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Abstract—The identification of animals from video footage is
an important ecological pursuit. It presents a labour-intensive
task, requiring experts to invest considerable time analysing video
recordings. While identifying humans from video is a mainstream
research quest, much less has been done for recognising animals’
identities. This paper explores and contrasts the effectiveness
of hierarchical and centroid-based constraint clustering methods
across five manually annotated video datasets containing animals.
We aim to determine the most suitable methodology for integrat-
ing into a fully autonomous pipeline for animal re-identification.
Our experimental findings indicate that, contrary to expectation,
online hierarchical constraint clustering surpasses centroid-based
constrained clustering.
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I. INTRODUCTION

The identification of animals from video footage is increas-
ingly vital, particularly in the context of wildlife conserva-
tion and monitoring farmyard animals. Thus far, monitoring
wildlife has been a labour-intensive task, necessitating experts
to devote extensive hours to scrutinising video recordings.
With the ongoing deployment of video cameras in environ-
ments such as farms and remote wilderness areas, alongside
the continual progress in species identification, the potential
for establishing a fully autonomous animal re-identification
pipeline is increasingly within reach.

In such a pipeline, the video input needs to be split into
windows, and a suitable online clustering algorithm needs to
be applied in order to create and maintain a description of the
animals’ identities.

The inclusion of constraints into clustering algorithms (Con-
strained Clustering (CC)) has proven to provide more accurate
and robust results [1], [2], [3], especially in cases where
the inherent structure of the data is complex or ambiguous.
In conventional experimental setups, constraints are often
derived from the ground truth labels of the data. In real-
world situations, constraints may stem from expert opinions
[2], [4]. However, constraints in video data are inherently
generated from the videos themselves. Pair-wise constraints
dictate whether two points should be grouped together (Must-
Link) or kept separate (Cannot-Link).

Centroid-based constrained clustering methods have proven
their worth in experimental research [5], [6], [7], [8]. On
the other hand, hierarchical constrained clustering methods
appeared to have been less successful. However, video data
present a challenge to centroid-based methods, rooted in the
following argument. Clusters belonging to the same identity
(same animal) may lie in far-apart regions of the feature
space. Points will tend to be tightly packed together when
they represent the same animal in contingent frames in the
video. The animal’s appearance will not change much from
one frame to the next, leading to a string of very close points in
the feature space. On the other hand, suppose that the animal
disappears from camera view, and re-enters at a later stage,
from a different view angle. The re-appearance will create
another sequence of close points, possibly in a different part
of the feature space. Figure 1 demonstrates our point.

We plotted one of the datasets used in the experiments
in this study – the Koi fish video – in the two-dimensional
space spanned by the first two t-sne1 components of the data
representation. It can be seen that points representing the
same fish are distributed as pockets of non-spherically shaped
clusters in different parts of the feature space. This suggests
that centroid-based clustering methods may be inferior to
hierarchical methods for the task of video data clustering.

The novelty of this study lies in the comparison of centroid-
based constrained clustering (CC) and hierarchical CC on an
animal video data collection, to ascertain that hierarchical
CC should be taken forward as the preferred candidate for a
future fully autonomous animal re-identification pipeline. To
this end, we experimented with different window sizes, using
computationally inexpensive hierarchical CC methods.

The rest of the paper is organised as follows. Section II
discusses related CC methodologies. Section III details the
methods used in the comparative study. Section IV describes
our experimental setup and Section V shows the results.
Finally, we offer our conclusions in Section VI.

1t-sne (t-Distributed Stochastic Neighbor Embedding) is a dimensionality
reduction method particularly useful for the visualising high-dimensional
data. [9]
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(a) An example of a frame from the annotated Koi fish video.

(b) Scatterplot of the data of the Koi fish video, in the first
two t-sne components. Each true class label (fish identity) has
a bespoke subplot, where the points for this class are shown in
black.

Fig. 1: An example of distributed non-spherical clusters that
are likely to occur in animal identification from video.

II. RELATED WORK

In the present day where climate change and the environ-
ment are pressing issues, efficient animal monitoring methods
have become more sought after [10]. This poses various
challenges, especially when there is a large area or number
of animals to cover. Current monitoring practises mainly rely
on tagging or marking the animal in some form [11]. This
is intrusive and may skew the findings as this distresses the
animal. Non-intrusive methods, such as camera traps, have
been used to instead capture video data from a secluded
distance [12]. This solves half the problem, as the data still
have to be annotated by hand. This manual analysis of video
data is naturally time-consuming, cumbersome and prone to
human error.

Object reidentification (re-id) in videos, e.g. Multiple Object
Tracking (MOT), is a solution to this problem. MOT helps

automate the data annotation process. Unfortunately, the ma-
jority of methods cover person and vehicle re-id, as well as
using deep learning approaches [13], [14], [15]. The latter
makes our task of animal re-id more difficult. This is because
training a new model would require large amounts of annotated
data, which is not easily obtainable or limited to only one
species [16].

Clustering is an alternative that foregoes the need for such
a model. One such method is hierarchical clustering, which
combines points according to a distance metric until the
desired number of partitions is achieved [17]. The suitability
of the hierarchical approach to video data clustering is that the
data is continuous. This means that between observations, i.e.
between frames, we can expect the data to change minimally
- resulting in string-shaped clusters.

The clustering process can be aided by utilising informa-
tion in addition to the data representation, in the form of
constraints [18]. Pairwise Constraints such as must-link (ML)
and cannot-link (CL) offer insight into the clustering algorithm
as to whether two points belong to the same cluster or not.
Such incorporation of background information has shown to
increase the accuracy of cluster methods [19].

Online Constrained Clustering (OCC) has been developed
as a means to classify stream data. This is where data are
presented to the clustering algorithm along a time line, rather
than as a single batch. This creates a challenge of how to
incorporate new information without having to re-cluster all
of the data. One approach of OCC is through the use of
windows. Here, the dataset is split into groups of a prede-
termined number of adjacent timestamps, such as a shot from
a video [20]. The window application is better than ‘plain’ CC
as only a small difference in the feature space is expected in
adjacent observations. This means that objects in the window
are expected to be closer in proximity to others in their class,
as opposed to the rest of the dataset, and thus more likely to
be grouped correctly. It should be noted that this is not full
OCC as that involves propagating the class labels across the
windows. For the purpose of this study we only consider small
windows of adjacent frames.

III. METHODS

1) Constrained Agglomerative Hierarchical clustering:
Klein et al. [21] proposed that the integration of constraints
into hierarchical clustering methods does not necessarily re-
quire modifications to the unsupervised algorithm itself. The
majority of the hierarchical clustering methods can work from
a distance matrix between all points in the dataset. Klein et al.
[21] adjust the distance matrix to accommodate the constraints.

Initially, the must-link (ML) constraints may not represent
a complete set of constraints. Pairs of objects missing from
the original ML can be identified through transitive closure.
To address this, ML is expanded to MLa, which includes
all possible ML pairs. Initially, we construct a graph with N
nodes, placing edges between all pairs of nodes corresponding
to ML. Subsequently, we identify the connected components
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of the graph. For instance, if pairs (a, b) and (b, c) exist in
ML, the connected component will include all three: a, b, and
c. Finally, ML is augmented with all pairs in each connected
component to arrive at MLa.

Next, consider a distance matrix MN×N = aij , where aij
denotes the distance between points i and j. Constraints can
be integrated into M by adjusting entry aij based on the
constraint between points i and j. If (i, j) ∈ MLa, then
aij = 0; conversely, if (i, j) ∈ CL, then aij = ∞.

Following the adaptation of the distance matrix to incor-
porate MLa and CL, unsupervised hierarchical clustering
methods such as average linkage, single linkage, and complete
linkage can be applied to a dataset to yield a partition. These
respective variants will be referred to as CAL (Constrained
Average Linkage), CCL (Constrained Complete Linkage), and
CSL (Constrained Single Linkage) in the subsequent sections
of this paper.

2) COP K-Means: Wagstaff et al. [2] introduced COP
K-Means, a variant of the widely used centroid-based clus-
tering method K-Means, designed to accommodate pairwise
constraints such as Must-Link and Cannot-Link. Consider
assigning a point xi to a cluster. First, the clusters are ordered
from the closest to the farthest. The next available closest
cluster, Cj , is examined. The following two conditions are
checked: (1) is there another point xj such that (xi, xj) ∈ ML,
and also xj ∈ Ck, Ck ̸= Cj (violation of ML)? and (2),
is there another point xk such that (xi, xk) ∈ CL and also
xk ∈ Cj? (violation of CL). If any of these conditions are
met, xi cannot be allocated to Cj , and the algorithm proceeds
through the sorted list of clusters until finding one where xi

can be assigned without violating the constraints. If such a
cluster does not exist, the algorithm halts. Since the order of
points to be assigned to clusters is random, COP k-means often
ends prematurely, without returning a viable solution.

3) Pairwise Confidence Constraints Clustering (PCCC):
Beumann at al. [5] presented the PCCC algorithm, offering
users the flexibility to specify pairwise constraints as either
hard constraints (ML, CL), which must be strictly adhered
to, or soft constraints (SML, SCL), where violations are
permitted with associated penalties. The algorithm consists of
five sequential steps: preprocessing, initialisation, assignment,
update, and post-processing.

Prior to the algorithm’s execution, the data is arranged as a
weighted undirected graph G = (V,E), where the vertices
V correspond to the objects, and the edges E denote the
constraints, categorised into four distinct groups: EML for
hard must-link, ECL for hard cannot-link, ESML for soft
must-link, and ESCL for soft cannot-link. Notably, edges
representing soft constraints are assigned weights denoted by
a confidence value wij

In the preprocessing phase, the graph G = (V,E) under-
goes a transformation into another weighted undirected graph
G′ = (V ′, E′). This transformation involves contracting all
edges i, j ∈ EML, merging nodes connected by hard must-
link constraints, and adjusting edges to reflect hard cannot-

link constraints, along with any remaining soft must-link and
cannot-link constraints.

In the initialisation step, the initial positions of the k cluster
centres are established, offering two distinct methods: either a
random selection of points or the adoption of the K-Means++
algorithm introduced by Arthur et al. [22].

During the assignment step, every node in the graph G′ =
(V ′, E′) is allocated to one of the k clusters, aiming to
minimise the total distance between nodes and their respective
centres while adhering to both hard and soft pairwise con-
straints.

Following the assignment step, the positions of the cluster
centres are adjusted based on the node assignments from
the preceding step, a process iterated as long as there is
potential for decreasing the objective function value. The
assignment with the most favourable objective value upon
termination is forwarded to the postprocessing step. Here,
the labels of the graph G′ = (V ′, E′) are remapped to the
original representation G = (V,E) and returned as the final
assignment.

IV. EXPERIMENTAL SETUP

A. Data

The dataset utilised for our case study comprises five video
clips obtained from Pixabay (https://pixabay.com/) under the
Pixabay Content License. The unconstrained videos capture
the movement of groups of animals with durations ranging
from 9 to 24 seconds. Each video features animals of the same
species: Koi fish2, pigeons (square)3, pigeons (pavement)4,
pigeons (kerb)5, and pigs6, each of which are characterised
in TableI. Each video has undergone manual annotation by
creating bounding boxes (BB) containing one animal per box.
These BBs have been assigned labels corresponding to the
respective animal identities. Examples of annotated frames are
depicted in Figure 1a for the Koi fish data, and in Figure 2
for the remaining four videos.

These videos are a part of our bespoke video dataset,
which encompasses annotations, individual images, and files
featuring various feature representations [23]. In this paper,
we employed RGB moments (RGB) as the chosen feature
representation as it was demonstrated in [24] to achieve the
highest classification accuracy. To obtain the RGB feature
representation of an image, you begin by dividing it into 3-
by-3 blocks, subsequently, for each block we calculate the and
store the mean and standard deviation of the red, green and
blue panel, resulting in a total of 54 RGB features.

B. Metrics

Normalised Mutual Information (NMI) and Adjusted Rand
Index (ARI) were employed to compare the obtained cluster

2www.pixabay.com/videos/koi-carp-fishes-ornamental-fish-5652/
3www.pixabay.com/videos/birds-street-pigeon-29033/
4www.pixabay.com/videos/pigeons-doves-and-pigeons-bird-city-4927/
5www.pixabay.com/videos/pigeons-eating-nature-birds-food-8234/
6www.pixabay.com/videos/pigs-farm-animals-livestock-49651/
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(a) Pigeons (Square) (b) Pigeons (Pavement)

(c) Pigeons (Kerb) (d) Pigs

Fig. 2: Examples of annotated frames from the animal re-identification database used as our case study.

TABLE I: Characteristics of the videos

Video k l N c Min p/f Max p/f
Koi fish 536 22 1635 9 1 6

Pigeons (square) 300 9 4892 27 1 23
Pigeons (pavement) 600 24 3079 17 3 8

Pigeons (Kerb) 443 17 4700 14 8 13
Pigs 500 16 6184 26 4 20

Table notes: k is the number of frames; l is the video length in seconds; N is
the number of objects (individual animal images); c is the number of classes
(animal identities); Min p/f is the minimum number of animals per frame
(image); Max p/f is the maximum number of animals per frame (image).

labels with the true labels of the data. An NMI score of 0
signifies no relationship between variables X and Y, while
a score of 1 indicates a perfect relationship between the two
variables. ARI yields a score between -1 and 1: a score close to
1 indicates a high degree of agreement between the clusterings,
a score near 0 suggests random clustering, and negative scores
imply disagreement. ARI is particularly suitable when the
number of clusters varies or when the sizes of clusters differ.

C. Constraint Generation

Constraints for semi-supervised clustering algorithms are
usually derived from samples of the ground truth labels of the
dataset. However, when dealing with object data from videos,
constraints can be naturally generated from the data itself.
Cannot-Link constraints are created from each frame. No two
objects in a frame can be in the same clusters, as they belong
to different identities. For example, if we consider frame Fi

and a list of objects (O1, ..., Ok) within Fi, we can create
k(k − 1)/2 cannot-link constraints.

Must-Link constraints are derived from pairs of consecutive
frames (Fi, Fj). Each object is originally detected as a bound-
ing box. We compute the overlapping region (Intersection
over Union) between objects in successive frames. We expect
objects from the first frame to be in a similar location in
the subsequent frame. This allows us to determine, with high
probability, if two objects are likely to be the same. We
generate a must-link constraint between the object in Fi and
the object in Fj if the intersection over union is above a
threshold α. In this study we chose α = 0.7.

D. Experimental Protocol

Each video is segmented into windows, where a window
comprises a sequence of G consecutive frames. Our data sets
contain the bounding boxes, their description as points in a
multidimensional feature space, as well as the label (identity)
for each bounding box. Constraints are generated for each
window using the protocol outlined in Section IV-C. Once
the constraints are established, each semi-supervised cluster-
ing method is applied to the window to create a partition.
Then, we calculate the NMI and ARI between the resulting
partition and the ground truth labels. Finally, we compute
the average NMI and ARI values across all windows of size
G ∈ [2, 3, 4, 5, 10, 15, 20] for each clustering method and
dataset.

4



Methods Min WS (2) Max WS (20)
NMI ARI NMI ARI

klein02 SL 91.37% 91.23% 68.48% 69.64%
klein02 AL 91.41% 91.55% 70.68% 74.15%
klein02 CL 91.33% 91.24% 69.84% 72.82%
pccc 88.31% 86.63% 70.33% 73.35%
cop kmeans 90.51% 89.77% 70.17% 73.93%

TABLE II: NMI and ARI values for the minimum window size
of 2 and the maximum window size of 20, for all clustering
methods used in the experiment averaged over all datasets.

V. RESULTS

Table-II presents the normalized mutual information and ad-
justed Rand index for each clustering method, emphasising the
minimum and maximum window sizes used in the experiment.
The table clearly shows that using fewer frames per window
leads to improved performance across all algorithms.

Figures 3, 4, 5, 6, and 7 illustrate the Adjusted Rand score
for each clustering method applied to data segments (windows)
with varying numbers of frames, with each plot corresponding
to a different dataset. Figures 8a and 8b depict ARI and NMI
of each clustering method averaged over all the datasets. It
is evident from the plots that the number of frames within
a window significantly influences the performance of the
constraint clustering algorithms. By decreasing the number of
frames within a window, we are able to reduce the complexity
of the dataset, and provide the clustering algorithms an easier
problem to solve. We observe that with a reduced number of
frames, hierarchical methods outperform their centroid-based
counterparts. This performance disparity is likely attributable
to the inherent string-link structure produced by the moving
of the objects within a window. However, as the number of
frames per window increases, centroid-based algorithms begin
to outperform hierarchical methods. Nevertheless, hierarchical
methods with smaller window sizes still surpass the perfor-
mance of centroid-based algorithms with larger window sizes.

Fig. 3: ARI scores for each clustering method applied to
segments of varying sizes on the koi dataset.

VI. CONCLUSION

In conclusion, the findings of this study underline the
significance of optimising window size and leveraging appro-
priate clustering methodologies. We observe that the inherent
structure and natural generation of constraints of video data

Fig. 4: ARI scores for each clustering method applied to
segments of varying sizes on the pigeons (Kerb) dataset.

Fig. 5: ARI scores for each clustering method applied to
segments of varying sizes on the pigeons (pavement) dataset.

are well-suited for hierarchical constraint clustering, and con-
ducting clustering in a partially online manner significantly
enhances the accuracy of the algorithms. Thus, performing
online hierarchical constraint clustering within an animal re-
identification pipeline is likely to yield the best results.

In future work, we plan to investigate label propagation
between windows to achieve a global partition from online
clustering. Our objective is to utilise the natural constraints to
support and enhance this propagation.
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