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Abstract

We derive a tight dependency-related bound on the difference between the NB error and Bayes error for the case of two binary features
and two classes. A measure of feature dependency is proposed for multiple features. Simulations and experiments with 23 real data sets were
carried out.
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I. INTRODUCTION

Naive Bayes or also “Idiot’s Bayes” [4] is a simple and often surprisingly accurate classification technique. Consider
an object represented by a feature vector x = [z1,...,2,]7. The problem is to assign the object to one of ¢ predefined
classes, wy, . . .,w.. Minimum classification error is guaranteed if the class with the largest posterior probability, P(w; | x),
is chosen. To calculate posterior probabilities, Bayes formula is used with estimates of the prior probabilities, P(w;),
and the class-conditional probability density functions (pdf), p(x |w;)

Plws ,
Pl = < FAx )
Zj:l P(w;)p(x|w;)
Obtaining an accurate estimate of the joined pdf is difficult, especially if the dimensionality of the feature space, n, is

large. The “naivety” of the Naive Bayes model comes from the fact that the features are assumed to be conditionally
independent. In this case the joined pdf for a given class is the product of the marginal pdfs

i=1,...,c (1)

n

p(x|w;) = [ pla; [w), i=1...c (2)

j=1

Accurate estimates of the marginal pdfs can be obtained from much smaller amounts of data compared to these for the
joint pdf. This makes the Naive Bayes classifier (NB) so attractively simple.

The assumption of conditional independence among features may look too restrictive. Nonetheless NB has demon-
strated robust and accurate performance across various domains, often reported as “surprisingly” accurate, even where
the assumption is clearly false [4]. The research on NB in the past 15 years has followed two major ideas. One is
developing variants of NB in which the independence assumption is relaxed or partly avoided [3,5-7,9,10,14]. The
second is to find out why NB works so well for problems where features are not independent [2,4,12,13]. We shall call
the two research trends ‘new-models’ and ‘new-explanations’, respectively. Our study belongs in the ‘new-explanations’
trend.

As pointed out in various studies [2,4], the optimality of NB (or any classifier making a decision based on continuous-
valued outputs for the ¢ classes) will hold so long as the estimated output for the class with the largest true posterior
probability, P(x|wy), exceeds all the other outputs. The probability estimates do not have to be correct, they do not
have to be completely order-correct, and even do not have to be probability estimates. Conditions for optimality or
non-optimality of NB in special cases have been identified from which we picked the following four results
o NB is optimal for both complete independence and complete dependence between the features [12,13]. Indeed, when
all features can be derived from one another, the problem is, in effect, one-dimensional and NB is optimal anyway. Thus
the relationship between dependency and NB optimality is non-monotonic.

o The degree of feature dependencies and the accuracy of NB are not directly correlated [2,12,13].

« Dependencies between features may be “cancelled out” so that NB is near optimal. Distributions of dependencies
should be taken into account [16,17].

« NB is optimal for two equiprobable classes and two binary features with equal class-conditional covariances [8].

The lack of a direct relationship between dependency and accuracy of NB does not preclude finding a bound on
the accuracy as a function of dependency. A major problem in these analyses is that there is no agreed definition
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of dependency among more than two features. Hence we start with two features and use the @ statistic to measure
dependency. We derive a tight bound on the difference between the NB error and the Bayes error as a function of Q.
In search for such a bound in higher-dimensional spaces we look for a pattern of relationship between dependency and
accuracy through experiments with real data. In this study a measure of dependency based on @ is proposed to account
for the differences in the dependency distributions between the classes.

The rest of the paper is organised as follows. In Section 2 the ) measure is explained and a bound on the difference
between the classification error of NB and the Bayes error is derived as a function of ). Section 3 contains the new
measure of dependency and an experimental study looking for a relationship between dependency and accuracy for
larger number of features. Section IV offers our final comments and conclusions.

II. ERROR-DEPENDENCY RELATIONSHIP FOR TWO CLASSES AND TWO BINARY FEATURES
A. Dependencies between features

Studying the relationship between feature dependency and the classification error/accuracy of NB is difficult for many
reasons. The critical reason is that there is no agreed concept of dependency between more than two variables, especially
when multiple classes are also considered. The trivial approach is to take the average of the pairwise dependencies as
the measure of dependency for the whole set. Pairwise dependencies may be measured by Pearson correlation (linear
dependency between two continuous-valued random features), mutual information (probabilistic dependency between
two random-valued features of any type) or Yule’s @ statistic for two binary features [15].

Let 1,22 € {0,1} be binary features and w; and wy be the two mutually exclusive classes. Denote the two joint
class-conditional probability mass functions (pmf) as

P(00|wi) =a, P(0l|wy)=0b, P(10|w1)=¢, P(11|w1)=d (3)

P00|ws) =€, P(0l|wy)=f, P(10|ws) =g, P(11|w2)=h (4)
where a+b+c+d=1and e+ f+ g+ h = 1. Without loss of generality we assume that all probabilities belong in the
open interval (0,1), i.e., values 0 and 1 are not allowed. The dependency between features x; and x5 is measured by the
@ statistic. The two conditional dependencies for classes wy and ws, respectively are

_ad—be _eh—fg
Q1 Q2= ht fg (5)

~ ad+ bc’

The @ statistic corresponds intuitively to correlation for continuous-valued features. A value Q = 0 means that the two
features are statistically independent. Values of @ close to 1 show that the two features tend to take simultaneously the
same values whereas values of  close to —1 show that the two features tend to take simultaneously the opposite values.

In classical NB all features are assumed to be independent for each class. We relax this assumption by letting some
dependencies to hold. In our example we shall assume that x; and x5 are conditionally independent for class wo, i.e.,
@2 = 0. This means that eh — fg = 0. We are looking for a relationship between the degree of dependency, @)1, and the
NB classification error.

B. Bayes error

Assume that the classes are equiprobable, i.e., P(w1) = P(ws2) = % To guarantee minimum error, an object [x1, z2]7
should be assigned to the class with the largest posterior probability. Since the prior probabilities are equal and the
denominators of both posterior probabilities are equal, the class label will be determined by the corresponding values
in the two pmfs. For example, suppose that the object to be labelled is [1,0]7. We compare the corresponding value
from the pmf for wq, ¢, with the one from the pmf for ws, g, and decide for the class with the bigger value. Let ¢ > g,
hence we choose class wy. The probability of making this error is the probability of simultaneous occurrence of class wo
and object [1,0]7. This probability is calculated as P([1,0] |ws) x P(w2) = g x 3. The Bayes error, Ep, is the total
probability of error across the whole feature space, which in our case has 4 elements

Ep= % (minfa, e} + minb, f} + min{c, g} + min{d, h}). 0

The Bayes error is needed as a benchmark. We want to find out how much the classification error of NB deviates from
E'p for various degrees of dependency Q1.
C. Naive Bayes error

To build the Naive Bayes classifier, we treat the features as conditionally independent, conditioned separately upon
each class label. By definition, x; and x5 are independent for class wo. For class w; we will re-construct the pmf.
Assuming independence, the probability for ;1 = 0 and x5 = 0 given class wy is

P(z1=0 and 20=0]w1) = Pz =0|wi)x Plzea=0|wi)=(a+b) x (a+c). (7)



Thus, NB will label the objects according to a new pair of pmfs

P00|wy)=(a+b)(at+c), POl|w)=(a+0b)(b+d),
P(10|wy) =(a+c)(c+d), PAl|w)=(b+d)(c+d) (8)

and given Q5 = 0,
P(00]ws) =, P(O1]ws) = f, P(10|ws) =g, P(11]ws) = h. (9)

Denote by E the error of the NB classifier. There are two possibilities for each x = [z1,x2]T: either NB makes the
same decision as the (true) Bayes classifier or NB makes the alternative decision. Consider again the example above
where z1 = 1 and zo = 0. If NB chooses the same class label as the Bayes classifier, the corresponding error component
in F is the same as the component in Fp (6), %min{c7 g}. If NB chooses the alternative class label, the corresponding
error component in F will be %max{c, g}. The largest possible error of the NB classifier will occur if it makes mistakes
for all four objects. Summing across all four objects (assuming mistakes everywhere) and taking out the Bayes error,

we obtain
AE = FE-FEp
1
= 5 (max{a, e} + max{b, f} + max{c, g} + max{d, h})

—% (min{a, e} + min{b, f} + min{c, g} + min{d, h})

(la—el +[b=fl+[c—gl+[d=h]). (10)

NN

D. Dependency-error relationship

To get an initial impression about the dependency-error relationship, we generated randomly 10000 pairs of pmfs as
in (3) and (4) so that Q2 = 0. We calculated @1, re-constructed the pmf for w; through (8) and calculated AE. The
10000 points (@1, AE) are plotted in Figure 1 (a). The figure shows that
e AF can only be positive (trivial)

e AF is 0 for Q = 0 (expected: NB is optimal (E = Ep) when the features are conditionally independent for all the
classes)

o« AFE may be 0 for any degree of dependency. This shows again that the independence assumption is a sufficient but
not a necessary condition for optimality of NB. On the contrary, the bottom left and right corners of the scatterplot
are populated with points, indicating that there is no clear-cut pattern to the relationship between AFE and Q). This
resonates with previous literature in that the degree of dependency is not directly related to the error.

e The scatterplot is symmetrical about @1 = 0. This was to be expected because the encoding of the binary features
as absent = 0 and present = 1 is arbitrary. If the 0 and the 1 were swapped for one of the features and kept for the
other feature, @; will only change its sign. The way of encoding has no effect on Ep or E. Therefore it is sufficient to
consider | Q1 |.

o The cloud of points has a pronounced shape which suggests the possibility of finding a rigorous upper bound on AFE.

Figure 1 (b) shows the AFE surface, approximated on 10000 pairs (Q1, Q=) obtained from randomly generated pmfs.
This time neither of the pmfs has been restricted to correspond to independent features. NB is guaranteed to be optimal
for @1 = Q2 = 0. The dark region along the (—1,—1)—(1,1) diagonal in Figure 1 (b) corresponds to the area where NB
is close to the optimal Bayes classifier, i.e., as long as Q1 =~ (QJ2, NB is approximately optimal. If we have large values
of both ()1 and @5, then the two features are practically identical. They may not be of much value as a pair but will
be equally good/bad for both NB and the Bayes classifier. If both @1 and Q2 have large negative values, then a swap
of the 0 and the 1 of one of the features will again make the two features almost identical, and the above explanation
holds. This finding may be used towards explaining the robust performance of NB when features are known to defy the
assumption of conditional independence.

In fact, @1 = @2 may be beneficial but it does not guarantee optimality of NB. We note, however, that NB is optimal
for equal priors and equal covariances, i.e., ad — bc = eh — fg [8].

Many currently used measures of dependency average the class-conditional dependencies weighted by the prior prob-
abilities. If we take the average across the two classes Q = (Q1 + Q2)/2, the results will be useless. For @ = 0, we will
trace the whole back diagonal, from (-1,1) to (1,-1), and will get the whole range of values of AE. Thus an average
measure of pairwise dependency does smooth out important diversity in the data.

E. A bound on the NB error

Consider again the two pmf pairs (3)-(4) and (8)-(9). Recall that NB makes a decision according to (8)-(9). For
example, there will be a misclassification for [1,0]T if ¢ > g and (a + ¢)(c + d) < g (Bayes decision is for w; and NB
decision is for ws).
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Fig. 1. (a) Scatterplot of AFE versus @1 with 10000 randomly generated pmfs where Q2 = 0; (b) AE as a function of (Q1,Q2) approximated
on 10000 randomly generated pmfs with any Q2.

Theorem 1. Given is a problem of discriminating between two classes, w; and wy using two binary features. Assume
that the two features are conditionally independent for class wy. Then the Naive Bayes classifier can at most misclassify
3 of the 4 elements of the feature space.

Proof. For this proof we shall derive the conditions for NB making 4 errors and will prove that these conditions
cannot hold together.

Denote the pmfs for class wy and wy as in (3) and (4), respectively. Denote Q = 24=b¢

ad-+bc”
to assign the wrong class label for [0, 0], we have one of the following two situations

For the Naive Bayes classifier

a>e and (a+b)(a+c)<e, or (11)
a<e and (a+b)lat+c)>e (12)

Simple algebraic manipulation of (11) leads to
Qlad+bc) > a-—e. (13)

We require @ to be positive for the error to be possible. Since a > e, we can write Q(ad + bc) > |a —e|. Starting from
(12), we arrive at —Q(ad + be) > e — a, which can only hold for negative @ because e > a. As argued in the previous
section, the bound will be symmetrical about @ = 0, therefore we can consider only the case Q > 0.! To guarantee
errors for the remaining 3 elements of the feature space, we follow (13)

b< fand (a+b)(b+d)>f — Qad+bc)> |b— f] (14)
c<gand (a+c)(c+d)>g — Qad+bc)> |c—g]| (15)
d>hand (b+d)(c+d)<h — Qad+bc)> |d—h] (16)
Thus, for NB to make 4 misclassifications, the following system of simultaneous equations and inequalities must hold
0<a,b,cde, f,gh<l1 probability restriction (17)
a+b+ct+d=1 pmf restriction for class wq (18)
e+ f+g+h=1 pmf restriction for class wo (19)
eh— fg=0 conditional independence for wo, assumed (20)
D=ad—be,D >0 note that D = Q(ad + bc) (21)
a>e, D>a—e necessary and sufficient for an error at [0,0]% (22)
inequalities (14) to (16)

Next we show that the system has no solution. Denote

e1=a—e, €e=f—-b ea=g—c, € =d—h. (23)

IThe derivation for @ < 0 follows the same logic and leads to the same conclusion.



Note that all ¢; are strictly positive. Substituting in eh — fg = 0,
(a—e)(d—eg) = (b+ex)(c+es) =0. (24)

As b and c¢ are both positive, by replacing es and e3 with D, which is strictly greater than both, the left-hand side
becomes strictly negative. By replacing €; and es with D, which is strictly greater than both, the left-hand side becomes
even smaller. We must only make sure that (a — D) and (d — D) are not both negative, because in this case the
logic will not hold. Take first (a — D) and recall that D = ad — be. Assume that ¢« < D. Then ad < Dd, and also
ad —bc < Dd — be. Then D(1 — d) < —be. The left-hand side is strictly positive and the right-hand side is strictly
negative, hence the assumption is invalid and so a > D. The same logic leads to d > D. Therefore, substituting D for
all ¢; makes the left-hand side of (24) strictly negative

(a—D)(d—D)—(b+D)(c+D) < 0. (25)

Opening the brackets and cancelling D?, we arrive at
Dl-—a—b—c—d)=0 < 0. (26)
This contradiction completes the proof. |

Theorem 2. Given is a problem of discriminating between two classes, w; and ws using two binary features. Denote
the pmf for class w; as in (3) and let Q = Zﬁ;gg. Assume that the two features are conditionally independent for class
wo. Then the difference between NB error and Bayes error is bounded from above as

3Qab(l —a —b)
a(l—Q)+b(1+ Q)

AE=F—FEp<

(27)

Proof. Denote the pmf for class wo as in (4). As found in (13)-(16), Q(ad + bc) is greater than any of |a — e],
|[b—f|, |[c—g|,and |d— h|. Therefore each term in the error difference AFE (10) is at most Q(ad + bc). According
to Theorem 1, maximum 3 mistakes are possible, therefore

3
AE=FE—-FEp< iQ(ad + be). (28)
The bound is actually nonlinear on @ because a, b, c and d are related. First, a + b+ c+d = 1, and second, Q) = gg;gf
Hence, we can pick two of the values, e.g., a and b, and express ¢ and d. Through simple algebraic manipulations (28)
is transformed to

3Qab(1 —a —b)
al-Q)+b(1+Q)

AFE < (29)
|
We note that this bound has a simpler version if we use the covariance between the two features, i.e., Cov; = ad — be.

In this case, assuming that Covy = eh — fg =0, AE < %C’ovl. The covariance, however did not generalise well in the

empirical study with multiple features, therefore we continue with Q.

Figure 2 (a) shows 10000 simulated (Q, AFE) points with a = 0.5, b = 0.4 and Figure 2 (b) shows 10000 points with
a = 0.6, b =0.1. The bound (29) is plotted with a solid line.

The plots give a further insight into the quality of the NB classifier. Most of the points lie within the 1-error area,
where AF is small, i.e., NB is nearly optimal. Only a small fraction of points reach the 3-error area for both choices of
a and b.

Figure 2 also reinforces the observation made earlier that a large difference between the dependency patterns for the
classes leads to poorer results. In these figures, (- is kept at 0, and only @) is varied. The further away @, is from O,
the larger the discrepancies are between the two @s, and so is AE. The first derivative of the bound (29) is, positive
for any probabilities a and b (a +b < 1)

0 [ 3Qab(l —a—1b) ~ 3ab(l—a—b)(a+b) 50 (30)
0Q la(1-=Q) +b(1+ Q)]  (a(1-Q) +b(1+Q)*

indicating that AFE grows with dependence. We also note that Theorem 1 and 2 hold only when @2 = 0. If this
restriction is not in place, it is possible that NB makes errors for all four points of the feature space. Even though the
result is limited to the very simple case of two classes and two binary features, it conveys an important message. The

degree of dependency between the features may not be a good indicator of the NB error per se but may be used to
construct bounds thereof.
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Fig. 2. AEF as a function of @ and the number of errors for two choices of (a,b): subplot (a) a = 0.5, b = 0.4; subplot (b) a = 0.6, b= 0.1

III. AN EXPERIMENTAL STUDY FOR MULTIPLE BINARY FEATURES

In the light of the results from the previous section distributions of the dependencies rather than their magnitude
should be taken into account. Interestingly, the observation that similar dependencies for the two classes (Q1 &~ Q2) is
beneficial for NB (see Figure 1) appears to be limited to the case of two features. The experimental results below show
rather the opposite:- large discrepancies between dependencies are generally better than equal dependencies.

A. Measuring dependencies for multiple binary features

Here we use three measures from the literature [2,12,13] and propose a new one. Each measure has a value for
every pair of features, (4,7), and every class. Thus a notation Mi(f;)
i,j=1,...,n,1%# j,and class wg, k=1,...,c.

The measures can be organized in a dependency matrix M of size n(n —1)/2 x ¢ with entry M; ( ]) In the prefect case
scenario, all features are conditionally independent which means that M is a zero matrix (if we use Q). The idea so far
has been to measure how far from this “independence pattern” M is, hoping that the deviation from independence is
related to either E or AFE.

A measure based on entropy and mutual information has been used before [2,12,13]

will be the value of measure ‘M’ for features (i, j),

B) — p0) _ g0 _ k) o)
M® =1 =ug® " - 1", (31)

2]

where H denotes entropy. [ i()k) measures how much information is lost if features ¢ and j are used individually rather
than together. Denote the joint pmf of pair (i, 7) for class wy as in (3). Then

H(,];) = —(alogya+ blogy b+ clog, ¢ + dlog, d) (32)
Hi(k) = —((a+0b)logy(a+b) + (c+ d)logy(c+ d)) (33)
H® = —((a+¢)logy(a+ o) + (b+ d) logy(b+ d)) (34)

To find an overall measure of deviation from independence for the pair of features (i, j), the pairwise I, Z(l;)

across the classes weighted by the prior probabilities, i.e.

are averaged

(&
Lij =Y Pl (35)
k=1

To arrive at one final value for the whole data set, we can take maximum or mean across all pairs of features [2]

o Inax = max Ii7j (36)

2,9

o IIl’lea,l'l
n(n — 1

3
”M'
:

_
W
\]
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TABLE 1
DESCRIPTION OF THE DATA SETS, NB ACCURACY AND THE FOUR DEPENDENCY MEASURES

Data set n  Objects Largest NB Imax Imean Hax Q;{}Qfx
prior accuracy

crabs 7 200 0.50 0.62 0.71 0.32 0.85 0.51
ecoli 7 336 0.57 0.91 0.15 0.02 0.76 0.60
german 24 1000 0.70 0.74 0.36 0.01 0.91 0.75
glass 9 214 0.67 0.74 0.21 0.04 0.79 0.84
heart 13 303 0.54 0.84 0.08 0.01 0.85 0.81
image 19 210 0.86 0.85 0.59 0.15 0.74 0.86
ionosphere 34 351 0.64 0.77 0.67 0.11 0.89 0.73
iris 4 150 0.67 0.86 0.23 0.11 0.59 0.67
letters 16 1555 0.51 0.94 0.51 0.07 0.85 0.93
liver 6 345 0.58 0.65 0.15 0.03 0.82 0.23
phoneme 5 5404 0.71 0.76 0.11 0.03 0.90 0.71
pima 8 768 0.65 0.70 0.22 0.02 0.89 0.29
satimage 36 6435 0.76 0.69 0.44 0.18 0.74 0.57
sonar 60 208 0.53 0.74 0.44 0.03 0.84 0.66
soybean 35 266 0.68 0.98 0.48 0.03 0.79 1.00
spam 57 4601 0.61 0.89 0.27 0.01 0.88 1.00
spect 22 267 0.79 0.81 0.35 0.03 0.72 0.84
vehicle 18 846 0.75 0.65 0.62 0.13 0.77 0.50
votes 16 232 0.53 0.92 0.21 0.04 0.83 1.00
vowel 11 990 0.91 0.91 0.13 0.03 0.72 0.76
wbe 30 569 0.63 0.92 0.46 0.04 0.81 0.54
wine 13 178 0.67 0.96 0.66 0.13 0.77 0.88

zoo 16 101 0.59 0.98 0.81 0.19 0.81 1.00

Correlation with NB accuracy —0.2297 0.0555 —0.2181 0.7185

Rish (2001) proposed that a better error-dependency relationship may be found using the maximum entropy of the
marginal pmfs. Hence, the third measure in our experiment is

n - k
o Hyux= I?:alx ;P(wk)Hz( ) . (38)

The three measures above take the weighted average across classes. As argued above, similarity or dissimilarity of the
dependencies may give a better prediction of E or AE. Therefore we propose the following measure using ). For every
pair of features (4,7) and for every pair of classes (k, s), we calculate the absolute difference in the measures as

k,s k s
Q" = | Pwr)QY) — P(w,)Qf)| . (39)

The measure proposed here is

. k 9
° diff _ max QE ‘75)
i,7,k,s

max g

i,j=1,...,n, k,s=1,...,c (40)

B. Results with real data

Table I shows the summary of the 23 data sets used in this experiment.? We discretised all the features into binary
using the median as the threshold. For all data sets which had more than two classes, classes from 2 to ¢ were grouped
into one class and relabelled as “class 27.2

NB was built and tested on each data set using a random split of the data into 90% for training and 10% for testing,
this process repeated 100 times. The average testing accuracy was taken to be an estimate of 1 — E. The 4 measures
were calculated once on each data set. Table I shows the NB accuracy and the four measures for the 23 data sets. The
correlation between NB accuracy and the measures is displayed in the bottom row.

diff “shows that there is a possible relationship between NB accuracy and the degree of dependency between the
features. This correlation seems counterintuitive as it was observed that NB benefited from similar dependencies, and

therefore low Q3 | for the case of 2 features. While this may still be true for multiple features, we did not encounter
2The “crabs” data set is from [11] while all the other data sets are from UCI ML Repository [1].
3The two exceptions were the soybean data and the letters data. For the soybean data, class 1 was too small therefore we joined classes 1
to 6 to be class w1 and classes 7 to 15 to be wa. For the letters data we only used letters ‘A’ and ‘B’ as the two classes.



QI turns from a measure of discrepancies between feature dependency more into a measure of discrepancy between the

class-conditional pmfs. Therefore it becomes a good indicator of the possibility to separate the classes by any classifier,
including NB, hence the reasonable correlation shown in Table I. On the other hand, Iihean, Hmax and I behave as
intuitively expected showing weak correlations with NB.

As in any experimental study, the results should not be taken as a dogma because the selection of data sets was
random. The important finding here is that the difference of the dependencies across the classes is perhaps more
relevant than the magnitude of the dependencies themselves.

IV. CONCLUSIONS

We view this study as a step towards finding a stronger predictor of the NB error/accuracy and explaining why NB
is so successful. The theoretical bound established through Theorems 1 and 2 complies with the current understanding
that large deviation from independence allows larger NB error. However, the experimental results show that deviation
from independence may not be as important on its own when multiple features are concerned. The proposed feature
dependency measure in this case serves more as a measure of discrepancy between the class-conditional pmfs. Thus

QI hecomes a good indicator of the possibility to separate the classes by any classifier, and this explains its correlation

with the NB error.
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