International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Vol. 6, No. 5 (1998) 437—457
(© World Scientific Publishing Company

AN INTEGRATED FRAMEWORK FOR
GENERALIZED NEAREST PROTOTYPE CLASSIFIER DESIGN

LUDMILA I. KUNCHEVA! and JAMES C. BEZDEK?2

LSchool of Mathematics
University of Wales at Bangor, Gwynedd LL57 1UT, UK
l.i.kuncheva@bangor.ac.uk

2 Department of Computer Science
University of West Florida, Pensacola, FL 32514, USA
jbezdek@argo.cs.uwf.edu

Received (received date)
Revised (revised date)

We propose a Generalized Nearest Prototype Classifier (GNPC) as a common frame-
work for a number of classification techniques. Specifically we consider clustering-and-
relabeling; Parzen’s classifier; radial basis functions (RBF) networks; learning vector
quantization (LVQ) type classifiers; and nearest neighbor rules. To classify an unlabeled
point x, the GNPC combines the degrees of similarity of x to a set of prototypes. Five
questions are addressed for these GNPC families: (1) How many prototypes do we need?
(2) How are the prototypes found? (3) How are their class labels obtained? (4) How are
the similarities defined? (5) How are the similarities and label information combined?
The classification performance of a set of GNPCs is illustrated on two benchmark data
sets: IRIS and the 2-spirals data. We study the resubstitution error of the GNPC as
a function of the number of prototypes. Our conclusions are that: (a) unsupervised
selection (or extraction) of prototypes followed by relabeling is inferior to the techniques
that use labels to guide them towards prototypes; (b) the edited nearest neighbor rule
is a viable option for GNPC design which has not received the attention it deserves.

Keywords: Pattern recognition; Prototype classifiers; Nearest neighbor; Neural networks
(RBF, LVQ); Generalized nearest prototype classifier

1. Introduction

Prototype based classification is perhaps the simplest and most intuitively moti-
vated pattern recognition paradigm 3%, We consider ¢ mutually exclusive classes
where c¢ is an integer, ¢ > 2. Let I.risp = {€1,...,€.} be the canonical basis of R¢,
used here as crisp class labels, i.e., objects from class i are labeled by the vector
e =leri,---req)T, eji = 1if j =4, and 0, otherwise. Any function D : R — Lerisp
is called a crisp classifier. Let V = {vi,...,v,}, v; € R¢ be a set of prototypes
with labels I(v;) € Ipisp. We denote by Ly the matrix of labels [I(v1),...,1(vp)].
An unlabeled object x is subsequently assigned to the class of the closest v; € V,
and “closest” is usually defined in terms of a distance on R¢.

2 Generalized Nearest Prototype Classifier (GNPC) ...

Definition 1. The Nearest Prototype Classifier Dypc : R4 — Ierisp s the triplet
(V,Ly,A), where A is any norm metric on R?, such that for any x € R¢

DNpc(X) = l(Vk) € Icm‘sp <~

A(x,vi) < A(x,vy); Vi # k. (1)
Ties are broken randomly. Integer p may or may not equal c.

Let X = {x1,...,%X,} C R? be a set of labeled data, and let Lx = [I(x1),...,
1(x,)]T, 1(xi) € IL.risp be the corresponding matrix of crisp labels. When V = X
and p = n, then Dypc is the nearest neighbor (1-NN) rule. When p = ¢ and
V' are obtained as the sample means for each class in X, Dypc is often called
the minimum-distance classifier 1438 (we denote it by 1-NP). Both designs can be
regarded as special cases of the nearest prototype classifier at Definition 1. Our
terminology is chosen so that Dypc is the 1-NP only when V' are the labeled
subsample means. Definition 1 does not specify how to find V.

Along with the great variety of 1-NP and 1-NN classifiers '? there are many
other classification techniques that are based explicitly or implicitly on similarity
to prototypes, for example RBF networks ?>. The prototypes are not necessarily
firmly associated with crisp classes: each prototype may have a label vector I(v;) =
iy 1ei]T € [0,1]¢ — {0} of association weights ({0} is the zero vector for R°).
The common characteristic of nearest prototype classifiers is that they calculate
similarities {s(x,v;)} of the unlabeled point x to each of the prototypes {v;} and
then combine the {s(x,v;)}, with {I(v;)},i = 1,...,p, to label x. Intuitively,
the closer x is to v; and the higher the association weight l;; is, the greater the
plausibility becomes that x should be assigned to class j.

We seek a paradigm based on this common feature that will unify many dis-
parate techniques and provide a common framework for comparative analysis. The
Generalized Nearest Prototype Classifier (GNPC) defined in Section 2 provides such
a framework. The classifiers that fit within it are roughly grouped into five inter-
secting families:

F1. Clustering-and-relabeling *;

F2. Parzen’s classifier '°;

F3. RBF networks %2°;

F4. LVQ-type classifiers 28;

F5. Edited nearest neighbor rules '2.

Some excellent comparative studies on pattern classifiers have been published
recently 72!, Holmstrom at al. 2! discuss neural and statistical classifiers and
emphasize that the boundary between the two areas is not well defined. We do not
provide another comparison of various methods on large data sets. Our objective

Generalized Nearest Prototype Classifier (GNPC) ... 3

is to assess classifiers within the GNPC framework in terms of how effectively they
find and use prototypes, so our experiments are illustrative rather than central to
this study.

Section 2 describes the GNPC framework and Section 3, the pattern classifica-
tion techniques that fit within it. The classification techniques discussed are not
exhaustive — the aim is to present a common framework so that techniques that fit
within the representation can benefit from each other, or from the common frame-
work itself.

In Section 4 we present experimental results with a set of GNP classifiers on the
IRIS and the 2-spirals data sets. We study only the resubstitution error rate, as the
data sets we use are not good choices for assessing generalization. The IRIS data
are too small to be effectively split for cross-validation purposes, and the training
and test sets of the 2-spirals data are virtually identical, providing almost equal
resubstitution and generalization errors. We have chosen these two sets because
they are extensively used as benchmarks and are widely available. Moreover, some
experimental results with the same data published by other authors facilitate further
comparison. Section 5 contains our comments and conclusions.

2. GNPC as a common framework

We use real-valued prototypes v; € R¢,i = 1,...,p. More complex prototype
structures such as hyperplanes ° and higher order hypersurfaces 3° are not consid-
ered, nor are special techniques for handling categorical or mixed variables. Our
model is quite flexible however, because associated with each prototype v; is a set
of parameters 6; which are used when calculating the similarity of x to v;. For
example, #; might be a covariance matrix used to calculate Mahalanobis distances,
or it might be a single value called a “smoothing parameter”.

The number of prototypes p can be less than, equal to, or greater than the
number of classes ¢. Figure 1 shows an example with p = 4 prototypes in R? that
are associated with ¢ = 3 classes by the crisp label vectors Ly = [e1, 2, €3, e4].
The solid, dashed, and dotted lines indicate the crisp relationship of prototypes to
classes 1, 2, and 3, respectively.

Using Euclidean distance (i.e., dg(x,v;) = v/(x — v;)T(x — v;)), the classical
1-NP classifier ® will assign label 2 to the vector x in Figure 1 because d(x,v3) <
d(x,v;), i =1,2,4, and l(v3) = es. Since p > ¢ in Figure 1, some authors call this
a nearest multiple prototype (1-nmp) design 38,

It is natural to assume that the similarity s between x and v; has maximal value
when x = v; and decreases with the distance between the two vectors in R¢. In
general, similarity measures are required to be only reflexive and symmetric. In this
paper we restrict similarity a little more than this.

Definition 2. A norm-induced similarity function s(x,v;;6) = s(A(x,v;);0),
where 0 is a set of parameters of s, is any monotonically decreasing function s :
R+ — [0,1] of any norm metric A on R,

4 Generalized Nearest Prototype Classifier (GNPC) ...

\ lv,)=e¢,

g

Figure 1: Nearest prototype classifier with crisp labels

For example, s might be

s(x,v;;0) = s (dp(x,vi);) = exp (—%dE(x,vi)2> . (2)

Assigning to x the label of the most similar prototype is equivalent to assigning to
x the label of the nearest prototype. Another widely used example is based on the
Mahalanobis norm,

5%, vi;0) = 5 (dar (%, v2); {S}) = exp (—%dM(x, vi)2) . 3)

where

dar(x,v;) = 1/ (x = vi) TS (x — va), (4)

where S is a covariance matrix. Using dj; and h; € Rt as a smoothing parameter
associated with prototype v;, s can be defined as the Gaussian kernel centered at

15
Vi 3

s(x,vi;0;) = s (dm(x,v4); {hi, S}) =

1 1 9
= aneniys (~ggutmvr). ®
To simplify notation we write s(x,v;;60;) = s; and call s a similarity function,
meaning always the norm-induced similarity as at Definition 2.

Instead of using crisp labels we may let [;; vary in the interval [0,1], thereby pro-
viding soft connections between the prototypes and the classes. When we restrict
the sum of labels to one this is called either fuzzy or probabilistic labeling *. An ex-
ample of such a label vector for prototype v; and ¢ = 4 is [(v;) = [0.1,0.7,0.0,0.2]T.

An even looser connection between prototypes and classes is provided by the
possibilistic label 12 where the sum of elements of I(v;) is not restricted to one.

Generalized Nearest Prototype Classifier (GNPC) ... 5

Figure 2 shows the example in Figure 1 but with possibilistic labels, and leads you
to ask: what crisp label should be assigned to x? (i.e., how are the {s(x,v;)}
combined with {l(v;)}?). The soft labeling of prototypes is indicated in Figure 2
by using all three types of lines (solid, dashed, and dotted) to link each prototype
to x.

Figure 2: Nearest prototype classifier with possibilistic labels

Finally, we need to compute the membership of x in each class. This is done
below with an aggregation function A that is generalized matrix multiplication using
an S operator instead of summation and a 7 operator instead of multiplication. Let
@ = [gij] and R = [r;;] be two matrices of size n x m and m x k, respectively. The
matrix A(Q, R) = [a;j]nxk is defined by

(T(git, ;) (6)

Q5 =

s

We assume that 7 is a monotonic on each argument, commutative and associa-
tive binary operator that maps [0, 1] x [0,1] — [0,1]. A natural choice for T are
the t-norms defined over fuzzy sets, e.g. minimum = min{zy, 22 }; product = 2;.29;
bold union = max{0, 21 + 2o — 1}, 21,29 € [0,1] 41

S is an aggregation operator, S : [0,1]™ — [0,1]. We can choose S to be a
mean aggregation operator ' which is commutative, monotonically nondecreasing
on each argument, and idempotent. Examples of such operators are the simple
average = (21 +22+...+2p,)/m; and the maximum = max{zy,...,zn}, 2; €[0,1].
The aggregation we use here results in the vector A(Ly,s) =a = [a; ...a.]".

Definition 3. The Generalized Nearest Prototypes Classifier (GNPC) is the 5-tuple
(V,Ly,s,T,S) where

o V="{vi,...,v,}, vi € R% is the set of prototypes;

6 Generalized Nearest Prototype Classifier (GNPC) ...
e Ly € [0,1]°%? is the label matrixz for the prototypes in c classes;
o s(A(x,v;);0) is a similarity function as at Definition 2;

o T is any t-norm defined over fuzzy sets, and S is an aggregation operator *'.
Thus the function A at (6) is completely specified.

For an unlabeled vector x € R, the GNPC calculates the similarity vector s =
[51,...,8]T, produces the label vector u(x) = A(Ly,s), and assigns the crisp class
label ey, € Iorisp to X if

pr(x) = max {p;(x)}. (7)

i=1,...,c

Ties are broken randomly.0

We will show that the only operation types that are needed for the five families
of classifiers studied here, are:

- T operations: product

- S operations: maximum, average

Note especially that the GNPC is a crisp classifier, no matter what type of labels are
in the columns of Ly. Generally, a GNPC representation can be built by answering
five basic questions:

Q1. How many prototypes do we need? (p = 7)

Q2. Given (X,Lx), how do we find the prototypes {v;}?

Q3. How do we create the prototype label matriz Ly ?

Q4. How do we choose the similarity function s and how do we obtain 6;7

Q5. How do we combine the similarities s with the labels (specify S and 7) to find
A(Lv, S)7

For the examples in Figures 1 and 2 we can design the following GNPC: (V =
{Vh Vo, V3,V4}; LV = [ela €y, e, 63]; S(Xavi; ¢) = exp (—(X - Vi)T(x - Vl))) T is
product; S is max). For the example in Figure 1 we obtain

0.0002

1000 0.0002
a=ALy,s)=|0 1 1 0 g'ggé; = 0.0369
000 1 : 0.0111

0.0111

Generalized Nearest Prototype Classifier (GNPC) ... 7

Consequently, the GNPC label assigned to x by (7) is class 2. For the example in
Figure 2, we obtain

0.7 00 02 0.1 8'88(1’? 0.0074
a=ALy,s)=| 0.6 08 04 03 || "o | =] 00148
0.1 03 0.1 04 || /o1 0.0044

According to this result x will be given label 2 by our GNPC at (7).

There are many ways to generate prototypes: see (Bezdek and coauthors, 1999)*
for extensive coverage of methods based on batch models (c-means), sequential
methods (learning vector quantization), neural networks (aggregation networks)
and heuristic methods (mountain clustering); see (Dasarathy, 1990)'2 for nearest
neighbor methods, and (Duda and Hart, 1973)'* for probabilistic methods.

3. The five families

Figure 3 represents the five groups of classifiers discussed in this section.We
will exhibit relationships between each group and the GNPC (7). In what follows
A1-A5 stand for the answers to questions Q1-Q5 shown in Section 2.

F1. F5.
Clustering and Edited
relabeling 1-NN

Generalized
Nearest

Prototype
Classifier

GNPC

F2.

Parzen’s
classifier

F4.

LVQ
classifiers

RBF
networks

Figure 3: Groups of GNPCs

3.1. Baseline designs

Table 1 gives the GNPC representation of three baseline designs: 1-NN, 1-NP,
and linear discriminant analysis (LDA) (equiprobable classes) 4. Notation V in
Table 1 stands for the sample means V = {v1,...,V.}

1 .
v, = o Z xj, 1<1<g,
Li(xs)=e

8 Generalized Nearest Prototype Classifier (GNPC) ...

where n; is the number of elements of X with class label e;.

Classifier — 1-NN 1-NP LDA

AL () p=n Py =
A3. (Lv) Lv=LX LV=[e1,...,ec] va[el,...,ec]
A4. (870) (2)3 dE7¢ (2)7 dE7 ¢7 (3)3 dMa{S}
A5. (T,S) (prod, max) (prod, max) (prod, max)

Table 1: Baseline GNPC designs

For nonequiprobable classes, the only component of the GNPC representation
of LDA that will change is the label matrix: Ly = [piey,...,p.e.], where p; is the
a priori probability for class i. An example of a prototype label matrix for ¢ = 3
nonequiprobable classes is

02 0 O
Ly=|0 01 0
0 0 07

Note that the representation of a classifier or a family of classifiers in terms
of our GNPC is not unique. We may construct Ly in many ways, and choose
proper s, T, and S accordingly. Therefore, the rest of this section provides a GNPC
representation of each of the five families of classifiers.

3.2. Clustering and relabeling (F1)

An easy scheme to build a GNPC is clustering followed by relabeling. First, data
vectors are pooled disregarding the labels Lx and clustered into p > ¢ clusters. We
call this unsupervised design. Each cluster is represented by a single prototype.
Data vectors in the same cluster are supposed to possess much more similarity to
each other than to the vectors in other groups.

The set of prototypes is then relabeled and used with Dypc at Definition 1 4.
A relabeling scheme that minimizes the overall number of resubstitution misclas-
sifications is to label each cluster prototype with the class held by the majority of
the vectors within that cluster. Let C; C X be the crisp cluster corresponding to
prototype v;. The relabeling procedure assigns crisp label I(v;) = e; € Icpisp tO
prototype v; if

| {xjlx; € CinX,l(x;) = e} | =

= max | {x¢|xe € C;N X, l(x¢) = ex} | (8)

GNPC representation:

A1l. 1 < p < n, the number of clusters p can be either fixed or decided empirically,
e.g., by a cluster validity measure (usually p > ¢);

Generalized Nearest Prototype Classifier (GNPC) ... 9

A2. V isfound by clustering: any procedure that produces a set of point prototypes
using a measure of similarity between x and v; can be used.

A3. Ly is crisp and the columns are obtained by relabeling procedure (8).
A4. sis a similarity function (it may or may not require {6;});
A5. T is product, S is max.

Some authors use this type of GNPC to compare clustering procedures in terms
of their classification accuracy 4?42%. Generally, the classification accuracy of GN-
PCs in this family will not be as high as if we used the class labels Lx to guide the
procedure towards prototypes V. Our experiments in Section 4 confirm this.

An advantage can be gained by making a soft relabeling, i.e., [(v;) € [0,1]°—{0},
thereby accounting for all of the class labels {I(x;)} represented within the i-th crisp
cluster, i = 1,...,p. For example, let C' be a cluster containing m; samples from
class 1, mo samples from class 2, and ms samples from class 3, m; +ms +m3z = m.
Then the prototype of cluster C' can be labeled by the vector [%, e, %3]

Alternatively, we may cluster separately the data vectors from X — one run for
each class (supervised design). A special case of this design is the 1-NP classifier
where we assume that the points of a class are one single cluster, and hence, the
prototypes are computed as the sample means. Generally, more than one prototype
per class can be used, the number of prototypes may differ from class to class, and
the labels can be either crisp or fuzzy.

3.3. Parzen’s classifier (F2)

Parzen’s classifier is based on the statistical mixture model, and is thus built by
approximating assumed class-conditional probability density functions (p.d.f.s) and
plugging them in the Bayes classification rule !5, Each data point is used as a
prototype, i.e. V = X, Ly = Lx. A kernel function K(x,v;) is defined, usually
taking the form K (M), where h a smoothing parameter.

Using the kernel estimates of the class-conditional p.d.f.s (e.g., the Gaussian
kernel (5) with identity covariance matrix) and the expression n;/n as an estimate
of the prior probability for class . There are many kernel functions . We can pick
K to be valued in [0,1]. Using this formulation, the following set of discriminant
functions can be derived,

gr(x :nhd > K()> k=1,. (9)

klv]) er

Parzen’s classifier assigns to x the crisp label indexing the largest g;(x).

GNPC representation:

Al. p=mn;

10 Generalized Nearest Prototype Classifier (GNPC) ...

A2,V =X;
A3. LV = Lx;
A4.

1 (x —vy)
i (—oi)’

where 6; is the smoothing parameter for class k such that I(v;) = e
A5. 7T is product, S is average.

A possible choice for hy is hy, = n,:%, where t is a user-defined constant between 0
and 1 (15, p. 174). This selection guarantees that the value of s is in [0,1].

In the classical Parzen’s model the smoothing parameter hj is the same for
all ny prototypes of class k. If we attach a specific h; to each prototype, i =
1,...,p, and use some training procedure to tune the value, the model is called
Kernel Discriminant Analysis (KDA) 2!. Parzen’s model is also isomorphic and
isofunctional to Probabilistic Neural Nets (PNN) 35,

Using all the vectors in X as prototypes might be computationally infeasible.
Therefore some reduced versions have been proposed where p < n. The main ques-
tions then becomes how to find these p “most relevant” prototypes and how to tune
the parameter values. This relates the reduced Parzen (KDA, PNN) model to RBF
networks where these are the central questions.

3.4. Radial Basis Function Networks (F3)

Let ®(x,v;;6;) denote a radial basis function centered at v;,s = 1,...,p. Gen-
erally, ® has behavior similar to the kernel function in the Parzen’s classifier: it
takes its maximal value for x = v; and approaches zero when ||x — v;|| = oc.

The network has d inputs (one per feature), p hidden nodes (one per prototype)
and ¢ outputs [y1,...,y.]” (one per class). When x is submitted to the network,
the i-th output renders the value

p
yk =Y, wii B(x,vis0;) = i (x),
i=1

where {wg;}, k= 1,...,¢; i = 1,...,p are the weight coefficients connecting the
i-th hidden node with the k-th output. The crisp class label of x is decided by the
index of the maximal ug(x),k =1,...,¢, as in equation (7).

Parzen’s classifier is a special case of RBF networks. Since Parzen’s classifier is
asymptotically Bayes-optimal (i.e., as n — oo, the classification error approaches
the Bayes error from above), a class of sparsely connected RBF networks possesses
the same property ''. The advantage of RBF networks is their flexibility in the
finite-sample case.

The prototypes (centers) can be selected or extracted in advance as the first stage
of training, and kept fixed during the second training stage when {6;} and {l;} are

Generalized Nearest Prototype Classifier (GNPC) ... 11

tuned, kK = 1,...,c. The other option is to initialize the prototype locations and
to tune them together with the other network parameters during a single training
stage. There are many ways to initialize the prototypes 2: we can place them onto
the vertices of a large grid in R?, choose them at random from X, select them by
nearest neighbor type editing of X, use an addition/deletion scheme, find clusters
in X, evolve or select them by genetic algorithms 323940 etc. The sets {v;}, {6;},
and the label matrix Ly can be tuned in either a conjugated or independent way,
thereby giving rise to many different RBF architectures.

Because of the restriction at Definition 2, we consider only RBF networks whose
radial-basis function co-domain is [0,1], and whose hidden-output connections are
numbers in the interval [0,1]. Therefore the GNPC does not incorporate RBF net-
works based on orthogonal least-squares training (1) (perhaps the most successful
model). The GNPC definition does embed a class of RBF networks among which
are those based on “semiparametric” mixture modeling 7 and also the classical
scheme of Moody and Darken 33.

GNPC representation:

Al. 1 <p<

A2. V is either selected and fixed in advance or tuned during the training stage;
A3. 1(v;) = [wii, wa, . ., wei] T

Ad. s; = ®(x,v;;0;); 0; consists of the parameter values of the radial basis function
associated with prototype v;.

A5. T is product, S is average.

3.5. LVQ-type procedures (F4)

LVQ classifiers compute V by sequential competitive learning 2%-2%. Every point
in the data set sequentially determines updates for one (or more) prototypes. The
new value of prototype v; at step t is denoted as v;; and is usually obtained as

Vit = Vig—1 + Gkt (Xe — Vig—1), 1=1,...,p, (10)

where xy, is the vector in X submitted to the algorithm at iterate ¢ and {a,.} is
the learning rate distribution. Depending on how a;;+ is formulated a variety of
techniques can be described. There is an essential difference between supervised
and unsupervised LVQ techniques. In unsupervised versions the prototypes are
unlabeled and need a relabeling procedure to find Ly (like the one in the F1 family
of GNPCs). Supervised LVQ methods tune the prototypes according to a reward-
punishment scheme so that the closest prototype from the same class moves towards,
and the closest prototype from a different class moves away from x;. Equation (10)
is used for the “reward” part, and

12 Generalized Nearest Prototype Classifier (GNPC) ...

Vit = Vig—1 — Gkt (Xp — Vig—1), 1=1,...,p, (11)

for the “punishment” part.

Notice that in supervised LVQ classifiers the prototypes come with their labels.
The labels are fixed in advance (prior to tuning the prototypes) and depend on the
initialization procedure. They can be either assigned at random (if the initial V is
a set of p randomly picked points in R?) or taken as the labels of the p points of X
used as the initial V.

Although LVQ classifiers are usually regarded as neural network classifiers, their
representation is closer to the (non-neural-network) F1 family than to the RBF
networks family F3. Unsupervised LVQ classifiers differ from F1 only in the way of
finding the prototypes, and therefore can be regarded as a special case of F1. We
consider F4 separately because of the large number of LVQ models that have been
developed. In contrast to the broad GNPC representation of F1, here we specify
LVQ as the prototype extraction procedure in answer A2.

GNPC representation:

A1l. 1 < p < n, the number of prototypes is usually fixed in advance;
A2. V is found by an LVQ algorithm;

A3. Ly is crisp, and is fixed prior to prototype tuning.

A4. s is a similarity function as at Definition 2; §; = ¢;

A5. T is product, S is max.

There is a great variety of techniques that can be used to find V. The main
drawbacks of competitive learning methods are that they depend heavily on the
initialization and are usually terminated by a;z+ — 0 in (10) and (11) rather than
by any criterion related to the fitness of V for representation of X.

3.6. Edited 1-Nearest Neighbor (F5)

In numerous papers that compare pattern classifiers the classical nearest neigh-
bor (1-NN) method is recognized as a good competitor to many neural networks
and other classification paradigms. It is usually pointed out that, although one of
the best, the 1-NN method requires large memory and time resources, and therefore
other classifiers are recommended.

We believe that edited versions of 1-NN design are excellent examples of flexible,
small, and accurate GNPCs. Editing techniques (see '?) aim at finding V as a
subset of X so that the classification accuracy using GNPC with V instead of X
is not much affected. Since X is finite, classification accuracy (resubstitution and
generalization) can be the same or even better with the edited set than error rates
achieved using all of X.

Generalized Nearest Prototype Classifier (GNPC) ... 13

Most editing techniques do not specify the number of prototypes they want to
retain, i.e. p is data/technique dependent. For example, the condensing group of
techniques 12 aims at retaining the minimal V' C X, (called a “consistent” subset)
that produces zero errors on X with the NPC. There are some “pseudo-editing” ver-
sions that do not select but extract prototypes by a subsequent merging of elements
of V' so that the resultant V is consistent 4.

It is desirable to develop an editing technique that finds V of a prespecified
cardinality p with the lowest possible resubstitution error rate. Alternatively, we
may fix a limit on the resubstitution error rate and search for the smallest V. In
this study we tried random selection (RS) of V' C X with |V| = p, where p is fixed,
¢ < p < n (the algorithm is shown in Figure 4). The RS technique selects p elements
of X at random and evaluates the GNPC resubstitution error. When p is small, RS
editing is a surprisingly viable option for finding V. Better editing results at the
expense of longer running time have been achieved by genetic algorithms 3.

EDITING BY RANDOM SELECTION

1. Choose p,c < p < n; set the maximal number of steps T'; set £ = 00
2. For i=1to T do

2.a. Select at random W C X, |W| = p;

2.b. Calculate the resubstitution error rate (W) of the 1-NN classifier with W
as the reference set;

2.c. Ife(W) < E then V <~ W; E « e(W)
end do

3. Return E,W

Figure 4: The RS editing algorithm

GNPC representation:

A1l. p depends on the editing technique. In the RS technique p is specified in
advance;

A2. V is usually a proper subset of X (except for the pseudo-editing techniques);
A3. Ly is constituted from the label vectors of the selected points from X;

A4. s is a similarity function; 8; = ¢;

A5. T is product, S is max.

Two families of soft classifiers are closely related to this group, viz., the fuzzy
and possibilistic k-nearest neighbor classifiers (k-NN) 22744 Instead of crisp Lx

14 Generalized Nearest Prototype Classifier (GNPC) ...

they use fuzzy or possiblistic labels on X, I(x;) € [0,1]° — {0} and combine s with
the labels of the k nearest to x points from X. In most of these methods the relevant
question is how to “fuzzify” the crisp labels.

In this study we confined S to be either the maximum or classical mean ag-
gregation operator. It should be emphasized that the k-NN models with 1 < k fit
within the GNPC scheme if S is chosen as an Ordered Weighted Averaging (OWA)
operator 1, i.e., the operator selects the k largest arguments and operates on only
them.

3.7. Other related designs

There is a group of GNPCs that are not a coherent family and therefore are not
treated as such here. This group comprises various heuristic schemes whose unifying
concept is the connection between the 1-NN rule and noncompetitive-learning type
neural networks such as multilayer perceprtons (MLP) and RBF networks. Two
topics have been studied:

e constructing neural networks that implement ezactly the 1-NN rule 8-16,29,34.

e optimizing the 1-NN (GNPC) performance by designing a neural network (of
MLP or RBF type) that provides a close or exact representation of the GNPC,
and tuning V' (and 6;, where applicable) 13:36,42,43,45.46

The second option looks more promising because the GNPC parameters are
derived by some neural network training procedure while “exact implementation”
means that we either already have the prototypes V or use all of X.

Each of the above neural network designs is very specific and includes many
heuristics: clustering and/or editing for initialization, special training algorithms,
Ly definition, etc. Therefore it is difficult to erect a common representation. Since
each architecture and training scheme in this group stems from the 1-NN rule,
functionally the resultant classifiers are GNPCs.

4. Experimental results

To illustrate the performance of the GNPC we use two data sets

e The IRIS data, consisting of 150 vectors in ®* coming from three classes
represented by 50 points each 22;

e The 2-spirals data, consisting of 192 points in the plane, placed as two inter-
twined spirals that form two classes. The points along each spiral belong to
one of two classes, shown as circles and pluses in Figure 5.

Both data sets are used extensively as benchmarks and are widely available.
We use them to study the behavior of some GNPCs with respect to the number
of prototypes p. The test set that is provided for the two-spirals data is not much
different from the training set, which precludes a good generalization study. Our

Generalized Nearest Prototype Classifier (GNPC) ... 15

° o

6 o

+ Pt s o

. +
o © 9 o + o
4 + o (o] n
+ O +t s © o
o+ ° o+
0000
+ + o} o

2 o *+ o° © +

4
o +
ot o +
+ + ©0 PR O°+ o
o +
+ o . 0opo0 © + o
4 + + F o
+ [¢) + o4+ °
+ °© o
°© o o
6t +
6 .
-6 -4 -2 0 2 4 6

Figure 5: The two-spirals data

primary aim was to rate the classifiers within the GNPC framework in terms of
how effectively they find and use prototypes. Therefore, in the experiments below
we do not split the data into training and test sets, so the error rate shown is
resubstitution. We implemented the following GNPCs in Matlab code. Whenever a
norm was required for any model we used the Euclidean norm.

e Unsupervised prototype design

— Hard c-means clustering (HCM) 22 followed by relabeling as at (8) (F1).
HCM was run 10 times for each p,p = 3,...,9 with IRIS data and
p =5,...,60 with 2-spirals data, starting from different initializations,
and the smallest error rate was stored as the result with the current p;

— Puzzy c-means clustering (FCM) 2 followed by relabeling (F1). The
fuzzifying parameter m was set to 2 in all the experiments. As above,
FCM was run 10 times for each value of p and the result reported is the
lowest error rate found. The relabeling of the clusters was done in two
steps. First, every x; € X was assigned to a crisp cluster corresponding
to the highest membership value produced by FCM for that x;. Second,
the crisp label for each prototype was then computed with (8);

e Supervised prototype design

— RBF network (F3) 3. We used HCM clustering to find V. The label
matrix Ly was calculated by the nonnegative least-squares method. The
smoothing parameter h; was fixed at 0.3 in all experiments (for the two
data sets the value 0.3 produced better classification results than the
nearest-neighbor heuristic suggested in 23). The smallest error from 10
runs is reported below.

16 Generalized Nearest Prototype Classifier (GNPC) ...

— LVQ1?® (F4). Kohonen’s original algorithm was implemented by iterat-
ing through (10) and (11). In our experiments, a was a function only of
the iterate number ¢, a(t) = na(t — 1). We used ap = 0.3 and n = 0.8, as
recommended in 7. Each run of LVQ1 consisted of 40 passes through all
of X. Before each pass X was randomly permuted. As with the above
two procedures, we ran LVQ1 10 times and stored the lowest error rate.

— Decision surface mapping (DSM) (F4). This is an LVQ-type procedure
that sometimes achieves lower resubstitution error rates than LVQ1 17 .
It differs from LVQ1 in that equations (10) and (11) are applied only if
the label of the closest prototype does not match the label of x;. The
closest (“wrong”) prototype is updated by (11), and the closest “correct”
prototype for x; is found and updated by (10). All other parameters are
the same as with LVQ1.

— Edited 1-NN (F5). We applied a simple random search algorithm (Figure
4) to select p elements of X as the prototypes V. The only parameter
of the algorithm, the maximal number of steps T, was set to 10000 with
the IRIS data and to 2000 with the 2-spirals data.

We did not implement a GNPC from F2 because it is mainly of theoretical
importance. Practically, this group is inferior to most other classifiers. Moreover,
methods for reducing the number of kernels make the F2 family virtually equivalent
to F3 (RBF networks).

Table 2 shows the number of misclassifications with p = 3 prototypes with the
IRIS data set. We also tabulate some results published by other authors on the same
data set (each source is specified). The acronyms in the table stand for: GLVQ-F =
a fuzzy version of generalized LVQ; FALVQ = fuzzy algorithms for LVQ; LP = loose-
pattern clustering approach; DR = “dog-rabbit” clustering technique. In Table 2
the column labeled S/U indicates the way prototypes are found: S = supervised,
U = unsupervised, U+S = hybrid. The point of Table 2 is not to identify a “most
superior” technique. Rather, we show these results to emphasize how broad the
GNPC framework is.

Table 3 shows the number of misclassifications for the IRIS data with p =
3,...,9. Again, results with our implementations of GNPCs are displayed together
with results presented by other authors. The acronym RBF (GA) denotes an RBF
network where the centers (prototypes) are selected by a genetic algorithm.

We separate the unsupervised (the upper part) from the supervised (the lower part)
GNPC designs. Dashes mean that information is not available.

As expected, the resubstitution error rate decreases as p increases. The results
in both tables favor supervised selection of prototypes. The results with the random
search editing are surprisingly good.

The structure of the data in Figure 5 suggests that the 2-spirals problem is
difficult for classifiers that use points in %2 as prototypes. This poses an interesting
test for the GNPCs. The results with five GNPCs are plotted in Figure 6 with

Generalized Nearest Prototype Classifier (GNPC) ... 17

| GNPC | Family | S/U | Errors |
"Boolean neural network” 16 F6 S 30
LVQ + Relabeling (R) * F4 U 17
HCM + R F1 U 16
FCM + R F1 U 16
GLVQ-F + R* F4 U 16
FALVQ + R %° F4 U 16
FCM + R (LP) ® F1 U+S 15
RBF F3 U 15
1-NP F1 S 11
HCM + R (LP) ¥ F1 U+S 10
DR + R F1 U 10
DSM F4 S 9
VQL F4 S 6
Edited 1-NN (Random search) F5 S 2

Table 2: Misclassifications with p = 3 prototypes for the IRIS data.

respect to number of prototypes p (5 < p < 60).

Again, the GNPCs that use supervised techniques to find V' are superior to
unsupervised designs. As in the previous example, RS editing is one of the simplest
and most effective methods. In our view the F'5 family of GNPCs (edited 1-NN)
should be considered as one of the first options for classifier design. This is impeded
by the lack of well developed software, which in turn is a result of the fact that
editing techniques have not received the attention that they probably deserve.

5. Conclusions

We proposed an integrated framework for the generalized nearest prototype clas-
sifier (GNPC). Five large families of classifiers are shown to fit within the GNPC
framework. The five families differ most importantly in the way prototypes are
obtained and not in their formal GNPC representation. Our common model pro-
vides links between many very disparate classification paradigms, enabling them to
borrow ideas, algorithms or heuristics from each other. For example, the techniques
for finding prototypes V' from F3 can be used to reduce the prototype number in,
say, F2 or F5. On the other hand, soft relabeling used in F3 can be applied to
F1. By picking different combinations of s, 7, and S we can design many different
GNPCs, some of which may be better alternatives to the models used so far.

With respect to the classifiers studied here we found that

e Supervised techniques for finding V' lead to better accuracy than unsupervised
ones.

e The edited 1-NN rule is a viable option for GNPC design and needs further
investigation.

18 Generalized Nearest Prototype Classifier (GNPC) ...

= T3 1456789
Unsupervised
HCM + R (F1) 16|16 |10 |14 |11 (4| 3
FCM + R (F1) 16 |22 |14 |14 | 4 (4|4
LVQ + R * (F4) 17124 (14|14 | 3 |44
GLVQ-F + R * (F4) 16 (20 (19|14 | 5 (3|4
DR + R * (F1) 10133 3|3 |43
RBF (F3) 1513 (11| 9 | 6 (44
Supervised
LVQ1 (F4) 6 | 43|32 |22
DSM (F4) 9 |33 |3 |2 (4|2
RBF (GA) *° (F3) - 16| -5 -13]-
Edited I-NN (RS) (F5) || 2 | 2 [2 | 2 |1 |1]|1

Table 3: Minimal number of resubstitution errors with the IRIS data

Considering questions Q1-Q5, the following comments can be made:

Al.

A2,

A3.

A4.

As5.

Often p = ¢ (in most of the F1 techniques) or p = n (F2, F3, F5). Alterna-
tively, p can be found empirically or systematically and fixed before training
the GNPC. Another choice is to include it as a trained parameter. Algorithms
that tune p are often referred to as “adaptive”.

The answer to Q2 determines the vast diversity of GNPCs. Based on our
results we recommend supervised techniques for finding V.

The labeling of the prototypes (Q3) seems to play crucial role. It is desirable
to encode as much information as possible in Ly . Therefore, soft labeling
seems more promising than crisp labeling. The techniques that find a good
Ly are still in the developmental stage.

The similarity measure s (Q4) usually gets less attention in GNPC design.
This is because many choices of s turn out to be equally useful (e.g., types of
the radial basis functions in F3 10, distances in F5 or F1, etc.)

The only aggregation operators (Q5) that were used here to describe all five
families of classifiers were S € {max,average} and 7 = product. We can
build a great variety of other GNPCs using the rich palette of ¢-norms and
aggregation operators defined for fuzzy sets.

6. Acknowledgement

This research was supported by the NRC COBASE program and ONR Grant
N 00014-96-1-0642.

Generalized Nearest Prototype Classifier (GNPC) ... 19

Error rate (minimal from 10 runs)

90 |
Edited 1-NN
A IR HCM + relabeling
80 | S (Nyupp RBF network
LVQ (supervised)
70 L .
60 |
50 |
40 |
30 L
e L .
10 20 30 40 50 60
Number of prototypes

Figure 6: Number of misclassifications with the 2-spirals data

. References

. J.C. Bezdek, J.A. Keller, R. Krishnapuram and N.R. Pal, Fuzzy Models and Algo-
rithms for Pattern Recognition and Image Processing, Kluwer Academic Publishers,
1999 (in press).

. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. NY:
Plenum, 1981.

. J.C. Bezdek, S.K. Chuah, and D. Leep, “Generalized k-nearest neighbor rules,” Fuzzy
Sets and Systems, vol. 18, pp. 237-256, 1985.

. J.C. Bezdek, T. R. Reichherzer, G. S. Lim, and Y. Attikiouzel, “Classification with mul-
tiple prototypes”, Proc. Fifth International Conference on Fuzzy Systems, FUZZ/IEEE
New Orleans, pp. 626-632, 1996.

. J.C. Bezdek, C. Coray, R. Gunderson, and J. Watson, “Detection and characterization
of cluster substructure: I. Linear structure: Fuzzy C-lines,” SIAM J. Appl. Math., vol.
40, no. 2, pp. 339-357, 1981.

. C. Bishop, Neural Networks for Pattern Recognition. Oxford: Clarendon Press, 1995.

. J.L Blue, G.T. Candela, P.J. Grother, R. Chellappa, and C.L. Willson, “Evaluation of
pattern classifiers for fingerprint and OCR applications,” Pattern Recognition, vol. 27,
pp. 485-501, 1994.

. N.K. Bose and A.K. Garga, “Neural network design using Voronoi diagrams”, IEEE
Transactions on Neural Networks, vol. 4, pp. 778-787, 1993.

20 Generalized Nearest Prototype Classifier (GNPC) ...

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

C.L. Chang, “Finding prototypes for nearest neighbor classifiers”, IEEE Transactions
on Computers, vol 23, No 11, pp. 1179-1184, 1974.

S. Chen, C.F.N. Cowan, and P.M. Grant, “Orthogonal least squares learning algorithm
for radial basis function networks,” IEEE Transactions on Neural Networks, vol. 2, no.
2, pp. 302-309, 1991.

R.L. Coultrip and R.H. Granger, “Sparse random networks with LTP learning rules
approximate Bayes classifiers via Parzen’s method,” Neural Networks vol. 7, pp. 463-
476, 1994.

B.V. Dasarathy Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques.
Los Alamitos, California: IEEE Computer Society Press, 1990.

C. Decaestecker, “NNP: A neural net classifier using prototypes,” in Proc. IEEE Inter-
national Conference on Neural Networks, San Francisco, CA, pp. 8220-824, 1993.
R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. NY: John Wiley
& Sons, 1973.

K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, Inc.,
1972.

S. Gazula and M.R. Kabuka, “Design of supervised classifiers using Boolean neural
networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17,
no.12, pp. 1239-1246, 1995.

S. Geva and J. Sitte, “Adaptive nearest neighbor pattern classification,” IEEE Trans-
actions on Neural Networks, vol. 2, no 2, pp. 318-322, 1991.

T. Gu and B. Dubuisson, “A loose-pattern process approach to clustering fuzzy data
sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 7, pp.
366-372, 1985.

R.J. Hathaway and J.C. Bezdek, “Optimization of clustering criteria by reformulation,”
IEEE Transactions on Fuzzy Systems, vol. 3, no. 2, 241-245, 1995.

S. Haykin, Neural Networks. A Comprehensive Foundation. NY: Macmillan College
Publishing Company, 1994.

L. Holmstrém, P. Koistinen, J. Laaksonen, and E. Oja, “Neural and statistical classifiers
- taxonomy and two case-studies,” IEEE Transactions on Neural Networks, vol. 8, pp.
5-17, 1997.

R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, 3-d edition,
NJ: Prentice Hall, Englewood Cliffs, 1992.

R.P. Lippmann, “Pattern classification using neural networks,” IEEE Communication
Magazine, pp. 47-64, 1989.

N.B. Karayiannis and P.-I. Pai, “Fuzzy algorithms for learning vector quantization,”
IEEE Transactions on Neural Networks, vol. 7, no. 5, pp. 1196-1211, 1996.

N.B. Karayiannis, J.C. Bezdek, N.R. Pal, R.J. Hathaway, and P.-I. Pai, “Repairs to
GLVQ: A new family of competitive learning schemes,” IEEE Transactions on Neural
Networks, vol. 7, no. 5, pp. 1062-1071, 1996.

T. Kaylani and S. Dasgupta. “Weight initialization of MLP classifiers using boundary
preserving patterns,” in Proc. IEEE International Conference on Neural Networks,
Orlando, Florida, pp. 113-118, 1994.

J.M. Keller, M.R. Gray, and J.A. Givens, “A fuzzy k-nearest neighbors algorithm,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, no. 4, pp. 580-585,
1985.

T. Kohonen, “Improved versions of learning vector quantization,” in Proc. Int. Joint
Conference on Neural networks, San Diego, CA, pp. I-545-550, 1990.

K. Koutroumbas and N. Kalouptsidis. “Nearest Neighbor pattern classification neu-
ral networks,” in Proc. IEEE International Conference on Neural Networks, Orlando,
Florida, pp. 2911-2915, 1994.

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Generalized Nearest Prototype Classifier (GNPC) ... 21

R. Krishnapuram, H. Frigui,and O. Nasraoui, “Fuzzy and possibilistic shell clustering
algorithms and their application to boundary detection and surface approximation -
Part 1,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 1, pp. 29-43, 1995.

L. Kuncheva, “Editing for the k-nearest neighbors rule by a genetic algorithm,” Pattern
Recognition Letters, vol. 16, pp. 809-814, 1995.

L. Kuncheva, “Initializing of an RBF network by a genetic algorithm,” Neurocomputing,
vol. 14, pp. 273-288, 1997.

J. Moody and C.J. Darken, “Fast learning in networks of locally tuned processing
units,” Neural Computation, vol. 1, pp. 281-294, 1989.

0O.J. Murphy, “Nearest neighbor pattern classification perceptrons,” in Proceedings of
the IEEE, vol. 78, no. 10, pp. 1595-1598, 1990.

D.F. Specht, “Probabilistic neural nets,” Neural Networks, vol. 3, no. 1, pp. 109-118,
1990.

G.D. Tattersall and K. Yi, “Packed hyper-ellipsoid classifiers,” FElectronic Letters, vol.
30, pp. 427-428, 1994.

H.G.C. Traven, “A neural network approach to statistical pattern classification by
“semiparametric” estimation of probability density functions,” IEEE Transaction on
Neural Networks, vol.2, no. 3, pp. 366-377, 1991.

J.T. Tou and R.C. Gonzalez, Pattern Recognition Principles. Reading, MA: Addison-
Wesley, 1974.

B.A. Whitehead and T.D. Coathe, “Cooperative-competitive genetic evolution of radial
basis function centers and widths for time series prediction,” IEEE Transactions on
Neural Networks, vol. 7, no. 4, pp. 869-880, 1996.

B.A. Whitehead, “Genetic evolution of radial basis function coverage using orthogonal
niches,” IEEE Transactions on Neural Networks, vol. 7, no. 6, pp. 1525-1528, 1996.
R.R. Yager and D.P. Filev, Essentials of Fuzzy Modeling and Control. NY: John Wiley
& Sons, 1994.

H. Yan, “Handwritten digit recognition using an optimized nearest neighbor classifier,”
Pattern Recognition Letters, vol. 15, pp. 207-211, 1994.

H. Yan, J. Mao, Y. Zhu, and B. Chen. “Magnetic resonance image segmentation using
optimized nearest neighbor classifiers,” in Proc. ICIP-9/4, Austin, TX, pp. 49-52, 1994.
M.-S. Yang and C.-T. Chen, “On strong consistency of the fuzzy generalized nearest
neighbor rule,” Fuzzy Sets and Systems, vol. 60, no. 3, pp. 273-281, 1993.

H.-C. Yau and M.T. Manry. “Iterative improvement of a nearest neighbor classifier,”
Neural Networks, vol. 4, pp. 517-424, 1991.

Q. Zhao and T. Higuchi, “Evolutionary learning of nearest neighbor MLP,” IEEE Trans-
actions on Neural Networks, vol. 7, no. 3, pp. 762-767, 1996.

