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Switching Between Selection and Fusion in
Combining Classifiers: An Experiment

Ludmila I. KunchevaMember, IEEE

Abstract—This paper presents a combination of classifier se- degree of “support” given by classifidd; to the hypothesis
lection and fusion by using statistical inference to switch between that x comes from classs; [most often an estimate of the
the two. Selection is applied in those regions of the feature Spaceposterior probability?(w;|x)]. Combining classifiers means

where one classifier strongly dominates the others from the pool . o
[called clustering-and-selection or (CS)] and fusion is applied in to find a class label fox based on the. classifier outputs

the remaining regions. Decision templates (DT) method is adopted D1(X); - .., Dr(x). Again, we can find a vector with final

for the classifier fusion part. The proposed combination scheme degrees of support for the classes as a soft labet fdenoted
(called CS+DT) is compared experimentally against its two com-

ponents, and also against majority vote, naive Bayes, two joint-dis- D(x) = [1(x), ..., pe(x)]F. 2
tribution methods (BKS and a variant due to Wernecke), the dy-

namic classifier selection (DCS) algorithm DCS_LA based on local  If a crisp class label ok is heeded, we can use the maximum
accuracy (Woodset al), and simple fusion methods such as max- membership rule. Assigr to classw, iff

imum, minimum, average, and product. Based on the results with

five data sets with homogeneous ensembles [multilayer perceptrons pa(x) > p(x), Vt=1,..., c ()
(MLPs)] and ensembles of different classifiers, we offer a discus- -

sion on when to combine classifiers and how classifier selection Ties are resolved arbitrarily. The minimum-error classifier is re-
S?r::(.: or dynamic) can be misled by the differences in the classifier covered from (3) whep(x) = P(w;i|x).
Two strategies are discussed in the literature on classifier
. ; X L .~~~ combination: classifierselectionand classifierfusion The
sion, confidence intervals (Cls), decision templates (DTs), discrim- o o o g
inant analysis, multiple classifier systems, pattern recognition, su- Présumption in classifier selection is that each classifier has
pervised learning. expertise in some local area of the feature space. When a feature
vectorx € R" is submitted for classification, the classifier
responsible for the vicinity af is given the highest authority to
labelx. Classifier fusion assumes that all classifiers are equally
LASSIFIER combination is a viable alternative to using &experienced” in the whole feature space and the decisions
single classifier. This is now an established research am@faall of D are taken into account for any. There are many
thriving mostly on heuristic solutions. Some theoretical resule®mbination models halfway between these two extremes, e.g.,
are also available but only for special cases, usually assumingere individual competence varies oJet.
independent classifier outputsd hocmethods, such as the one Contrary to this implicit integration of fusion and selection,
proposed in this paper, could be useful as a pre-phase towaid this spaper we propose a scheme using statistical inference
more general theory of classifier combination. to switch between the two. Section Il introduces the proba-
In this paper, we assume that a small set of trained classifibilistic background of classifier selection and explains the clus-
is available and we are interested in combining their outpugring-and-selection (CS) model used in the proposed combina-

Index Terms—Classifier combination, classifier selection and fu-

|I. INTRODUCTION

aiming at the highest possible accuracy. tion. Classifier fusion and the decision templates model (DT)
LetD = {D,, D, ..., Dy} be a set of classifiers arfdl = are presented in Section Ill. Other fusion models used in the ex-
{w1, ..., w.} be a set of class labels. Each classifier gets as jigriments for this paper are detailed in the Appendix. Section IV

input a feature vectat € R™ and assigns it to a class label frongives the background of using confidence intervals (Cls) in se-
Q,i.e.,D;: R* — Q, or equivalently,D;(x) € Q,i =1, ...c. lecting a classifier and the model that results from this, called
In many cases, the classifier output ig-dimensional vector CS+DT. Section V contains experiments with five datasets, and

with supports to the classes, i.e., Section VI offers a conclusion.
Di(x) = [dy,1(x), ..., di,(x)]". 1) Il. CLASSIFIER SELECTION
Without loss of generality we can restridf ;(x) within A. Probabilistic Background
the interval[0, 1,4 = 1, .... L,j = 1, ..., ¢, and call the | ¢jassifier selection, when a feature vectore R" is

classifier outputs “soft labels” (see [3]). Thus, ;(x) is the sypmitted for classification, the classifier responsible for the

vicinity of x is chosen to decide on the class label. We can

Manuscript received February 23, 2001; revised July 16, 2001 and Novemb®@minate exactly one classifier to make the decision, as in
6, 2001. This paper was recommended by Associate Editor D. Goldgof. 118] or more than one “local expert,” as in [2] and [9] Clas-
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a linear classifier and &-nearest neighbork¢nn) classifier.
The authors suggest to identify a conflict domain in the feature
space and usé&-nn in that domain while using the linear
classifier elsewhere.

Two types of classifier selection systems can be distin-
guished.

1)

2)

Static classifier selection.Selection regions are speci-
fied during a training phase, prior to classifying the un-
labeled vectok. In the operation phase, the regionof

is first found, e.g.,lt;, and processed further by the re-
spective classifieD;;, responsible for regiof;. Two
possible training approaches are: specify the regions and
then assign a responsible classifier for each region (e.g.,
the model in [21]), or giverD, find a region (possibly a
set of regions) where each classifier is the best one (e.g.,
the model in [18]). Although probably more efficient, the
second approach is difficult to implement.

Dynamic classifier selection (DCS).The choice of a
classifier to labelk is made during the operation phase.
This choice is typically based on the certainty of the cur-
rent decision. Preference is given to more certain clas-
sifiers. For example, if the 5-nn rule is being used in a
two-class problem, and three of the neighbors vote for
classw; and two for classs», we can switch to, say, 3-nn

or 1-nn, thereby changing the classification rdig@mami-
cally [12]. Rastrigin and Erenstein [18] proposed the fol-
lowing dynamic selection scheme. The “competence” of
each classifier is estimatéathe vicinity ofx as the clas-
sifier’'s accuracy. Two methods were suggested for this:
the potential functions method and thenearest neigh-
bors. The classifier with the highest competence is au-
thorized to labelk. Thus, the regiong?; are estimated
during the classification process. Woaogltsal. [26] also

use local analysis of competence to nominate a classifier

DCS_LA WITH LOCAL CLASS ACCURACY

1. Design the individual classifiers Dy, ..., Dy, using the
labeled data set Z. Pick the value of the parameter K
(recommended is K = 10).

2. Upon obtaining an input x, label it by Dy,...,Dy.
If all classifiers agree on the label, then assign this label
to x and return.

3. If there is a disagreement, then estimate the local
accuracy for each D;, i = 1,..., L. To do this, take the
class label offered for x by D;, say s € (2, and find the
K points closest to x for which D; has issued the same
label. Calculate the proportion of the points whose true
labels were s to be an estimate of the local accuracy of
D; with respect to class s.

4. If there is a unique winner of the local accuracy con-
test, let it label x and return. Otherwise, check if the
tied winners have the same labels for x. [n this case,
accept the label and return. If a unique class label could
be selected by plurality among the tied classifiers, then
assign this label to x and return.

5. Otherwise, there is a class label tie between the most
locally competent classifiers. The classifier with the next
highest local competence is identified to break the tie. If
all classifiers are tied (there is no classifier left to break
the tie) and the class labels are still tied, then pick a
random class label among the tied labels and return. If
there is a unique winner of the (second) local competence
contest, and it can resolve the tie, then use the winning
label for x end return.

6. If none of the clauses in the previous point apply,
break the class label tie randomly and return a label for
x. (Further analysis would have produced an overcom-
plicated code because there could be another tie on the
second highest competence, where the tied classifiers dis-
agree on the class label, etc.)

from D to labelx. We took as our DCS model their algo-Fig- 1. Operation of DCS_LA with local class accuracy.

rithm calleddynamic classifier selection with local accu-

147

racy(DCS_LA, we refer to itin the sequel as DCS). Frong|ass “squares.” Fouselectionregions are set up arbitrarily,
the two vers_ions of DCS_LA in [26], the “local class aCR,. R,, Rs, andRy, to be used in classifier selection.
curacy” version has been found to be the better one, so thigyyring training of the multiple classifier system we decide
is what we adopted as well. The algorithm that we usedjshich classifier fron> = {Dy, ..., D} we should nominate
shown in Fig. 1. Ithas a minor difference with the originajor each regionk;. Thus, the number of classifiets is not
algorithm in that we fixed the depth of the tie breakingiecessarily equal to the number of regidtisSome classifiers
procedure. We kept track of the randomly broken ties {@ight never be nominated and therefore they are not needed in
make sure that the overall performance of the algorithfRe operation of the combination scheme. Even the classifier
is not affected. The dynamic selection idea mimics thgith the highest accuracy over the whole feature space might
decision making in real life situations, e.g., in medical dipe dropped from the final set of classifiers. On the other hand,
agnostics, where help is sought if the confidence of thge classifier might be nominated for more than one region.
current decision-maker is not high enough. Let D* be the classifier with the highest average accuracy

Why should classifier selection work? L&" be divided amongst the elements @ over the whole feature spad¥.

into K regions of competencdl > 1. Denote the regions Denote byP(D;|R;) the probability of correct classification by

by Ry, ..., Rk. These regions are not associated with specifio; in regionR;. Let D;(;, € D be the classifier responsible for

classes, nor do they need to be of a certain shape or size. regionR;, j = 1, ..., K. The overall probability of correct

An example of partitioning into regions is shown in Fig. 2¢lassification of our classifier selection system is

Depicted is a 15-point dataset R? with two class labels:

squares and snowflakes. Thwo classification regionge- K

fined by the nearest neighbor classifier are overlayed using P(correct) = Z P(R;)P(D;( | R;)

Voronoi diagrams. Shaded is the classification region for =

(4)
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Al xR
' CLUSTERING AND SELECTION (TRAINING)
:\\ K‘\( g 172 % 1. Design the individual classifiers Dy, ..., Dy using the
a E }/ labeled data set Z. Pick the number of regions K.
\ /qﬁ? 2. Disregarding the class labels, cluster Z into K clusters,
N/ d \ g A C1,...,Cxk, using, e.g., the K-means clustering proce-
3y dure [5]. Find the cluster centroids vy,...,vk as the
T - arithmetic means of the points in the respective clusters.
N\ — 3. For each cluster C;, (defining region R;), estimate the
'/%\ * 9.?\ classification accuracy of Di,..., D using only those
// 4 \ 7/ - elements of Z which are in C;.¢ Nominate the classifier

with the highest accuracy as D;y.
. . . o 4. Return vq,..., vk and Di(l)a"')Di(K)'
Fig. 2. Example of partitioning the feature space with two classification

regions into four selection regions. %This estimate could be calculated through resubstitution, or by

some pseudo-testing, e.g., by cross-validation or bootstrapping. For
the purposes of our experiment described later we used resubstitu-

where P(R;) is the probability that an inpuk drawn from tion.
the distribution of the problem falls in?;. To maximize
P(correct), we assignD;;y so that Fig. 3. Training of the CS method.

P(Dij)|R;) 2 P(Dy|R;), Vt=1,...,L  (5)
CLUSTERING AND SELECTION (OPERATION)

Ties are broken randomly. From (4) and (5)
1. Given the input x € R™, find the nearest cluster center

K . . from vy,..., vk, say, v;.
P(correct) > Z P(R;)P(D*|R;) = P(D"). (6) 2. Use Dy(;) to label x, ie., pup(x) = dij)x(x), k =
j=1 1,...,c

The above equation shows that the combined scheme per- ]
forms at least as good as the best classifirin the poolD, 194 Operation of the CS method.
regardless of the way the feature space has been partitimed
selection regions. The only condition (and, of course, the trickX(wi|x) with one of estimating®(w;|D1(x), ..., Dr(x)), or
iest one) is to ensure tha,,, is indeed the best amongst the More compactlyP(w;| DP(x)). Thus, the initial feature space
classifiers fronD for regionR;. The extent to which this is sat- With » featuresk™, is transformed into a new space withx c

isfied determines the success of the classifier selection modégatures. This treatment of the combination problem underpins
the schemes in [1], [7], [8], [10], [23], and [24]. In a way, this
B. The Clustering-and-Selection Model idea is akin to support vector machines approach where the ini-

Based on the above is the simple (static) classifier selecti@l féature space is transformed in a new (generally higher di-

method calletlustering-and-selection (C§)3]. Fig. 3 shows mensional) space and the classifier is built in that new space
the training, and Fig. 4, the operation algorithms. [20]. However, in the model here, the intermediate feature space

has a special context-related structure on which we can base our
combination model [15].
Some fusion methods calculate the support for clgassing
A. A General Model for Classifier Fusion only theith column of DP(x), i.e., the individual support for
Classifier fusion assumes that all classifiers are trained over given by Dy, ..., Dy, regardless of what the support for
the whole feature space, and are thereby considereahageti- the other classes is. Simple and widely used members of this
tiverather tharcomplementarfl7], [27]. We can treat the clas- group are the minimum, maximum, average, and product, taken
sifier outputs as the input to a second-level classifier in sorgelumnwise on the decision profil®(x). For example, let
intermediate feature spacand design a new classifier for theL = 3, ¢ = 2, and the decision profile obtained farbe
second (combination) levelThe classifier outputs can be orga-

[ll. CLASSIFIER FUSION

nized in adecision profile[15] as the matrix in 0.3 0.7
DP(x)=[06 04]. (8)
() e ) e dy () )
0.5 0.5
DP(x)=| di1(x) -+ dij(x) - di.x)|. (7) The first column ofDP(x) is the support fors;, and the

second column is the support fos. The maximum aggregation
rule will give p(x) with 11(x) = max{0.3, 0.6, 0.5} = 0.6
dp(x) -+ dpj(x) - dp (x) and p2(x) = max{0.7, 0.4, 0.5} = 0.7, and subsequently

The entries ilD P(x) are the intermediate features. To build %ﬁge;i;ézéﬁ'u:;iz;;‘e_n}gnggu(r)nlzllflz;(é?cor:th[gs\’/gr'ggef?l:|e

minimume-error classifier, we replace the problem of estimatin/g(x) — [0.47, 0.53]. Here, all the aggregation rules agree on

1This is called “stacked generalization” in [25]. labelingx in w, but this need not be the case for a different
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Assume that for an input, the following decision profile has

DECISION TEMPLATES (TRAINING) been obtained:

1. For i = 1,...,¢, calculate the mean of the decision

profiles DP(z;) of all members of w; from the data set 0.3 0.7
Z. Call the mean a decision template DT; DP(x)=|06 04]. (23)
0.5 0.5
DT, = Tvl” S DP(z), 9) 2
b omjew; Using (11) and (10), the soft label &fis

ijez

where N; is the number of elements of Z from w;. pi(x) = 0.96, p2(x) = 0.93. (14)

2. Return DTy,...,DT..

If the classifier outputs are some estimates of the posterior
probabilities P(w|x), & = 1, ..., ¢, the decision template
DT; is an unbiased estimate of the expectation offthe c-di-
mensional random variabl® P(x) given that the true class is

Fig. 5. Training of the DT method.

w;. Therefore, assessing the similarity between the actually oc-
DECISION TEMPLATES (OPERATION) curred matrix of output® P(x) and the expected one for, is
1. Given the input x € R, construct DP(x) as in (7). a reasonable classification strategy. DT have been found to rate
2. Calculate the squared Euclidean distance between among the best combination methods and show stable perfor-
DP(x) and each DT;, i =1,...,c mance over a range of experimental setups [15]. This was the
e L reason to pick this model as a component in the proposed com-
dp(DP(x),DT,) = 3 3 (dhi(x) - dti(k,5))%, (10) bination. o _ | |
]2:{,; ’ Four rival classifier fusion techniques used in the experi-
. . _ N mental study are described in the Appendix: majority vote,
where dt;(k, j) is the k, j-th entry in decision template naive Bayes, and two joint-distribution methods.
DT; (an L x ¢ matrix).
3. Calculate the components of the soft label of x by IV. COMBINING CLUSTERING AND SELECTION WITH
1 DECISION TEMPLATES
pi(x) =1~ +—dg(DP(x), DT). (11)
A. Using Confidence Intervals for Selecting a Classifier
Fig. 6. Operation of the DT method. Clustering and selection is guaranteed by design to give at

least the same training accuracy as the best individual classifier

D*. However, the model might overtrain, giving a deceptivel
example. The above models are derived in [11] as different &S d dning pavey

. f h ) ¢ tionally i w training error. Hopefully, using Cls and nominating a clas-
timates ofP(u x) under the assumption of conditionally inde;gie only when it is significantly better than the others, will be
pendentDy, ..., Dy.

a basis of a combination scheme less prone to overfitting and
o spurious errors.
B. Decision Templates (DTs) A way to reduce the possible overtraining is to perform a sta-

Using DT for combining classifiers is proposed in [15]. GivefiStical test for determining whether the best classifierd
L (trained) classifiers ifD, ¢ DT are calculated from the data,Li(;). IS significantly different from the remaining lot. Looney
one per class. The decision template for clagslenotedDT; proposec_i a statistical meth_od for comp_arIngIassmers l:_)ased_
is the centroid of class; in the intermediate feature spadgz; ©han adjusted’-test [16]. Since we are interested only in a dif-
can be regarded as the expecfe#(x) for classw;. The sup- fer_en_ce between the best cla_ssmer anq the rest, we can perform
port for classw; offered by the combination of the classifiers, Pairwise tests such as the pairetest. It is enough to eliminate
11:(x), is then found by measuring trsmilarity between the the second best classifier.fif; ;) is S|gn|f|cantly betterthe}r) the
currentD P(x) and DT;. We use Euclidean distance for calcu$€cond best, thel; ;) can be nominated as the classifier re-
lating the similarity but other measures can also be applied.§RONsible for regior;. Otherwise, a scheme involving more
[15], we view DP(x) and DT; as two fuzzy sets defined overthan one classifier might pay off. 3
the set of intermediate features and use measures of similaritf?S an example, assume that five classifiers have been de-
from fuzzy set theory. Fig. 5 describes the training and Fig. 8idned on a dataset with 100 elements. Define
the operation of the DT model.

We illustrate the DT model with a numerical example. Let
¢ = 2andL = 3, and let theDT;, ¢ = 1, 2, calculated from to be a vector with classification outcome of classifizron the

Vi =[u1,is - Y100,i]" (15)

the data be dataset, such thg} ; = 1, if D, recognizes correctly thgh el-
ement of the dataset, and 0, otherwise. Table | shows the distri-
bution of{y1, ..., y5} for the 100 elements. The total number
0.6 04 0.3 0.7 - L0 . . .
of correctly recognized objects is shown in the bottom row for
DIy =(08 02| and DI>=|04 06|. (12) each classifier. We could be tempted to nomirAtefor region

0.5 0.5 0.1 0.9 R; asits classification accuracy is 76%, by 5% higher than the
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TABLE | - : Tt~
DISTRIBUTION OF CORRECTINCORRECTCLASSIFICATION DECISIONS FORFIVE : :
CLASSIFIERS FOR ADATA SET WITH 100 ELEMENTS (NOTICE THAT NOT
ALL PossIBLE COMBINATIONS HAVE OCCURRED. THE BOTTOM Row
CONTAINS THE TOTAL NUMBER OF CORRECTLY RECOGNIZED OBJECTS
FOR EACH CLASSIFIER

Gap to the second best (A)
[=)

Yi | Y2 | ¥3 | ¥a|ys || Number =1 \
I 1111 2 oos T el \
00101 1 18 ) :
1{1]ofofo 13 N=10000
1 ({00711 0 11 i : : :
101 ]0({0O 10 0.5 06 07 08 0.9 1
0 0 0 0 1 6 Highest accuracy (P1)
76 | 55 | 52 | 71 | 66 - ) ) o
Fig. 8. DifferenceA between the best and the second best classification
accuracies in regioR ; guaranteeing that the 95% CI of the two do not overlap.
1
: : ; ; : can be nominated a9, ;). LetA = P, — P», A > 0, where
0.8 % »»»»» e RRREEE P P P is the highest accuracy ari@ is the second highest iR;.
1 : + + The critical value for the gap is derived from
6 0.6 ..................... dJ1 1.4
°\° [Pl =P [Py — Py)
S04l PN A P I U I PO R PN 1.96 L= 1.96 22— 2) A 17
96\ F L6 T = A (17)
it AR T A N A I A B A I SubstitutingP, = P; — A and solving forA, we obtain
0 1 2 3 4 5
Classifiers A 7.6832 P, — 3.8416 + 3.92\/NP (1 — Pl)' (18)

N +3.8416

Fig. 7. 95% ClI for the five classifiers. ) .
Fig. 8 plotsA againstP; for three values ofV: 100, 1000,

] ) and 10 000. For largeW the required gap for the best and the
second best. However, the pairedest analysis suggests thakecond best classifiers to be significantly different is smaller. In
D, is not significantly different fromD, (p = 0.438), noteven gther words, even a 2% difference in the classification accuracy

from D5 (p = 0.191). Therefore, itis probably better to considegoy|d be enough background to nominatg;, as the classifier
a fusion scheme of the decisions of more than one classifierisponsible for regiok;.

R;.
Fig. 7 shows the 95% Cls of the classification accuracies gf The CS-DT Classifier Combination Model

the five classifiers. The intervals have been calculated through S ) o
the standard formula The combination is a straightforward application of the two

models. First, the CS model is applied. Then, Cls on the accu-
racy of theL classifier are calculated for clusté¥; (using only
- - the data points i€’;) through (16). Based on the overlap, either
P Pp(1— Pp) one classifieD; ;) is selected in charge of regidty, or the DT
D7 2005, N-1) N ’ model is used with all. classifiers.
There are various ways to implement the combination. Here,
we used the following one. We nominated a classifier for re-
(16) gion f2; if the 50% CI ¢ value 0.675) of the best accuracy did
not contain the second best accuracy. The reason for this choice
was that since classifiers have similar (presumably high) accura-
whereN is the sample sizé g o5, v—1) is thet value for 95% cies, and the number of data points is moderate in each cluster,
significance level¢ = 0.05) and/N —1 degrees of freedom, andit is unlikely to obtain nonoverlapping Cls. Therefore we will
Pp isthe estimate of the classification accuracy of the respectivave to use DT in all regions, so the combination of the two ap-
D, inregionk;. Equation (16) is an easy (but not very accuratgroaches becomes meaningless. Second, we used a single DT
way to check whether classifiers are significantly different (faralculation, using all data points ¥, and not an individual DT
N > 100 we can usé o5, n—1) = 1.96). model for each cluster. This was adopted as the simplest pos-
The above calculations are based on the assumption thiée solution.
P(D;|R;) is the same for atk € R; and has therefore a Bi- We have to be cautious though because although each of the
nomial distribution. We can derive an equation for calculatingpnstituent methods have their reasonable probabilistic back-
the “gap” needed so that the 95% CI of the best and the secardund, there is no guarantee that the combined model will com-
best classifiers do not overlap. In this case, the best classifiéne their strengths.

R Pr(1-P
Pp +t0.0s,8N-1) %



KUNCHEVA: SWITCHING BETWEEN SELECTION AND FUSION 151

A. Experimental Setup

A series of experiments has been carried out to check whether
CS+DT is better than either CS or DT applied individually,
and also how C$DT rates among other classifier combination

TABLE I
SUMMARY OF THE DATASETS USED
Database n|lec| N Pz | Past usage® | Availability
Cone-torus 2 (3] 800 [5000% ] 85-90% Private®
Phoneme 5 | 2| 5404 | 70.65 % 86-91 % ELENA¢
Pima Indians Diabetes 8 [ 2] 768 165.10% 76-80 % UCI®
Cleveland Heart Disease 13 (2| 303 | 5448 % 75-79 % UcCH?
Wisconsin Diagnostic Breast Cancer || 30 | 2 | 569 | 62.74 % 97.5 % ucCH?
Notations: %Details are given in the text
n:  number of features bhttp://www.bangor.ac.uk/~mas00a/Z.txt and Zte.txt
c:  number of classes °ftp ftp.dice.ucl.ac.be, directory pub/neural/ELENA, follow
. N: number of cases in the database the instructions of README.
Prmaz:  the largest class proportion ¢http://www.ics.uci.edu/ mlearn/MLRepository.html
V. EXPERIMENTS 4) Cleveland Heart Diseas@lata? The presence or absence

of heart disease is predicted based on 13 features. The
dataset consists of 303 patient records, of which 164 did

not have the disease. There are a few missing values in
the data. In our experiments, these were replaced by the
average of the column (feature) regardless of the class
labels. The classification accuracy on this data, reported

in the UCI database, varies between 75% and 79%.

methods. . ] ] 5) Wisconsin Diagnostic Breast Cancedata. Features are
We used five datasets as summarized in Table Il computed from a digitized image of a fine needle aspirate
1) Cone-torus data. This is a three-class dataset with 400  Of a breast mass. The mass is classed as benign or malig-

2)

3)

two-dimensional points generated from three differently ~ Nant. The results of past usage of the dataset are summa-
shaped distributions: 1) a cone, 2) half a torus, and rized in the UCI database: the sets are linearly separable
3) a normal distribution with prior probabilities 0.25, using all 30 input features. Using just three of the 30 fea-
0.25, and 0.5, respectively. This dataset is available tures, a linear classifier model was built with accuracy of

dataset for testing with 400 more points generated from With the Cone-torus and Phoneme datasets we performed

the same distribution is also available as the file Zte.tdwofold cross validation so that the results were comparable
Experiments with various classification methods on thi¢ith those in [14] and [26]. With the other three datasets, ten-
dataset are reported in [14]. The accuracy of the nearé@ld cross validation experiments were carried out. With the ex-
neighbor method (1-nn) was 84.85%, Parzen classifiggption of the Phoneme data, the sample size is not sufficiently
gave 87.75%, different configurations and paramet@rge to allow for a reasonable part of the training to be taken
settings of multilayer perceptron (MLP) and RBF neurdside for validation. Therefore, we did not consider splitting the
networks (NNs) resulted in 84.25-89.50% accuracy, af@ining set into two. All of the choices of parameters and the
fuzzy classifiers exhibited a large range of performance@@ssifier tuning was done on the training sets only.

the best being a version of a Wang—Mendel model with In the first series of experiments, we trainkd= 3, 7, andl11
90.25% accuracy. MLP NNs as the classifier®;. Each MLP had one hidden layer
Phonemedata. This set is from the ELENA databas&ith A nodes in it. We carried out three sets of experiments
It consists of 5404 five-dimensional vectors characteWith M =5, 10, and20. The hidden and the output nodes had
izing two classes of phonemes: 1) nasals (70.65%) af@moidal activation functions, so the outpus;(x) were in

2) orals (29.35%). As reported in the database, the set 438 interval[0, 1]. Fast backpropagation was used to train the
been classified using 1-nn and 20-nn with results 91.03%N\s (Matlab Neural Network Toolbox). To preserve difference
and 85.80%, respectively. In both cases, the leave-one-8§fween classifiers, we deliberately left the NNs undertrained,
method was applied. applying only 100 training epochs in each experiment.

Pima Indians Diabetesdata. A population of women [N the second series of experiments, we traineddiéerent
living near Phoenix, AZ, of Pima Indian heritage weré&lassifier models: the linear discriminant classifier (LDC); the

tested for diabetes according to World Health Organiz§4adratic discriminant classifier (QDCj-nn (1-nn for the
tion criteria. The dataset is available within the UCI MaP’honeme data; and the bésthosen on the training set for the
chine Learning Repository. Reported in the database 4fgnaining datasets); an_MLP l_\IN, and a tree classifier. We tried
results from past usage of data, giving 76% accuracy irfq reproduce the experiment in [26] to compare the proposed
hold-up experiment with 576 training and 192 testing daf@€thod with the DCS_LA proposed there. However, the details
points. Because of missing values, Ripley uses a subsefbfthe MLP structure and training were not available, so we
532 cases in his book [19], and reports accuracy of godkained our own version witfi/ = 10 hidden nodes and 300
The version offered at the UCI site contains 768 completezn, ropert Detrano was responsible for the data collection of the database,
cases (no missing values). V.A. Medical Center, Long Beach and Cleveland Clinic Foundation.
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TABLE Il
RESULTSFROM THE FIRST SERIES OFEXPERIMENTS L = 11 M LP CLASSIFIERS M = 20 HIDDEN NODES “A” S TANDS FORACCURACY (GIVEN IN %), AND
“R” STANDS FORRANK. NOTE THAT THE RANKS ARE CALCULATED ACROSSNINE EXPERIMENTS(L = 3, 7, 11 AND M = 5, 10, 20)

Classifier Cone-torus Phoneme Pima Diabetes Cleveland Breast Cancer
/combiner A R A R A R A R A R
SB 85.1 85.0 | 78.5 96.0 || 77.1 98.5 || 82.5 53.5 || 974 92.5
MAJ 74.1 58.5 || 70.7 46.0 || 77.5 116.5 || 81.8 89.5 || 97.5 82.5
NB 82.5 92.0 || 71.7 33.5 | 774 | 124.0 || 82.1 | 105.0 || 97.7 100.5
BKS - 735 | 786 | 107.5 | 754 87.0 || 80.2 25.5 || 97.2 60.0
WER - 67.5 || 78.6 | 108.5 || 75.3 97.0 || 79.9 39.5 || 97.0 64.0
MAX 85.4 58.5 || 70.7 28.5 || 73.1 14.5 || 82.1 83.0 || 83.9 17.0
MIN 49.4 23.5 || 70.7 24.5 || 71.1 19.0 | 83.7 97.5 || 924 56.0
AVR 81.1 79.0 70.7 330 || 77.5 101.0 82.8 113.5 97.5 112.5
PRO 54.3 30.0 || 70.7 245 || 73.1 35.0 || 83.1 ] 106.0 [ 97.2 89.5
DT 85.8 60.0 | 78.1 84.5 || 75.8 89.0 || 82.1 | 121.0 || 974 91.0
ORA 96.6 | 162.0 || 89.9 | 162.0 || 89.5 162.0 || 91.3 | 162.0 [ 98.6 162.0
DCS 86.5 | 150.5 | 81.9 | 145.0 || 75.4 68.5 || 79.8 33.5 || 97.5 | 135.0
CS(3) 84.6 | 108.0 | 785 | 111.5 | 77.2 100.0 || 81.1 53.5 || 974 58.5
CS+DT(3) || 85.8 65.0 || 77.5 88.0 || 75.8 94.5 || 82.1 | 100.0 || 974 83.0
CS(5) 85.6 | 117.5 | 78.6 | 1175 || 77.1 775 | 82.2 80.0 || 97.2 69.0
CS+DT(5) || 85.8 893.0 || 77.9 95.5 || 75.8 97.5 || 83.4 | 108.0 || 97.7 92.0
CS(8) 86.0 [ 128.0 || 78.8 | 125.5 || 76.7 69.5 || 81.2 64.0 || 97.7 85.5
CS+DT(8) || 86.4 91.5 || 783 | 1075 75.8 88.0 || 84.1 | 104.0 || 974 88.5

training epochs. The same protocol was used for the Pimab)
Indians Diabetes data and the Wisconsin Breast Cancer data.

For the Cone-torus data, we trained an MLP with = 20

hidden nodes for 100 epochs, and for the Cleveland Heart

Disease data, an MLP with/ = 10 hidden nodes, for 50
epochs.

The code that was used for LDC, QD&nn (including the

tuning of k), and the classification tree was from the Matlab
Toolbox “PRTools” [6]. The MLP code was from the Neural
Network Toolbox for Matlab as in the first series of experiments.

All datasets were normalized in the following way. A linear

Static classifier selection methods: G&3( Clus-
tering and selection inta{ 3, 5, and8 clusters
(Section 1I-B). For eachi, ten runs were carried out
with different initializations of thek-means clustering
routine. The best (training) CS result was taken forward.
Switch between static selection and fusion#IH (K):
Clustering and selection combined with DT (Section V-B,
again three, five, and eight clusters). As with the static se-
lection, ten runs were carried out with different initializa-
tions of thek-means clustering routine for eaéh,, and
the best (training) C$DT result was taken forward.

6)

transformation was used, separately for each feature, to bring its

values in the intervdD, 1]. Thetraining setwas used to find the B- Results

minimum and the maximum of the feature values. The testingin the first series, there were nine experiments with each com-
set was transformed using these same constants, so presumgibition method for a given dataset: using the three MLP config-

there would be values lower than 0 and higher than 1.

urations withAZ = 5, 10, and20 hidden nodes and ensembles

The following classifier combination methods were coded iof . = 3, 7, andl1 MLPs. To save space, Table Il shows the

Matlab:

1) SB: Single best. We take the classifier from the pool th

exhibits the smalledtaining error rate.
2) OR: Oracle. The oracle works as follows: assignabe

rect class label tax iff at least one individual classifier

produces the correct class labebof
3) Fusion methods

a) MAJ: Majority vote (see Appendix).
b) NB: Naive Bayes (see Appendix).

c) BKS (see Appendix).

d) WER: Wernecke (see Appendix).

e) MAX: Maximum (Section IlI-A).

f) MIN: Minimum (Section 1lI-A).

g) AVR: Average (Section IlI-A).

h) PRO: Product (Section IlI-A).

i) DT: Decision templates (Section IlI-B).

4) Dynamic classifier selection (DCS) methods: wifh= 9
(Woodset al. [26]).

testing accuracies (columns “A”) only fa¥/ = 20 andL =

g2 The oracle line separates the classifier fusion from classi-
ler selection (selectionfusion) methods. Marked in boldface
are the best accuracies in each column. To facilitate the compar-
ison we calculated the relative performance of each method with
respect to the others. For each dataset, the nine columns with
the accuracies were sorted individually, and each combination
model was assigned a rank with respect to its place among the
others. The highest possible rank was 18 (assigned to the best
model) and the lowest was 1 (assigned to the worst model). Ex-
pectedly, the best combination model was the oracle but since
it is an abstraction rather than a real combination model, it is
excluded from the comparison. The nine ranks for each combi-
nation model were then summed to give a measure of the overall
dominance among the models for the particular dataset. The
columns marked with “R” in Table Ill show the ranks of the
models for the respective datasets.

3The full set of results is available at http://www.bangor.ac.uk/~mas00a/pa-
pers/kuncheva_smc_tables.ps.gz or by request from the author.
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TABLE IV
RESULTSFROM THE SECOND SERIES OFEXPERIMENTS FIVE DIFFERENTCLASSIFIERS “A” S TANDS FORACCURACY (GIVEN IN %), AND “R” STANDS FORRANK
Classifier Cone-torus Phoneme Pima Diabetes Cleveland || Breast Cancer
/combiner A R A R A R A R A R
LDC 750 1.0 75.8 | 2.0 76.8 21.0 || 84.7 [ 21.0 || 95.6 2.0
QDC 80.8 | 30| 78.7| 4.0 | 742 14.0 || 81.7 | 85| 95.6 3.0
kNN 86.4 | 19.5 || 86.8 | 19.0 || 75.1 16.0 | 79.6 | 3.0 | 96.8 13.0
MLP 780 | 20 70.7| 1.0 754 17.0 || 80.2 | 45| 97.5 20.5
TRE 85.1 | 11.5 || 842 65| 71.6 6.0 | 80.2| 45| 95.1 1.0
MAJ 841 65| 842 65 76.7 20.0 || 824 [ 125 || 974 18.5
NB 85.6 | 17.0 || 85.3 | 11.5 || 75.9 18.0 || 824 | 12.5 || 97.5 20.5
BKS 85.8 | 18.0 || 85.3 | 11.5 || 71.1 1.0 || 788 ] 10| 965 7.0
WER 85.3 | 14.0 || 859 | 13.0 || 714 30| 794 20| 96.0 4.0
MAX 845 | 80| 781 | 30| 733 13.0 || 83.4 | 20.0 | 96.5 8.0
MIN 836 | 40| 842} 65| 73.0 12.0 || 82.4 | 12.5 || 96.7 10.0
AVR 841 65| 843 | 90| 76.3 19.0 || 83.1|18.0 | 974 18.5
PRO 839 | 50| 84.2| 65| 727 10.0 || 83.1]18.0 | 97.0 15.0
DT 86.5 | 21.0 || 84.7 | 10.0 || 72.9 11.0 || 83.1 | 18.0 || 97.2 16.5
ORA 96.1 | 22.0 || 98.0 | 22.0 || 884 22.0 || 91.9 [22.0 || 99.1 22.0
DCS 864 | 195 || 86.1 | 14.0 | 74.4 150 || 81.1| 6.0 97.1 16.5
CS(3) 85.1|11.5 | 86.8 | 19.0 | 71.6 6.0 | 82.1]10.0 || 96.7 9.0
CS+DT(3) || 85.1 | 11.5 || 86.8 | 19.0 || 71.5 4.0 || 828|155 || 96.1 5.0
CS(5) 85.1 1115 | 86.8 | 155 | 71.9 80| 85| 7.0 97.0 14.0
CS+DT(5) || 849 | 9.0 86.8 | 155 | 71.6 6.0 | 82.8| 155 || 96.8 11.5
CS(8) 85.5 | 15.5 || 86.8 | 19.0 || 71.4 20| 817 | 85| 96.5 6.0
CS+DT(8) || 85.5 | 15.5 | 86.8 | 19.0 || 72.3 9.0 | 824|125 | 96.8 11.5
i Experiment 1 Experiment 2
. Table IV ShO\.NS t.he results from the second series Of. EXpe (MLPs with identical structures) (different classifier models)
iments where fivedifferent classifier models were combined. oos 525 T NB79s |
The top five rows display the accuracies of the individual clas : B [ DT76‘5 |
sifiers, next are the accuracies of the combination, and the ([CS+DT() 4820 | (oo 7'1 > I
acle line separates the classifier fusion from classifier selectii|cs+b1(g) 4795 ] AR 0 |
(selectiont-fusion) methods. Marked in boldface are the bes[cgi 72 |
error rates in each column. Next to each accuracy colu_mn is I’ S5 %615 i [ CcoDi@ 675
rank column, where the ranks are calculated as in the first ser EED ]
of experiments. [NB 4550 | (eS0T ]
The sums of ranks in the two experiments are visualized [DT 4455 | C818) 560 ]
Fig. 9. [AVR 439.0 | [ S35 ]
_ _ (CS(3) 4315 | [ CS+DT(3)55.0 ]
C. Discussion [Cs-DT(@ 4205 ! [ PROS 5 |
The two experiments offer different insights into the combi |_MAX520 ‘
nation problem. In the first series, we have identical MLP struc (AT | L cs@sto I
tures and the only tool to induce diversity into the team is the in '
tialization. Wanget al.[22] note that different initializations are WER3765 ]
possibly the weakest tool for engineering diversity, comparelBKS 363.5 |
to feature or data selection, data perturbationysing different

classifier modelsHowever, the accuracy of the ensembles usin

MLPs was comparable, and for the Wisconsin Breast Canc
data even better than that in the second series, where differ

classifier models were combined. Notice that the improvement ) )
Fig. 9. Bar graphs of the sums of ranks for the two series of experiments. The

ovgr the S'ngle best F:Iassnﬁer is more visible in the first Ser_'Qﬁnger the bar, the better the combination method. Dark gray bars correspond to
as in the second series, there was already a strong model inttléndividual classifiers.

team.

Itis reasonable to expect that classifier selection methods wiblots in the training/testing relationship which are different for
perform better when the individual classifiers are of different adifferent classifier models. For example, the linear classifier can
curacies. That is, the “selector” will choose the “best” classifidre “trusted” to perform approximately as good as on training set.
for the respective region or sample, and ignore the less ac@ire generalization could be poor but so would be the training
rate classifiers. Conversely, classifier fusion models will tend tccuracy. (Curiously, the linear classifier was amongst the best
smooth out the differences and will probably be slightly infeclassifier models in the real datasets, and the top rating classifier
rior to the most outstanding classifier in the team. As the exp@&m Pima Indian Diabetes data and the Cleveland Heart Disease
iments show, this intuition is not necessarily correct. The reasdata.) When the neural net or the tree are trained, itis impossible
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to stop at the exact place so that we match the training/testingeal-life problems. The small sample size problems of the past
correspondence that is typical for simple models (LDC, QDCare now being replaced by extremely-large size problems where
Thus the training error of the MLP or the classification trethe user is faced with gigabytes and even terabytes of data. It
might be deceptively low and the classifier selection modeis likely that the focus of the future research will be dictated
will keep selecting these two classifiers, resulting in high testiryy this shift and classifier combination methods will be of a
error. Using a validation set is of course an option but the samlferent value in this light. DCS which relies on on-line esti-
size not always allows that. Besides, the estimate on the validaates of the classifier accuracy in the vicinity xfwill take
tion set could be misleading as well. Thus, there is always likedylot of computational resources and, though highly accurate,
to be a discrepancy between the training/testing correspondentight become cumbersome to run. Therefore, theoretical and al-
if different classifier models are used, and the selection methaggtwithmic amendments of classifier combination methods (and
might be fooled. This seems to be the reason for the inferior pefassifier design methods in the first place) will be needed.
formance of the selection methods in the second series of exper-
iments (little or no improvement on the individual accuracy). VI. CONCLUSIONS

The overall impression from the two experiments is that DCS L - o .
is the best strategy. It requires more computational resource compmatlon con_S|st|ng of a classifier select|o_n and a clas-
than the other methods but the pay-off is its stable performar?d er fusion method is propqsed: CS and DT. First, the data
and high accuracy. Is clustered to form regions in the feature space. Second, we

The switching between selection and fusion has some poté‘ﬁ? Cls to decide whether one classifier should be nominated

tial in it. The choice of the DT method as the fusion Componeh make the decision in a certain region or DT should be ap-

was based on the good overall performance of the method injﬂ]?d instead. One synthetic and four real datasets were used to

previous experiments, and was confirmed again here. Howe g}d out how the switching between selection and fusion rates

naive Bayes and average have also shown adequate accu?gé ngst the DCS, the static selection and the fusion. DCS was
and robustness, and can replace DT in the-O$ scheme. The

the’best alternative for classifiers with the same structure and
clustering part can be improved as well. The choice of threté?mmg protocols (MLP). C$DT was the second best in this
five, or eight clusters here was arbitrary. A more systematic a

eries of experiments. For different classifier models in the team,
proach to the partitioning of the feature space could lead tdbe{s difficult to predict whether a combination can achieve a
better solution.

etter accuracy than the best individual classifier. In this series
BKS and Wernecke’'s methods showed unexpectedly poor

of experiments there was no clear preference of one combina-
performance. In the first series of experiments they were r}tﬁfn approach over the rest. The result depended on the dataset,
run for 11 MLPs and three classes (Cone-torus data) due

he only consistent pattern being that the improvement over the
time reasons, and so their overall ranks were affected by that.

bﬁ:]st individual classifier was negligible.

. . A curious result was the excellent performance of the Naive
the second series of experiments, the two methods were prgb- . L
ably overfitted and also suffered from the differences in t zayes combiner which is often overlooked. The average method
training/testing correspondences explained above I"l<ept its reputation as a reasonably accurate and stable combiner,

. . S e whereas the other simple fusion methods were not as good as

There were differences in the individual classifier perfora emed in the literature
mances in both experiments. In the first series, the training of '
some of the NNs was stuck in a local extremum, producing a

very poor member of the team (40%—50% error). In the second APPENDIX

series of experiments, the classifiers did have very differentThe four methods described below operate on crisp classifier
accuracies. Some of the simple fusion methods are sensitivei@puts, i.e., wherddP(x) contains only values 0 and 1 and
such anomalies. This led to the unsatisfactory performanceegfch row has exactly one 1 in it.
MIN, MAX, and PRO.

Looking at the results from the second series of experimept, Mmajority Vote
the arising question is “to combine or not to combine?” . . .
Choosing g(])ng individual classifier over the rest will depend on The qlass label assigned fois the one that is most repre-
how much we trust our estimate of the generalization of t ented_ in the _sgt ok cla_lss labelsDy (x), S Dr(x). Usmg_
classifiers. If there is no clear preference, DCS appeared to b %(cnsp) decision profild P(x), the majority vote method is

good option when classifiers were of the same type. Howevt rp!emented by summing up th@.P(x) columns and taking
it was not picked as the best solution in any of the experime & index of the column with the highest score as the class label

in the second series. Trying to reproduce the experiment for ™ Ties are broken randomly.

Phoneme data from [26], we found that the combined approach
proposed here CEDT, the best in this experiment, only just®: Naive Bayes
reached the performance of the nearest neighbor classifier. S&his scheme assumes that the classifiers are mutually inde-
the merit of a combination in the case of different classifigrendent (this is the reason we use the name “naive”); for each
models should be carefully looked at. Using weights (whemdassifierD;, ac x ¢ confusion matrixCM” is calculated by
possible) might help overcome the discrepancy problem.  applying D, to the training dataset. Thg, s)th entry of this

The potential for using the methods discussed in this papeatrix, cm;, , is the number of elements of the dataset whose
have to be assessed with respect to the growing amounts of data class label wasy,, and were assigned 1y, to classw;.
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By cm.{s we denote the total number of elements labeled lay lookup table (BKS table)[8]. The table is designed using
D into classw; (this is calculated as the sum of thi column  the datase® (joint-distribution of the class labels). Eaeh
of CM7). Usingem? ,, ac x c label matrixL M7 is computed, is placed in the cell indexed by (z;), ..., Dr(z;). The
whose(k, s)th entrylmk . is an estimate of the probability thatelements in each cell are tallied and the most representative
the true label isv;. given thatD assigns crisp class label class label is selected for this cell. Ties are broken randomly.

, The decision for ax € R™ is made according to the class label
my, of the cell indexed byD, (x), ..., Dy (x).

o (19) 2) Wernecke's MethodWernecke’s method [24] is similar

to the BKS. The difference is that Wernecke considers the 95%

For everyx € R, D; yields a crisp label vectoD,(x) Cls of the frequencies in each cell. If there is overlap between
pointing at one of the classes, say, € 2. Considering the label the intervals, a combination formula is applied instead of taking
matnx for Dy, LM, associated withv, is asoft label vector the label of the cell. Thé& confusion matrices are used to iden-
[P (w1|Dj(x ) =w.), ..., P(w.|Dj(x) = w,)]¥, whichisthe tify the “least wrong” classifier among the members of the
sth column of the matrix. Let,, ..., s; be the crisp class team, and that classifier's decision is taken as the label of the
labels assigned ta by classifiersD, ..., Dy, respectively. cell. As an illustration, assume that= 2, ¢ = 3, the confusion
Then, by the independence assumption, the estimate of the prolatrices are
ability that the true class label ig;, is calculated by 16 6 10 13 9 10

; ~ &

ey g

L L CM'=|12 20 10| and CM?*=|8 21 13
HP“’”D U 77 2 T 6 22

i=1,...,c (20 and

0 1 0
As an example, consider a problem with= 2 classifiers, DP(x) = {1 0 0} .
D, andDs, andc = 3 classes. Let the number of training data
points beN' = 20. From these, let eight be fromy, nine from  Assume that the BKS cell indexed By = w2, 52 = w;
ws, and three fromws. Suppose the following confusion ma-contains six data points from;, four fromw,, and six from
trices have been obtained for the two classifiers: ws. As the Cls of the best two counts are identical, Wernecke
selects a classifier fronD to label of the BKS cell. First,

6 2 0 4 3 1 - . . . .

each classifielD; is examined with respect to the probability

CM'=|1 8 0| and CM*=|3 5 1 (21)  P(error, Di(x) = s;) by calculating the number of misclassi-
1 0 2 0 0 3 fications whenD; (x) labelsx in s; [see (15)]
The two label matrices obtained frofW/* andCM? are M; = > 1T —wji
6/ 2/10 0 z; € Z : (23)
LM'=|1/8 8/10 0 Di(x) = si
1/8 0 1 The classifier with the smalledt/; labels the cell.
and ) From the second column 6fM* (because; = w,) and the
(4/7 3/8 1/5 first column of CM? (becauses; = wq), M} = 6 4+ 7 = 13,
My =8 + 7 = 15. SinceM; < M, we takes; = w, as the
LM?* = |3/7 5/8 1/5]. 22 2 L 2 Lo 2
/7 5/ /‘: (22) class label of the cell. Notice that only four points fram are
L0 0 3/5 present in the cell, compared to six fram and six fromws,

AssumeD; (x) = w; andDs(x) = w, for the inputx € R, and yet, the class label that the cell getsids

Using the second column @fAZ! and the first column of 442,
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