosting, fuzzy integral,Pattern recognition itself does not offer strict guidelines about
weighted majority vote. how to approach a data set and which classifier to select for it.

Along the years, the advantages of various classifier models
have been demonstrated across different data sets so that the
best contestants have been identified amongst thousands of
Y COMBINING the outputs of a team of classifiers, wepossibilities [15]. Being a relatively recent offspring of pattern
aim at a more accurate decision than that of the singlecognition and machine learning, combining classifiers still
best member of the team. We look at classifier ensembles genjoys many heuristic ideas. Establishing even vague priority
erated by Boosting, which is recognized as one of the most sacrong these is, therefore, a matter of importance. Many
cessful algorithms for creating classifier ensembles [3], [11§xperimental studies have been published in the search of such
[16], [36], [37]. The ensemble is constructed incrementally, thguidelines, e.g., [25], [26], and [34]. This study also belongs in
subsequent classifiers focusing on those objects in the data &, experimental group.
which appeared to be “difficult” for the previous member of the The text is organized as follows. Section Il introduces
ensemble. The presumption is that this strategy introduces divilie formalism of combining classifiers and the nonfuzzy
sity in the ensemble, and therefore enhances the performano@mbination methods: majority vote, weighted majority vote
The weighted majority votds the standard combination(the standard choice for the Boosting algorithm), minimum,
method for ensembles generated by boosting. As explaimedximum, average, product, and the Naive—Bayes (NB)
later in the text, weighted majority vote is optimal for thecombiner. The Boosting algorithm for generating an ensemble
special case of two classes and classifiers with independ&nalso explained there. The “fuzzy competitors” are presented
outputs. Practice shows, however, that even independentiySection Ill: Fuzzy Integral [4], [8], [9], [18], [42], [43] and
designed classifiers will hardly have independent outputs [2Hfecision templates (DTs) [23], [29]. Section IV contains the
Classifiers designed by Adaboost are dependent because eagierimental set up and the results. We analyze the results in
subsequent member of the ensemble is built on a training set$ection V and offer some conclusions in Section VI.
fluenced by its predecessor. Yet, weighted majority vote works
well regardless of the violations of the optimality assumptions. Il. CLASSIFIER COMBINATION: NON-FUzzY
Therefore, there is no reason why other combination methodﬁ_ . o
should not be successful on ensembles generated by boosti%g etD = {Dy,Ds,...,Dr} be a set of trained classifiers

I. INTRODUCTION

Many combination methods and algorithms have been alled also ensemble, team, pool, etc.), ng {wy, ..., we}

veloped, including methods based on fuzzy sets [27]. Howev: Fa set of class labels. E?‘Ch glassmer gets as Its Input a fea-
tufe vectorx € R™ and assigns it to a class label frami.e.,

D; : R" — Qor, equivalently,D;(x) € Q2,7 = 1,...c. Alter-
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AdaBoost

1. Initialize all coefficients as Wj(i) = %, i = 1,...,N, N being the size of the data
set. Start with an empty classifier ensemble D = ().
2. Fork=1,...,L

2.1. Take a sample Sy from Z using distribution W.

2.2. Build a classifier Dy using Sy as the training set.

2.3. Calculate the weighted ensemble error at step & by

N
= Wi(i)(1—yir), (5)
i=1

where y; = 1, if Dy correctly recognizes z; € Z, and y;x = 0, otherwise. If ex = 0 or € > 0.5,
the weights Wy (i) are reinitialized to ﬁ
2.4. Calculate the coefficient

1—€k

ﬁk = , €k € (0’05)7 (6)

to be used in the weighted voting.
2.5. Update the individual weights for i = 1,..., V.

Wil

— (7)
SN Wi()BL )

Wit (i) =

End k.
3. The final decision for a new object x is made by weighted voting between the L classifiers.
First, all classifiers give labels for x and then for all D; that gave label w;, we calculate the
support for that class by

me) =3 (3. (®)

Dy (x)=wt

The class with the maximal support is chosen for x.

Fig. 1. General description of AdaBoost for classifier ensemble design

whered; ;(x) is the degree of “support” given by classifigy;,  If a single (crisp) class label afis needed, we use the maximum
to the hypothesis that comes from class;. Most oftend; ;(x) membership rule: Assigrto classw, iff

is an estimate of the posterior probabil®(w; |x). In fact, the

detailed interpretation af; ;(x) beyond a “degree of support” fs(x) > e (x),VE=1,....c. (4)

is not important for the operation for any of the combination

methods studied here. Except for the decision templates methggk are resolved arbitrarily. The minimum-error classifier is re-
(explained later), where similarities between fuzzy sets are cghyered from (4) when;(x) o« P(w;|x). Again, there is no

culated/; ;(x) does noteven need to be restricted inthe interval 35on why; (x) should be restricted in the interval [0,1].
[0,1].
Itis convenient to organize the output of aliclassifiers in a

decision profile[29] A. Boosting for Creating Classifier Ensembles
dia(x) oo dy(x) e die(x) Boosting algorithms are amongst the most popular methods
e for constructing classifier ensembles [3], [11], [16], [36]. They
DP(x) = | dia(x) ... dij(x) ... dic(x) |. (2) develop the classifier ensemifieby adding one classifier at a
e time. The classifier that joins the ensemble at giép trained
dpa(x) ... odp(x) ... dpe(x) on a data set selectively sampled from the training dat& set

Thus, the output of classifie; is thei-th row of the deci- The sampling distribution starts from uniform, and progresses
sion profile, and the support for class is the jth column. toward increasing the likelihood of “difficult” data points. Thus,
Without loss of generality we can restriét ; (x) within the in- the distribution is updated at each step, increasing the likelihood
terval [0,1],i = 1,...,L,j = 1,....¢, and call the classifier Of the obJec_:ts misclassified by the classmer_at step 1. _The _
outputs “soft labels.Combining classifierseans to find a class Pasic algorithm, called AdaBoost [15], [36], implementing this
label forx based on thé& classifier outputs. We look for a vector'd€&, is shown in Fig. 1.

with ¢ final degrees of support for the classes as a soft label for1© rain the classifiers and the combiners we have a labeled
x, denoted datase¥ = {z,...,zx}, 2z, € R", called the training set. The

basic (nonfuzzy) classifier combination methods are described
D(x) = [p1(x), ..., pe(x)]". (3) here.
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Classifiers

Decision profile

D
]‘w&m’m
N 0.6 0.2
T | DP(x)=| 0.7 04 |.
0.4

EXAMPLE. Let L =3 and ¢ = 2, and

_ 0.4
/ [ N Cris
X / 5 IL‘\._L R l /\:\ ’ The soft labels for x are
i |’ 41— \ Max
[ s /\/ class I Method ” p1(x) l p2(x) H Label I
label
\ : : Minimum || 0.60 | 0.20 || wi
\ l l Maximum 0.70 0.80 wo
"
\,\ //’/)/,' Average 0.57 0.-%7 wi
\\ // Product 0.17 0.06 w1
\ p A L |
LY
[ d
Take MAX, MIN, AVERAGE, etc., columnwise
Fig. 2. Operation of the simple combiners.
B. Nontrainable Combiners example, let the label fox suggested by classifidD; be ws.

In this subsection we detail the combiners that are ready'fycalculating the support for, say;, we useN (D; = ws|ws)
operate as soon as the classifiers are trained, i.e., they do'4Bich is the entry (3,2) in the confusion matrix fér;.* The
require any further training of the ensemble as awhole.  SUPPOrt forw; is calculated as

The Majority vote (MAJ) assignsx to the class label 1 L
most represented among the (crisp) classifier outputs. Tok;(X) = WH N(D; = silw;), j=1,...,c (11)
derive a formal expression, assume that thbel outputs N; i=1
of the classifiers are given asdimensional binary vectors WhereN; is the total number of patterns froay in Z.

[di1,.. ,dm]T € {0,1}¢,i=1,...,L, whered; ; = 1if D; If the classifiers in the ensemble are not of identical accuracy,
labelsx in w;, and O, otherwisezjc.zl d; j = 1. Theplurality then it is reasonable to attempt to endow the more “competent”
votewill pick classwy, if classifiers with more power in making the final decision using
I I theweighted majority vote (WMAJ) . We introduce weights or
Z d; ;, = max Z di ;. 9) coefficients of importgncéﬂ;, 1 =1,..., L, and rewrite (9) as:
= = Choose class label;, if
Ties are resolved arbitrarily. This rule is often called in the liter- L . &
aturethe majority votelt will indeed coincide with the simple Z bidix = max bidi.;- 12)
=1 1=1

majority (50% of the votes +1) in the case of two classes ). , o )
Various studies are devoted to the majority vote for classifier On€ way to select the weights for the classifiers is formalized
combination, e.g., [1], [2], [31], [32], and [35]. through the following theorem (paraphrased from [38]), which

The remaining simple combination methods require soft |4.€ State WiFhOUI proof. -
bels. TheMinimum simple combiner operates by taking the Theorem: Consider an ensemble bfindependentlassifiers

minimum in each column thereby forming the vecofx) = 1. ---» Dr, with individual accuracies,;, ... ., pr, for solving
[11(%), . .., pe(x)])T as a two-class pattern recognition problem by the weighted ma-

] ) jority vote. Then, using (12), the accuracy of the ensemble is
pi(x) = min (dy(x),...,drj(x)), j=1,...,c. (10) ‘maximized by assigning weights

In a similar way, we calculate the class support from the deci- b o log Di (13)

sion profile D P(x) taking Maximum, Average and Product ! 1—p;

separately for each column. The way simple combiners work isThis result has been derived independently by several

illustrated in Fig. 2. researchers in different fields of science such as democracy

] ] studies, pattern recognition, and automata theory, leading to

C. Trainable Combiners the earliest reference [33] according to [1] and [38]. Curiously,
The NB combination method assumes that the classifielde optimal weights do not take into account the performance

are mutually independent (this is the reason we use the na@fi@ther members of the team but only magnify the relevance

nhaive ) Denote bysi’ the class label aSSIgned)thy classifier 1Recall that the confusion matrix is calculated on the training set so that its

D;. LetN(D; = s;|w;) be_ the numb?r of points in the training(; ;)th entry in the number of objects with true lakel, labeled by the classifier
set from classv;, for which D; assigned class labsl. For asw;.
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of the individual classifier based on its accuracy. The weighted TABLE |

majority vote is the standard choice for combining the classi- EXAMPLE OF THE VALUES OF A Fuzzy
) J . y . . 9 MEASURE g OVER A SET OF THREE CLASSIFIERSD = {D;, D>, D3}
fiers in ensembles designed by Boosting.

Subset D1 D2 D3 Dl, D2 Dl, D3 Dg, D3 D], Dz, D3
I1l. CLASSIFIER COMBINATION: Fuzzy g 031011041 04 05 0.8 1

If we restrictd; ;(x) into [0,1], we can use numerous aggre-

gation connectives defined for fuzzy sets [5], [13], [19], [46khese densities. The valuedfs obtained as the unique real root
[47]. Which connective or rather which class of connectives aggeater than-1 of the polynomial

the most appropriate ones could be related to the semantics of I
the degree of support, i.e., whether they can compensate one an- A+1= H(l +Ag%), A#0. (15)
other, etc. It is perhaps more difficult to interpret the classifier =1

outputs in the semantic frameworks suggested in the literattmge operation of fuzzy integral as a classifier combiner is shown
[14] than to pick an aggregation connective once the context hasig. 3.
been clarified. The most common aggregation connectives, perThe support foty, 11 (x), can be thought of as a “compro-
ceived sometimes as trademarks of fuzzy set theory, are alreatige” between theompetencérepresented by the fuzzy mea-
in use: minimum, maximum, simple average, and product. Wereg) and theevidencerepresented by thee-th column of the
placed them as the nonfuzzy nontrainable combiners. Variati@gcision profileD P(x)). Notice that the fuzzy measure vector
of these with different level of “optimism” in the aggregatior[q(1), ..., ¢(L)]* might be different for each class, and is also
are also among the possible choices. specific for the current. Two fuzzy measure vectors will be the
Here we selected two methods to represent this group: fuzgame only if the ordering of the classifier support is the same.
integral (reported to give good results) and decision templatee algorithm in Fig. 3 calculates a Sugeno fuzzy integral. For
(simple and intuitive). the Choquet fuzzy integral with the sarhduzzy measure, the
Fuzzy integral (FI) [19], [20] has been applied to classifierast formula should be
combination in a number of contexts [4], [8], [9], [18], [42], L
[43]. pr(x) = diy k(%) + Z (di; , k(x) = di; k(%)) 9(j = 1)
Let H be afuzzy set of® expressing the support for class j=2
We use a fuzzy measure to take into account the importance ofrhe idea of thedecision templates (DTs)model is to “re-
any subset of classifiers frof with respect tav;. Two basic member” the most typical decision profile for each class, called
types of fuzzy integrals have been proposed: Sugeno type @heldecision templateDT’;, for that class, and then compare it
Choquet type. Th8ugeno fuzzy integralith respect to a fuzzy with the current decision profil® P(x). The closest match will

measurgy is obtained by labelx. Fig. 4 describes the operation of the decision templates
model.
FI :
Ay~ = max{min(a, g(Ha))} 14)  As both D P(x) and DT} can be regarded as fuzzy sets on

D x , any measure of similarity between fuzzy sets can be
used [6], [12]. Here, based on our previous experience, we use
the Euclidean distance, three similarity measures and two inclu-
sion indices. The decision template combiners are named in the
experiments a®T(xx), where “xx” stands for the measure or
the index, e.g., DT(S1). Let andB be fuzzy sets on some uni-

whereH,, is thea-cut of H.

Example: LetD = {D,, D2, D3}, and let the fuzzy measure
g be defined as shown in Table I.

Let H = [0.1,0.7,0.5] be a fuzzy set of® accounting for
the support for class; by D, D», and D3, respectively (the
jth column of D P(x)). The«-cuts of H are

versal set’.
a = 0, Hy = {D1,D.,Ds} The following measures of similarity were used [12]
o = 0.1, Hy1 = {Di,Ds,D
a = 0.5, Hﬂl = }D;,Dz} & S1(A,B) = % (16)
a = 07, Hoz = {Ds} where|| ¢ || is the relative cardinality of the fuzzy seton U,
a =1, H =0 N denotes minimum and denotes maximum
Then Sy(A,B)=1— || AVB || 17)
115 (%) :Agl where{lVB is the symmetric difference defined by the Ham-
= max{min(0,1), min(0.1, 1), min(0.5,0.8), ming distancgav s (u) = |pa(u) — ps(u)|
min(0.7,0.1), min(1,0)} S3(A,B) =1— || AAB || (18)
= max{0,0.1,0.5,0.1,0} =0.5. m wherepaap(u) = max{pnp(u), panp(u)}.

The following indexes of inclusion ofl (the decision profile
The fuzzy measurgcan be calculated from a setbfvaluesg®, D P(x) in our case) in3 (the decision templat®T;) were used
called fuzzy densities,representing the individual importance12]:

of D;. We can find a\-fuzzy measure which is consistent with AN B

Il (147 B) = T
2The term “fuzzy densities” appears in the literature as a convenient H H
short-hand for “the point-wise values of the fuzzy measure.” I,(A,B)=1-||Ae B (20)

?

(19)
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Fuzzy integral for classifier fusion

1. Fix the L fuzzy densities g%, ..., g", e.g., by setting ¢* to the estimated probability of correct
classification of D; (or to values proportional to the accuracies [9,42,43]).

2. Calculate A > —1 from (15).

3. For a given x sort the kth column of DP(x) to obtain [d;, x(x), dig k(X), - - -, dip, k(X)]7, diy k(x)
being the highest degree of support, and d;; x(x), the lowest.

4. Arrange the fuzzy densities correspondingly, i.e., g%, ..., "> and set g(1) = g%.

5. For t = 2 to L, calculate recursively

g(t) = g" + g(t — 1) + Ag'tg(t — 1).

6. Calculate the final degree of support for class wy by

(%) = max{min{di,(x), 9(1)}} -

Fig. 3. Fuzzy integral for classifier fusion

1. Decision templates (training)
For j =1,...,¢, calculate the mean of the decision profiles DP(z;) of all members of w; from
the data set Z. Call the mean a decision template DT}

1
DT;=— Y DP(z),
N;j zpEw;
2z} €Z

where IN; is the number of elements of Z from w;.

2. Decision templates (operation)
Given the input x € R", construct DP(x). Calculate the similarity S between DP(x) and each
DT}, j=1,...,c as the components of the soft label of x

pj(x) = S(DP(x), DTj).

Fig. 4. Operation of the DTs method.

whereo is the bounded difference TABLE 1l
SIMILARITIES AND THE CLASS LABELS USING THE DECISION TEMPLATES
,U,AQB(’U,) — max{07 ,U,A(’LL) _ /LB('U')}- (21) COMBINATION METHOD
Example: Letc = 3, L = 2, and the decision templates for DTGo) || pn(x) | palx) | Label
wr andws be, respectively DT(E) || 0.9567 | 0.9333 | w1
DT(S1) || 0.7143 | 0.6667 w1
0.6 0.4 0.3 0.7 DT(S2) || 0.8333 | 0.8000 w1
DTy = |08 02| and DTp,= |04 06]. DT(S3) || 0.5000 | 0.5333 | wp
05 0.5 01 0.9 DT(I1) || 0.8333 | 0.8000 w1
DT(I2) || 0.9167 | 0.9000 w1

Assume that for an input, the following decision profile has

been obtained: IV. EXPERIMENTS

0.3 0.7 A. Experimental Setup
DP(x)= |06 0.4 _ N
05 05 We used six data sets as summarized in Table Ill. Except for

the Cone-torus data, the other data sets have been extensively

The similarities and the class labels using DT(E) to DT(I2)sed as benchmarks in the recent literature including that on
are shown in Table II. m combining classifiers. It is difficult to establish a good estimate

We note that both fuzzy integral and decision templates as&the accuracy from past usage because of the difference in
trainable combiners. For the fuzzy integral, the only quantitiése experimental protocols (two-fold cross-validation, ten-fold
that have to be estimated are tjiés (L. parameters) whereascross-validation, single hold-out results, etc.) Since the aim of
DTs requirec decision templates of sizé x ¢ each. This this study is to compare fuzzy and nonfuzzy combiners, both of
suggests that decision templates might be more pronewhbich will be examined under the same experimental protocol,
overtraining than fuzzy integral. we shall not be overly concerned with the absolute value of the
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TABLE Il
SUMMARY OF THE DATA SETS USED

Database H n | c [ N | Pz | Availability
Pima Indians Diabetes 8 | 2| 768 | 65.10 % | UCI®
Phoneme 5 | 2| 5404 | 70.65 % | ELENA?
Cone-torus 2 | 3] 800 | 50.00 % | Private®
Cleveland Heart Disease 13 | 2| 303 | 54.48 % | UCI®
Wisconsin Diagnostic Breast Cancer || 30 | 2 | 569 | 62.74 % | UCI®
Satimage data 36 | 6 | 6435 | 23.82 % | ELENA? |
Notations:

n:  number of features %http://www.bangor.ac.uk/~mas00a/Z.txt and Zte.txt

¢: number of classes bftp ftp.dice.ucl.ac.be, directory pub/neural/ELENA,

N:  number of cases in the database http:/ /www.ics.uci.edu/~mlearn/MLRepository.html

Pras:  the largest class proportion

accuracy. The largest class proportion is given in the table \Agighted majority vote (WMAJ), the nonfuzzy combination
a lower bound of the classification accuracy, i.e., the accuragyethods (MAJ, NB, and simple combiners), and the fuzzy
when labeling any object in the the most probable class. methods (FI and DTs).

Cone-torus is a three-class dataset with 400 2-d points genJo facilitate the comparison we also calculated the relative
erated from three differently shaped distributions: a cone, hakérformance of each method with respect to the others. The
a torus, and a normal distribution with prior probabilities 0.250lumns with the accuracies were sorted individually and each
0.25, and 0.5, respectively. A separate data set for testing wihmbination model was assigned a rank with respect to its place
400 more points generated from the same distribution is alamong the others. The highest rank (value 14) was assigned to
available as the file Zte.txt. For the Cleveland Heart Diseagie best model and the lowest rank (value 1) was assigned to the
data there are a few missing values in the data. In our expeiorst model. The ranks are shown in Table V. The six ranks for
ments, these were replaced by the average of the column (feach combination model were then added up to give a measure
ture) regardless of the class labels. of the overall dominance among the models. The total ranks are

We performed two-fold cross-validation with all data setsiisplayed in the last column of the table.
taking at random one half of the data for training and the otherTo find out whether these results are due to chance or reveal a
half for teSting, and then Swapping the two sets. All the ChOng%ady pattern on the preference, we app|y a diﬁerence-of-pro_
of the parameters and the classifier training was done on th&rtions test for every pair of combiners at level of significance
training sets only. 0.05. Since the assumption of independence between the two

All data sets were normalized in the following way. A lineagamples of interest is generally not true (the same data was used
transformation was used, separately for each feature, to briggest both combiners), the results might be on the conservative
its values within the interval [0, 1]. Thieaining setwas used t0_jge [10]. This means that there might be more true differences
find the minimum and the maximum of the feature values. Thg the same significance level, undetected hereby. Table VI gives
testing set was transformed using these same constants.  he results from the test. Since we used six data sets, there will be

The AdaBoost algorithm in Fig. 1 was implemented to buildiy comparison results for every pair of combination methods.
ensembles of. = 15 classifiers with each data set. The indiyg gnries in the table should be read as “[better same worse]”
vidual classifiers were multilayer perceptron (MLP) neural Nef5r the six comparisons. Thus, the entry for (MIN,NB), “213,”
works with one hidden layer consis_ting of 15 nodes, trained f%eans that the minimum combination method has been found
300 epachs by fast backpropagation (Matlab Neural Neth_)g nificantly better than Naive Bayes method in two of the six

Toolbox). We recorded the training and testing accuracy duri mparisons, the same in one comparison, and worse in three
the AdaBoost iterates for all combination methods described dBmp arison s, '

Sections Il and ll.

B. Results V. ANALYSIS AND DISCUSSION

Fig. 5 shows the testing accuracies for three selected methédsGeneral Remarks
during the progressive ensemble generation: Weighted majorityat g first sight, the results favor the fuzzy combination
vote (best from the nonfuzzy group), fuzzy integral, and deghethods. We note that the overall accuracy of the ensembles
sion templates with Euclidean distance. ~_is not particularly high, compared to the results reported else-

Table IV shows the testing accuracies of the combinatiQnere. This could be due to a poor selection of the parameters
methods for the six data sets at the end of the training, i.gf. the individual classifiers, i.e., the MLP configuration and
when the ensemble consistedfof= 15 classifiers. The lines taining protocol. Another reason is that we used a two-fold
separate the standard combination methods for AdaBoost, ¥§ss-validation, so only 50% of the data was used for training.

3Dr. Robert Detrano collected the database; V.A. Medical Center, LoA@lith a ten-fold cross-validation, the classifiers are trained on
Beach, and Cleveland Clinic Foundation. 90% of the data, hence a higher accuracy could be expected. In
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Fig. 5. Testing accuracy of the combination methods during the incremental design of the ensemble by AdaBoost. All methods are displayed withebe same
as explained in subplot (a).

any case, the purpose of this study was to explore the potenkiakt from the nontrainable group, confirming the findings from
of some fuzzy combination methods compared to the standattier studies [24].
choice and some popular nonfuzzy methods. Table VI identifies the decision templates witt3 (DT(S3))

The overall rank score in Table V also places fuzzy methods the only nondominated combination method. The first digit
before the nonfuzzy ones. The best combiner in our experimeatfsall the entries in its column is 0, indicating that in none of
appeared to be the DTs method based on Euclidean distatie comparisons another method has been found significantly
(DT(E)) followed by the fuzzy integral (FI). Average was théetter. This suggests that although DT(E) and fuzzy integral
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TABLE IV
TESTING ACCURACIES FOR THECOMBINATION METHODS AND THE SIX DATA SETS

Method Pima Phoneme Cone-torus Cleveland Wisconsin Satimage
Weighted majority 76.4 81.4 85.6 78.9 96.8 40.8
Majority 72.8 78.4 76.8 79.2 97.0 274
Naive Bayes 65.1 70.7 82.0 78.5 96.0 70.7
Average 75.0 80.1 79.5 80.2 96.7 48.6
Minimum 73.3 75.9 51.6 82.2 93.0 16.2
Maximum 75.0 75.8 84.7 82.2 92.8 19.7
Product 75.4 77.1 60.4 81.2 97.0 22.2
Fuzzy integral 74.9 80.9 87.2 81.5 97.2 80.3
Decision templates (I1) 76.8 72.7 87.0 79.5 96.7 83.0
Decision templates (I2) 76.8 72.7 87.0 79.5 96.7 83.0
Decision templates (S1) 76.8 72.5 86.4 79.5 96.7 84.8
Decision templates (S2) 76.8 72.5 86.4 79.5 96.7 85.1
Decision templates (S3) 76.8 80.2 87.0 79.5 96.7 85.1
Decision templates (E) 77.1 76.9 86.5 80.2 96.8 85.4
TABLE V

TESTING RANKS FOR THE COMBINATION METHODS AND THE SIX DATA SETS (THE HIGHER THE RANK, THE BETTER THEMETHOD)

Method Pima Phoneme Cone-torus Cleveland Wisconsin  Satimage Total
Weighted majority 8.0 14.0 7.0 2.0 10.0 5.0 46.0
Majority 2.0 10.0 3.0 3.0 12.5 4.0 34.5
Naive Bayes 1.0 - 1.0 5.0 1.0 3.0 7.0 18.0
Average 5.5 11.0 4.0 9.0 6.5 6.0 42.0
Minimum 3.0 7.0 1.0 13.5 2.0 1.0 27.5
Maximum 5.5 6.0 6.0 13.5 1.0 2.0 34.0
Product 7.0 9.0 2.0 11.0 12.5 3.0 44.5
Fuzzy integral 4.0 13.0 14.0 12.0 14.0 8.0 65.0
Decision templates (I1) 12.0 4.5 11.5 6.0 6.5 9.5 50.0
Decision templates (12) 12.0 4.5 115 6.0 6.5 9.5 50.0
Decision templates (S1) 9.5 2.5 8.5 6.0 6.5 11.0 44.0
Decision templates (S2) 9.5 2.5 8.5 6.0 6.5 13.0 46.0
Decision templates (S3)  12.0 12.0 13.0 6.0 6.5 12.0 61.5
Decision templates (E) 14.0 8.0 10.0 10.0 11.0 14.0 67.0
TABLE VI

RESULTSFROM A PAIRWISE STATISTICAL COMPARISON OFCOMBINATION METHODS THE ENTRIES MEAN “[B ETTER SAME,WORSH” O UT OF SIX COMPARISONS

WMAJ MAJ NB AVR MIN MAX PRO FI  DT(1l1) DT(12) DT(sl) DT(s2) DT(s3) DT(E)

WMAJ - 330 321 141 420 330 330 051 141 141 141 141 051 141
MAJ 033 - 222 042 420 321 240 033 132 132 132 132 033 042
NB 123 222 - 132 312 222 222 024 024 024 024 024 024 024
AVR 141 240 231 - 420 321 330 042 132 132 132 132 042 132
MIN 024 024 213 024 - 042 033 024 123 123 123 123 024 033
MAX 033 123 222 123 240 - 132 033 132 132 132 132 033 042
PRO 033 042 222 033 330 231 - 033 132 132 132 132 033 042
FI 150 330 420 240 420 330 330 - 141 141 141 141 051 141
DT(11) 141 231 420 231 321 231 231 141 - 060 051 051 042 042
DT(12) 141 231 420 231 321 231 231 141 060 - 051 051 042 042
DT(s1) 141 231 420 231 321 231 231 141 150 150 - 060 051 051
DT(s2) 141 231 420 231 321 231 231 141 150 150 060 - 051 051
DT(s3) 150 330 420 240 420 330 330 150 240 240 150 150 - 150
DT(E) 141 240 420 231 330 240 240 141 240 240 150 150 051 -

(F1) had higher ranks, the differences where they outperformédal ensembles designed by Boosting reveals the difficulty in
DT(S3) were not found to be significant. doing so. Looking for clues, we summarized in Table VIl some
characteristics of the final ensembles of 15 classifiers (averaged
gover two cross-validation runs) for the six data sets.
The single best classifier was identified as the one with the
highest training accuracy. Column 1 shows the testing accura-
Can we decide which fuzzy or nonfuzzy combiner to use ares of the best classifiers in the ensembles. Next to it, we show
a given data set? A closer look into the characteristics of tirebrackets the iteration number in the boosting algorithm where

B. Effects of the Individual Accuracies, Their Variability, an
Ensemble Diversity
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TABLE VI
CHARACTERISTICS OF THEFINAL ENSEMBLES OF15 QLASSIFIERSDESIGNED BY BOOSTING

Data set Single best Ensemble Ensemble Q
(%] (iteration) average [%)] standard deviation [%)]

Pima 75.26 (1) 59.03 9.95 0.0870
Phoneme 7441 (1) 63.77 7.13 0.1535
Cone-torus 84.88 (2) 68.13 7.33 0.2992
Cleveland 77.89 (1) 70.74 5.47 0.4438
Wisconsin 96.49 (1) 89.57 . 4.94 0.6430
Satimage 64.70 (2) 27.49 14.05 -0.0685

this classifier was found. It is not surprising that the best overall
accuracy is achieved by the first or the second classifier in the : : :
ensemble where we draw a training sample almost uniformly L S — Wisconsin
from the training set at hand. Later classifiers are more special- : : :
ized on difficult part of the training data rendering low overall
accuracy. .
We calculated the averaged accuracy of the ensemble looking :
for a pattern on the improvement. The most pronounced im- o ' ’

provement of fuzzy combiners over the nonfuzzy ones was D ohoreme 5 : 5
found on the least accurate ensemble, the Satimage data. Using 0.4p - =g = 2
36 features and accounting for six classes, makes the training Pima : :
of an MLP a difficult task. Judging by the best accuracy of o, . ... .. SN S -
64.70%, the training has been trapped in local optima for all '
ensemble membetsBy resulting in low-accuracy classifiers, ; v
however, this experiment highlights an interesting finding: % 1 2 3 4 5 6 7
Fuzzy combiners are particularly useful when the classifiers
forming the ensemble are poorly trained or calibrated.

Fumera and Roli [17] suggest that timbalanceof the en-
semble plays a role in its success. To account for this, we show
in Table VII the standard deviations within the 15 classifiers. : , :
The highest variation in accuracy is exhibited by the Satimage é 5 : Phoneme
data where the best improvement happens to be as well. How- 0 5 10 15 0 5 10 15

ever, this pattern is not consistent with the other data sets. Higher ! L Conc—torus 08 \/\N
variance is not a guarantee that fuzzy combiners will be better /\”/\/\A\/ 0.6h i B Y

Individual accuracies

_Cleveland !

' .
Satimage

o L] :

¢ Cone:torus

than nonfuzzy combiners. Fig. 6(a) shows the scatter of the in- Cleveland

dividual classification accuracies of the ensembles for the six 05, 5 150 5 04 5 10 W5
data sets and Fig. 6(b) gives the sequence of individual accu- : : 1
racies across the AdaBoost iterations. Not surprisingly, the per- Wisconsin

Satimage

formances deteriorate. However, there is no principal difference  o.9p RN N AN 05

between the deterioration pattern for the Phoneme data from the : f :

others which can explain the failure of DTs on this data set. 08 5 10 15 % 5 10 15
Diversity is another characteristic that is perceived to be of b)

primary importance for the success of the ensemble. Based on

our previous research [30] we chose to show the measure':@f 6. (a) Scatter of the individual accuracies of the 15 classifiers for the six
. . . data sets. (b) Plot of the individual accuracies versus AdaBoost step.

diversity Q of the final ensembles. The lower the value(@f

the higher the diversity. Although best improvement was fonud ) ) .

at the lowestQ (greatest diversity), no consistent pattern carately, (one class at a time) are named in [29] “class-conscious.

be observed which can indicate where fuzzy methods should®éch are all basic combination methods, e.g., minimum, max-
preferred. imum, average, product, etc., and the fuzzy integral. Conversely,

DTs are a “class-indifferent” approach because they treat the

C. Why are DTs Different From the Rest of the Combiners? classifier output; as a context-free set of features,.much as the

_ L stacked generalization approach [44]. Thus, by design, all class-

Below we try to give more insight into why DTs are expectefonscious combiners are idempotent, i.e., if the ensemble con-
to work. The combiners which treat the individual outputs sepgisis of 7, copies of a classifieD, the ensemble itself will be

_ _ _ no different fromD. Indeed, the decision profile will contai
“Woodset al. report in [45] an MLP with accuracy 83.98% using 5 features

from the Satimage data but since no training protocol was specified we were %@nt'cal rows and any of the operations d'_sc?ussed above will
able to match this result. lead to the same overall class labellasDecision templates,
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however, will not be necessarily identical ¥ they might be (%)
better or worse. 1 =
To illustrate this point, we consider a classifierfor a two- 091

class data set. Denote the outputs for the two classés as
P(wi|x) anddy = 1 — d; = P(w;|x).5 Taking L copies ofD
as our ensemble, the decision profile focontainsL rows of
[d1 do]. Itis not difficult to verify that all combination methods 0.6 o
explained above except decision templates will copy the deci-
sion of D as their final decision. However, this is not the case

0.8

0.7

DT bounda
0-5 . . ry voaed

\\ Decision templatg for class 1

with DTs. Assume that we have obtained the following DTs: e
0.55 0.45 0.2 0.8 ° / .
DT} = and DTy = 0.2 o N
0.55 0.45 0.2 0.8 0.1 e
.. . ; ‘ i \; 1)
and the decision ab for x is d; = 0.4 andd, = 0.6. All com- % 0.2 0.4 0.6 0.8 1

bination methods except DTs will assigrto classw,. Using,

say DT(E), we have the two Euclidean distances ] ] o )
Fig. 7. lllustration of the decision templates operating on an ensemble of

identical classifiers using Cleveland data set. Shaded area is the decision region
by = \/L X ((0'55 B 0'40)2 + (0'45 o 0'60)2) for classw, using the original classifier and any combination method other
=v/0.045 L; (22) than DTs. The points in the training set are depicted using their labels from the
“cloned” classifier. The two decision templates are shown with crosses and the
Fs :\/L x ((0.2 — 0.40)2 + (0.8 — 0.60)2) respective new classification boundary is shown by the dashed line. Previously
—vV0.080 L (23) mislabeled points which are correctly labeled by the DT(E) are encircled.

SinceEy < E, x will be classed inw;. Is this good or bad? p Fewer Classifiers (Early Stopping of Adaboost)
The fact that a different classification is possible only supports

the thesis that DTs are not an idempotent combiner. Hence, itig g previous experiments, we chose the number of classi-
possible that the true label @fwasw;, in which case DTs are fiers (1, = 15) arbitrarily. Fig. 5 suggests that reasonable accu-
correct where all other combiners, includifigtself are wrong. racy of the combination is achieved by fuzzy combiners at the
The question is in what experimental scenario should we expgghly stages of AdaBoost, with only a few classifiers. It could
DTs to be more correct than other methods? be argued that further increment in the number of classifiers di-
Let D be a linear classifier which we ran on the Clevelangles the differences which are exploited well by the trainable
data set, using a randomly selected half for training and the f§zzy combiners such as DTs. To examine this hypothesis we
maining half for testing. Every point € R" can be character- gpalyzed a “slice” of AdaBoost stopped after the third classifier

ized by its output valued, andd,. Being a probabilistic label, \y45 byilt. Tables VIII-X mirror Tables IV-VI, respectively, for
(d1, dz) can be plotted as a point on the diagonal line of the unit _ 3 ¢assifiers.

square. A fuzzy label therefore will be a point within the unit
square. Let us construct an ensemble talfingstorted copies examined. Two interesting observations can be made from the

~ . 3 .

é). of D’IV;{'th outpgt t .d?)F'.NO;N ,Tlle Iab%l. potllnts aretr(])ffdthe rank score Table IX. First, the average combiner was ranked
lagonal fine as shown In Fig. /. All comoination methods e>\(/'ery high, almost catching up with its best rivals in the com-

cept DTs will label the points according to the bisecting lin

eparison. This shows once again its robustness and universality.

Thi points v¥hotshe label f‘z}l n tr:; shadded t::]rea W'ILpe Ig‘beleﬂ cond, the total rank scores of fuzzy integral and weighted ma-
wz Decause forthese poinis > aj, and so the combinedresu jority dropped while the rank scores for all the decision template
from any idempotent combiner will b, > 11 (matching that

~ . N . models went up. This indicates that DTs are more beneficial for
of D). The accuracy of the individual classifier in this exampl P

) - &mall number of classifiers. The reason for that could be that,
IS 81.'4,[70/;2 l_\ldext,t_wel apply t?]T(Ef) : Th?htwo ?emsmn;emr? Iater?aving to estimate? x L parameters from the training set, DTs
consist oL identical rows, theretore, they aiso can be charag, prone to overtraining. Therefore, for lardeit is advisable
Yo have a separate validation set for calculatingdhukecision

; . Péf‘hplates. Note that (Table X) now both DT(S3) and DT(E) are
lated by the distance to the template, a hew decision boundﬂ@’ndominated
is found, shown by the dashed line. Four points from the orig- _. ' . . .

Fig. 8 offers an overall picture of the statistical comparisons.

inal training set, previously mislabeled ag are now correctly d the dth ¢ hod 4 found
labeled ass; (encircled in the figure). Thus in this example, théNe Igr(;urr)]e t ebuzzyfap t ef non uzzyhmc;at ; s an doun a
training accuracy of DT(E) is 84.11%, exceeding that of the irﬁgta 0 ttﬁ r:jumther 0 t|[)nes fut;zy mteht 0as or.m(r;.a?e n.oﬂ'
dividual classifier and the other combination methods. uzzy methods, the number of imes they were indistinguish-
able, and the number of times fuzzy methods were worse than
nonfuzzy methods. Since there are seven fuzzy and seven non-
5The probabilistic semantic is used for illustration purposes. The examZZy Methods and six dgta sets, the total number of “fuzzy
generalizes to any other semantic of the classifier outputs. versus nonfuzzy” comparisons 'sx 7 x 6 = 294. Plotted

Again, the fuzzy methods dominate the nonfuzzy methods
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TABLE VIl
TESTING ACCURACY FORENSEMBLES OFL = 3 CLASSIFIERS

Method Pima Phoneme Cone-torus Cleveland Wisconsin Satimage
Weighted majority 75.7 77.9 85.8 80.9 97.2 52.7
Majority 76.2 76.0 85.8 80.9 97.2 63.9
Naive Bayes 72.0 70.7 83.4 80.9 97.2 70.1
Average 76.8 76.8 86.8 82.2 97.5 68.3
Minimum 76.4 75.5 574 81.8 96.5 16.5
Maximum 75.8 75.0 86.5 81.5 96.7 68.2
Product 76.8 75.3 67.2 82.5 97.5 26.4
Fuzzy integral 76.3 76.2 86.1 81.2 97.2 67.4
Decision templates (I1) 75.5 76.1 87.2 81.8 97.5 74.4
Decision templates (I12) 75.5 76.1 87.2 81.8 97.5 74.4
Decision templates (S1) 75.7 76.1 874 81.8 97.4 79.7
Decision templates (S2) 75.7 76.1 86.9 81.8 97.4 79.5
Decision templates (S3) 76.2 78.4 87.0 81.8 97.5 79.6
Decision templates (E) 76.7 77.4 86.6 82.2 97.7 79.2
TABLE IX

TESTING RANKS FOR ENSEMBLES OFL = 3 CLASSIFIERS

Method Pima  Phoneme Cone-torus Cleveland  Wisconsin =~ Satimage  Total
Weighted majority 40 13.0 45 2.0 15 3.0 31.0
Majority 8.5 5.0 4.5 2.0 4.5 4.0 28.5
Naive Bayes 1.0 1.0 3.0 2.0 4.5 8.0 19.5
Average 13.5 11.0 9.0 12.5 11.5 7.0 64.5
Minimum 11.0 4.0 1.0 11.0 1.0 1.0 29.0
Maximum 7.0 2.0 7.0 5.0 2.0 6.0 29.0
Product 13.5 3.0 2.0 14.0 9.0 2.0 43.5
Fuzzy integral 10.0 10.0 6.0 4.0 4.5 5.0 39.5
Decision templates (I1) 2.5 8.5 12.5 8.0 11.5 9.5 52.5
Decision templates (12) 2.5 8.5 12.5 8.0 11.5 9.5 52.5
Decision templates (S1) 5.5 6.5 14.0 8.0 7.5 14.0 55.5
Decision templates (S2) 5.5 6.5 10.0 8.0 7.5 12.0 49.5
Decision templates (S3) 8.5 14.0 11.0 8.0 11.5 13.0 66.0
Decision templates (E) 12.0 12.0 8.0 12.5 14.0 11.0 69.5
TABLE X

RESULTS FORENSEMBLES OFL = 3 CLASSIFIERSFROM A PAIRWISE STATISTICAL COMPARISON OFCOMBINATION METHODS THE ENTRIESMEAN “[BETTER,
SAME, WORSH” OUT OF 6 COMPARISONS

WMAJ MAJ NB AVR MIN MAX PRO FI  DT(11) DpT(12) DT(sl) DT(s2) DT(s3) DT(E)

WMAJ - 141 141 051 330 141 330 141 141 141 141 141 051 051
MAJ 141 - 141 051 240 051 240 051 051 051 051 051 042 051
NB 141 141 - 132 222 141 222 141 033 033 033 033 033 033
AVR 150 150 231 - 240 150 240 060 051 051 051 051 042 051
MIN 033 042 222 042 - 042 042 042 042 042 042 042 033 033
MAX 141 150 141 051 240 - 240 060 051 051 051 051 042 042
PRO 033 042 222 042 240 042 - 042 042 042 042 042 033 033
FI 141 150 141 060 240 060 240 - 051 051 051 051 042 051
DT(11) 141 150 330 150 240 150 240 150 - 060 051 051 042 051
DT(12) 141 150 330 150 240 150 240 150 060 - 051 051 042 051
DT(s1) 141 150 330 150 240 150 240 150 150 150 - 060 051 060
DT(s2) 141 150 330 150 240 150 240 150 150 150 060 - 051 060
DT(s3) 150 240 330 240 330 240 330 240 240 240 150 150 - 060
DT(E) 150 150 330 150 330 240 330 150 150 150 060 060 060 -

in Fig. 8(a) is a bar graph for the early stopping of AdaBoost The results in the plots should be taken cautiously because of
(L = 3 classifiers), and in Fig. 8(b), the bar graph for= 15 the nature of the methods grouped together. We chose for the
classifiers. In both experiments, fuzzy combiners were foumbnfuzzy group the basic and most popular combiners. How-
better. Part of the large number of insignificant differences fever, we could have included in this group other successful train-
L = 3 (207) was “redistributed” foi. = 15, again favoring able combiners from the literature. One such candidate would be
fuzzy combiners. the so called behavior knowledge space method [22] which was
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weighted majority vote. Thus, for ensembles of three classifiers,
DT’s performance was superior to the other two, whereas for 15
classifiers the performances were similar.

From the nonfuzzy group, the weighted majority vote was
the best combiner. This is not a surprise as this combiner is the
standard one used with AdaBoost. Average combination was

150t

_Fuzzy > Non-fuzzy
81

100

Fuzzy < Non-fuzzy
6
e R
1 2 3

@ (1]

250 : : [2]
[3]

(4]

Fuzzy = Non-fuzzy
148

150 Fuzzy s Non=fuzzy
120 [5]

100f
(6]

50+ Fuzzy < Non-fuzzy 4
2 (7]

B

1 2 3 (8]

(b)

Fig. 8. Overall picture of the statistical comparisons.

[9]
(10]

found to be better than DTs in an identity verification study [23].
BKS is a multinomial classifier on the class label outputs which1]
requires a look-up table of siz&" which makes it inappropriate

for even moderate size ensembles. Apart from the danger of sg2]
vere overtraining, the computational time would be substantialrlB]

VI. CONCLUSION (14]

We studied the potential of fuzzy combination methods forl1%]
ensembles of classifiers designed by AdaBoost. The results i
volving sums of ranks and statistical comparisons showed that
in general, fuzzy methods fared better than nonfuzzy methodfﬁ]
However, the study also highlighted the difficulties in choosing
a particular method for a given problem.

Decision templates were found to be the best from the group8l
of the fuzzy combiners, particularly the variants with Euclidean 19]
distance (DT(E)) and the similarity measuff¢ (DT(S3)). The
capability of DTs to achieve higher accuracy can be attributed t
the fact that they are not an idempotent combiner. Fuzzy integr
also showed consistently good performance, working succesg]
fully on the data sets where DTs were inferior to the nonfuzzy
methods. DT models were more prone to overtraining than th[e2 2
other trainable combiners studied here, i.e., fizzy integral and

2

also among the best, especially for small number of classifiers.

Thus, the claim here is not that the fuzzy combiners are better.
A well known postulate in pattern recognition says that there is
no “best” classifier or “best” combination method. What this
study suggests is to keep fuzzy combiners high on the list of
a8 ] options.
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