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A B S T R A C T

Detecting change in multivariate data is a challenging problem, especially when class labels are not available.
There is a large body of research on univariate change detection, notably in control charts developed originally
for engineering applications. We evaluate univariate change detection approaches —including those in the MOA
framework — built into ensembles where each member observes a feature in the input space of an unsupervised
change detection problem. We present a comparison between the ensemble combinations and three established
‘pure’ multivariate approaches over 96 data sets, and a case study on the KDD Cup 1999 network intrusion
detection dataset. We found that ensemble combination of univariate methods consistently outperformed
multivariate methods on the four experimental metrics.

1. Introduction

Change detection is, at its simplest, the task of identifying data
points that differ from those seen before. It is often deployed in a su-
pervised or unsupervised context: monitoring the error rate of a
learning algorithm which processes the target data, or directly mon-
itoring the target data. In the second context, we do not have class
labels with which to estimate an error rate. Unsupervised change de-
tection in a single variable is the univariate case of the problem and has
been extensively studied over more than half a century, yielding widely
used approaches such as control charts, and specifically, the cumulative
sum chart (CUSUM) [1,2]. There are a variety of univariate methods
across the literature from several fields. Basseville and Nikiforov [3]
published a monograph on detectors of abrupt change in 1993. There
are extensive method reviews in the overlapping field of novelty de-
tection, by Markou and Singh [4] and Pimentel et al. [5], and in outlier
detection by Ben–Gal [6]. There are many approaches from the classi-
fication literature intended to monitor the error-rate of the incoming
data and adapt a deployed classifier accordingly. The MOA (massive
online analysis) framework [7,8] is a popular open source tool for data
stream mining, providing a number of approaches for univariate change
detection, all of which we evaluate in this work.

We take inspiration from our previous study [9] where we use
classifier ensembles to detect concept change in unlabelled multivariate
data. We propose an ensemble of univariate detectors (which could be
called a ‘subspace ensemble’) as a means of adapting established

univariate change detection methods to multivariate problems. Our
hypothesis is that such an ensemble should be competitive or better
than ‘pure’ unsupervised multivariate approaches. We contribute the
following: 1. An evaluation of which established univariate change
detection methods are well suited to subspace ensemble combination
over 96 common datasets. 2. Whether subspace ensembles outperform
three established multivariate change detection methods, especially in
high dimensions. 3. A reproducible reinterpretation of the widely used
KDD Cup 1999 [10] network intrusion detection dataset as a change
detection problem.

When generalising unsupervised change detection to multiple di-
mensions, the challenges proliferate – in how many features should we
expect to see change before signalling? Can we reasonably assume that
all features and examples are independent? Multivariate approaches
often assume that each example is drawn from a multivariate process
[11–14]. Thus, we need not assume that the features are independent.
Multivariate change detection attempts to model a multivariate process
by means of a function to evaluate the fit of new data (an example or a
batch) to that model. Some works monitor components independently
(Tartatovsky et al. [15] and Evangelista et al. [16]), meaning that the
approach is unable to respond to changes in the correlation of the
components. Whether or not this is a disadvantage, depends upon the
context of the change.

Change may have a different definition for different problems. For
example, if we wish to be alerted when the value of a stock is falling, a
sudden rise might be irrelevant. If using a control chart with upper and
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lower limits, only monitoring the lower limit might considerably lower
the false alarm rate. If the problem is well known then a heuristic can be
applied, but if that is the case, there is most likely training data avail-
able for a supervised approach. Unsupervised approaches must be ro-
bust in the face of unknown context. The change we wish to detect
could be abrupt or gradual. It could be a single change or repeating
concepts. When we move into multiple dimensions, there is even more
scope for contextual properties to stretch our assumptions. Change
could manifest itself in a single feature, all features, or any number of
features in-between. From the novelty detection literature, Evangelista
et al. [16] conclude that unsupervised learning in subspaces of the data
will typically outperform unsupervised learning that considers the data
as a whole. In the course of this work, we investigate whether this as-
sertion is reproducible.

The dimensionality of the input data presents a potential challenge.
Allipi et al. [17] analyse the effect of an increasing data dimension d on
change detectability for log-likelihood based multivariate change de-
tection methods. They demonstrate that in the case of Gaussian random
variables, change detectability is upper-bounded by a function that
decays as

d
1 . Importantly, the loss in detectability arises from a linear

relationship between the variance of the log-likelihood ratio and the
data dimension. Evangelista et al. [16] propose that subspace en-
sembles are also a means to address the curse of dimensionality.

Multivariate detectors treat features as components of an underlying
multivariate distribution [11]. We will term such detectors ‘pure’
multivariate detectors. For pure detectors to work well, the data di-
mensionality d should not be high, as Allipi et al. argued, and the data
coming from the same concept should be available in an i.i.d sequence.
This is rarely the case in practice. For example, Tartatovsky et al. [15]
observe that the assumption that all examples are i.i.d is very restrictive
in the domain of network intrusion detection.

The remainder of the paper is organised as follows. Section 2 covers
the background and related work for this problem. Section 3 details the
methods used, explains our combination mechanism, and overviews the
experimental protocol. Our results are presented in Section 4, and our
conclusions follow in Section 5.

2. Background & related work

Learning methods are frequently deployed in non-stationary en-
vironments, where the concepts may change unpredictably over time.
Where class labels are immediately or eventually available, change
detection methods can be required to monitor only a univariate error
stream from a learner. When a change is detected in the error stream,
we can retrain or adapt the model as required. However, when labels
are not available, then we cannot use the error rate as a performance
indicator. In this instance, a fully unsupervised approach must be taken.

Surveys by Gama et al. [18] and Ditzler et al. [19] discuss the dis-
tinction between real and virtual concept drift. Real concept drift is a
change in the class conditional probabilities, i.e. the optimal decision
boundary. Virtual concept drift refers to a change in the prior prob-
abilities, or distribution of the data. Since in an unsupervised setting,
we have no class labels to identify real concept drift, this work would
conform to the latter definition. This particular problem formulation is
closely related to the assumptions of statistical process control, novelty
detection, and outlier detection, for which applications are usually
unsupervised, and methods are expected to be applied directly to the
domain data.

Most methods for multivariate change detection require two com-
ponents: a means to estimate the distribution of the incoming data, and
a test to evaluate whether new data points fit that model. Estimation of
the streaming data distribution is commonly done by either clustering,
or multivariate distribution modelling. Gaussian mixture models
(GMM) are a popular parametric means to model a multivariate process
for novelty detection, as in Zorriassatine et al. [12]. Tarassenko et al.
[20] and Song et al. [21] use nonparametric Parzen windows (kernel

density estimation) to approximate a model against which new data is
compared. Dasu et al. [22] construct kdq trees to a similar effect.
Krempl et al. [23] track the trajectories of online clustering, while
Gaber and Yu [24] use the deviation in the clustering results to identify
evolution of the data stream. Kuncheva [11] applies k means clustering
to the input data and uses the cluster populations to approximate the
distribution of the data.

Multivariate statistical tests for comparing distributions such, as
Hotelling’s t-squared test [25] need to be adapted into the sequential
form over time windows of the data [11]. Bespoke statistics continue to
be developed for this purpose [13,14]. Kuncheva [11] introduces a
family of log-likelihood ratio detectors which use two time-windows of
multivariate data to compute the probability that both are drawn from
the same distribution. The observation that log-likelihood based de-
tectors effectively reduce the input space to a univariate statistic can be
further exploited, by monitoring that ratio with existing univariate
methods [26].

Ensemble methods for monitoring evolving data streams is a
growing area of interest within the change detection literature. There
are recent surveys on the subject by Krawczyk et al. [27] and Gomes
et al. [28]. The former observe that there has been relatively little re-
search on the combination of drift detection methods. The publications
that they review in this area [29,30] deal with the combination of
detectors over univariate input data, in contrast to our own formula-
tion. The latter work introduces a taxonomy for data stream ensemble
learning methods, and demonstrates the diversity of available methods
for ensemble combination. Du et al. [31] utilise an ensemble of change
detectors in a supervised approach for a univariate error stream. Alippi
et al. [32] introduce hierarchical change detection tests (HCDTs)
combining a fast, sequential change detector with a slower, optionally-
invoked offline change detector.

In the classification literature, ensemble change detection com-
monly refers to using these techniques to monitor the accuracy of
classifiers in an ensemble, in order to decide when to retrain or replace
a classifier [33–36]. Many of these established univariate methods for
change detection are geared towards the supervised scenario which
offers a discrete error stream [37,38]. The streaming ensemble algo-
rithm (SEA) [39] was one of the first of many ensemble approaches for
streaming supervised learning problems. However, instead of relying on
a change detection, SEA creates an adaptive classifier which is robust to
concept drift. Evangelista et al. [16] use a subspace ensemble of one-
class support vector machine classifiers in the context of novelty de-
tection. The input space is divided into 3 random subspaces, each
monitored by a single ensemble member. Kuncheva [9] uses classifier
ensembles to directly detect concept change in unlabeled data, sharing
the same problem formulation as this work.

3. Change detection methods

The methods we evaluated are detailed in Tables 1 and 2. We chose
to evaluate all the univariate detectors offered by MOA [7,8], an open
source project for data stream analysis. Our experiment performs an
unsupervised evaluation of all reference implementations of the
ChangeDetector interface in the MOA package

moa.classifiers.core.driftdetection 1

The interface contract implies the following basic methods to pro-
vide an input and subsequently check if change was detected:

public void input(double inputValue);
public boolean getChange();
All the univariate detectors are provided by MOA except CUSUM1,

which is a CUSUM chart with upper and lower limits which was im-
plemented in Java, and integrated into the experiment to serve as a

1 https://github.com/Waikato/moa/tree/master/moa/src/main/java/moa/classifiers/
core/driftdetection.
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baseline. We arrive at a final figure of 88 detectors, 3 of which are the
multivariate approaches listed in Table 2, and the remaining 85 are
ensembles of the univariate approaches with varying thresholds. The
experimental details will be given in Section 3.2. A full list of the 96
datasets and their characteristics can be found in Table 4. Our metrics
for evaluation and our experimental protocol are addressed in
Section 3.3. Finally, we discuss the case study in Section 3.4.

3.1. Overview of the methods

The univariate detectors are listed in Table 1, with their accom-
panying publications. We categorise the methods based on the change
detection taxonomy presented in Gama et al. [18]. What follows is a
high-level overview of the theory behind each category of methods
along with an abridged description of each detector. More details for
each detector can be found in the accompanying publications in
Table 1. The source code for each detector is available for inspection in
the MOA repository.

3.1.1. Sequential analysis
Sequential analysis methods have much in common with the se-

quential probability ratio test (SPRT) [2]. Consider a sequence of ex-
amples = …X x x[ , , ]N1 . The null hypothesis H0 is that X is generated
from a given distribution p0(x), and the alternative hypothesis H1 is that
X is generated from another (known) distribution p1(x). The logarithm
of the likelihood ratio for the two distributions is calculated as

∑=
=

p x
p x

Λ log
( )
( )N

i

N
i

i1

1

0

Two thresholds, α and β are defined depending on the target error
rates. If ΛN< α, H0 is accepted, else if ΛN> β, H1 is accepted. In the
case where < = < =α βΛ ,N the decision is postponed, the next example
in the stream, +x ,N 1 is added to the set, and +ΛN 1 is calculated and
compared with the thresholds. Cumulative sum (CUSUM) [1] is a se-
quential analysis technique based on the same principle. The test is
widely used for detecting significant change in the mean of input data.
Starting with an upper cumulative sum statistic △ =g 0,0 CUSUM up-
dates g△ for each subsequent example as

△ = △ + −−g g x δmax(0, ( ))i i i1

where δ is the magnitude of acceptable change. Change is signalled

when g△i> λ, where λ is a fixed threshold. If we wish to detect both
positive and negative shifts in the mean, we can also compute and
threshold the lower sum as

▽ = ▽ − −−g g x δmin(0, ( ))i i i1

The Page–Hinkley test [1] is derived from CUSUM, and adapted to
detect an abrupt change in the average of a Gaussian process [18,45].

3.1.2. Control charts
Control charts2 are a category of methods that are based upon sta-

tistical process control (SPC). In SPC, the modus operandi is to consider
the problem as a known statistical process, and monitor its evolution.
Assume that we monitor classification error. This error can be inter-
preted as a Bernoulli random variable with probability of “success”
(where error occurs) p. The probability is unknown at the start of the
monitoring, and is re-estimated with every new example as the pro-
portion of errors encountered thus far. At example i, we have a binomial
random variable with estimated probability pi and standard deviation

= −σ p p i(1 )/i i i . One way to use this estimate is described below
[18,37]:

1. Denote the (binary) streaming examples as …x x, ,1 2 . To keep a
running score of the minimum p, start with estimate =p 1,min and

=σ 0min . Initialise the stream counter i← 1.
2. Observe xi. Calculate pi and σi. For an error and a standard deviation

(pi, σi) at example xi, the method follows a set of rules to place itself
into one of three possible states: in control, warning, and out of
control. Under the commonly used confidence levels of 95% and
99%, the rules are:

• If + < +p σ p σ2 ,i i min min then the process is deemed to be in
control.

• If + ≥ +p σ p σ3 ,i i min min then the process is deemed to be out of
control.

• If + ≤ + < +p σ p σ p σ2 3 ,i imin min min min then this is considered to
be the warning state.

3. If + < +p σ p σ ,i i min min re-assign the minimum values: pmin ← pi
and σmin ← σi.

4. ← +i i 1. Continue from 2.

The geometric moving average chart (GEOMMA), introduced by
Roberts [44], assigns weights to each observation such that the weight
of older observations decreases in geometric progression. This biases
the method towards newer observations, improving the adaptability.
Exponentially weighted moving average (EWMA) charts are a pro-
gression of this approach such that the rate of weight decay is con-
tinuous and can be tuned.

The EWMA charts used by Ross et al. [43] expect the initial dis-
tribution to have known parameters, which is a restrictive assumption
in the area of change detection. To address this limitation, the initial
distribution is approximated in advance through regression of the dis-
tributional parameters to achieve a desired average running length
(ARL).

Drift detection method (DDM) [37] is designed to monitor classifi-
cation error using a control chart construction. It assumes that the error
rate will decrease while the underlying distribution is stationary.

Similarly, the early drift detection method (EDDM) [38] is an ex-
tension of DDM which takes into account the time distance between
errors as opposed to considering only the magnitude of the difference,

Table 1
Methods for change detection in univariate data.

Method References Category

SEED [40] Monitoring distributions
ADWIN [8,41] Monitoring distributions
SEQ1 [42] Monitoring distributions
Page-Hinkley [1,8] Sequential analysis
CUSUM1 [1] Sequential analysis
CUSUM2 [8] Sequential analysis
GEOMA [43,44] Control chart
HDDMA [36] Control chart
EDDM [8,38] Control chart
DDM [8,37] Control chart
EWMA [8,43,44] Control chart
HDDMW [36] Control chart

Table 2
Methods for change detection in multivariate data.

Method References Category

SPLL [11] Monitoring distributions
Log-likelihood KL [11] Monitoring distributions
Log-likelihood hotelling [11] Monitoring distributions

2 A number of the control chart methods in MOA are intended for supervised predictive
error monitoring rather than continuous data., however they accept continuous data by
virtue of the ChangeDetector interface. While their assumptions are violated by the
unsupervised experiment, we include their results for demonstrative purposes as MOA
does not make a distinction. The Page–Hinkley detector might be expected to perform
better on a prequential error stream [46], but retains valid assumptions for unsupervised
features.
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which is aimed at improving the performance of the detector on gradual
change. HDDMA and HDDMW are extensions which remove assump-
tions relating the to probability density functions of the error of the
learner. Instead, they assume that the input is an independent and
bounded random variable, and use Hoeffding’s inequality to compute
the bounds [36].

3.1.3. Monitoring two distributions
The methods in this category monitor the distributions of two

windows of data. The basic construction involves a reference window
composed of old data, and a detection window composed of new data.
This can be achieved with a static reference window and a sliding de-
tection window, or a sliding pair of windows over consecutive ob-
servations. The old and new windows can be compared with statistical
tests, with the null hypothesis being that both windows are drawn from
the same distribution.

For fixed-sized windows, their sizes need to be decided a priori,
which poses a problem. A small-sized window discards old examples
swiftly, best representing the current state, but it also makes the method
vulnerable to outliers. Conversely, a large-sized window provides more
stable estimates of the probabilities and other variables of interest, but
takes longer to pick up a change. In order to address this selection
problem, there are a number of approaches for growing and shrinking
sliding windows on the fly [41,47,48].

A widely-used approach of this type is adaptive windowing
(ADWIN) by Bifet and Gavaldà [41]. It keeps a variable-length window
of recently seen examples, and a fixed-size reference window. For the
variable size window, ADWIN keeps the longest possible window
within which there has been no statistically significant change. In its
formulation as a change detector, change is signalled when the differ-
ence of the averages of the windows exceeds a computed threshold.
When this threshold is reached, the reference window is emptied, and
replaced by the variable length window, which is then regrown from
subsequent observations. The SEQ1 algorithm [42] is an evolution of
the ADWIN approach with a lower computational complexity. Cut-
points are computed differently – where ADWIN makes multiple passes
through the window to compute candidate cut-points, SEQ1 only ex-
amines the boundary between the latest and previous batch of ele-
ments. Secondly, the means of data segments are estimated through
random sampling instead of exponential histograms. Finally, the au-
thors employ the Bernstein bound instead of the Hoeffding bound to
establish whether two sub-windows are drawn from the same popula-
tion because the Hoeffding bound was deemed to be overly con-
servative.

In the SEED algorithm by Huang et al. [40], the data comes in
blocks of a fixed size, so the candidate change points are the block’s
starting and ending points. Adjacent blocks are examined and grouped
together if they are deemed sufficiently similar. This operation, termed
‘block compression’, removes candidate change points which have a
lower probability of being true change points. Pooling blocks together
amounts to obtaining larger windows, which in turn, ensures more
stable estimates of the probabilities of interest compared to estimates
from the original blocks. Drift detection is subsequently carried out by
analysing possible splits between the newly-formed blocks.

3.1.4. Multivariate change detectors
Consider a random vector x

�= … ∈x x xx [ , , , ] ,n
T n

1 2

drawn from a continuous stream

… …+x x x, , ,i i N1

We assume that x are drawn from a probability distribution p0(x) up
to a certain point c in the stream, and from a different distribution
thereafter. The objective is to find the change point c. We can estimate
p0 from the incoming examples and compute the likelihoodL px( )0 for

subsequent examples. A successful detection algorithm will be able to
identify c by a decrease of the likelihood of the examples arriving after
c. To estimate and compare the likelihoods before and after a candidate
point, the data is partitioned into a pair of adjacent sliding time-win-
dows of examples, W1 and W2.

The Hotelling detector uses the multivariate T2 test for equal means,
and assumes equal covariance matrices of W1 and W2. Therefore, if the
change of the distribution comes from change in the variances or cov-
ariances in the multidimensional space of the data, the test will be
powerless.

As an alternative, we used a non-parametric change detector based
on the Kullback–Leibler divergence (KL). To this end, the data in W1 is
clustered using k-means into K clusters, = …C C C{ , , }K1 . A discrete
distribution P is defined on C, where each cluster is given a probability
equal to the proportion of examples it holds. The examples in W2 are
labelled in the K clusters by the nearest cluster centroid. The propor-
tions of examples labelled in the respective cluster define the dis-
tribution Q over C, this time derived from the data in W2. If the two
distributions were identical, the KL divergence will be close to 0, and if
they are very different, it will be close to 1. The success on this detector
depends on a wise choice of the number of clusters K relative to the
window sizes and the space dimensionality n. A smaller number of
clusters ensures that there are enough points in each cluster to allow for
reasonable estimates of the probability mass function. On the other
hand, a larger number of clusters allows for better fidelity in approx-
imating the distributions.

Finally, we include in the experiment the semi-parametric log-
likelihood detector (SPLL) [11] as a compromise between the para-
metric detector (Hotelling) and non-parametric detector (KL). SPLL,
like KL, applies k-means clustering to W1 into K clusters. However,
rather than approximating a discrete distribution, the criterion function
of SPLL is derived assuming that we have fitted a Gaussian mixture with
equal mixing proportion and common covariance matrix for the K
clusters. The first part of the statistic of the SPLL detector is propor-
tional to the mean of the squared Mahalanobis distances between each
example in W2 and its nearest cluster centroid. The calculation is re-
peated symmetrically by clustering firstW2, and then assigning labels to
the examples in W1. This gives the second part of the SPLL statistic.
These two parts are subsequently averaged.3

3.2. Ensemble combination of univariate detectors

In order to evaluate univariate approaches on multivariate data, we
adopted an ensemble combination strategy whereby each member
monitors a single feature of the input space. This approach is analogous
to using a subspaces ensemble method with a subspace size of 1, with as
many subspaces and detectors as the dimensionality of the input space.
Using subspaces with a size greater than 1, as in Evangelista et al. [16],
would require combination of multivariate approaches. Fig. 1 shows an
illustration of the ensemble combination scheme. In this set of experi-
ments, the decisions are combined by a simple voting scheme with a
variable threshold. Our naming convention for a single ensemble is as
follows:

DETECTOR - AGREEMENT THRESHOLD (1)

For example, ADWIN-30 refers to an ensemble of univariate ADWIN
detectors, which requires 30% agreement at any given point to signal
change. The multivariate detectors will simply be referred to as, KL,
SPLL and Hotelling, as they are not ensembles.4

3 MATLAB code is available at https://github.com/LucyKuncheva/Change-detection .
4 The ensemble of multivariate detectors is a special case, because, unlike the en-

sembles of univariate detectors, it consists of only three detectors. In this case, the number
of members does not scale with the number of features. As such, there is no benefit in
having a scale of agreement thresholds when there are only ever 3 ensemble members.
We chose 50% as a simple majority out of 3.
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Diversity is an important consideration when building an ensemble,
because it implies that the members will make different mistakes
[49,50] and there have been several analyses of ensemble diversity in
evolving data streams [28,51]. However, unlike in these works, our
ensembles consist of identical detectors. Diversity is introduced through
the differing input to each detector. On a related note, there will be
redundant features in the datasets, which will effect ensemble perfor-
mance. Ideally this would be addressed through a feature extraction
step, but such a measure is both difficult to generalise across datasets
and outside the scope of this paper. As our ensembles are created with
identical members, no one type of detector can gain an advantage in the
results due to drawing many redundant features by chance.

3.3. Experimental protocol

The main experiment of this paper evaluates our multivariate
change detection methods across the 96 datasets in Table 4. We eval-
uate the 3 multivariate detectors – SPLL, KL and Hotelling, an ensemble
of these multivariate detectors, and 84 feature-wise ensembles of the
univariate detectors with varying agreement thresholds, making a total
of 88 detectors. A breakdown of the methods is presented in Table 3.

We note that when the thresholds in Table 3 are utilised on parti-
cularly small ensembles, the lower thresholds will become logically
equivalent. For example, in ensembles with fewer than 20 members, the
5% and 1% thresholds will make the same decisions ( × =20 0.5 1).
Since 43.33% of the datasets have more than 20 features, the difference
in results between these lower thresholds will depend upon the larger
datasets.

All the methods were evaluated against three rates of change:
Abrupt, Gradual 100 and Gradual 300, for which we recorded separate
sets of results. Algorithm 1 is a simplified pseudocode representation of
the experiment. For each leg of the experiment, each detector is eval-
uated 100 times for each dataset. On each of these runs, we choose a
random subset of the classes, and take this subset to represent dis-
tribution p0 (before the change). The subset with the remaining classes
is taken to represent distribution p1 (after the change). Points are then
sampled randomly, with replacement, from the p0 and p1 sets – 500
examples in the abrupt case, 600 and 800 respectively in the gradual
cases. Denote these samples by S1 and S2, respectively. We add a small
random value to each example, scaled by the standard deviation of the
data, to avoid examples that are exact replicas. In the abrupt case, S1
and S2 are concatenated to create a 1000-example test sample with i.i.d
stream from index 1 to 500, coming from p0, followed by an abrupt
change at index 500 to another i.i.d. stream of examples coming from
p1. To emulate gradual change over 100 examples, we take S1 and S2 as
before, but do not concatenate them. At index 500, we sample with
increasing frequency from S2. The chance of an example coming from S1
increases linearly from 1% at index 501 to 100% at index 600. Note that
the class subsets for sampling S1 and S2 were chosen randomly for each
of the 100 runs of the experiment.

As the chosen datasets are not originally intended as streaming data,

our experiment uses the concept that the separable characteristics of
each class are woven throughout the features. Therefore some changes
will be easier to detect than others, introducing variety in our test data.
Even if the sample size is insufficient to detect changes in a given da-
taset, this does not compromise experimental integrity because every
detector faces the same challenge. A detector which performs well on
average has negotiated a diverse range of class separabilities.

Datasets with fewer than 1000 examples will be oversampled in this
experiment, but we found no relationship between the oversampling
percentage of a dataset and our results. Even if this were to hinder or
benefit the task at hand, the challenge is the same for every detector.

We measure the following characteristics for each method, averaged
over the 100 runs each, for abrupt and gradual change on each dataset:

ARL Average running length: The average number of contiguous
observations for which the detector did not signal change.
TTD Time to detection: The average number of observations be-
tween a change occurring and the detector signalling.
NFA The percentage of runs for which the detector did not issue a
false alarm.
MDR The percentage of runs for which the detector did not signal
after a true change.

Based on these characteristics, a good method should maximise ARL
and NFA, and minimise TTD and MDR.

Fig. 2 is the archetype of our result figures. It plots TTD versus ARL
for the detection methods. The grey dots correspond to ensemble
methods, and the highlighted black dots correspond to the individual
detectors (Hotelling, KL, and SPLL). The ideal detector will have

= ∞ARL (500 in our experiment, meaning that no false detection has
been made before the true change happened), and =TTD 0. This de-
tector occupies the bottom right corner of the plot. Dots which are close
to this corner are indicative of good detectors.

The two trivial detectors lie at the two ends of the diagonal plotted
in the figure. A detector which always signals change has =ARL 0 and

=TTD 0, while detector which never signals change has =ARL 500 and
=TTD 500. A detector which signals change at random will have its

corresponding point on the same diagonal. The exact position on the
diagonal will depend on the probability of signalling a change (un-
related to actual change). Denote this probability by p. Then ARL is the
expectation of a random variable X with a geometric distribution (X is
the number of Bernoulli trials needed to get one success, with

1

Features

2

n

Change Detector 1

Change Detector 2

...

Change Detector n

Decision
Fusion

0
1

Fig. 1. An illustration of the ensemble combination scheme. All change detectors are of
the same type, but each monitors a different feature.

Table 3
The ensembles and detectors evaluated in the experiment.

Ensemble Agreement thresholds Count

SEED 1, 5, 10, 20, 30, 40, 50 7
ADWIN 1, 5, 10, 20, 30, 40, 50 7
SEQ1 1, 5, 10, 20, 30, 40, 50 7
PH 1, 5, 10, 20, 30, 40, 50 7
CUSUM1 1, 5, 10, 20, 30, 40, 50 7
CUSUM2 1, 5, 10, 20, 30, 40, 50 7
GEOMMA 1, 5, 10, 20, 30, 40, 50 7
HDDMA 1, 5, 10, 20, 30, 40, 50 7
EDDM 1, 5, 10, 20, 30, 40, 50 7
DDM 1, 5, 10, 20, 30, 40, 50 7
EWMA 1, 5, 10, 20, 30, 40, 50 7
HDDMW 1, 5, 10, 20, 30, 40, 50 7
MV 50 1

Total
85

Multivariate detector Count
SPLL 1
KL 1
Hotelling 1

Total
3
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probability of success p), that is =
−ARL p
p

1 . The time to detection, TTD,
amounts to the same quantity because it is also the expected number of
trials to the first success, with the same probability of success p. Thus
the diagonal =ARL TTD is a baseline for comparing change detectors.
A detector whose point lies above the diagonal is inadequate; it detects
change when there is none, and fails to detect an existing change. We
follow the same archetype for visualisation of the MDR/NFA space. We
plot MDR against 1-NFA for these figures in order to maintain the same
visual orientation for performance. Therefore the ideal detector in this
space is also at point (1, 0), i.e., all changes were detected, and there
were no false alarms.

3.4. A case study

In addition to the main experiment, we conducted a practical case
study on a network intrusion detection dataset. We chose the popular
KDD Cup 1999 intrusion detection dataset, which is available from the
UCI machine learning repository [10]. With a network intrusion da-
taset, the change context is more likely to be longer-lived change from
one concept to another, which could be either abrupt or gradual. The

dataset consists of 4,900,000 examples and 42 features extracted from
seven-weeks of TCP dump data from network traffic on a U.S. Air Force
LAN. During the seven weeks, the network was deliberately peppered
with attacks which fall into four main categories.

• Denial of service (DOS): An attacker overwhelms computing re-
sources in order to deny access to them.

• Remote to login (R2L): Attempts at unauthorised access from a re-
mote machine, such as guessing passwords.

• Unauthorized to root (U2R): Unauthorised access to local superuser
privileges, through a buffer overflow attack, for example.

• Probing: surveillance and investigation of weaknesses, such as port
scanning.

Of these categories, there are 24 specific attack concepts, or 24
classes. This dataset is most commonly interpreted as a classification
task. Viewed as such, it offers some interesting challenges in its defi-
ciencies. For example, there is 75% and 78% redundancy in duplicated
records across the training and testing set respectively [52]. This can
serve to bias learning algorithms toward frequent records. It also has

Table 4
The 96 datasets used in the main experiment. N is examples, n is features and c is classes.

Dataset N n c Dataset N n c

Abalone 4177 8 3 Molec-biol-splice 3190 60 3
Acute-inflammation 120 6 2 Monks-1 556 6 2
Acute-nephritis 120 6 2 Monks-2 601 6 2
Adult 48842 14 2 Monks-3 554 6 2
Annealing 850 31 3 Mushroom 8124 21 2
Arrhythmia 295 262 2 Musk-1 476 166 2
Balance-scale 576 4 2 Musk-2 6598 166 2
Bank 4521 16 2 Nursery 12958 8 4
Blood 748 4 2 oocytes_merluccius_nucleus_4d 1022 41 2
Breast-cancer 286 9 2 oocytes_merluccius_states_2f 1022 25 3
Breast-cancer-wisc 699 9 2 oocytes_trisopterus_nucleus_2f 912 25 2
Breast-cancer-wisc-diag 569 30 2 oocytes_trisopterus_states_5b 898 32 2
Car 1728 6 4 Optical 5620 62 10
Cardiotocography-10clases 2126 21 10 Ozone 2536 72 2
Cardiotocography-3clases 2126 21 3 pPage-blocks 5445 10 4
Chess-krvk 28029 6 17 Pendigits 10992 16 10
Chess-krvkp 3196 36 2 Pima 768 8 2
Congressional-voting 435 16 2 Planning 182 12 2
Conn-bench-sonar-mines-rocks 208 60 2 Ringnorm 7400 20 2
Conn-bench-vowel-deterding 990 11 11 Seeds 210 7 3
Connect-4 67557 42 2 Semeion 1593 256 10
Contrac 1473 9 3 Soybean 362 35 4
Credit-approval 690 15 2 Spambase 4601 57 2
Cylinder-bands 512 35 2 Spect 265 22 2
Dermatology 297 34 4 Spectf 267 44 2
Ecoli 272 7 3 Statlog-australian-credit 690 14 2
Energy-y1 768 8 3 Statlog-german-credit 1000 24 2
Energy-y2 768 8 3 Statlog-heart 270 13 2
Glass 146 9 2 Statlog-image 2310 18 7
Haberman-survival 306 3 2 Statlog-landsat 6435 36 6
Hayes-roth 129 3 2 Statlog-shuttle 57977 9 5
Heart-cleveland 219 13 2 Statlog-vehicle 846 18 4
heart-hungarian 294 12 2 steel-plates 1941 27 7
heart-va 107 12 2 synthetic-control 600 60 6
hill-valley 1212 100 2 teaching 102 5 2
horse-colic 368 25 2 thyroid 7200 21 3
ilpd-indian-liver 583 9 2 tic-tac-toe 958 9 2
image-segmentation 2310 18 7 titanic 2201 3 2
ionosphere 351 33 2 twonorm 7400 20 2
iris 150 4 3 vertebral-column-2clases 310 6 2
led-display 1000 7 10 vertebral-column-3clases 310 6 3
letter 20000 16 26 wall-following 5456 24 4
low-res-spect 469 100 3 waveform 5000 21 3
lymphography 142 18 2 waveform-noise 5000 40 3
magic 19020 10 2 wine 130 13 2
mammographic 961 5 2 wine-quality-red 1571 11 4
miniboone 130064 50 2 wine-quality-white 4873 11 5
molec-biol-promoter 106 57 2 yeast 1350 8 5
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very imbalanced classes, with the smurf and neptune DoS attacks con-
stituting 71% of the data points; more than the ‘normal’ class. We offer
an interpretation of this data as a change detection task.

We evaluated the methods on the testing dataset. Since the data is
sequential, we pass observations in order, one-by-one to each of the
detectors. The objective in our experiment was for the detectors to
identify the concept boundaries. When the concept changes from one
class to another, we record whether this change point was detected.
With this scheme, if we are experiencing a long-lived concept such as a
denial of service attack then after a sufficient number of examples of the
same concept, we would expect the change detection methods to also
detect the changepoint back to the normal class, or to another attack.

One challenge for the change detectors in this interpretation is that
some concepts may be very short-lived, that is, the change in the dis-
tribution is a ‘blip’, involving only a few observations, after which the
distribution reverts back to the original one. Such blips may be too
short to allow for detection by any method which is not looking for
isolated outliers.

4. Results and discussion

Fig. 3 visualises the ARL/TTD space for abrupt and gradual change
type by the categories in the taxonomy by Gama et al. [18]. Each plot
contains all 96 points (one for each data set) of the 88 change detection
methods. Empirically, there is a clear and visible distinction between
the methods in the control chart category, which performed, on
average, worse than chance, and those in the other two categories.
Table 5 confirms that Sequential Analysis and Monitoring distribution
methods were much more likely to exhibit a high ARL. Furthermore,
distribution monitoring methods exhibited considerably lower TTD
whilst being competitive on ARL with Sequential Analysis methods.
Observe the two distinct clusters in the ARL/TTD space for this category
(the triangle marker), and the relative sparsity in-between. We suspect
that this is the effect of gradual change on the TTD statistic. This is
visible between the figures, where we observe that, in the gradual
change experiment, those methods with a high ARL and low TTD
struggle to better a TTD of 50, which is the halfway point of introducing

the gradual change. Those methods with an already low ARL do not
move significantly in the TTD axis between experiments. We suspect
that this is because a low ARL implies an over-eager detector, which in
turn increases the probability that a valid detection is due to random
chance rather than a response to observation of the data.

The bottom two charts in Fig. 3 visualise the NFA/MDR space for
the aforementioned categories. Interestingly, we see a very similar ef-
fect for control chart methods. To understand why the performance of
this category is so poor, we must consider the assumptions of the de-
tectors. This experiment presented the data points directly to the
change detection methods in the ensemble. Specifically, this category
contains EDDM, HDDMA and HDDMW, all of which share a common
ancestor in DDM. Whilst the MOA interface for change detectors ac-
cepts 64 bit floating point numbers, these methods were not intended
for continuous-valued data. As we mention in Section 3.1.2, DDM as-
sumes the Binomial distribution. It also assumes that the monitored
value (e.g., error rate of a classifier) will decrease while the underlying
distribution is stationary. The derived methods also share this as-
sumption, which is fundamentally violated by the nature of the data
presented to them in this experiment.

The top 20 performers averaged over abrupt and gradual change are
summarised in the left half of Table 6. The performers were ranked by
minimum euclidean distance to the ideal points in the ARL/TTD and
NFA/MDR spaces, (500, 0) and (1, 0).

The results for each individual method are summarised in the ARL/
TTD space in Fig. 4, and in the NFA/MDR space in Fig. 5. In the ARL/
TTD space, the SEED and ADWIN detectors were the best performers,
with Page Hinkley, CUSUM2 and SEQ1 showing competitive patterns.
The multivariate detectors exhibited a large standard deviation, sug-
gesting that their performance is related to the suitability of the data –
an observation which would appear to lend further credence to the
conclusions of Allipi et al. [17], as well as our own hypothesis. In the
NFA/MDR space, the winners are the low quorum ensembles of the
SEED and ADWIN detectors. In fact, all the ensembles outside of the
control chart category performed favorably compared to the multi-
variate detectors. Observing the curves of the SEED, ADWIN, Page
Hinkley, CUSUM1, CUSUM2 and SEQ1 detectors across both sets of

for dataset in datasets do
for i = 1, . . ., 100 do

Choose a random subset of the classes as p0;
if abrupt then

Sample 500 examples as S 1 from p0;
else if gradual 100 then

Sample 600 examples as S 1 from p0;
else

Sample 800 examples as S 1 from p0;
end
Sample 500 examples as S 2 from the remaining classes;
Concatenate subsets into ’abrupt’ and ’gradual’ test data;
for detector in detectors do

Evaluate abrupt;
Evaluate gradual 100;
Evaluate gradual 300;

end
end
Store average abrupt metrics;
Store average gradual 100 metrics;
Store average gradual 300 metrics;

end

Algorithm 1. Experimental procedure.
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metrics, we see that the ideal agreement threshold is a case-by-case
problem. The ADWIN ensemble improves almost linearly as we reduce
the agreement threshold, suggesting that the optimum scheme is one
whereby any member of the ensemble has absolute authority to signal a
change. With other ensembles such as SEED and SEQ1, the 1%
threshold is beyond the optimal, with the best ensembles having
thresholds of 5% and 10%, respectively in the NFA/MDR space. It ap-
pears that the optimal choice of threshold differs slightly between the
ARL/TTD space and the NFA/MDR space. There is a clear and expected
effect between abrupt and gradual change on the ARL/TTD space
mostly in the TTD axis, with TTD being marginally lower for abrupt
changes in those detectors whose assumptions are not violated.

Bearing in mind the works of Allipi et al. [17] and Evangelista et al.
[16], we were interested in observing the effects of data dimensionality
on the missed detection rate. Scatterplots of average missed detection
rate against dataset dimensionality, for each category of ensemble and

Over-sensitive
(Always outputs 

Change)

Over-conservative
(Never outputs 
Change)

The ideal detector

Random detector

Fig. 2. Scatterplot of the 88 detector methods in the space (ARL, TTD) for the Abrupt-
change part of the experiment. The three individual detectors are highlighted.

Fig. 3. The three categories of detector, visualised in the ARL/TTD space for the abrupt, gradual 100 and gradual 300 change experiments, respectively. Data points for methods whose
assumptions were violated are greyed out, but retain their category marker.

Table 5
The mean and standard deviation of the metrics for each category.

Method ARL TTD NFA MDR

μ σ μ σ μ σ μ σ

Sequential analysis 433.49 134.28 323.02 187.07 80.21 34.26 59.14 42.26
Control charts 499.93 0.68 486.67 46.14 99.97 0.28 96.46 12.02
Monitoring distributions 435.16 145.36 219.77 176.18 81.07 34.73 29.75 38.82
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for the multivariate detectors, are presented in Fig. 6. The scatter pat-
terns suggest that changes in higher-dimensional spaces are more likely
to be missed.

4.1. The case study

The right half of Table 6 summarises the top 20 performers on the
case study data. As this experiment was a single run, we present the
false positive rate as FPR, instead of the NFA measure. The methods
were ranked by the minimum euclidean distance to the ideal points
(7864.09, 0) and (0, 0) for the ARL/TTD and FPR/MDR spaces re-
spectively. The ideal ARL of 7864.09 was calculated by observing the
ARL of a perfect, ‘cheating’ detector, which signalled immediately for
all changepoints and recorded no false positives. We see a familiar
pattern in the ARL/TTD space, with the SEED, ADWIN and CUSUM-
based methods well represented within the top 20. In the FPR/MDR
space, the winners are primarily low-threshold ensembles. We note that
8 methods; ADWIN-1, ADWIN-5, SEED-1, SEED-5, EDDM-1, pH-1,
GEOMA-1 and EWMA-1 are represented in the top 20 in both spaces.
We also observe that the top ranked ensembles across the two spaces
here differed modestly from the top performers in the main experiment
with the simulated abrupt and gradual changes. The improvement in
performance of control chart-based methods may be due to the in-
cidence of a number of contextually important binary features in this
dataset. The best performing multivariate detectors were ranked 23rd
and 9th in the two spaces respectively. Apart from the high false po-
sitive rates of HDDMW–1 and HDDMA–1, the ensembles were compe-
titive or better than the multivariate detectors on TTD and MDR, and
generally exhibited less false positives. The dominance of the low-
threshold ensembles mirrors their success in the previous experiment,
and suggests that between 1% and 5% agreement is a sensible starting
point when employing this scheme, across a range of different detec-
tors.

5. Conclusions

The results of the experiment and the case study demonstrate the
viability of ensemble combination of univariate change detectors over
multivariate data. Over 96 datasets, ensemble methods frequently
outperformed multivariate detectors in all metrics, especially at low
agreement thresholds. The multivariate detectors did not even feature
in the top 20 overall performers in either space, as seen in Table 6. This
would appear to tally with the conclusions of Evangelista et al. [16].
The SEED and ADWIN detectors appear to be the best suited to en-
semble combination in this manner. Given that the SEQ1 algorithm is
an ADWIN-derivative, we would expect it to exhibit a similar perfor-
mance. We see that it does exhibit very similar performance to the
ADWIN ensembles in terms of missed detections, but it signals far more
eagerly for a higher rate of false alarms. This may be a reflection, as we
noted in Section 3.1.3, of the authors’ choice of the Bernstein bound
over the more conservative Hoeffding bound to set the threshold.

Those detectors which make strong assumptions on the basis that
they are monitoring the error stream of an attached learner were un-
surprisingly poor when applied to raw data in this scheme. This ac-
counts for the worse-than-chance performances of the HDDMA,
HDDMW, EDDM, DDM and EWMA methods.

Upon observation of the results, we note that the ideal agreement
threshold varies between detectors. The curves in Figs. 4 and 5 can be
used to pick a suitable threshold for each of the successful detectors.
Taking ADWIN for example, the lack of movement on the false alarm
rate relative to the threshold changes suggests that an ensemble might
be close to optimal if any member is given absolute authority for sig-
nalling. As a counter example, the SEQ1 ensembles seem to have an
optimal agreement threshold of between 10% and 20%.

We observed empirically that all categories of detectors exhibited a
positive relationship between missed detections and dataset di-
mensionality, as Allipi et al. [17] suggest, albeit to varying degrees.
Evangelista et al. [16] also state that unsupervised learning in sub-
spaces of the data is a means to address the curse of dimensionality.
This is not strongly reflected in Fig. 6, with the multivariate detectors

Table 6
The top 20 performers in the main experiment and the case study. The methods are ranked in the listed 2D spaces by minimum euclidean distance to their respective ideal points, (500, 0),
(1, 0), (7684.09, 0) and (0, 0). The ranks of the multivariate detectors and multivariate ensemble are also shown if they were not represented in the top 20.

Main experiment averages Case study – KDD Cup 1999

# Detector ARL TTD Detector NFA MDR Detector ARL TTD Detector FPR MDR

1 SEED-1 484.18 113.07 SEED-5 0.96 0.05 ADWIN-20 10578.05 327.71 HDDMA-1 0.14 0.07
2 SEED-5 494.00 130.66 ADWIN-1 1.00 0.06 SEED-20 10900.19 648.86 CUSUM1-1 0.03 0.26
3 ADWIN-1 499.67 148.46 ADWIN-5 1.00 0.08 SEQ1-5 10930.04 578.64 CUSUM1-5 0.01 0.31
4 CUSUM2-1 462.10 160.48 SEED-1 0.91 0.03 CUSUM1-30 11153.81 1179.54 HDDMA-5 0.03 0.31
5 ADWIN-5 499.91 165.00 SEED-10 0.98 0.14 SEQ1-1 4291.67 180.79 PH-1 0.01 0.32
6 SEED-10 497.54 172.90 ADWIN-10 1.00 0.15 CUSUM2-5 3462.90 1281.90 CUSUM2-1 0.01 0.32
7 PH-1 477.96 187.96 SEQ1-20 0.94 0.18 ADWIN-10 3094.09 85.84 HDDMW-1 0.32 0.08
8 ADWIN-10 499.94 197.93 PH-1 0.86 0.13 SEED-10 2828.08 74.83 GEOMA-1 0.01 0.33
9 SEQ1-5 463.90 242.38 SEQ1-10 0.79 0.06 DDM-5 13724.94 1974.68 MV-50 0.02 0.36
10 SEQ1-10 478.91 247.84 CUSUM2-1 0.75 0.10 HDDMA-10 2605.21 3357.99 Hotelling 0.02 0.36
11 SEQ1-1 453.59 248.14 ADWIN-20 1.00 0.33 CUSUM1-20 2646.27 3734.60 EDDM-1 0.00 0.37
12 CUSUM1-20 374.97 228.50 SEQ1-5 0.64 0.03 ADWIN-5 741.15 48.96 CUSUM1-10 0.00 0.37
13 CUSUM2-5 484.61 264.66 SEQ1-30 0.98 0.37 SEED-5 682.78 48.51 KL 0.01 0.37
14 ADWIN-20 499.99 268.90 CUSUM2-5 0.89 0.37 EDDM-1 563.22 39.67 SPLL 0.02 0.37
15 SEED-20 499.52 274.41 SEED-20 1.00 0.41 DDM-1 441.54 1494.63 EWMA-1 0.00 0.39
16 PH-5 491.43 293.04 PH-5 0.94 0.41 EWMA-1 541.86 2015.76 DDM-1 0.00 0.39
17 SEQ1-20 494.19 294.23 SEQ1-1 0.54 0.03 SEED-1 229.07 32.73 ADWIN-1 0.01 0.40
18 CUSUM1-10 219.09 114.13 ADWIN-30 1.00 0.50 ADWIN-1 187.46 24.95 SEED-1 0.00 0.41
19 CUSUM1-30 439.02 308.69 CUSUM1-20 0.59 0.34 PH-1 113.59 15.71 SEED-5 0.00 0.43
20 ADWIN-30 499.99 328.74 CUSUM1-30 0.80 0.52 GEOMA-1 108.70 19.54 ADWIN-5 0.00 0.44

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
# Detector ARL TTD # Detector NFA MDR # Detector ARL TTD
21 Hotelling 499.95 432.97 30 Hotelling 0.01 0.01 23 KL ∞ ∞
34 SPLL 484.61 264.66 47 SPLL 0.04 0.04 25 SPLL ∞ ∞
39 MV-50 499.88 497.29 54 MV-50 1.00 1.00 26 MV-50 541.86 2015.76
47 KL 57.02 56.73 68 KL 0.86 0.13 27 Hotelling 9137.79 8020.57
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Fig. 4. Change detection methods in the space spanned by ARL and TTD for the main experiment. Each method has been examined with different agreement thresholds. Each plot
contains 88 gradual and 88 abrupt detector points, averaged across the 96 data sets – gradual 300 as a blue x (darkest), linked to the paired gradual 100 result as a purple + and the abrupt
result as a cyan * (lightest). Each detector’s points are highlighted, again in blue, purple and cyan for gradual 300, gradual and abrupt change type, respectively. The shaded ellipses
around the mean detector results are the standard deviations across the 96 datasets. The ideal point is (500, 0). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

W.J. Faithfull et al. Information Fusion 45 (2019) 202–214

211



Fig. 5. Change detection methods in the space spanned by NFA and MDR for the main experiment. Each method has been examined with different agreement thresholds. Each plot
contains 88 gradual and 88 abrupt detector points, averaged across the 96 data sets – gradual 300 as a blue x (darkest), linked to the paired gradual 100 result as a purple + and the abrupt
result as a cyan * (lightest). Each detector’s points are highlighted, again in blue, purple and cyan for gradual 300, gradual 100 and abrupt change type, respectively. The shaded ellipses
around the mean detector results are the standard deviations across the 96 datasets. The ideal point is (1, 0). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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appearing to exhibit the weakest relationship of missed detections with
dimensionality. However, the ensembles had a much wider spread of
results, and the better ensembles considerably outperformed the mul-
tivariate detectors.

The experimental results invite many avenues of future work. The
application of existing work on feature extraction, weighting or selec-
tion could change the optimal ensemble thresholds by removing re-
dundant features. Ensembles could be tailored to the type and rate of
the expected changes in the data stream, incorporating domain-specific
knowledge rather than the generic approach here. The numerous uni-
variate change detection approaches not considered within this paper
can be evaluated in similarly constructed ensembles.
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