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Switching Between Selection and Fusion in
Combining Classifiers: An Experiment

Ludmila I. Kuncheva, Member, IEEE

Abstract—This paper presents a combination of classifier se-
lection and fusion by using statistical inference to switch between
the two. Selection is applied in those regions of the feature space
where one classifier strongly dominates the others from the pool
[called clustering-and-selection or (CS)] and fusion is applied in
the remaining regions. Decision templates (DT) method is adopted
for the classifier fusion part. The proposed combination scheme
(called CS+DT) is compared experimentally against its two com-
ponents, and also against majority vote, naive Bayes, two joint-dis-
tribution methods (BKS and a variant due to Wernecke), the dy-
namic classifier selection (DCS) algorithm DCS_LA based on local
accuracy (Woodset al.), and simple fusion methods such as max-
imum, minimum, average, and product. Based on the results with
five data sets with homogeneous ensembles [multilayer perceptrons
(MLPs)] and ensembles of different classifiers, we offer a discus-
sion on when to combine classifiers and how classifier selection
(static or dynamic) can be misled by the differences in the classifier
team.

Index Terms—Classifier combination, classifier selection and fu-
sion, confidence intervals (CIs), decision templates (DTs), discrim-
inant analysis, multiple classifier systems, pattern recognition, su-
pervised learning.

I. INTRODUCTION

CLASSIFIER combination is a viable alternative to using a
single classifier. This is now an established research area

thriving mostly on heuristic solutions. Some theoretical results
are also available but only for special cases, usually assuming
independent classifier outputs.Ad hocmethods, such as the one
proposed in this paper, could be useful as a pre-phase toward a
more general theory of classifier combination.

In this paper, we assume that a small set of trained classifiers
is available and we are interested in combining their outputs
aiming at the highest possible accuracy.

Let be a set of classifiers and
be a set of class labels. Each classifier gets as its

input a feature vector and assigns it to a class label from
, i.e., , or equivalently, , .

In many cases, the classifier output is a-dimensional vector
with supports to the classes, i.e.,

(1)

Without loss of generality we can restrict within
the interval , , , and call the
classifier outputs “soft labels” (see [3]). Thus, is the
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degree of “support” given by classifier to the hypothesis
that comes from class [most often an estimate of the
posterior probability ]. Combining classifiers means
to find a class label for based on the classifier outputs

. Again, we can find a vector with final
degrees of support for the classes as a soft label for, denoted

(2)

If a crisp class label of is needed, we can use the maximum
membership rule. Assign to class iff

(3)

Ties are resolved arbitrarily. The minimum-error classifier is re-
covered from (3) when .

Two strategies are discussed in the literature on classifier
combination: classifierselection and classifierfusion. The
presumption in classifier selection is that each classifier has
expertise in some local area of the feature space. When a feature
vector is submitted for classification, the classifier
responsible for the vicinity of is given the highest authority to
label . Classifier fusion assumes that all classifiers are equally
“experienced” in the whole feature space and the decisions
of all of are taken into account for any. There are many
combination models halfway between these two extremes, e.g.,
where individual competence varies over.

Contrary to this implicit integration of fusion and selection,
in this spaper we propose a scheme using statistical inference
to switch between the two. Section II introduces the proba-
bilistic background of classifier selection and explains the clus-
tering-and-selection (CS) model used in the proposed combina-
tion. Classifier fusion and the decision templates model (DT)
are presented in Section III. Other fusion models used in the ex-
periments for this paper are detailed in the Appendix. Section IV
gives the background of using confidence intervals (CIs) in se-
lecting a classifier and the model that results from this, called
CS DT. Section V contains experiments with five datasets, and
Section VI offers a conclusion.

II. CLASSIFIER SELECTION

A. Probabilistic Background

In classifier selection, when a feature vector is
submitted for classification, the classifier responsible for the
vicinity of is chosen to decide on the class label. We can
nominate exactly one classifier to make the decision, as in
[18], or more than one “local expert,” as in [2] and [9]. Clas-
sifier selection has been proposed in the form of a composite
classifier system by Dasarathy and Sheela [4]. They combine
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a linear classifier and a-nearest neighbor (-nn) classifier.
The authors suggest to identify a conflict domain in the feature
space and use-nn in that domain while using the linear
classifier elsewhere.

Two types of classifier selection systems can be distin-
guished.

1) Static classifier selection.Selection regions are speci-
fied during a training phase, prior to classifying the un-
labeled vector . In the operation phase, the region of
is first found, e.g., , and processed further by the re-
spective classifier , responsible for region . Two
possible training approaches are: specify the regions and
then assign a responsible classifier for each region (e.g.,
the model in [21]), or given , find a region (possibly a
set of regions) where each classifier is the best one (e.g.,
the model in [18]). Although probably more efficient, the
second approach is difficult to implement.

2) Dynamic classifier selection (DCS).The choice of a
classifier to label is made during the operation phase.
This choice is typically based on the certainty of the cur-
rent decision. Preference is given to more certain clas-
sifiers. For example, if the 5-nn rule is being used in a
two-class problem, and three of the neighbors vote for
class and two for class , we can switch to, say, 3-nn
or 1-nn, thereby changing the classification ruledynami-
cally [12]. Rastrigin and Erenstein [18] proposed the fol-
lowing dynamic selection scheme. The “competence” of
each classifier is estimatedin the vicinity of as the clas-
sifier’s accuracy. Two methods were suggested for this:
the potential functions method and the-nearest neigh-
bors. The classifier with the highest competence is au-
thorized to label . Thus, the regions are estimated
during the classification process. Woodset al. [26] also
use local analysis of competence to nominate a classifier
from to label . We took as our DCS model their algo-
rithm calleddynamic classifier selection with local accu-
racy(DCS_LA, we refer to it in the sequel as DCS). From
the two versions of DCS_LA in [26], the “local class ac-
curacy” version has been found to be the better one, so this
is what we adopted as well. The algorithm that we used is
shown in Fig. 1. It has a minor difference with the original
algorithm in that we fixed the depth of the tie breaking
procedure. We kept track of the randomly broken ties to
make sure that the overall performance of the algorithm
is not affected. The dynamic selection idea mimics the
decision making in real life situations, e.g., in medical di-
agnostics, where help is sought if the confidence of the
current decision-maker is not high enough.

Why should classifier selection work? Let be divided
into regions of competence, . Denote the regions
by . These regions are not associated with specific
classes, nor do they need to be of a certain shape or size.

An example of partitioning into regions is shown in Fig. 2.
Depicted is a 15-point dataset in with two class labels:
squares and snowflakes. Thetwo classification regionsde-
fined by the nearest neighbor classifier are overlayed using
Voronoi diagrams. Shaded is the classification region for

Fig. 1. Operation of DCS_LA with local class accuracy.

class “squares.” Fourselectionregions are set up arbitrarily,
and , to be used in classifier selection.

During training of the multiple classifier system we decide
which classifier from we should nominate
for each region . Thus, the number of classifiers is not
necessarily equal to the number of regions. Some classifiers
might never be nominated and therefore they are not needed in
the operation of the combination scheme. Even the classifier
with the highest accuracy over the whole feature space might
be dropped from the final set of classifiers. On the other hand,
one classifier might be nominated for more than one region.

Let be the classifier with the highest average accuracy
amongst the elements of over the whole feature space .
Denote by the probability of correct classification by

in region . Let be the classifier responsible for
region . The overall probability of correct
classification of our classifier selection system is

(4)
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Fig. 2. Example of partitioning the feature space with two classification
regions into four selection regions.

where is the probability that an input drawn from
the distribution of the problem falls in . To maximize

, we assign so that

(5)

Ties are broken randomly. From (4) and (5)

(6)

The above equation shows that the combined scheme per-
forms at least as good as the best classifierin the pool ,
regardless of the way the feature space has been partitionedinto
selection regions. The only condition (and, of course, the trick-
iest one) is to ensure that is indeed the best amongst the
classifiers from for region . The extent to which this is sat-
isfied determines the success of the classifier selection model.

B. The Clustering-and-Selection Model

Based on the above is the simple (static) classifier selection
method calledclustering-and-selection (CS)[13]. Fig. 3 shows
the training, and Fig. 4, the operation algorithms.

III. CLASSIFIER FUSION

A. A General Model for Classifier Fusion

Classifier fusion assumes that all classifiers are trained over
the whole feature space, and are thereby considered ascompeti-
tive rather thancomplementary[17], [27]. We can treat the clas-
sifier outputs as the input to a second-level classifier in some
intermediate feature space, and design a new classifier for the
second (combination) level.1 The classifier outputs can be orga-
nized in adecision profile[15] as the matrix in

(7)

The entries in are the intermediate features. To build a
minimum-error classifier, we replace the problem of estimating

1This is called “stacked generalization” in [25].

Fig. 3. Training of the CS method.

Fig. 4. Operation of the CS method.

with one of estimating , or
more compactly, . Thus, the initial feature space
with features, , is transformed into a new space with
features. This treatment of the combination problem underpins
the schemes in [1], [7], [8], [10], [23], and [24]. In a way, this
idea is akin to support vector machines approach where the ini-
tial feature space is transformed in a new (generally higher di-
mensional) space and the classifier is built in that new space
[20]. However, in the model here, the intermediate feature space
has a special context-related structure on which we can base our
combination model [15].

Some fusion methods calculate the support for classusing
only the th column of , i.e., the individual support for

given by , regardless of what the support for
the other classes is. Simple and widely used members of this
group are the minimum, maximum, average, and product, taken
columnwise on the decision profile . For example, let

, , and the decision profile obtained forbe

(8)

The first column of is the support for , and the
second column is the support for. The maximum aggregation
rule will give with
and , and subsequently
label in . For the minimum rule , for
the product rule and for the average rule

. Here, all the aggregation rules agree on
labeling in but this need not be the case for a different
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Fig. 5. Training of the DT method.

Fig. 6. Operation of the DT method.

example. The above models are derived in [11] as different es-
timates of under the assumption of conditionally inde-
pendent .

B. Decision Templates (DTs)

Using DT for combining classifiers is proposed in [15]. Given
(trained) classifiers in , DT are calculated from the data,

one per class. The decision template for class, denoted
is the centroid of class in the intermediate feature space.
can be regarded as the expected for class . The sup-
port for class offered by the combination of theclassifiers,

, is then found by measuring thesimilarity between the
current and . We use Euclidean distance for calcu-
lating the similarity but other measures can also be applied. In
[15], we view and as two fuzzy sets defined over
the set of intermediate features and use measures of similarity
from fuzzy set theory. Fig. 5 describes the training and Fig. 6,
the operation of the DT model.

We illustrate the DT model with a numerical example. Let
and , and let the , calculated from

the data be

and (12)

Assume that for an input, the following decision profile has
been obtained:

(13)

Using (11) and (10), the soft label ofis

(14)

If the classifier outputs are some estimates of the posterior
probabilities , the decision template

is an unbiased estimate of the expectation of the -di-
mensional random variable given that the true class is

. Therefore, assessing the similarity between the actually oc-
curred matrix of outputs and the expected one for is
a reasonable classification strategy. DT have been found to rate
among the best combination methods and show stable perfor-
mance over a range of experimental setups [15]. This was the
reason to pick this model as a component in the proposed com-
bination.

Four rival classifier fusion techniques used in the experi-
mental study are described in the Appendix: majority vote,
naive Bayes, and two joint-distribution methods.

IV. COMBINING CLUSTERING AND SELECTION WITH

DECISION TEMPLATES

A. Using Confidence Intervals for Selecting a Classifier

Clustering and selection is guaranteed by design to give at
least the same training accuracy as the best individual classifier

. However, the model might overtrain, giving a deceptively
low training error. Hopefully, using CIs and nominating a clas-
sifier only when it is significantly better than the others, will be
a basis of a combination scheme less prone to overfitting and
spurious errors.

A way to reduce the possible overtraining is to perform a sta-
tistical test for determining whether the best classifier in,

, is significantly different from the remaining lot. Looney
proposed a statistical method for comparingclassifiers based
on an adjusted -test [16]. Since we are interested only in a dif-
ference between the best classifier and the rest, we can perform
pairwise tests such as the paired-test. It is enough to eliminate
the second best classifier. If is significantly better than the
second best, then can be nominated as the classifier re-
sponsible for region . Otherwise, a scheme involving more
than one classifier might pay off.

As an example, assume that five classifiers have been de-
signed on a dataset with 100 elements. Define

(15)

to be a vector with classification outcome of classifieron the
dataset, such that , if recognizes correctly theth el-
ement of the dataset, and 0, otherwise. Table I shows the distri-
bution of for the 100 elements. The total number
of correctly recognized objects is shown in the bottom row for
each classifier. We could be tempted to nominatefor region

as its classification accuracy is 76%, by 5% higher than the
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TABLE I
DISTRIBUTION OFCORRECT/INCORRECTCLASSIFICATION DECISIONS FORFIVE

CLASSIFIERS FOR ADATA SET WITH 100 ELEMENTS (NOTICE THAT NOT

ALL POSSIBLECOMBINATIONS HAVE OCCURRED). THE BOTTOM ROW

CONTAINS THE TOTAL NUMBER OF CORRECTLY RECOGNIZEDOBJECTS

FOR EACH CLASSIFIER

Fig. 7. 95% CI for the five classifiers.

second best. However, the paired-test analysis suggests that
is not significantly different from ( ), not even

from ( ). Therefore, it is probably better to consider
a fusion scheme of the decisions of more than one classifier in

.
Fig. 7 shows the 95% CIs of the classification accuracies of

the five classifiers. The intervals have been calculated through
the standard formula

(16)

where is the sample size, is the value for 95%
significance level ( ) and degrees of freedom, and

is the estimate of the classification accuracy of the respective
in region . Equation (16) is an easy (but not very accurate)

way to check whether classifiers are significantly different (for
we can use ).

The above calculations are based on the assumption that
is the same for all and has therefore a Bi-

nomial distribution. We can derive an equation for calculating
the “gap” needed so that the 95% CI of the best and the second
best classifiers do not overlap. In this case, the best classifier

Fig. 8. Difference� between the best and the second best classification
accuracies in regionR guaranteeing that the 95% CI of the two do not overlap.

can be nominated as . Let , , where
is the highest accuracy and is the second highest in .

The critical value for the gap is derived from

(17)

Substituting and solving for , we obtain

(18)

Fig. 8 plots against for three values of : 100, 1000,
and 10 000. For larger the required gap for the best and the
second best classifiers to be significantly different is smaller. In
other words, even a 2% difference in the classification accuracy
could be enough background to nominate as the classifier
responsible for region .

B. The CS DT Classifier Combination Model

The combination is a straightforward application of the two
models. First, the CS model is applied. Then, CIs on the accu-
racy of the classifier are calculated for cluster (using only
the data points in ) through (16). Based on the overlap, either
one classifier is selected in charge of region , or the DT
model is used with all classifiers.

There are various ways to implement the combination. Here,
we used the following one. We nominated a classifier for re-
gion if the 50% CI ( value 0.675) of the best accuracy did
not contain the second best accuracy. The reason for this choice
was that since classifiers have similar (presumably high) accura-
cies, and the number of data points is moderate in each cluster,
it is unlikely to obtain nonoverlapping CIs. Therefore we will
have to use DT in all regions, so the combination of the two ap-
proaches becomes meaningless. Second, we used a single DT
calculation, using all data points in, and not an individual DT
model for each cluster. This was adopted as the simplest pos-
sible solution.

We have to be cautious though because although each of the
constituent methods have their reasonable probabilistic back-
ground, there is no guarantee that the combined model will com-
bine their strengths.



KUNCHEVA: SWITCHING BETWEEN SELECTION AND FUSION 151

TABLE II
SUMMARY OF THE DATASETS USED

V. EXPERIMENTS

A. Experimental Setup

A series of experiments has been carried out to check whether
CS DT is better than either CS or DT applied individually,
and also how CSDT rates among other classifier combination
methods.

We used five datasets as summarized in Table II

1) Cone-torus data. This is a three-class dataset with 400
two-dimensional points generated from three differently
shaped distributions: 1) a cone, 2) half a torus, and
3) a normal distribution with prior probabilities 0.25,
0.25, and 0.5, respectively. This dataset is available
on http://www.bangor.ac.uk/~mas00a/Z.txt. A separate
dataset for testing with 400 more points generated from
the same distribution is also available as the file Zte.txt.
Experiments with various classification methods on this
dataset are reported in [14]. The accuracy of the nearest
neighbor method (1-nn) was 84.85%, Parzen classifier
gave 87.75%, different configurations and parameter
settings of multilayer perceptron (MLP) and RBF neural
networks (NNs) resulted in 84.25–89.50% accuracy, and
fuzzy classifiers exhibited a large range of performances,
the best being a version of a Wang–Mendel model with
90.25% accuracy.

2) Phonemedata. This set is from the ELENA database
It consists of 5404 five-dimensional vectors character-
izing two classes of phonemes: 1) nasals (70.65%) and
2) orals (29.35%). As reported in the database, the set has
been classified using 1-nn and 20-nn with results 91.03%
and 85.80%, respectively. In both cases, the leave-one-out
method was applied.

3) Pima Indians Diabetesdata. A population of women
living near Phoenix, AZ, of Pima Indian heritage were
tested for diabetes according to World Health Organiza-
tion criteria. The dataset is available within the UCI Ma-
chine Learning Repository. Reported in the database are
results from past usage of data, giving 76% accuracy in a
hold-up experiment with 576 training and 192 testing data
points. Because of missing values, Ripley uses a subset of
532 cases in his book [19], and reports accuracy of 80%.
The version offered at the UCI site contains 768 complete
cases (no missing values).

4) Cleveland Heart Diseasedata.2 The presence or absence
of heart disease is predicted based on 13 features. The
dataset consists of 303 patient records, of which 164 did
not have the disease. There are a few missing values in
the data. In our experiments, these were replaced by the
average of the column (feature) regardless of the class
labels. The classification accuracy on this data, reported
in the UCI database, varies between 75% and 79%.

5) Wisconsin Diagnostic Breast Cancerdata. Features are
computed from a digitized image of a fine needle aspirate
of a breast mass. The mass is classed as benign or malig-
nant. The results of past usage of the dataset are summa-
rized in the UCI database: the sets are linearly separable
using all 30 input features. Using just three of the 30 fea-
tures, a linear classifier model was built with accuracy of
97.5% estimated by repeated tenfold crossvalidation.

With the Cone-torus and Phoneme datasets we performed
twofold cross validation so that the results were comparable
with those in [14] and [26]. With the other three datasets, ten-
fold cross validation experiments were carried out. With the ex-
ception of the Phoneme data, the sample size is not sufficiently
large to allow for a reasonable part of the training to be taken
aside for validation. Therefore, we did not consider splitting the
training set into two. All of the choices of parameters and the
classifier tuning was done on the training sets only.

In the first series of experiments, we trained and
MLP NNs as the classifiers . Each MLP had one hidden layer
with nodes in it. We carried out three sets of experiments
with and . The hidden and the output nodes had
sigmoidal activation functions, so the outputs were in
the interval . Fast backpropagation was used to train the
NNs (Matlab Neural Network Toolbox). To preserve difference
between classifiers, we deliberately left the NNs undertrained,
applying only 100 training epochs in each experiment.

In the second series of experiments, we trained fivedifferent
classifier models: the linear discriminant classifier (LDC); the
quadratic discriminant classifier (QDC);-nn (1-nn for the
Phoneme data; and the bestchosen on the training set for the
remaining datasets); an MLP NN, and a tree classifier. We tried
to reproduce the experiment in [26] to compare the proposed
method with the DCS_LA proposed there. However, the details
of the MLP structure and training were not available, so we
trained our own version with hidden nodes and 300

2Dr. Robert Detrano was responsible for the data collection of the database,
V.A. Medical Center, Long Beach and Cleveland Clinic Foundation.
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TABLE III
RESULTSFROM THE FIRST SERIES OFEXPERIMENTS: L = 11MLP CLASSIFIERS,M = 20 HIDDEN NODES. “A” S TANDS FORACCURACY (GIVEN IN %), AND

“R” STANDS FORRANK. NOTE THAT THE RANKS ARE CALCULATED ACROSSNINE EXPERIMENTS(L = 3; 7; 11 AND M = 5; 10; 20)

training epochs. The same protocol was used for the Pima
Indians Diabetes data and the Wisconsin Breast Cancer data.
For the Cone-torus data, we trained an MLP with
hidden nodes for 100 epochs, and for the Cleveland Heart
Disease data, an MLP with hidden nodes, for 50
epochs.

The code that was used for LDC, QDC,-nn (including the
tuning of ), and the classification tree was from the Matlab
Toolbox “PRTools” [6]. The MLP code was from the Neural
Network Toolbox for Matlab as in the first series of experiments.

All datasets were normalized in the following way. A linear
transformation was used, separately for each feature, to bring its
values in the interval . Thetraining setwas used to find the
minimum and the maximum of the feature values. The testing
set was transformed using these same constants, so presumably
there would be values lower than 0 and higher than 1.

The following classifier combination methods were coded in
Matlab:

1) SB: Single best. We take the classifier from the pool that
exhibits the smallesttraining error rate.

2) OR: Oracle. The oracle works as follows: assign thecor-
rect class label to iff at least one individual classifier
produces the correct class label of.

3) Fusion methods

a) MAJ: Majority vote (see Appendix).
b) NB: Naive Bayes (see Appendix).
c) BKS (see Appendix).
d) WER: Wernecke (see Appendix).
e) MAX: Maximum (Section III-A).
f) MIN: Minimum (Section III-A).
g) AVR: Average (Section III-A).
h) PRO: Product (Section III-A).
i) DT: Decision templates (Section III-B).

4) Dynamic classifier selection (DCS) methods: with
(Woodset al. [26]).

5) Static classifier selection methods: CS(): Clus-
tering and selection into and clusters
(Section II-B). For each , ten runs were carried out
with different initializations of the -means clustering
routine. The best (training) CS result was taken forward.

6) Switch between static selection and fusion: CSDT ( ):
Clustering and selection combined with DT (Section V-B,
again three, five, and eight clusters). As with the static se-
lection, ten runs were carried out with different initializa-
tions of the -means clustering routine for each, and
the best (training) CSDT result was taken forward.

B. Results

In the first series, there were nine experiments with each com-
bination method for a given dataset: using the three MLP config-
urations with and hidden nodes and ensembles
of and MLPs. To save space, Table III shows the
testing accuracies (columns “A”) only for and

.3 The oracle line separates the classifier fusion from classi-
fier selection (selectionfusion) methods. Marked in boldface
are the best accuracies in each column. To facilitate the compar-
ison we calculated the relative performance of each method with
respect to the others. For each dataset, the nine columns with
the accuracies were sorted individually, and each combination
model was assigned a rank with respect to its place among the
others. The highest possible rank was 18 (assigned to the best
model) and the lowest was 1 (assigned to the worst model). Ex-
pectedly, the best combination model was the oracle but since
it is an abstraction rather than a real combination model, it is
excluded from the comparison. The nine ranks for each combi-
nation model were then summed to give a measure of the overall
dominance among the models for the particular dataset. The
columns marked with “R” in Table III show the ranks of the
models for the respective datasets.

3The full set of results is available at http://www.bangor.ac.uk/~mas00a/pa-
pers/kuncheva_smc_tables.ps.gz or by request from the author.
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TABLE IV
RESULTSFROM THE SECONDSERIES OFEXPERIMENTS: FIVE DIFFERENTCLASSIFIERS. “A” S TANDS FORACCURACY (GIVEN IN %), AND “R” STANDS FORRANK

Table IV shows the results from the second series of exper-
iments where fivedifferent classifier models were combined.
The top five rows display the accuracies of the individual clas-
sifiers, next are the accuracies of the combination, and the or-
acle line separates the classifier fusion from classifier selection
(selection fusion) methods. Marked in boldface are the best
error rates in each column. Next to each accuracy column is the
rank column, where the ranks are calculated as in the first series
of experiments.

The sums of ranks in the two experiments are visualized in
Fig. 9.

C. Discussion

The two experiments offer different insights into the combi-
nation problem. In the first series, we have identical MLP struc-
tures and the only tool to induce diversity into the team is the ini-
tialization. Wanget al.[22] note that different initializations are
possibly the weakest tool for engineering diversity, compared
to feature or data selection, data perturbation, orusing different
classifier models. However, the accuracy of the ensembles using
MLPs was comparable, and for the Wisconsin Breast Cancer
data even better than that in the second series, where different
classifier models were combined. Notice that the improvement
over the single best classifier is more visible in the first series,
as in the second series, there was already a strong model in the
team.

It is reasonable to expect that classifier selection methods will
perform better when the individual classifiers are of different ac-
curacies. That is, the “selector” will choose the “best” classifier
for the respective region or sample, and ignore the less accu-
rate classifiers. Conversely, classifier fusion models will tend to
smooth out the differences and will probably be slightly infe-
rior to the most outstanding classifier in the team. As the exper-
iments show, this intuition is not necessarily correct. The reason

Fig. 9. Bar graphs of the sums of ranks for the two series of experiments. The
longer the bar, the better the combination method. Dark gray bars correspond to
the individual classifiers.

roots in the training/testing relationship which are different for
different classifier models. For example, the linear classifier can
be “trusted” to perform approximately as good as on training set.
The generalization could be poor but so would be the training
accuracy. (Curiously, the linear classifier was amongst the best
classifier models in the real datasets, and the top rating classifier
on Pima Indian Diabetes data and the Cleveland Heart Disease
data.) When the neural net or the tree are trained, it is impossible
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to stop at the exact place so that we match the training/testing
correspondence that is typical for simple models (LDC, QDC).
Thus the training error of the MLP or the classification tree
might be deceptively low and the classifier selection models
will keep selecting these two classifiers, resulting in high testing
error. Using a validation set is of course an option but the sample
size not always allows that. Besides, the estimate on the valida-
tion set could be misleading as well. Thus, there is always likely
to be a discrepancy between the training/testing correspondence
if different classifier models are used, and the selection methods
might be fooled. This seems to be the reason for the inferior per-
formance of the selection methods in the second series of exper-
iments (little or no improvement on the individual accuracy).

The overall impression from the two experiments is that DCS
is the best strategy. It requires more computational resources
than the other methods but the pay-off is its stable performance
and high accuracy.

The switching between selection and fusion has some poten-
tial in it. The choice of the DT method as the fusion component
was based on the good overall performance of the method in our
previous experiments, and was confirmed again here. However,
naive Bayes and average have also shown adequate accuracy
and robustness, and can replace DT in the CSDT scheme. The
clustering part can be improved as well. The choice of three,
five, or eight clusters here was arbitrary. A more systematic ap-
proach to the partitioning of the feature space could lead to a
better solution.

BKS and Wernecke’s methods showed unexpectedly poor
performance. In the first series of experiments they were not
run for 11 MLPs and three classes (Cone-torus data) due to
time reasons, and so their overall ranks were affected by that. In
the second series of experiments, the two methods were prob-
ably overfitted and also suffered from the differences in the
training/testing correspondences explained above.

There were differences in the individual classifier perfor-
mances in both experiments. In the first series, the training of
some of the NNs was stuck in a local extremum, producing a
very poor member of the team (40%–50% error). In the second
series of experiments, the classifiers did have very different
accuracies. Some of the simple fusion methods are sensitive to
such anomalies. This led to the unsatisfactory performance of
MIN, MAX, and PRO.

Looking at the results from the second series of experiment,
the arising question is “to combine or not to combine?”
Choosing one individual classifier over the rest will depend on
how much we trust our estimate of the generalization of the
classifiers. If there is no clear preference, DCS appeared to be a
good option when classifiers were of the same type. However,
it was not picked as the best solution in any of the experiments
in the second series. Trying to reproduce the experiment for the
Phoneme data from [26], we found that the combined approach
proposed here CSDT, the best in this experiment, only just
reached the performance of the nearest neighbor classifier. So
the merit of a combination in the case of different classifier
models should be carefully looked at. Using weights (where
possible) might help overcome the discrepancy problem.

The potential for using the methods discussed in this paper
have to be assessed with respect to the growing amounts of data

in real-life problems. The small sample size problems of the past
are now being replaced by extremely-large size problems where
the user is faced with gigabytes and even terabytes of data. It
is likely that the focus of the future research will be dictated
by this shift and classifier combination methods will be of a
different value in this light. DCS which relies on on-line esti-
mates of the classifier accuracy in the vicinity ofwill take
a lot of computational resources and, though highly accurate,
might become cumbersome to run. Therefore, theoretical and al-
gorithmic amendments of classifier combination methods (and
classifier design methods in the first place) will be needed.

VI. CONCLUSIONS

A combination consisting of a classifier selection and a clas-
sifier fusion method is proposed: CS and DT. First, the data
is clustered to form regions in the feature space. Second, we
use CIs to decide whether one classifier should be nominated
to make the decision in a certain region or DT should be ap-
plied instead. One synthetic and four real datasets were used to
find out how the switching between selection and fusion rates
amongst the DCS, the static selection and the fusion. DCS was
the best alternative for classifiers with the same structure and
training protocols (MLP). CSDT was the second best in this
series of experiments. For different classifier models in the team,
it is difficult to predict whether a combination can achieve a
better accuracy than the best individual classifier. In this series
of experiments there was no clear preference of one combina-
tion approach over the rest. The result depended on the dataset,
the only consistent pattern being that the improvement over the
best individual classifier was negligible.

A curious result was the excellent performance of the Naive
Bayes combiner which is often overlooked. The average method
kept its reputation as a reasonably accurate and stable combiner,
whereas the other simple fusion methods were not as good as
deemed in the literature.

APPENDIX

The four methods described below operate on crisp classifier
outputs, i.e., where contains only values 0 and 1 and
each row has exactly one 1 in it.

A. Majority Vote

The class label assigned tois the one that is most repre-
sented in the set of class labels . Using
the (crisp) decision profile , the majority vote method is
implemented by summing up the columns and taking
the index of the column with the highest score as the class label
of . Ties are broken randomly.

B. Naive Bayes

This scheme assumes that the classifiers are mutually inde-
pendent (this is the reason we use the name “naive”); for each
classifier , a confusion matrix is calculated by
applying to the training dataset. The th entry of this
matrix, is the number of elements of the dataset whose
true class label was , and were assigned by to class .
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By we denote the total number of elements labeled by
into class (this is calculated as the sum of theth column

of ). Using , a label matrix is computed,
whose th entry is an estimate of the probability that
the true label is given that assigns crisp class label

(19)

For every , yields a crisp label vector
pointing at one of the classes, say, . Considering the label
matrix for , , associated with is a soft label vector

, which is the
th column of the matrix. Let be the crisp class

labels assigned to by classifiers , respectively.
Then, by the independence assumption, the estimate of the prob-
ability that the true class label is , is calculated by

(20)

As an example, consider a problem with classifiers,
and , and classes. Let the number of training data

points be . From these, let eight be from , nine from
, and three from . Suppose the following confusion ma-

trices have been obtained for the two classifiers:

and (21)

The two label matrices obtained from and are

and

(22)

Assume and for the input .
Using the second column of and the first column of ,
we calculate the output of the Naive Bayes classifier fusion
scheme as follows:

The maximum membership rule will classin .
1) Behavior-Knowledge Space (BKS):Let again

be the crisp class labels assigned to
by classifiers , respectively. Every possible

combination of class labels is an index regarded as a cell in

a lookup table (BKS table)[8]. The table is designed using
the dataset (joint-distribution of the class labels). Each
is placed in the cell indexed by . The
elements in each cell are tallied and the most representative
class label is selected for this cell. Ties are broken randomly.
The decision for an is made according to the class label
of the cell indexed by .

2) Wernecke’s Method:Wernecke’s method [24] is similar
to the BKS. The difference is that Wernecke considers the 95%
CIs of the frequencies in each cell. If there is overlap between
the intervals, a combination formula is applied instead of taking
the label of the cell. The confusion matrices are used to iden-
tify the “least wrong” classifier among the members of the
team, and that classifier’s decision is taken as the label of the
cell. As an illustration, assume that , , the confusion
matrices are

and

and

Assume that the BKS cell indexed by
contains six data points from , four from , and six from

. As the CIs of the best two counts are identical, Wernecke
selects a classifier from to label of the BKS cell. First,
each classifier is examined with respect to the probability

by calculating the number of misclassi-
fications when labels in [see (15)]

(23)

The classifier with the smallest labels the cell.
From the second column of (because ) and the

first column of (because ), ,
. Since we take as the

class label of the cell. Notice that only four points fromare
present in the cell, compared to six from and six from ,
and yet, the class label that the cell gets is.
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