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Abstract. Cluster ensembles are deemed to be better than single clus-
tering algorithms for discovering complex or noisy structures in data.
Various heuristics for constructing such ensembles have been examined
in the literature, e.g., random feature selection, weak clusterers, random
projections, etc. Typically, one heuristic is picked at a time to construct
the ensemble. To increase diversity of the ensemble, several heuristics
may be applied together. However, not any combination may be bene-
ficial. Here we apply a standard genetic algorithm (GA) to select from
7 standard heuristics for k-means cluster ensembles. The ensemble size
is also encoded in the chromosome. In this way the data is forced to
guide the selection of heuristics as well as the ensemble size. Eighteen
moderate-size datasets were used: 4 artificial and 14 real. The results
resonate with our previous findings in that high diversity is not neces-
sarily a prerequisite for high accuracy of the ensemble. No particular
combination of heuristics appeared to be consistently chosen across all
datasets, which justifies the existing variety of cluster ensembles. Among
the most often selected heuristics were random feature extraction, ran-
dom feature selection and random number of clusters assigned for each
ensemble member. Based on the experiments, we recommend that the
current practice of using one or two heuristics for building k-means clus-
ter ensembles should be revised in favour of using 3-5 heuristics.1

Keywords: Pattern recognition; multiple classifier systems; cluster en-
sembles; genetic algorithms; diversifying heuristics.

1 Introduction

Selecting a good clustering algorithm is more difficult than selecting a good
classifier. The difficulty comes from the fact that in clustering there is no super-
vision, i.e., data have no labels against which to match the partition obtained
through the clustering algorithm. Therefore, instead of running the risk of pick-
ing an unsuitable clustering algorithm, a cluster ensemble can be used [13]. The

1 This work was supported by research grant # 15035 under the European Joint
Project scheme, Royal Society, UK.
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presumption is that even a basic off-the-shelf cluster ensemble will outperform a
randomly chosen clustering algorithm. The question then becomes whether we
can guide the selection of a cluster ensemble.

Here we are interested in cluster ensembles. Various heuristics have been pro-
posed for building diverse cluster ensembles. Usually these heuristics are applied
one at a time or at most two. The large majority of the publications on clus-
ter ensembles are devoted to finding a combination method (called sometimes a
consensus function), for example [1, 3, 5, 11, 15, 6, 14, 10], while few papers look
into comparisons between different diversifying heuristics e.g., [8]. In this study
we propose to evaluate combinations of such heuristics by a standard genetic al-
gorithm. Our hypothesis is that better cluster ensembles could be created using
more than one diversifying heuristics at the same time. The objective is to find
out which diversifying heuristics and combinations thereof are being selected
more frequently by a data-guided GA.

Our application is focused on a class of datasets whose common characteristics
are: (1) small number of true classes (often overlapping), which may or may not
correspond to coherent clusters; (2) moderate number of observations (up to
few hundred); (3) moderate number of features (typically 5 to 30). Such data
sets are collected, for example, in clinical medicine for pilot research studies.
In the experiments reported in Section 4 we have used, among others, six such
benchmark data sets from the UCI Machine Learning Repository [2].

The rest of the paper is organized as follows. Section 2 lists the heuristics for
building diverse cluster ensembles and explains the main ensemble algorithm.
Section 3 describes briefly the genetic algorithm. The choice of data sets and the
experimental set-up are detailed in Section 4, where we also present and discuss
the results. Section 5 concludes the study.

2 Cluster Ensembles

We investigate the effect of various design heuristics on the ensemble accuracy.
These heuristics are necessary in order to make sure that the individual clusterers
produce different, yet sensible, partitions of the data.

2.1 Cluster Ensembles

Let P1, . . . , PL be a set of partitions of a data set Z, each one obtained from
applying a clustering algorithm, or a ‘clusterer’. The aim is to find a resultant
partition P ∗ which best represents the structure of Z. We implemented the pair-
wise approach [4] because it has been a popular choice despite its comparatively
large computational complexity. The generic version of the pairwise cluster en-
semble algorithm is outlined below.

1. Given is a data set Z with N elements. Pick the ensemble size L and the
number of clusters c. Usually c is larger than the suspected number of clusters
so there is “overproduction” of clusters.

2. Generate L partitions of Z with c clusters in each partition.
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3. Form a co-association matrix for each partition, M (k) =
{
m

(k)
ij

}
, of size

N × N , k = 1, . . . , L, where m
(k)
ij = 1, if zi and zj are in the same cluster in

partition k, and m
(k)
ij = 0 otherwise.

4. Form a final co-association matrix M (consensus matrix) from M (k), k =
1, . . . , L, and derive the final clustering using this matrix. A typical choice
for M is the average of the individual matrices M (k).

The consensus matrix M can be regarded as a similarity matrix between the
points of Z. Therefore, it can be used with any clustering algorithm which oper-
ates directly upon a similarity matrix. Viewed in this context, cluster ensemble
is a type of stacked clustering whereby we can generate layers of similarity ma-
trices and apply clustering algorithms on them. Extensive experimentation have
singled out hypergraph methods (HGPA, CSPA and MCLA [13]) and average
linkage as the best consensus functions. In a previous study we found that bet-
ter results were obtained if we used M as a new feature space and ran k-means
on it [9].

The randomisation heuristics come into play in Step 2 where the individual
partitions are formed.

Cluster validation presents a difficult problem with no trivial solution. Here
we assume that this problem has been solved and the “true” number of clusters
is available. This assumption, restrictive as it is, is not unusual for studies like
ours. The focus of this paper is the relative merit of heuristics and combinations
of heuristics compared to one another. We may well pre-set the best possible
scenario where the number of clusters is given as this setup will not disadvantage
any of the heuristics.

The most widely used indices to estimate similarity between partitions are
Rand, Jaccard, adjusted Rand, correlation, mutual information and entropy.
When the number of obtained clusters is the same as the number of known
groups in the data, the apparent accuracy of the cluster ensemble (classification
accuracy) has been used as the most intuitive measure. To calculate classification
accuracy, each cluster is labeled with the class most represented within and the
proportion of correctly labeled objects from the whole of Z is evaluated. This
re-labeling of the clusters guarantees the best classification accuracy.

3 The Genetic Algorithm for Selecting Diversifying
Heuristics

Genetic algorithms (GA) are a popular optimization technique [7]. They pro-
vide a form of guided random search whereby the solution is evolved within a
“population” through subsequent iterations called generations. Each population
consists of “chromosomes” which describe the individuals. In our case, an in-
dividual will be a cluster ensemble encoded as a 12-bit binary string. The first
seven bits encode the heuristics as explained in the next section. A value of 1
means that the respective heuristic is chosen for the ensemble. Bits 8 to 12 encode
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the ensemble size in the following way. These bits are assigned “weights” as [5,
10, 20, 50, 100]. The ensemble size, L, is the sum of the weights of the selected
bits (values 1). For example, [0,0,1,0,1] means L = 120. The fitness function
used to evaluate the merit of a chromosome is the classification accuracy of the
respective ensemble (the accuracy of the resultant partition P ∗). Interestingly,
in this implementation, the same chromosome may get different fitness values if
evaluated twice. This is because only the structure of the ensemble is determined
within the chromosome. The fitness depends upon various random parameters
according to the heuristics in the chromosome. In other words, slightly different
phenotypes may correspond to the same genotype. In order to eliminate part
of this randomness, we take as the fitness of a chromosome, the average of five
evaluation runs.

We use the standard GA with choices as shown below

1. Pick the parameters of the GA:
(a) Population size m (even).
(b) Maximum number of generations Tmax.
(c) Mutation probability Pm.

2. Generate a random population of m chromosomes and calculate their fitness
values.

3. For i = 1 : Tmax,
(a) Assuming that the whole population is the mating set, select m/2 couples

of parents from the current population (repetitions are allowed).
(b) Perform (one-point) crossover to generate m offspring chromosomes.
(c) Mutate the offspring according to the mutation probability.
(d) Calculate the fitness values of the mutated offspring.
(e) Pool the offspring and the current population and select as the next

population the m chromosomes with the highest fitness.
4. End i.

The limit number of generations, population size and mutation probability are
parameters of this GA model. We assume that the whole population is allowed
to reproduce, the crossover probability is set to 1.0, and since elitist selection is
used the generation gap is not fixed. This drives the model closer to a random
search with main emphasis being on exploration.

4 The Experiment

4.1 Data Sets

Figure 1 shows four artificial data sets: difficult-doughnut, easy-doughnut, four-
gauss and two-spirals. The first three datasets were generated in 2-D (as plotted)
and then 10 more dimensions of uniform random noise were appended to each
data set. A total of 100 points were generated from each distribution.2

2 Matlab code for generating these data sets is available at
http://www.informatics.bangor.ac.uk/∼kuncheva/activities/patrec1.html
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Easy doughnut Difficult doughnut Four gauss Two spirals

Fig. 1. The four artificial data sets used in this study. The first three data sets were
generated with 10 additional noise features.

Three benchmark biological datasets were used: crabs [12], iris and soybean-
small from UCI [2]. The parameters of all data sets are summarized in Table 1.
The eleven medical data sets in this study come from two sources. The datasets
breast, heart, liver, lymph, pima diabetes and thyroid are from UCI while the
other five data sets are now available at .http://www.informatics.bangor.ac.
uk/.kuncheva/activities/patrec1.html

These data sets are

contractions (98 objects, 9 features, 2 classses)
weaning (151 objects, 17 features, 2 classes)
respiratory (85 objects, 17 features, 2 classes)
laryngeal (213 objects, 16 features, 2 classes)
voice-3 (238objects, 10 features ,3 classes)

4.2 Experimental Protocol

All real data sets except iris and soybean-small were standardized (all features
were transformed to have mean 0 and standard deviation 1). The standardization
was deemed necessary because the data contained mixed variables and variables
measured in very different scales.

All ensembles used k-means, started from a random initialization, as the base
clusterer. The following heuristics were encoded as the first 7 bits of the chro-
mosome in the GA.

1. Different samples. We used subsampling of size randomly chosen between
the number of clusters and the total number of objects.

2. Weak clustering algorithm. k-means is stopped after the second iteration.
3. Random projections (feature extraction). We form d random projections

where d is the number of relevant principal components obtained from the
correlation matrix of the data (eigenvalues greater than 1).

4. Feature selection. A non-empty random subset of the original feature set is
picked. Each feature has a chance of 0.5 to be included in the set.

5. Label noise. Here we used 5% label noise.
6. Random number of clusters. If this heuristic is selected, the number of over-

produced clusters, c, is picked from the range from 2 to 22.

http://www.informatics.bangor.ac.uk/~kuncheva/activities/patrec1.html
http://www.informatics.bangor.ac.uk/~kuncheva/activities/patrec1.html
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7. Hybrid ensembles. This heuristic offers another possibility for incorporating
diversity in a non-uniform way. The hybridization is not done over different
clustering methods but consists in giving each clusterer in the ensemble
the freedom to apply different heuristics. The example below illustrates this
hybridization.

The seven heuristics are represented as the first 7 of the 12 bits of the chromo-
some while the last 5 bits encode the ensemble size. For example, an ensemble
represented by chromosome

0 0 1 1 0 1 0 1 0 0 1 0

will consist of 55 (5+50) clusterers. Each of them will be built using k-means
with random feature selection (heuristic 4) followed by random linear feature
extractions (heuristic 3)3 and a randomly chosen number of overproduced clus-
ters between 2 and 22 (heuristic 6). Consider now the following chromosome,
corresponding to a hybrid ensemble

0 0 1 1 0 1 1 1 0 0 1 0

In this case, each of the 55 clusterers will have a chance to select any com-
bination of the three heuristics (3, 4 and 6) or none of them. This means that
the hybridization opens up a second possibility for further “refined” selection of
the already selected heuristics.

If none of the first 7 bits of the chromosome is switched to 1, only random
initialization of k-means is applied. If none of the last 5 bits of the chromosome
is switched to 1, a default value of L = 5 is assigned.

The GA parameters were chosen as follows: population size m = 10; maximum
number of generations Tmax = 30 and mutation probability Pm = 0.15.

4.3 Results

Table 1 displays the data characteristics, the end results from the GA and the
corresponding accuracies. N denotes the number of objects in the data set, n is
the number of features, c is the number of clusters, L is the ensemble size and
Acc is the classification accuracy of the ensemble. Shown for each data set is
the best chromosome in the last (30th) generation. The classification accuracy
Acc is an average of 5 runs of the ensemble. In the last column we show the
classification accuracy obtained by Greene et al. [8].

Our hypothesis is that the improved ensemble accuracy is owed to the selec-
tion of appropriate heuristics. Figure 2 shows the proportion of times each of the
7 heuristics has been selected. The large error bars give the means and the 95%
confidence intervals of the respective proportions calculated within the last pop-
ulation of the GA. As there are 18 data sets, and each population contains 10
3 The order in which we apply heuristics 3 and 4 is immaterial. We have chosen to

apply 4 before 3 for computational convenience.
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Fig. 2. Mean proportions of individual occurrences of the 7 heuristics with 95% confi-
dence intervals for the mean. The large intervals are derived from the last population
of the GA; the small intervals are derived from the whole run of the GA.

Table 1. Data characteristics and the end results from the GA

Heuristics
Dataset N n c 1 2 3 4 5 6 7 L Acc [8]

difficult doughnut 100 12 2 0 0 0 1 0 1 0 65 0.982
easy doughnut 100 12 2 0 0 0 1 0 1 1 60 1.000

four gauss 100 12 4 1 1 1 1 1 0 0 130 0.982
spirals-2 194 2 2 0 1 1 0 0 1 0 120 0.551 (1.000)

crabs 200 7 2 1 1 1 1 1 0 0 165 0.625
iris 150 4 3 1 0 1 1 1 1 0 165 0.933 (0.893)

soybean-small 47 35 4 1 0 0 1 1 0 0 170 0.915
breast 277 9 2 0 1 1 0 1 1 1 10 0.718 (0.762)
heart 270 13 2 1 1 0 1 1 0 0 150 0.829 (0.600)
liver 345 6 2 1 1 1 0 1 0 1 120 0.602 (0.585)

lymph 148 18 4 1 0 1 0 0 1 1 110 0.488 (0.615)
pima diabetes 768 8 2 1 1 0 1 0 1 0 185 0.698 (0.675)

thyroid 215 5 3 1 0 1 0 1 1 1 170 0.889 (0.793)
contractions 98 27 2 1 0 1 1 0 0 0 65 0.845

intubation 302 17 2 0 0 1 0 0 0 1 170 0.772
laryngeal 213 16 2 0 0 1 1 0 0 1 55 0.822

respiratory 85 17 2 1 1 0 1 0 1 0 155 0.948
voice-3 238 10 3 0 1 1 1 0 0 0 5 0.771

chromosomes, the proportions are calculated from 180 chromosomes. For refer-
ence, we plot the probability of being selected by chance (0.5) with a dashed line.
According to the confidence intervals, heuristics 3, 4 and 6 are selected more of-
ten than chance whereas label noise (heuristic 5) and hybrid ensembles (heuristic
7) are suppressed. The short error bars show the mean and the 95% confidence
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Fig. 3. Histograms of the number of selected heuristics. The overlaid polygon is the
theoretical binomial distribution for n = 7 and p = 0.5.

intervals of the proportions calculated from the whole run of the GA (30 genera-
tions). Thus each proportion is evaluated on 30 × 10 × 18 = 5400 chromosomes.
The heuristics which are picked more often than chance are Subsample, Weak k-
means, Feature extraction, Feature selection and Random c.

Shown in Figure 3 are the histograms of the number of selected heuristics for
an ensemble. The left plot is obtained from the last populations for the 18 data
sets, and the right plot is obtained from the whole run of the GA. If each heuristic
was selected independently and completely by chance, the number of selected
heuristics would follow a binomial distribution with parameters n = 7 and p =
0.5. The polygon for the binomial distribution is overlaid in the two plots. To
check whether the obtained distribution differs from binomial, we carried out a
χ2 test. With significance p < 10−9, both obtained distributions are different
from binomial distribution.

Table 2. Combinations of heuristics with largest frequency of occurrence for a specified
number of selected heuristics

Heuristics Frequency Proportion 95% CI
# selected 1 2 3 4 5 6 7

7 1 1 1 1 1 1 1 6 0.011 0.0020–0.0200
6 1 1 1 1 1 1 0 143 0.0265 0.0222–0.0308
5 1 1 1 1 0 1 0 302 0.0559 0.0498–0.0620
4 1 1 1 0 0 1 0 262 0.0485 0.0428–0.0542
3 0 0 1 1 0 0 1 131 0.0243 0.0202–0.0284
2 0 0 0 1 0 1 0 194 0.0359 0.0310–0.0409
1 0 0 0 1 0 0 0 56 0.0104 0.0077–0.0131
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The most notable difference from the binomial probability is observed for 5
heuristics selected together. Five heuristics have been selected in 33.89% of the
ensembles in the last populations of the GA and in 27.35% of the ensembles
within the whole run. The next largest difference is for 2 selected heuristics in
the last population (23.33%).

Table 2 shows which combinations of heuristics have been encountered most
frequently when different number of heuristics have been selected. For example,
for five selected heuristics, heuristics 1, 2, 3, 4, and 6 appeared in 302 out of 1477
chromosomes. The last column of the table shows the 95% confidence interval
for the mean (averaged on 5400 cases). Knowing that the chance for selecting
a particular combination is 1

27 = 0.0078, the chances of selecting the combina-
tions shown in the table are significantly larger than chance (α = 0.05) for 2 to 6
selected heuristics. The probability of selecting all 7 heuristics is significantly be-
low chance while the probability for selecting only heuristic 4 is not significantly
higher than chance.

No combination of heuristics appeared together consistently. A glance at the
correlation matrix using the whole run of the GA reveals that correlations be-
tween pairs of heuristics are weak, varying between −0.2598 (feature extraction
and feature selection) and 0.2456 (weak k-means and label noise). Therefore, we
can think of the diversifying heuristics as fairly independent.

5 Conclusions

We restricted our study to datasets which one may acquire from pilot studies in
biomedical domain, e.g., pilot clinical trials. Such data sets have small number
of classes (we assume that they correspond to clusters), moderate number of
observations (up to few hundred) and moderate number of features (typically
5 to 30). Our collection for this study consisted of 18 such data sets, among
which artificial, real, benchmark and new medical data. Using a GA to select
combination of heuristics as well as ensemble size we found that: (1) More than
1 heuristic is better. The collection of heuristics being chosen most often by the
GA was {Subsample, Weak k-means, Feature extraction, Feature selection and
Random c} and (2) Too many is not necessarily good. Ensembles with more
than 5 heuristics appeared to be too random to be useful.

We also observed that ensemble sizes of 100+ faredbetter than smaller ensemble
for the typeofproblems in this study.However, it seems that theaccuracy for ensem-
ble sizesbeyond100 starts to level offandensemblesof2000clusterersmayonlyoffer
marginal improvement at the expense of a large increase of the computational cost.

Our experimental results indicated low dependency between heuristics. This
was partly expected because the heuristics come from different ways of handling
the data and setting the clustering procedures. The independence shows that
each heuristic has a specific niche and should not be lightly ignored. This study
was focused on selection of heuristics assuming that the “correct” number of
clusters is known. Evaluating the number of clusters is a challenging problem of
its own, worthy of a separate study.
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