
A MATLAB Exercise Book
Ludmila I. Kuncheva and Cameron C. Gray

MATLAB R© is a registered trademark of Mathworks Inc. in the United States and elsewhere. All other marks are trademarkand copyright of their respective owners.
All rights reserved. No reproduction, copy or transmission of this publication may be made without written permissionfrom the authors. No portion of this publication may be reproduced, copied or transmitted save with written permission inaccordance with the provisions of the Copyright, Designs and Patents Act 1988 or any licence permitting limited copyingissued by the Copyright Licensing Agency, Saffron House, 6-10 Kirby Street, London EC1N 8TS.
Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civilclaims for damages.
The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designsand Patents Act 1988.

Copyright c© 2020 by Ludmila I. Kuncheva and Cameron C. GrayISBN 978-0-244-25328-8Second Edition

Preface to the second edition

This is still a book containing exercise problems in MATLAB. The collection of problems covers basictopics and is meant to stimulate student’s creativity in designing and implementing algorithms.
The respective elements of the language are briefly covered before the exercise section of eachchapter.
In this edition:
• We have revised the problem selection in view of some changes in the new MATLAB releases.
• Solutions are provided for all even-numbered problems.
• We realised that the cost of the book does not make it suitable as an exercise notebook, so weremoved the spaces left for notes.

The reader should be aware that there are many ways to solve a problem, and the solutions that weoffer in this book are not necessarily the shortest or the most time-efficient ones. Some solutions arechosen for their readability. Like most programming languages, MATLAB is developing from versionto version, and some of the commands explained and used here may alter in syntax or functionality inthe future.
The book could be useful for MATLAB course instructors as a set of ideas and examples to draw uponwhen creating their own collections of problems.

Ludmila Kuncheva and Cameron Gray
Bangor, January 14, 2020

Preface to the first edition

The book is meant to be used for exercise by the students taking module ‘Algorithm Design withMATLAB’ at the School of Computer Science, Bangor University, UK. The module does not go intogreat details about MATLAB capabilities. Most topics are taught within one or two hour-long lectures.It is difficult to go beyond the basics and into the exciting topics such as image edge detection andsegmentation, statistical analyses or intricate graphical user interfaces. Consequently, the exercises atthe end of the chapters are meant to stimulate the student’s ability to solve problems using the limitedsubset of the language rather than test their expertise in mastering MATLAB.
Some of the problems assume knowledge of elementary algebra and geometry, or specific algorithmssuch as bubble sorting, Monte Carlo and evolutionary algorithms. However, we kept the expositionsimple and self-contained, so that the book can be useful for a reader with minimal technical ormathematical background.
The problems are of different difficulties. Some can be used in class tests or exams, while othersrequire more time and effort, and are more suitable for coursework. Solutions are provided only forthe examples in each chapter. Because the book is intended to be a personal hard-copy, we have leftspaces for handwritten answers and notes as shown below.

We enjoyed writing this book and hope that you will enjoy the intellectual workout.
Ludmila Kuncheva and Cameron Gray

Bangor, June 17, 2014

Contents

1 Getting Started 11.1 MATLAB . 11.2 Programming Environment . 11.2.1 Environment Layout and File Editor . 11.2.2 Running Your Code . 21.2.3 Getting Help . 31.2.4 Tips . 31.2.5 Good Programming Style and Design Practices . 31.3 MATLAB as a Calculator . 41.4 Exercises . 5
2 MATLAB: The Matrix Laboratory 72.1 Variables and Constants . 72.1.1 Value Assignment . 72.1.2 Names and Conventions . 82.2 Matrices . 82.2.1 Creating and Indexing . 82.2.2 Accessing Matrix Elements . 92.2.3 Visualising a Matrix . 112.2.4 Concatenating and Resizing Matrices . 112.2.5 Matrix Gallery . 122.3 The Colon Operator . 132.4 Linear spaces and mesh grid . 142.5 Operations with matrices . 162.6 Cell Arrays . 172.7 Exercises . 18
3 Logical Expressions and Loops 233.1 Logical Expressions . 233.1.1 Representation . 233.1.2 Type and order of operations . 233.2 Indexing arrays with logical indices . 253.3 MATLAB’s logical functions and constructs . 263.3.1 Logical functions . 263.3.2 Conditional operations . 26

3.4 Loops in MATLAB . 273.4.1 The for loop . 273.4.2 The while loop . 293.5 Examples . 293.5.1 Brute Force Sorting . 293.5.2 When is a while loop useful? . 303.6 Exercises . 31
4 Functions 364.1 Syntax . 364.2 Naming . 374.3 Multiple Functions . 374.4 Inline (Anonymous) Functions and Function Handles . 374.5 Recursion . 384.6 Exercises . 39
5 Plotting 415.1 Plotting Commands . 415.1.1 Plot . 415.1.2 Fill . 425.2 Examples . 445.3 Exercises . 46
6 Data and Simple Statistics 536.1 Random Number Generation . 536.2 Simple statistics and plots . 536.3 Examples . 546.4 Exercises . 56
7 Strings 697.1 Encoding . 697.2 Useful String Functions . 707.3 Examples . 707.3.1 Imaginary Planet Names . 707.3.2 String Formatting . 717.4 Exercises . 72
8 Images 788.1 Types of Image Representations . 788.1.1 Binary Images . 788.1.2 RGB Images . 78

8.1.3 Grey Intensity Images . 798.1.4 Indexed Images . 808.2 Useful Functions . 808.3 Examples . 818.3.1 Image Manipulation . 818.3.2 Tone ASCII Art . 838.4 Exercises . 84
9 Animation 959.1 Animation Methods . 959.2 Mouse Control . 969.3 Examples . 979.3.1 Shivering Ball . 979.3.2 Three Moving Circles . 989.3.3 A Fancy Stopwatch . 999.4 Exercises . 100
10 Graphical User Interfaces - GUI 11010.1 Programming GUIs . 11010.2 Examples . 11110.2.1 One Colour Button . 11110.2.2 Disappearing Shapes . 11210.2.3 Catch-me-up Game . 11310.3 Exercises . 114
11 Sounds 12511.1 Sounds as Data . 12511.2 Exercises . 127
12 Solutions 132

Index 172

Chapter 1

Getting Started

1.1 MATLAB

MATLAB R© is a software package designed for mathematical and scientific computing. It is alsoa development environment and a programming language. Its primary specialisation is efficientlyhandling matrix and vector mathematics.
1.2 Programming Environment

1.2.1 Environment Layout and File Editor

Figure 1.1 shows a version of the default MATLAB programming environment. It consists of four spaces:(1) the MATLAB Command Window with the MATLAB prompt sign », (2) the Workspace displaying thevariables in the MATLAB memory, (3) the Current folder box showing the folder’s content, and (4) theCommand history box showing a list of recent commands.

(1) Command window

(2) Workspace
(memory)

(3) Current
folder

(4) Command
history

Navigate to the desired folderCreate a new file

Figure 1.1: Default Layout of the MATLAB Programming Environment.
Although MATLAB can execute commands typed straight in the Command Window, it is best to storethe code in a bespoke ‘m file’ or MATLAB script. A navigation button (top right in Figure 1.1) allows

1

2 CHAPTER 1. GETTING STARTED
the user to choose a folder where the work will be stored. Click on the ‘New file’ icon at the top leftcorner. The editor window appears as shown in Figure 1.2.1

Run the whole file from here Run a cell from here

Figure 1.2: The editor window.
1.2.2 Running Your Code

A set of MATLAB commands can be executed by one of the following ways
1. Type the commands directly in the MATLAB Command Window.
2. Highlight and copy the commands from the editor window and paste them in the CommandWindow.
3. Highlight the commands in the editor window and press function key F9 . For Apple/OS Xmachines, you should use + F7 (by default you will also need to hold the fn key to avoidthe ‘special’ meaning of F7).
4. Run the file with the commands in the editor window from the run icon, as indicated in Figure 1.2.At the first run, MATLAB will ask you to save the file if you have not done this already. All thecommands in the editor will be carried out in the order of appearance.
5. Save the file and run it by typing its name at the prompt in the Command Window. Make surethat the file is in the current folder or there is a path to the folder where the file is saved. The filenames and variable names in MATLAB must not start with a number, and must not contain specialsymbols except for the underscore symbol. For example, your file can be named lab4_Q2.m.Then by typing lab4_Q2 at the » prompt, MATLAB will run the code within.

There is yet another way to execute a part of your code. A section in the code can be executed onits own from the icon indicated in Figure 1.2. A section is delineated by a double percentage symbol
1This may differ in newer releases of MATLAB.

CHAPTER 1. GETTING STARTED 3
followed by a space, ‘%% ’. By placing the cursor within the section and pressing the Run-Sectionicon, MATLAB will run the code from the beginning of the section to the next section or the end of thecode, whichever it encounters first.
If you want to stop your code running, press Control-C in the Command Window.
1.2.3 Getting Help

MATLAB has an extensive on-line help system. In addition to the Help item in the menu, MATLABoffers the help command. This command requires a single parameter, the name of the command youwish to get help with. For example, help sin prints the help article about the command sin directlyinto the Command Window starting: -
SIN Sine of argument in radians.

SIN(X) is the sine of the elements of X.

Further on you can use the various options in the Help menu.
1.2.4 Tips

The ‘Mantra’: Start your code by clearing the MATLAB memory (the workspace) using clear, closingpreviously opened figures using close all, and clearing the Command Window using clc. The threelines are shown in Figure 1.2 and reproduced here for ease of reference.
clear % Clear MATLAB Workspace Memory

close all % Close all Figures and Drawings

clc % Clear MATLAB Command Window History

Storing the Content of the Command Window: MATLAB command diary <file_name.txt>dumps the content of MATLAB Command Window in the file with the specified name, in ASCII textformat. All subsequently typed commands and MATLAB answers will be stored there. To end therecording of the MATLAB window dialogue, type diary off at the Command Window prompt.
Error Messages: MATLAB displays errors in the Command Window, in red. Always read the errormessage. It is often a spot-on indication of what is wrong.
1.2.5 Good Programming Style and Design Practices

1. Strive to create readable source code through the use of blank lines, comments and spacing. Itis important to put short and meaningful comments. This will help you read your code at a laterdate.
2. Use consistent naming conventions for variables, constants, functions and script files.

4 CHAPTER 1. GETTING STARTED
3. Use consistent indentation as provided by the MATLAB editor window. (Highlighting the textwith the cursor and choosing Text Smart Indent will reflow your script automatically, or use theshortcut ctrl + I on Windows / + I for OS X.
4. Split your code into readable pieces. Use functions and separate script files where necessary.
5. Limit the creation of unnecessary variables in your code. Aim at minimum script length withmaximum simplicity and clarity.
6. Where suitable, use variables instead of hard-coded values as loop limits and array sizes. Thiswill make your code re-usable.
7. When you feel that things are getting out of control, start over.

1.3 MATLAB as a Calculator

Table 1.1 shows the syntax of some frequently used MATLAB mathematical operations.
Table 1.1: MATLAB operations

Operation Symbol Example Maths OutputAddition + 4 + 7 4 + 7 11Subtraction − 12.3 - 5 12.3− 5 7.3000Multiplication ∗ 0.45 * 972.503 0.45× 972.503 437.6264Division / 5 / 98.07 598.07 0.0510Power ^ 4^7.1 47.1 1.8820e+004Square Root sqrt() sqrt(15)
√15 3.8730Logarithm∗ log() log(0.67) ln(0.67) -0.4005Exponent exp() exp(-2.1) exp(−2.1) = e−2.1 0.1225Sine∗∗ sin() sin(0.8) sin(0.8) 0.7174Cosine∗∗ cos() cos(-2) cos(−2) -0.4161

∗ natural logarithm
∗∗ the arguments for all trigonometric functions are in radians

You can type numerical expressions directly at the Command Window prompt and receive the answerafter pressing Enter. For example, type the expression below at the Command Window prompt followedby Enter. The answer will be shown in the Command Window, as well as stored in a variable ans.(Note: ans is replaced by the result of each expression that is not already assigned to a variable.)
>> (941 - 5.9)/(41 - sqrt(19))

ans =

25.5205

CHAPTER 1. GETTING STARTED 5
The default display precision of MATLAB is 4 decimal places but the numbers are stored in memorywith a much greater precision (double precision, 64-bits/17 significant figures).
The following list of operations can be used to convert real numbers into integers:
round(a) Rounds a using the standard rounding rules.
ceil(a) Returns the nearest integer greater than or equal to a.

floor(a) Returns the nearest integer smaller than or equal to a.For example, round(3.7) = ceil(3.7) = 4, and floor(3.7) is 3. If a is an integer, thenceil(a) = floor(a) = a.
MATLAB operations may be applied to matrices as well. All operations which are done element-by-element, for example addition, subtraction and multiplication by a number, have the same syntaxfor both scalars and matrices. The same holds for the trigonometric functions, the logarithm and theexponent. For the multiplication division and power, the matrix operation may be interpreted in twoways. Hadamard product denotes an operation where the matrices are of the same size, and theentries of the resultant matrix are the pairwise products of the elements of the two matrices. MATLABuses ∗ for ‘proper’ matrix multiplication, and .∗ for the Hadamard product. The same holds for divisionand powers. Element-wise operations are preceded by a dot, for example, ‘.∗’, ‘./’ and ‘.ˆ’.
1.4 Exercises

1. Create a standard template for your lab scripts. Put in the heading your name, username andthe module title. Save the file with name
labXX_<NameSurname>_<ddmmyy>.m

inserting your name and today’s date. When you run it, the code should clear the memory andthe Command Window, and should close any currently open figures.
2. Using only the MATLAB Command Window, find out what the command imagesc does.
3. Demonstrate by using several values of angle θ that:

sin2(θ) + cos2(θ) = 1 .
4. Use one MATLAB line to evaluate the expression below:√ (4.172 + 9.131844)3 − 18

−3.5 + (11.2− 4.6) ∗ (7− 2.91683)−0.4

6 CHAPTER 1. GETTING STARTED
5. The short-cut calculation for the binomial coefficient (nk) is:

(
n
k

) =
k terms︷ ︸︸ ︷

n× (n− 1)× (n− 2)× ...(n− k + 1)
k × (k − 1)× (k − 2)× ...× 2× 1

Using the short-cut calculation, evaluate (134)(105) and verify your answer using MATLAB command
nchoosek.

6. Verify that the exponent (exp()) and natural logarithm (log()) are inverses of one another(cancel one another).
7. Without using the square root (sqrt()) or the power command (^) find the square root of 555with precision 4dp. To back your solution, copy the Command Window dialogue. You should saveboth your typed commands and the MATLAB responses.
8. Use MATLAB as a calculator to find the root of the equation:

0.5(x − 2)3 − 40 sin(x) = 0
within the interval [2, 4]. You are not allowed to plot the function and gauge the answer fromthe graph. Give the solution with precision 2dp. To document your solution, copy the CommandWindow dialogue. You should save both your typed commands and the MATLAB responses.

Chapter 2

MATLAB: The Matrix Laboratory

MATLAB was created as a scientific tool to make matrix algorithms more efficient and easier to program.Therefore, almost every operation is optimised to work with matrices.
2.1 Variables and Constants

2.1.1 Value Assignment

Variables and constants (scalars) in MATLAB do not have to be declared at the beginning of the codeas in other languages. Values can be assigned to them in a straightforward assignment operation, forexample,
my_first_MATLAB_variable = -1.23456789;

m = 12;

string_example = ’My first MATLAB string’;

raining_tomorrow = true;

MATLAB will create four variables and store the values in memory. The variables can be seen in theWorkspace window of the MATLAB environment.
The semicolon at the end of the assignment operation suppresses the output in the Command Windowbut has no effect on the assignment itself. You can display the value of any existing variable by typingits name at the MATLAB prompt in the Command Window. For example, typing m will return 12,and typing raining_tomorrow will return 1. MATLAB stores true values as 1 but will accept anynon-zero value as ‘true’; a 0 value is used for ‘false’.
A neater way to display a string or the content of a variable in MATLAB Command Window is thecommand disp. This command takes only one argument, which evaluates to a number or a string.For example,
>> x = 9;

>> disp(’The value of x is:’)

>> disp(x)

7

8 CHAPTER 2. MATLAB: THE MATRIX LABORATORY
MATLAB has several predefined constants that can be used in place of variables or values inexpressions. The following is a small selection of some of the most useful ones:

pi π
i Imaginary number √−1.

eps The smallest number, ε , determined by machine precision.
Inf The largest number, ∞.
NaN Not a Number. Undefined numerical result.

2.1.2 Names and Conventions

A valid variable name starts with a letter, followed by letters, digits, or underscores. Note that MATLABis case sensitive.
When choosing a variable name, it is best to avoid words which could be MATLAB commands orreserved words such as: if, end, for, try, error, image, case, plot, all, and so on. If you do this, youwill (temporarily) erase the MATLAB command of the same name which you may need later in yourcode.
Interestingly, variables which are used for loop indices are often chosen to be i, j or k. This conventionis probably a FORTRAN legacy where variables holding integer values must have names starting withone of the letters I, J, K, L, M or N. FORTRAN variables starting with any other letter are understoodto be ‘real’ or floating point numbers. There is no such convention in MATLAB.
2.2 Matrices

2.2.1 Creating and Indexing

Let us start with an example of a two-dimensional matrix (array) A with m = 3 rows and n = 2columns. The matrix can be entered into MATLAB memory (working space) as follows: -
>> A = [6 3; 5 2; 4 1];

A =

6 3

5 2

4 1

The semicolon serves as ‘carriage-return’, separating the rows of A from one another.
The size of a matrix A can be found using size(A). For a scalar, the size command will return anarray with two values: 1 (number of rows) and 1 (number of columns). For matrix A, the MATLABanswer will be 3 and 2.
>> size(A)

ans =

CHAPTER 2. MATLAB: THE MATRIX LABORATORY 9
3 2

Vectors are matrices where either m = 1, n > 1 (vector-row) or m > 1, n = 1 (vector-column). Matricesmay have third, fourth dimension, and so on. For example, images can be represented as three panelsfor the red, green and blue colours, respectively. Each panel is a matrix of m rows and n columnsof pixels. Hence an image is a 3-dimensional matrix1 of size m × n × 3. Matrices can be indexed(or subscripted in MATLAB terms) just like in other programming languages, except that in MATLAB,indices begin at 1. Figure 2.1 shows a parallel between array access in Java and in MATLAB.
Array Access from Java Array Access from MATLAB

Simple Array One-dimensional Array

-jArray[0]

-jArray[1]

-jArray[2]

-jArray(1)

-jArray(2)

-jArray(3)

Array of Arrays

jArray[0][3] jArray(1,4)

Two-dimensional Array

jArray[0][4][2]

Array of Arrays of Arrays Three-dimensional Array

jArray(1,5,3)

Figure 2.1: Illustration of MATLAB Matrix Dimensions. (Recreated from the MathWorks’ image.)
2.2.2 Accessing Matrix Elements

There are several ways to access individual elements of an array. Consider matrix A from the exampleabove. Each element can be accessed using its row and column indexes. For example, the element inrow 3 column 1 holds the value 4. The line below stores this element in variable ele.
>> ele = A(3,1)

ele =

1Described in more detail later, in Section 8.1.2.

10 CHAPTER 2. MATLAB: THE MATRIX LABORATORY
4

Alternatively, two-dimensional matrices can be indexed with only one index which goes from 1 to m×n.Consider a vector-column constructed by putting the consecutive columns of the matrix underneath theprevious column. For example, arranging A this way will result in, the vector-column [6, 5, 4, 3, 2, 1]T .Therefore, A(5) would return the value 2.
One of the main assets of MATLAB is that a set of elements in a matrix can be addressed simultaneously.For example:-
>> A([1 4 5])

ans =

6 3 2

Elements in a matrix can be addressed through logical indexing. We’ll come back to this method inSection 3.1. Consider here the following example involving matrix A above. First, create a matrix Lof the same size as A, containing logical values. Addressing A with L, as A(L) will extract only theelements of A where L contains a true value.
>> L = [true false;true true;false false]

L =

1 0

1 1

0 0

>> A(L)’

ans =

6

5

2

A value can be assigned to an element of a matrix by the simple assignment operator, for example;
>> A(3,1) = -9

A =

6 3

5 2

-9 1

MATLAB will also allow assignment of multiple values in one operation. For example, to replace theelements addressed through L by value 25, we can use:
>> A(L) = 25

A =

25 3

25 25

-9 1

CHAPTER 2. MATLAB: THE MATRIX LABORATORY 11
Better still, you can use three different values to replace the addressed elements. For example:-
>> A(L) = [55,111,222]

A =

55 3

111 222

-9 1

In addition, you can extract the desired elements in any order and with any number of copies. Forexample, take two copies of element #6 followed by three copies of element #1.
>> A ([6 6 1 1 1])

ans =

1 1 55 55 55

2.2.3 Visualising a Matrix

A matrix can be visualised in MATLAB by transforming it into an image. Each element of the matrixbecomes a pixel. Elements of the same value will have the same colour. Try the following code:
A = [1 2 3 4;5 6 7 8;9 10 11 12]; % creates matrix A

figure % opens a new figure window

imagesc(A) % transforms and shows the matrix as an image

axis equal off % equalises and removes the axes from the plot

See Chapter 8 for more detailed information, examples and exercises dealing with images andvisualising matrices.
2.2.4 Concatenating and Resizing Matrices

If the dimensions agree, matrices can be concatenated using square brackets. Figure 2.2 shows anexample.

0 0

A = [1 2;3 4;5 6] % matrix 3-by-2

B = [7 8;9 10] % matrix 2-by-2

C = [A;B] % concatenated, 5-by-2

D = [A [B;0 0]] % concatenated, 3-by-4

1 2
3 4
5 6

7 8
9 10

1 2
3 4
5 6
7 8
9 10

1 2
3 4
5 6

7 8
9 10

C DBA

Figure 2.2: An example of matrix concatenation.
A matrix can be used as a ‘tile’ to form a repeated pattern using the repmat command. For example,let A be a 2×3 matrix. The code below uses A as a tile and repeats it in 3 rows and 2 columns.

12 CHAPTER 2. MATLAB: THE MATRIX LABORATORY
>> A = [0 1 2;-2 -1 0] % 2-by-3 matrix

A =

0 1 2

-2 -1 0

>> B = repmat(A,3,2)

B =

0 1 2 0 1 2

-2 -1 0 -2 -1 0

0 1 2 0 1 2

-2 -1 0 -2 -1 0

0 1 2 0 1 2

-2 -1 0 -2 -1 0

A matrix can be reshaped using the reshape command. The new matrix must have exactly the samenumber of elements. The way this command works is illustrated in Figure 2.3.
A = [1 2 3 4

5 6 7 8

9 10 11 12]

B = reshape(A,6,2)

1 2 3 4
5 6 7 8
9 10 11 12

number of rows
(new matrix)

A

number of columns
(new matrix)

1
5
9
2
6
10
3
7
11
4
8
12

1 3
5 7
9 11
2 4
6 8

10 12

B

concatenate
(column-by-column)

Figure 2.3: An example of matrix reshape.
Notice that the input matrix is first concatenated into a vector-column, taking consecutive columnsand placing them underneath the last. The output matrix is constructed column by column, takingconsecutive values from the vector-column.
2.2.5 Matrix Gallery

MATLAB offers a wealth of predefined matrices. A useful subset of these is shown below:
zeros(3,2) 0 00 00 0

ones(3) 1 1 11 1 11 1 1

eye(3) 1 0 00 1 00 0 1

rand(3,4) 0.9649 0.9572 0.1419 0.79220.1576 0.4854 0.4218 0.95950.9706 0.8003 0.9157 0.6557

If a square matrix is required, one input argument will suffice, for example, ones(3). This is both thenumber of rows and the number of columns. The identity matrix is square by definition, hence eye()

CHAPTER 2. MATLAB: THE MATRIX LABORATORY 13
only takes one input argument. Otherwise, the matrix is created with the specified number of rowsand columns. These matrices can be generated in more than two dimensions.
In the matrix with random numbers, all values are drawn independently from a uniform randomdistribution in the interval [0,1].
2.3 The Colon Operator

The primary use of the colon operator is to create ranges. The basic form of a range is
start:increment:end. The increment parameter is optional, and by default is 1. For example, tocreate a vector-row x with all integers from 1 to 10, you can use:
x = 1:10

x =

1 2 3 4 5 6 7 8 9 10

The three components of the colon operator do not have to be integers, nor must they be positive. Forexample;
>> y = -1.7:0.81:2.452

y =

-1.7000 -0.8900 -0.0800 0.7300 1.5400 2.3500

The vectors generated by the colon operators are row-vectors. The vector contains as many elements asnecessary to increase the start value by the increment value to reach the end value without exceedingit. For example:-
>> 1:10:55

ans =

1 11 21 31 41 51

Matrices can be addressed with vectors created by the colon operator. The vector can be embeddeddirectly as the index;
>> x = 2:4:20;

>> Y = [x;2*x]

Y =

2 6 10 14 18

4 12 20 28 36

>> Y(1,2:4)

ans =

6 10 14

In this example, the addressed values are in row 1, and columns 2, 3 and 4.
One particularly useful form of the colon operator is for defining the whole range within a matrixdimension. For example, Y(:,2) will return all elements in column 2 of Y . In this case, ‘:’ means ‘all’(rows):

14 CHAPTER 2. MATLAB: THE MATRIX LABORATORY
>> Y(:,2)

ans =

6

12

The colon operator on its own, A(:), reconfigures matrix A into a column vector by placing eachcolumn below the last. For example;
A =

9 6 3

8 5 2

7 4 1

>> A(:)

ans =

9

8

7

6

5

4

3

2

1

2.4 Linear spaces and mesh grid

Instead of creating a range through start, offset and end, sometimes it is easier to specify the start andthe end values, and the number of elements of the desired vector. For example, to create a vector with7 uniformly spaced elements between 0 and 1, you can use:-
>> x = linspace(0,1,7)

x =

0 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000

This command ensures that x(1) = 0 and x(7) = 1.
Sometimes we need to generate all (x, y) coordinates of the points on a grid. Suppose that the gridspans the interval from 2 to 12 on x and has 4 points, and the interval from −1 and 6, and has 5points on y. The meshgrid command can be used for generating simultaneously the x and the ycoordinates:

CHAPTER 2. MATLAB: THE MATRIX LABORATORY 15
>> [x,y] = meshgrid(linspace(2,12,4), linspace(-1,6,5))

x =

2.0000 5.3333 8.6667 12.0000

2.0000 5.3333 8.6667 12.0000

2.0000 5.3333 8.6667 12.0000

2.0000 5.3333 8.6667 12.0000

2.0000 5.3333 8.6667 12.0000

y =

-1.0000 -1.0000 -1.0000 -1.0000

0.7500 0.7500 0.7500 0.7500

2.5000 2.5000 2.5000 2.5000

4.2500 4.2500 4.2500 4.2500

6.0000 6.0000 6.0000 6.0000

Try the following example with the meshgrid and linspace commands.2
clear all; close all; clc

[x,y] = meshgrid(linspace(2,12,4), linspace(-1,6,5));

figure, hold on, grid on % open and hold a figure with a grid

surf(x,y,x.*y) % plot the surface of function x*y

surf(x,y,zeros(size(x))) % plot the plane of the zero-"ground"

stem3(x,y,x.*y,’k*-’) % plot stems at all grid points from ground to surface

rotate3d % allow for rotation of the figure with the mouse

Figure 2.4 shows the MATLAB output for the above piece of code. Using the mouse, you can rotate theplot in the MATLAB figure.

Figure 2.4: Example of using ‘meshgrid’.
2Plotting will be detailed later in Chapter 5.

16 CHAPTER 2. MATLAB: THE MATRIX LABORATORY
2.5 Operations with matrices

Table 2.1 shows some often used MATLAB operations on matrices.
Table 2.1: MATLAB operations for matrices

Operation Symbol Example OutputAddition/Subtraction +/− A +/- B Sum/Difference of the two matricesAddition of a scalar +/− A - 9 Subtracts 9 from each element of AMultiplication by a scalar ∗ 4*A Multiplies every element of A by 4Matrix multiplication ∗ A*B Matrix multiplicationHadamard product .∗ A.*B Element-wise multiplication of A and BThe following numerical operations are carried out on every element of the matrix:power (.^), square root, logarithm, exponent, sine, cosine.
Table 2.2 contains a list of MATLAB functions which operate on matrices.

Table 2.2: MATLAB functions for matrices
Command Return

a’ Transpose of a
find(a) Indices of all non-zero elements in a.

fliplr(a) Matrix a, flipped horizontally
flipud(a) Matrix a, flipped vertically.

inv(a) Inverse of a
min(a) Minimum-valued element of a. †
max(a) Maximum-valued element of a. †

numel(a) The number of elements of a.
repmat(a,m,n) A matrix where matrix a is repeated in m rows and n columns
reshape(a,m,n) Matrix a reshaped into m rows and n columns.

size(a) The size of a (#rows, #columns, ...)
sort(a) Vector a sorted into ascending order. †
sum(a) Sum of elements of a. †

unique(a) The list of unique elements of a in ascending order.
† For a matrix, the operation will be carried out separately on each column. For a vector (row or column), theoperation will be carried out on the vector.
In addition to the minimum or maximum values returned by the respective commands, MATLAB returnsthe exact index where this value has been encountered. For example,
a = [3 1 9 5 2 1];

m = max(a)

CHAPTER 2. MATLAB: THE MATRIX LABORATORY 17
returns 9 in m. If however, the command is invoked with two output arguments:
[m,i] = max(a)

MATLAB will return 9 in m and 3 in i because a(3) holds the largest value 9. Recent versions ofMATLAB (after 7.9, 2009b) allow for replacing unnecessary arguments with a tilde (∼). If only the placeof the maximum is of interest, you can use:
[~,i] = max(a)

If a minimum or a maximum value appears more than once in the array, only the index of the firstoccurrence will be returned. In the example above, the minimum value 1 sits in positions 2 and 6. Only2 will be returned as the second output argument of the min command.
Similarly, the sort command returns as the second argument a permutation of the indicescorresponding to the sorted vector. For example,
>> [s,p] = sort(a)

s =

1 1 2 3 5 9

p =

2 6 5 1 4 3

In this example, s contains the sorted a. p(1) is 2 because the first occurrence of the minimumelement 1 is at position 2. The next smallest element is the 1 at position 6, hence the second entry in
p. The third smallest element, 2, is in position 5, and so on.
2.6 Cell Arrays

A cell array is a data structure which can contain any type of data. For example, the code below createsa cell array C of size 2×2 which contains strings, arrays and numerical values as its elements.
>> C = {1,’Joey’;zeros(3),[false true;true true]}

C =

[1] ’Joey’

[3x3 double] [2x2 logical]

The elements can be accessed using parentheses as with numerical arrays.
>> C(2,1)

ans =

[3x3 double]

The element is returned as a cell. If you want to access the content of the cell, use braces { } insteadof parentheses ():

18 CHAPTER 2. MATLAB: THE MATRIX LABORATORY
>> C{2,1}

ans =

0 0 0

0 0 0

0 0 0

2.7 Exercises

1. Create a 4× 1 column vector, that contains any values of your choosing.
2. Create a cell array of 8 elements such that element i contains the identity matrix of size i,
i = 1, . . . , 8.

3. Use one MATLAB command to evaluate the sine of 30o, 45o, 60o, and 120o. Subsequently, evaluatecosine, tangent and cotangent of the same angles.
4. Find the sum of the integers from 1 to 100.
5. Create an example to demonstrate that matrix multiplication is not commutative.
6. Create an example to demonstrate that the following equation holds;

(ABC)T = CTBTAT ,

where A, B and C are matrices of different sizes, and the product ABC is feasible.
7. Evaluate the following expression: 6

 10 −7 6 −90 −1 10 77 9 4 9
− 8

 4 −2 5 −96 4 −9 −85 −6 −4 7

×

 5 4 −7 −36 4 0 2
−4 −6 10 −5

T

8. Create a 1 × 6 vector v containing the integer values from 20 to 25. Subsequently, create an1× 6 vector whose values are equal to 5 times the values in v .
9. Create a vector that goes at equal steps from −2 to +2 containing 50 components.

10. Create a vector spanning the range from 0 to 2π , containing 100 equally spaced components, sothat the first value is 0, and the last value is 2π .
11. Input vector q = [−1, 5, 3, 22, 9, 1]T in the MATLAB memory.

(a) Rescale q into a unit vector (magnitude 1) using only the matrix operations shown inTables 2.1 and 2.2.
(b) Rescale q linearly, so that the minimum is 0 and the maximum is 1 - again using only thematrix operations presented in this chapter.

CHAPTER 2. MATLAB: THE MATRIX LABORATORY 19
(c) Rescale q linearly, so that the minimum is −3.6 and the maximum is 105 - using the samefunctions/operations.

12. Create a matrix of 100 rows and 100 columns. The odd columns should contain values 2, and theeven columns, values 0.
13. Create the following matrix using one MATLAB line of code and the reshape command.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

14. Create and visualise in a figure the following matrix
M =

8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8

8 8 0 0 0 0 0 0 8 8

8 8 0 0 0 0 0 0 8 8

8 8 0 0 3 3 0 0 8 8

8 8 0 0 3 3 0 0 8 8

8 8 0 0 0 0 0 0 8 8

8 8 0 0 0 0 0 0 8 8

8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8

15. Write MATLAB code to construct matrix B whose image is shown in Figure 2.5. Subsequently,reproduce the two plots in the figure.

Figure 2.5: Two matrices displayed as images.
16. Write MATLAB code to construct the matrices described below and visualise them using

imagesc. Do not use loops!

20 CHAPTER 2. MATLAB: THE MATRIX LABORATORY
(a) The first matrix should have 16 rows with consecutive integers from 1 to N , where N isgiven by the user when prompted. The rows should be alternating: the numbers should bein increasing order in row 1, decreasing order in row 2, increasing in row 3, decreasing inrow 4 and so on. An example for N = 20 is shown in Figure 2.6 (a).
(b) The second matrix should be of size 10 by 10. The exact colour of the blocks does not matteras long as all 4 colours are different and the colour of the central blocks are the same. Anexample is shown in Figure 2.6 (b).
(c) The third matrix should appear as a colour frame of size M (M rows and M columns), where

M is given by the user, when prompted. An example for M = 10 is shown in Figure 2.6 (c).

(a) (b) (c)
Figure 2.6: Visual representation of three matrices.

17. Knowing that for any square matrix A, B = A + AT is a symmetric matrix; reproduce the fourplots in Figure 2.7. Save the four matrices in a cell array.

(a) (b) (c) (d)
Figure 2.7: Symmetric matrices.

18. Using a matrix equation, find the intersection point of the lines defined by the following equations:
7x − 12y+ 4 = 012x − 45y+ 26 = 0

Note: Command inv(A) will return the inverse of matrix A.

CHAPTER 2. MATLAB: THE MATRIX LABORATORY 21
19. Run the code below. It will take an image available from the standard MATLAB installation,convert it to grey scale, store the matrix in variable im, and show the image as in Figure 2.8 (a).

im = rgb2gray(imread(’pepper.png’)); % read the image into a 2d matrix

imshow(im) % show the grey-level image

(a) Find out the size of the matrix containing the image, and cut (approximately) the part thatcontains the onion. Use the imshow command to display the result as in Figure 2.8 (b).You must not use any image processing methods and commands such as ‘crop’.
If you are unsure whether a command is from the Image Processing Toolkit, type which

<command> in the Command Window. The result will show the path to the m-file wherethat command is defined. If the path contains ‘toolbox/images’ the command is excluded.

(a) Original (b) Onion (c) Framed onion
Figure 2.8: Onion cut-out and framed.

(b) Add a frame of k rows and k columns of zero values around the onion image and displayit, as shown in Figure 2.8 (c). The value of k should be changeable; in the example, k = 30.Note: When displaying your new matrix, say z , use:
imshow(uint8(z)) % show the grey-level image

(c) Find out how many different grey level intensities (of the possible 256 intensities) appearin your onion image. Compare this with the number of intensities in the original image andgive a short comment.
20. Create a matrix A of size m× n, whose elements a(i, j) are calculated from the row and columnindices as follows:

a(i, j) = (j − 4)2(i+ 1)−3 + ij .The parameters m and n should be changeable. (You are not allowed to use loops here. Recallthe command ‘meshgrid’.)
21. Create vectors x and y, which, when plotted and joined, will show the pattern in Figure 2.9 (a)-(c).
22. Create vectors x and y, which, when plotted and joined, will show the pattern in Figure 2.9 (d)-(f).

22 CHAPTER 2. MATLAB: THE MATRIX LABORATORY

0 10 20 30
0

1

2

3

x

y

0 0.5 1
0

2

4

6

8

x

y

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x
y

(a) (b) (c)

0 5 10
0

1

2

3

4

x

y

0 10 20 30
0

10

20

30

40

x

y

0 10 20 30
0

0.2

0.4

0.6

0.8

1

x

y

(d) (e) (f)
Figure 2.9: Vector patterns.

Chapter 3

Logical Expressions and Loops

3.1 Logical Expressions

3.1.1 Representation

A logical expression is one that evaluates to either true or false. For example, v > 0 is a logicalexpression that will be true if the variable v is greater than zero and false otherwise. Logical expressionscan be assigned to Boolean variables. For example, s = v > 0 stores the value of the logical expression
v > 0 in a Boolean variable s. Some programming languages use special data types, as shown inTable 3.1. These are generally referred to as Boolean data types. Other languages, such as MATLAB,allow general data types to represent logical answers.

Table 3.1: Handling logical values in some programming languages
Language Data Type Bytes ValuesMATLAB single, double or logical 4 or 8 0 or 1Java boolean 1 true or falseBasic Boolean 2 True or FalseC++ bool 1 True or False

3.1.2 Type and order of operations

Logical expressions may contain numerical, logical and relational operations. Numerical operationsinvolve numbers and their result is a number. Relational operators compare two numbers and theirresult is true or false. Finally, logical operations connect two logical variables. The result is again,true or false. Table 3.2 shows the most often used relational and logical operations as well as theirMATLAB syntax.
23

24 CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS
Table 3.2: Relational and logical operations in MATLAB
= ‘True for all corresponding elements of a and b ...’

Relational operations
a == b # which are equal to one another.
a ~= b # which are not equal to one another.
a <= b # where a(i) is less than or equal to b(i).
a < b # where a(i) is strictly less than b(i).

a >= b # where a(i) is greater than or equal to b(i).
a > b # where a(i) is strictly greater than b(i).

Logical operations
a & b # which are both true (non-zero).

a && b Valid only for scalars. True if both are true.
a | b # where either one or both of a(i) and b(i) are true (non-zero)

a || b Valid only for scalars. True if any or both are true.
xor(a,b) # where one of a(i), b(i) is true and the other is false.

~a True if a is false. Also known as ‘not’ a.
For example,
>> a = [0 1 2 2 3 1 0 0 1 0];

>> b = [-2 5 0 0 4 1 0 6 3 0];

>> a&b

0 1 0 0 1 1 0 0 1 0

and
>> xor(a,b)

1 0 1 1 0 0 0 1 0 0

Notice that logical operators join two Boolean variables while relational operators join twonumerical expressions. In a logical expression, numerical operations are carried out first, then therelational operations, and finally the logical operations. The sequence of operations is illustrated inFigure 3.1.
Of course, if parentheses are present, they have precedence over any operation. The operations in theinnermost parentheses are carried out first, the operations within the next innermost, second, and soon. If you are not sure about the order of operations, use parentheses.

CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS 25

relational

>> a = 2; b = 4;

>> c = (a - b)^2 == b & b >= a

numerical values

numerical expression
4 == 4 & 4 >= 2

relational

true & true

logical

Therefore c contains value true

1

2

3

Figure 3.1: Sequence of operations in logical expressions.
Without typing the following lines in MATLAB, try to determine the answers for the three logicalexpressions:
>> a = [4 1; 0 6]; b = [-5 1;0 4];

>> a & b % 1

>> a ~= b % 2

>> a - b > 3 % 3

3.2 Indexing arrays with logical indices

One of MATLAB’s most useful features is the possibility to address an array with a logical index, asexplained in Section 2.2.2. For example, suppose that we want to replace all elements of array A whichare smaller than 0 with value, say, 22. We can create a logical index of the size of A, containing 1s forall elements that need to be replaced:
>> index = A < 0;

Next, we can select the relevant elements of A and assign the desired value:
>> A(index) = 22;

In fact, the whole assignment can be done using just one statement:
>> A(A<0) = 22;

Any logical expression that evaluates to a true/false matrix of the same size as that of a matrix A, canbe used as a logical index into A.

26 CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS
3.3 MATLAB’s logical functions and constructs

3.3.1 Logical functions

Table 3.3 contains details of some commonly used logical functions in MATLAB.
Table 3.3: Some logical MATLAB functions.

Command Return
all(a) True if all elements of a are true/non-zero.
any(a) True if any element of a is true/non-zero.

exist(a) True if a exists in the MATLAB path or workspaceas a file, function or a variable.
isempty(a) True if a does not contain any elements.

ismember(a,b) True if b can be found in a.

3.3.2 Conditional operations

Conditional operations act like program switches which respond to certain conditions within theprogram. The basic if and switch constructs are shown in Figure 3.2.
if logical_expression

statements
elseif

statements
elseif

statements
…

else
statements

end

switch variable
case value_1
statements_1
case value_2
statements_2
…

otherwise
statements_n

end

optional

Figure 3.2: Syntax of the ‘if’ and ‘switch/case’ operators. The shaded parts are optional.
As an example, consider the following tasks:
Using the MATLAB command rand generate a random number between 0 and 1. If the number isgreater than 0.5, display the word ‘lucky’, otherwise display ‘unlucky’.

CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS 27
if rand > 0.5

disp(’lucky!’)

else

disp(’unlucky!’)

end

Ask the user to input an integer number between 1 and 4, then display the number as a word.
n = input(’Integer {1,2,3,4} = ’);

switch n

case 1, disp(’one’)

case 2, disp(’two’)

case 3, disp(’three’)

case 4, disp(’four’)

end

3.4 Loops in MATLAB

Unlike other languages, MATLAB only has two types of loop, for and while. For loops should beused when the number of iterations is known beforehand - as in ‘Loop over these statements five times’.When the required number of iterations is unknown, or may be different for each run of the program,use a while loop.
3.4.1 The for loop

The basic syntax for a ‘for’ loop is: -
for var = start_value : end_value

statements;

end

var is the name of the counter variable. var will take consecutive values starting with start_valueand proceeding with start_value +1, start_value +2, and so on, until end_value is reached,but not exceeded. For example, let start_value = 1 and end_value = N . In this case, var willtake consecutive values 1, 2, 3, ... N . The last iteration will be at var = N because N + 1 exceeds
end_value.

The ‘for’ loop with i = 1:N is illustrated in Figure 3.3.
The loop variable does not have to be an integer. Consider the fragment;
for w = -0.8:4.1

The loop variable w will take consecutive values:
-0.8 0.2 1.2 2.2 3.2

28 CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS

Start

i = 1

i > N?

Loop
statements

End

for i = 1:N

<loop statements>

end

Y

N

Start

Loop
statements

Expression
true?

End

while expression

<loop statements>

end

N

Y

i = i + 1

Figure 3.3: An illustration of ‘for’ and ‘while’ loops.
There will be only 5 iterations of this loop because 3.2+1 = 4.2 exceeds the end_value of 4.1.
The loop variable does not have to be a number either. Consider the following example:
for t = ’a’:’h’

disp(t)

end

The loop will display a column of the lower-case letters from ‘a’ to ‘h’.
The default increment of the loop variable is 1. We can specify a different increment value, just as withthe colon operator. For example,
for w = 6.2:3.1:10.7

will run through the loop statements twice, for values of w 6.2 and 9.3. The next value of w would be9.3 + 3.1 = 12.4, which exceeds the end_value of 10.7.
With the functionality offered by the colon operator, the for loop can run ‘backwards’. Thisfragment,
for k = 12:-2:-4

will run through the loop statements 9 times, for these values of k : -
12 10 8 6 4 2 0 -2 -4

An alternative form of the for loop, uses a matrix (or vector):
for var = matrix

statements;

end

CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS 29
If matrix is a vector, var takes each subsequent value from the vector. For example,
for v = [2 4 6 8 10 6 6 6 14]

disp([repmat(’ ’,1,18-v),repmat(’.’,1,2*v)])

end

will plot a little house made of dots, in the MATLAB Command Window.
3.4.2 The while loop

The while loop uses a logical expression (condition) to determine when to exit. Whilst the expressionis true, the loop continues. The statements in the loop must lead to a change in the expression value,eventually rendering it false and exiting the loop.
The syntax for a while loop is as follows:
while expression

statements;

end

The ‘while’ loop is illustrated in Figure 3.3.
3.5 Examples

3.5.1 Brute Force Sorting

Code up the ‘brute force’ sorting algorithm using a loop.1 Assume that the array to sort is numerical,and is stored in A. Sort the numbers in descending order. Do not use an auxiliary array; you are onlyallowed to manipulate the values of A. For this task, you are not allowed to use min, max, sort, orany other MATLAB command to that effect. Show an example with a hand-picked array A.
Solution. Suppose that there are N elements to sort. Organise a loop which goes from 1 to N − 1.Naturally, the loop does not have to go to N because, once N − 1 values are sorted, so is the lastone.
In each pass through the loop, one value will be placed in its destination. The first pass will identifythe largest element and place it at the top of the array. The second largest element will be identifiedin pass 2, and will replace the second element of A. Thus, at iteration i, we will be positioning anelement at i in A.
To identify the largest element, set a variable to the smallest value MATLAB can handle, -Inf. Searchthrough the unsorted part of the array by comparing the current maximum with the array entry. Ifarray entry is larger, store the value as the new maximum, and the index where this maximum valueis found.

1This algorithm identifies the largest element of the array and places it first, then the second largest, and places it second,and so on until the smallest element is placed last in the array.

30 CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS
The code is shown below
A = [12,-900,4,2016,11,16]; % array to be sorted

N = numel(A);

for i = 1:N-1

cm = -Inf; % initialise current maximum

for j = i:N % search the *unsorted* part of the array

if A(j) > cm

cm = A(j); % store the new maximum

index_max = j; % store the index of the new maximum

end

end

A([i index_max]) = A([index_max i]); % swap

end

disp(A’) % display the sorted array in a columnListing 1: Brute force sorting in descending order
Note how easy it is to swap two elements in an array in MATLAB: A([i index_max]) =

A([index_max i]);. If another language was used, we first need to save the content of one of thecells in a temporary variable, for example, temp = A(i); Then the ith entry can be replaced as A(i)
= A(index_max);. Finally, the saved value should be placed in the array as A(index_max) =

temp;.
3.5.2 When is a while loop useful?

Let A be an unsorted array of 10×2 random numbers between 0 and 1. Starting from the beginning ofthe array, find and display the numbers of the first 3 rows for which A(i, 1) > A(i, 2). If there happensto be no such set of rows, print a message to that effect.
To show the work of the code, use the following command to generate A: A = rand(10,2);.
Solution. The loop may go through just the three top rows of A and complete the task, or through thewhole of A and still not find three rows satisfying the condition. The code is shown below.
A = rand(10,2);

rc = []; % set of the indices of the rows where A(i,1) > A(i,2)

i = 1; % index counter for A

while numel(rc) < 3 && i <= size(A,1)

if A(i,1) > A(i,2)

rc = [rc,i]; % store the found row

end

i = i + 1; % increment the index for A

end

if i == size(A,1)+1 && numel(rc) < 3

CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS 31
disp(’A set of three rows was not found’)

else

disp(rc)

end Listing 2: While loop example.
Notice how much easier the solution becomes if we use matrix operations (vectorising):
A = rand(10,2);

rc = find(A(:,1) > A(:,2)); % rows of interest

if numel(rc) < 3

disp(’A set of three rows was not found’)

else

disp(rc(1:3))

end

3.6 Exercises

1. Without running MATLAB, evaluate b1 to b6 in the following sequence of expressions:
>> a = [0 1 2;2 1 0];

>> b1 = a(1,1) > a(2,1)

>> b2 = a(2,2) && a(2,3)

>> b3 = a(1,1)+a(2,3)||a(2,2)-a(2,1)

>> b4 = a(:,2) > a(:,1)

>> b5 = b3 && a(1,1) < a(2,2)

>> b6 = find(a(1,:) == a(2,:))

2. Find and display all integers between 1 and 10000 which divide by 37. Propose at least twodifferent ways to solve this problem.
3. Load up and show MATLAB’s image ‘coins.png’ (Figure 3.4 (a)) using the following line:

z = imread(’coins.png’); figure, imshow(z)

This will enter a matrix z in MATLAB’s memory. Values close to 0 correspond to dark, and valuesclose to 255, to light pixels. Propose and implement a simple way to replace the background ofthe image with white, similar to the image shown in Figure 3.4 (b).
4. Similarly to the previous problem, upload image ‘peppers.png’ (Figure 3.5 (b)) using

z = rgb2gray(imread(’peppers.png’)); figure, imshow(z)

32 CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS

(a) Original (b) Desired image
Figure 3.4: The original coin image and the desired result.

This time, convert the image into three shades: black, grey and white, as shown in Figure 3.5 (b).(The appearance of the image only needs to be approximately the same as it will depend on thetwo thresholds which you choose.)

(a) Original (b) Desired image
Figure 3.5: The original peppers image and the desired result.

5. Fibonacci numbers form a sequence starting with 0 followed by 1. Each subsequent number isthe sum of the previous two. Hence the sequence starts as 0, 1, 1, 2, 3, 5, 8, 13, ... Calculate anddisplay the first 10 even Fibonacci numbers.
6. Figure 3.6 shows 8 scatterplots in 2d. Suppose that you are given the coordinates of a point(x, y). For each scatterplot, write a single logical expression which will yield TRUE if the pointis in the black region and FALSE, otherwise.
7. Ask the user to input an integer in the range from 10 to 500. (Look up and use the inputcommand.) If the input number is not an integer or is outside the limits, keep asking for a newnumber. Store the number in a variable N .
8. Write MATLAB code for the ‘Guess My Number’ game. First, the computer picks a random integerbetween 1 and 10 using the randi command. Next, the user is asked to enter their guess. Ifthe guess matches the chosen number, display a congratulations message. Otherwise, display a‘better luck next time’ message.

CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS 33

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3.6: Region configurations for the logical expression problem.

9. Simple Image Filter. Load up and show MATLAB’s image ‘gantrycrane.png’ using the followingline:
z = rgb2gray(imread(’gantrycrane.png’)); figure, imshow(z)

Create a new image where every element of matrix z is replaced by the minimum of itsneighbourhood values. The neighbourhood includes the central element and the surrounding8 elements. Exclude the top and bottom rows of elements, as well the left and the right edges.
Use nested loops. Repeat the process, but this time replace the value with the maximum withinthe neighbourhood. The resultant images should look like the ones in Figure 3.7.

(a) Original (b) Minimum filter (c) Maximum filter
Figure 3.7: The output of the minimum and maximum filters.

34 CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS
10. Consider a grid of size n×m with virtual bugs. Each bug lives in a grid cell. An example of thegrid for n = 20 and m = 30 is shown in Figure 3.8. The grid is given to you in a form of a matrix

A of size m× n, with 0s in the empty cells and 1s in the cells occupied by bugs.

Figure 3.8: The virtual bugs grid.
(a) Find out the average number of neighbours per bug. Neighbours are considered to be thebugs in the 8 surrounding cells.

To demonstrate your work, create grids of different densities using:
A = rand(m,n) < 0.1; % sparse

A = rand(m,n) < 0.5; % medium

A = rand(m,n) < 0.7; % dense

(b) MATLAB includes a version of Conway’s Game of Life. It is started by typing life in thecommand window. The rules are as follows:2
• Any bug with fewer than two neighbour bugs dies from isolation.
• Any bug with two or three neighbour bugs lives on to the next generation.
• Any bug with more than three neighbour bugs dies from overcrowding.
• Any empty cell with exactly three neighbour bugs becomes a bug, as if by reproduction.
• The rules apply in the same way to the edge and corner cells even thought they havefewer physical neighbour cells.

Using these rules, calculate the next generation of bugs for your randomly populated grid.
(c) Use the command spy to see the grid. Include it in a loop where you evolve the populationwith each pass, visualise it with spy, and pause the execution with command pause(0.2).

2http://en.wikipedia.org/wiki/Conway’s_Game_of_Life

CHAPTER 3. LOGICAL EXPRESSIONS AND LOOPS 35
(d) Glider gun.3

Run your code from the previous sub-problem to evolve the ‘glider gun’ population whosestarting layout and the first five generations are shown in Figure 3.9.
1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Figure 3.9: The glider gun’s initial configuration and first five generations.

3http://commons.wikimedia.org/wiki/File:Game_of_life_glider_gun.svg

Chapter 4

Functions

Functions are useful when a certain part of the code must be repeated many times or if we want tomake it into a basic tool available for future use.
4.1 Syntax

Functions in MATLAB are stored in separate files. Unless specifically declared as global, all variablesare local, which means that they are valid only within that function. Think about a function as a‘watertight’ piece of code. Its communication with the outside world are the input and the outputvariables.
The formal syntax for a function definition is:
function [list_of_output_arguments =]function_name([list_of_input_arguments])

Neither of the lists is compulsory. If there are output arguments, they must receive values in the bodyof the function. An interesting property of MATLAB functions is that not all input and output argumentsneed to be assigned in the call. For example, consider a one-dimensional array A.
m = min(A); will return the minimum of array A

[m,i] = min(A); will return the minimum of array A in m, and the index where the minimum isfound in i
[~,i] = min(A); will return only the index of the minimum of A in i.

Replacement of the output argument by a tilde was introduced fairly recently (2009b, MATLAB Version7.9). Until then, a dummy variable had to be used in its place.
An illustration of a simple function is shown in Figure 4.1.
A call to fu is made in the MATLAB script and the output is assigned to variable m. The function isstored in a separate file of the same name (fu.m). It returns two outputs: the sum of the three inputarguments and their product. As the function is called with one output argument only, it will return in
m the sum 4 + 2 + 1 = 7.

36

CHAPTER 4. FUNCTIONS 37

Figure 4.1: Illustration of a simple function.
4.2 Naming

A call to a function will look for a file with the function’s name in the MATLAB path. Therefore, it makessense to set the file name and the function name to be the same. For example, if your function is called
draw_trapeze but the file is named trapeze.m, MATLAB will not accept a call to draw_trapeze.It will, however, accept a call to trapeze.m, and will subsequently run file trapeze regardless ofthe name you have specified as the function declaration within the file (draw_trapeze).
4.3 Multiple Functions

Multiple functions can be included in the same function file. As explained above, MATLAB will refer tothat collection of functions only through the file name. This structure is useful when functions in thefile need to call one another.
An example of multiple functions in the same file is shown in Figure 4.2.
In this example, the script calls function fu2. Function fu2 will be visible to MATLAB while function
fu will not. Function fu is accessible only within fu2. Function fu2 returns two output arguments.In p, it stores the sum of the three input arguments divided by their product, if the product is not zero.If the product is zero, an empty value is returned (p = []). The second output argument, q, is thesum of the sum and the product of the three inputs. In this example, only second argument of fu2 isrequested by the MATLAB script, therefore we store in s 4 + 2 + 1 + 4× 2× 1 = 15.
Multiple functions are particularly useful for writing graphical user interface (GUI) code.
4.4 Inline (Anonymous) Functions and Function Handles

An inline function is defined as in the following example:
fu = @(x) x.*sin(x)-exp(-x.^2);

38 CHAPTER 4. FUNCTIONS

Figure 4.2: Illustration of multiple functions in the same file.
From this point onwards, you can use fu(arg), where the argument can be a single number or anarray. (The array operations are accounted for by using ‘.*’ instead of just ‘*’, and ‘.^’ instead of ‘^’.)For example,
figure, plot(0:.3:20,fu(0:.3:20)), grid on

will open up a figure and plot the value of the function f (x) = x sin(x) − exp(−x2) for x ∈
{0, 0.3, 0.6, 0.9, 1.2, . . . , 19.8}.
In the function definition, instead of a single x, we can use a list of arguments after the @ sign(@(list_of_arguments)). For example,
fu = @(p,q) p.^q - 2*(p-q);

4.5 Recursion

As many other programming languages, MATLAB allows recursion, which means that a functioncan call itself. Recursion usually leads to very elegant code but this does not offer computationaladvantage.
Only a small number of iterative algorithms can be solved using recursion. An example is the bisectionalgorithm for finding a zero of a function within a given interval. Consider the function

f (x) = sin(2x) exp(x − 4) .

CHAPTER 4. FUNCTIONS 39
There is one zero of the function in the interval [1,2]. Find the zero x∗, such that f (x∗) ≈ 0, withprecision1 ε = 10−6. This means that an interval with centre x∗ and length ε contains the true pointwhere f (x) crosses the x-axis.
The algorithm goes through the following steps:

1. Input the precision ε , the function f (x) and the bounds a and b of the interval containing thezero.
2. Calculate the middle of [a, b]

m = a+ b2 .

3. If the length of interval [a, b] is smaller than ε ,
(a) then return m.
(b) else, if f (a)f (m) < 0 (the zero is in [a,m]) call the function with interval [a,m], else call thefunction with interval [m,b].

The code of the MATLAB function is given below.
function x = bisection(e,f,a,b)

x = (a + b) / 2;

if (b - a) > e

if f(a)*f(x) < 0

x = bisection(e,f,a,x);

else

x = bisection(e,f,x,b);

end

end

The following script calls function bisection for equation function f (x) = sin 2x exp x − 4 (LHS ofthe equation) and interval [1, 2] with precision 10−3:
e = 10^-3; % precision

f = @(x) sin(2*x) * exp(x-4); % equation LHS

xstar = bisection(e,f,1,2);

disp(xstar)

The MATLAB output is 1.5708. If you substitute 1.570 and 1.571 for x , f (x) should have function valueswith different signs.
4.6 Exercises

1. Write a MATLAB function for calculating the Euclidean distance between two points in the n-dimensional space. The points are given as the input arguments a and b. Both should be arrays
1The word ‘precision’ here is used to denote the length of the interval containing the solution. This may differ from themeaning of this word in other contexts.

40 CHAPTER 4. FUNCTIONS
with n elements. It should not matter for your function whether either input is a row or a column.Demonstrate the work of your function by an example.

2. Write a MATLAB function for calculating the Euclidean distance between two two-dimensionalarrays A and B given as input arguments. A is of size N×n, and B is of size M×n. The functionshould return a matrix D of size N ×M where element d(i, j) is the Euclidean distance betweenrow i of A and row j of B.
3. Write an inline function that will calculate 6x− 4y+ xy+ cos2(x− k). Assume that x and y mayscalars, vectors or matrices and that all operations should be carried out element-wise.
4. Write a MATLAB function for checking if a given point (x, y) is within the square with a bottomleft corner at (p, q) and side s. The input arguments are x, y, p, q and s, and the output is eithertrue (the point is in the square) or false (the point is not in the square).
5. Write a non-recursive MATLAB function to calculate the Fibonacci sequence and return thenumber with a specified index, for example, the 4th number in the series (this number is 5).
6. Write a recursive MATLAB function to calculate the Fibonacci sequence and return the numberwith a specified index.
7. Write a short MATLAB function to find out whether a given number (up to 1,000,000) is a primenumber. The function should return true or false. Bear in mind that 1 is not considered a primenumber. (Hint: Use the brute force approach and divide the number (K) by all integers from 2to K-1. Check the remainders for 0s.)

Subsequently, apply this function to list all prime numbers between 1 and 100.
8. Write your own function for the bubble sort algorithm and demonstrate its work.

Chapter 5

Plotting

5.1 Plotting Commands

5.1.1 Plot

The plot command is easily one of the most useful MATLAB commands. It needs at least one argumentas shown in Figure 5.1. If there is no open figure, MATLAB will open a new one and will plot theargument (an array) versus its index. If there are two arrays as input arguments, MATLAB will takethe first array to be the x-coordinates, and the second array, the y-coordinates.
x = -5:10; % values of the argument

y = x.^2 - 20; % values of the function

figure

plot(y)

figure

plot(x,y)

figure

plot(x,y,'k.-')

Plots only the function versus the index: 1,2,3...

Plots the function versus the argument: -5,-4,-3...

Plots the function versus the argument with
a black line and a black dot marker

Figure 5.1: Plot command
A third string argument can specify the type of line, colour and marker of the plotted line. The threefigures in the example in Figure 5.1 are shown in Figure 5.2.
If you want to plot more than one thing on the same figure, use the command hold on. The gridlines can be toggled on and of with the command grid (use grid on).
Figure 5.3 gives some more detail about the plot command and the appearance of MATLABfigures.
There is lot more to be learned about the plot command as shown by the examples in the nextsection.

41

42 CHAPTER 5. PLOTTING

Figure 5.2: Output from the code in Figure 5.1

grid

marker

axes

title

y-label

x-label

line

edit

Figure 5.3: Figure with axes.
5.1.2 Fill

The fill command fills a specified region with a specified colour. The syntax is:
fill(x,y,colour)

The first argument is an array with the x-coordinates of the shape to be filled, and the second argumentis an array of the same size with the y-coordinates. The third argument is either one of the pre-definedcolour strings:
’k’ black ’r’ red ’g’ green ’b’ blue’w’ white ’m’ magenta ’y’ yellow ’c’ cyanor an array [a, b, c] with three numbers between 0 and 1. These three numbers make up the colour, bymixing a amount of red of possible 1), b amount of green and c amount of blue. For example, colour

CHAPTER 5. PLOTTING 43

Figure 5.4: Example of the output of the fill command.
‘dark salmon’ is made by [0.9137, 0.5882, 0.4784]. Figure 5.4 shows three circles filled respectively withcolours dark salmon, lavender bush and maroon. The code is shown below.
figure, hold on

t = linspace(0,2*pi,50); % 50 angles from 0 to 2*pi (in radians)

fill(sin(t),cos(t),[0.9137, 0.5882, 0.4784]) % circle centred at [0,0]

% with radius 1, filled with dark salmon colour.

fill(0.5*sin(t)+1.5,0.5*cos(t),[1 0.9412 0.9608])

% circle centred at [1.5,0] with radius 0.5, filled with lavender bush

% salmon colour.

fill(0.2*sin(t)+2.2,0.2*cos(t),[0.5020 0 0])

% circle centred at [2.2,0] with radius 0.2, filled with maroon colour.

grid on

axis equal

Notice two things. First, there is black outline (by default) fo all ‘fill’ objects. Second, we used command
axis equal. This makes the units on the x-axis and y-axis to become of equal size. This way thecircles looks like circles and not ellipses.

44 CHAPTER 5. PLOTTING
5.2 Examples

Reproduce the shapes and plots in Figure 5.5.

(a) Weights (b) Zigzag (c) Lightning bolt (d) Christmas tree (e) Bear’s face
Figure 5.5: MATLAB plot examples.

Plot (a) can be constructed with one thick line and circle markers. To create the illusion of perspective,the ball which is closer to the viewer should be larger. This can be achieved by plotting a larger circularmarker over the smaller one. The line width and the sizes of the two markers are determined by tryingout different values until the figure meets the designer’s approval. The code is shown below:
% Weights

figure, hold on, axis equal off % set up the figure and format the axes

plot([0 0.8],[0 0.3],’k.-’,’markersize’,200,’linewidth’,8)

plot(0,0,’k.’,’markersize’,250) % plot a second, larger marker

The zigzag in plot (b) is based on a repeated pattern of x coordinates, e.g., [0 1 0 1 0 1 ...], while the ycoordinate must increase as [1 1 2 2 3 3 ...]. Both patterns can be created using matrix manipulationas shown in the code below:
% Zigzag

figure, hold on, axis equal off % set up the figure and format the axes

x = repmat([0,1],1,8); y = [1:8;1:8];

plot(x,y(:),’ks-’,’markersize’,8,’MarkerFaceColor’,’y’)

For the lightning bolt in plot (c), the fill command should be used. The shadow has the same shapeas the yellow bolt, and is displaced on both x and y. The bottom point of the shadow is ‘stretched’to match the tip of the yellow spear. Note; that the shadow must be plotted first. The code is shownbelow;
% Lightning bolt

figure, hold on, axis equal off

x = [-2 3 2 4 3 5 4 6 4,2,3,1,2,0,1,-2]; % yellow X

y = [-1 1 1 2 2 3 3 4 4 3 3 2 2 1 1 -1]*3; % yellow Y

xsh = x + 1; xsh(1) = -2; xsh(end) = -2; % shadow X

CHAPTER 5. PLOTTING 45
ysh = y + 0.5; ysh(1) = -3; ysh(end) = -3; % shadow Y

fill(xsh,ysh,’k’) % plot shadow first

fill(x,y,’y’,’edgecolor’,’k’,’linewidth’,3) % plot yellow bolt

The Christmas tree in plot (d) is formed from two symmetrical parts. The x-values can be constructed forone of the parts and flipped for the other part. In the code below, both x and y are constructed initiallyas arrays with two rows. Then, with the help of the colon operator, the two rows are concatenatedcolumn-by-column to make the needed sequence of vertices. For example, if x has values [0 2 4 6] inthe first row and [0 1 3 5] in the second row, the concatenated (and transposed) vector will be [0 0 2 14 3 6 5]. This gives the sawtooth pattern for the periphery of the tree. The code for the Christmas treeis as follows:
% Christmas tree

x = [0:2:18;0 1:2:17]; y = [20:-2:1;20:-2:1]*3;

x = [-fliplr(x(:)’) x(:)’]; y = [fliplr(y(:)’) y(:)’];

figure, hold on, axis equal off, fill(x,y,’g’)

The Bear’s face in plot (e) would be difficult to plot with markers of different sizes. It is better to usefilled circles as shown in the code below:
% Bear’s face

brown = [0.4 0.2 0]; % colour definition

figure, hold on, axis equal off

t = linspace(0,2*pi,100);

fill(sin(t),cos(t),brown,’EdgeColor’,brown) % face

fill(sin(t)*0.5+1,cos(t)*0.5+1,brown,’EdgeColor’,brown)

fill(sin(t)*0.5-1,cos(t)*0.5+1,brown,’EdgeColor’,brown)

fill(sin(t)*0.2+0.3,cos(t)*0.4,’w’,’EdgeColor’,’w’)

fill(sin(t)*0.2-0.3,cos(t)*0.4,’w’,’EdgeColor’,’w’)

fill(sin(t)*0.1+0.28,cos(t)*0.1-0.2,’k’,’EdgeColor’,’k’)

fill(sin(t)*0.1-0.28,cos(t)*0.1-0.2,’k’,’EdgeColor’,’k’)

Random art can be created using filled polygons, not necessarily convex, with random vertices. Forexample, fill(rand(10,1),rand(10,1),rand(1,3)) will create a random shape of joined linesegments, where some of the closed spaces will be filled with a random colour. Figure 5.6 shows theoutput of the following piece of code:
x = rand(10,1); y = rand(10,1); % vertices of the polygon

figure, hold on, axis equal off

k = 6; % # of repetitions of the same shape

for i = 1:k

fill(x*(k-i+1),y*(k-i+1),[k-i+1 0 0]/(k+1))

end

46 CHAPTER 5. PLOTTING

Note: To plot the shape at a different position,add the desired offset to the x and the ycoordinates, respectively.

Figure 5.6: Repetitions of a shrinking random shape filled with progressively darkening red colour.
5.3 Exercises

1. Plot the six European flags as in Figure 5.7. The names of the countries should be displayedas well. All flags should be plotted in one figure. This task should be completed using the the
subplot command rather than adjusting spacing between the flags yourself.

Bulgaria Hungary Lithuania

Russia Netherlands Luxembourg

Figure 5.7: Six European flags.
2. Write a function which will draw a circle in an open figure. The input arguments are x, y, r, c;
x and y are the coordinates of the centre, r is the radius, and c is a three-element vector withthe colour. Demonstrate your function by using it to plot 30 circles at random positions, withrandom radii, and with random colours, as in Figure 5.8 (a).

3. Create an art figure by plotting 10 filled squares with jagged edges as shown in Figure 5.8 (b).The fill colours should be random. The squares should be arranged approximately as in theexample in the figure.
4. Plot a Random Art Square similar to the example in Figure 5.8 (c). There should be 20 randomforms with random colours in the square. Note that some of the forms are not contained fully

CHAPTER 5. PLOTTING 47

(a) Circles (b) Jagged edge art (c) Random art square
Figure 5.8: Output for problems 5.3.2, 5.3.3, and 5.3.4

in the figure. Each form must have between 3 and 6 vertices. The number of vertices should berandom.
5. Create a loop to plot 10 triangles with random vertices in the unit square. Not every triangleshould be plotted. Plot only triangles which are nearly equilateral. To do this, check whetherthe three edges differ by less than a chosen small constant, for example e = 0.01. The trianglesshould be filled with random colours. An example of the desired output is shown in Figure 5.9 (a).

(a) Equilateral triangles (b) Nested squares
Figure 5.9: Output for problems 5.3.5 and 5.3.6

6. Write a MATLAB function which takes an integer k as its input argument and plots k filledsquares of random colours, nested as shown in Figure 5.9 (b).
7. Using the function from the previous problem, reproduce Figure 5.10. The number of squares kvaries from 3 to 12. All colours are random.
8. Plot a shape consisting of four filled polygons. The polygons are mirror versions of one polygonwith k random vertices, where k is a parameter. The figure should be symmetrical about the
x and y axes. The polygons should touch in the middle point as shown in the examples in

48 CHAPTER 5. PLOTTING

Figure 5.10: 3-12 filled nested squares.
Figure 5.11 (a) (k = 10). Try to accomplish this task using matrix operations, not geometricfunctions such as fliplr.

(a) Symmetric polygons (b) Logos
Figure 5.11: Output for problems 5.3.8 and 5.3.9

9. Write MATLAB code to produce a 4-part logo. Nine examples are shown in Figure 5.11 (b). Youcan use your own design of the basic shape, or pick it at random. The top left part should beblack and the bottom right should be white. The other two colours should be chosen randomly byyour program. The four shapes should have a common edge on the x-axis and on the y-axis. Thelength of each of these edges should be at least half of the span of the shape on the respectiveaxis.

CHAPTER 5. PLOTTING 49
10. Random Shapes on a Grid

(a) Create a set of 25 random shapes, each one having 6 random vertices and filled with arandom colour. Plot the shapes on a 5-by-5 grid as shown in Figure 5.12 (a). This shouldnot be achieved using the subplot command and can be accomplished with a single loop.
(b) Make a figure with two subplots. The first subplot should contain the original shapes, andthe second subplot should contain the same shapes, in a random order on the grid. Anexample is shown in Figure 5.12 (b).

(a) 25 shapes on a grid (b) Original and shuffled
Figure 5.12: Output for problem 5.3.10

11. Birds, Butterflies or Flying Baba Yagas
(a) Figure 5.13 (a) shows a field with randomly distributed copies of a filled small shape orcreature. The shape is random, but fixed for the figure, while the colours and the positionsof the replicas are random. Write MATLAB code to produce a similar figure.

(a) 25 Small-shape art (b) Four armies of creatures
Figure 5.13: Output for problem 5.3.11

50 CHAPTER 5. PLOTTING
(b) Subsequently, design a battle scene, where four ‘armies’ of creatures are distributed in fourparts of the space as shown in Figure 5.13 (b). The creatures from each army should havethe same (random) shape and colour. The positions of the creatures within the regions arerandom too. (Note: The creatures are allowed to overlap near the borders.)

12. Diamonds in a Loop
(a) Use a loop to create 5 diamonds as in Figure 5.14(a) (one diamond in each pass throughthe loop). The innermost diamond is black, and the outermost is red. Each diamond has itsown fixed colour. The colours of the diamonds go gradually from black to red.
(b) Subsequently, use one loop to create the pattern in Figure 5.14(b). The colour goes graduallyfrom black to green followed by black to blue. The figure should be plotted as successionof diamonds.

(a) (b)
Figure 5.14: Diamonds.

13. Try to reproduce the row of Christmas trees in Figure 5.15.

Figure 5.15: A row of Christmas trees.

CHAPTER 5. PLOTTING 51
14. Balloons

(a) Create a MATLAB function called draw_balloon. The function should take as its inputarguments: the x and the y coordinates of the centre, the radius r , the colour c, and thelength of the string l. The function should plot the balloon on the current axes (held andequalised). An example is shown in Figure 5.16 (a). The function is called using the followingline:
figure, hold on, axis equal, draw_balloon(1,2,4,[0.2 0.6 0.9],7)

(b) Subsequently, write a MATLAB script to produce a figure with 20 balloons with randomcolours and sizes (Figure 5.16 (b)).
(c) Finally, produce another figure with 20 random balloons, all of which have reached theceiling, as shown in Figure 5.16 (c).

(a) (b) (c)
Figure 5.16: Balloons for problem 5.3.14

15. Write a MATLAB function called ‘dice’. The function should open a figure and display the givenface of a regular six-sided die. The face ‘number’ is the only input argument, k . Examples of thedesired output are shown in Figure 5.17. Notice the rounded corners. The orientation of faces 2,3 and 6 does not matter as long as the white dots form the desired pattern.

Figure 5.17: The 6 dice faces.

52 CHAPTER 5. PLOTTING
start CHALLENGE

Dice Face

The challenge for this problem is to write the shortest possible code for the Dice function. Thelength of the code is the number of characters ignoring the white spaces and new lines. (In realcompetitions, the variable names of any length are counted as one character, and comments arenot counted at all. In our competition both of these will count.)
Current record (including the function declaration line) is 104 characters.
end CHALLENGE

Chapter 6

Data and Simple Statistics

6.1 Random Number Generation

Some MATLAB commands for random number generation were mentioned before. Below is a list anda short description of these commands:
rand Generates a random number with uniform distribution in the unit interval (interval[0, 1]).

rand(n) Generates a square n× n matrix with random numbers in the unit interval.
rand(m,n) Generates an m× n matrix with random numbers in the unit interval.

randn Generates a random number from a standard normal distribution(mean 0 and standard deviation 1).
randn(n) Generates a square matrix with random numbers from a standard normaldistribution.

randn(m,n) Generates an m × n matrix with random numbers from a standard normaldistribution.
randi(a) Generates a random integer from a uniform distribution between 1 and a.

randi(a,n) Generates a square matrix with random integers between 1 and a.
randi(a,m,n) Generates an m× n matrix with random integers between 1 and a.
randperm(a) Generates a random permutation of the integers from 1 to a.

randperm(a,k) Generates a random permutation of the integers from 1 to a and returns the first kelements.
Figure 6.1 shows an example of the output of the three random generators (rand, randn and randi).

6.2 Simple statistics and plots

The list below details MATLAB commands for calculating some simple statistics. All operationsproduce a single value if the argument a is a vector, and operate on each column separately, if ais a matrix.
53

54 CHAPTER 6. DATA AND SIMPLE STATISTICS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−4 −2 0 2 4
−4

−2

0

2

4

0 5 10 15 20
0

5

10

15

20

(a) rand (b) randn (c) randi (a = 20)
Figure 6.1: Two-dimensional scatterplots for the three random generators.

Measures of Central Tendency
mean(a) Calculates the mean of a.

median(a) Calculates the median of a.
mode(a) Calculates the mode of a.

Measures of Variability
std(a) Calculates the standard deviation of a.
var(a) Calculates the variance of a.

range(a) Calculates the range of a.Data can be summarised and visually presented using bar charts, pie charts and glyph plots, amongmany. Examples are shown in Figure 6.2.
Histograms summarise the data by splitting the range of the variable into bins, and then counting thenumbers of data points in each bin. An illustration is shown in Figure 6.3. The histogram is calculatedfrom a vector with 1000 value generated through the randn command using the following code:
a = randn(1000,1); figure, hist(a)

6.3 Examples

Generate 5000 random points in the unit square. Plot the data so that the points below the diagonaljoining points (0,0) and (1,1) are shown with blue crosses, and the ones above the diagonal, with redtriangles, as in Figure 6.4.
The first step after clearing the memory, the Command Window and closing the current figures, is toopen a new figure, and format the axes:

CHAPTER 6. DATA AND SIMPLE STATISTICS 55

14%

41%

5%

18%

23%

0 2 4 6
0

2

4

6

8

10
>> a = [3 9 1 4 5];

>> glyphplot(a/max(a),'Standardize','off')

>> bar(a)

>> pie(a,[0 0 1 0 0])

Figure 6.2: Examples of bar graph, pie chart and glyph plot
figure, hold on, axis([0 1 0 1],’square’)

You can format the axes further by setting the font name and size. Compare the following twocontinuations for this problem:
1. Generate and plot the random points in a loop.

for i = 1:5000

x = rand; y = rand; % generate a random point

if x > y

plot(x,y,’bx’)

else

plot(x,y,’r^’)

−4 −2 0 2 4
0

50

100

150

200

250

Figure 6.3: An example of a histogram

56 CHAPTER 6. DATA AND SIMPLE STATISTICS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.4: Random points separated by a diagonal
end

end

2. Pre-generate the 5000 data points, and incorporate the condition into the plotting function.
x = rand(5000,1); y = rand(5000,1); % pre-generate both coordinates

plot(x(x>y), y(x>y), ’bx’)

plot(x(x<=y), y(x<=y), ’r^’)

Just for benchmarking the two versions against one another, regardless of the hardware, take the ratio:1.603 seconds (first version) divided by 0.159 seconds (second version). The matrix calculation is over10 times faster than the loop.
6.4 Exercises

1. Generate an array with 10 rows and 7 columns with random numbers between −1 and 5. Thenumbers must not be integers.
2. Generate a vector column with 30 elements containing random numbers with a normal distributioncentred at 100 and with standard deviation 20.(Hint: To offset the data, add the desired constant. To change the standard deviation, multiplythe data by the desired number. Think about the order of carrying out these operations.)
3. Plot the function y = sin(x3 − 2) for 100 equally spaced values of x in the interval [0,2], usingsolid black line. Draw a random sample of 10 values of x, and display the respective (x, y) points

CHAPTER 6. DATA AND SIMPLE STATISTICS 57

Figure 6.5: Expected output for problem 6.4.3
on the graph with marker red circle. Label the axes and add a title to the graph. The expectedoutput is shown in Figure 6.5.

4. Write MATLAB code to do the following:
(a) Generate a random number k between -30.4 and 12.6.
(b) Generate an array A of size 20-by-20 of random integers in the interval [−40, 10].Subsequently, replace by 0 all elements of A which are smaller than k .
(c) Find the mean of all non-zero elements of A.
(d) Pick a random element from A.
(e) Visualise A using a random colour map containing exactly as many colours as there aredifferent elements of A.
(f) Extract 4 different random rows from A and save them in a new array B.
(g) Find the proportion of non-zero elements of B.
(h) Display in the Command Window the answers of (a), (c), (d) and (g) with a proper descriptionof each one.

5. Sub-plots
(a) Generate an array A with 200 random points in 2d, where both x and y vary from −100 to100. Plot the points with black dots. As in sub-plot (a) in Figure 6.6.
(b) Calculate and plot the mean of A as in sub-plot (b).
(c) Plot lines connecting the mean of A to each point as in sub-plot(c).

58 CHAPTER 6. DATA AND SIMPLE STATISTICS
(d) Plot in sub-plot (d) only those line segments from the previous question, whose length isless than 50.

−100 0 100
−100

0

100

x

y
(a)

−100 0 100
−100

0

100

x

y

(b)

−100 0 100
−100

0

100

x

y

(c)

−100 0 100
−100

0

100

x

y

(d)

Figure 6.6: Sub-plots with random data.
6. Suppose that you are testing a slot machine. The machine has 6 types of fruit. Appearance ofthree of the same fruit guarantees a prize.

(a) Generate an array of 10,000 random outcomes of the three slots of the machine.
(b) Find the total number of winning combinations among the 10,000 outcomes.
(c) Assume that the entry fee for each run is 1 unit of some imaginary currency. Each winningcombination is awarded a prize of 10 units except for the combination of three 1s, whichis awarded a prize of 50. Assuming you are the owner of the slot machine, calculate yourprofit after the 10,000 runs of the game.

7. Produce a game board similar to the one in Figure 6.7. The board should have 81 squaresarranged in a 9×9 matrix. Nine random squares should contain smaller red squares within, andother nine random squares should contain a blue star symbol. The command ‘figure’ should beincluded in your code.
start CHALLENGE

Two Lines

Use only 2 MATLAB lines (up to 75 characters including spaces) to produce the game board.

CHAPTER 6. DATA AND SIMPLE STATISTICS 59

Figure 6.7: Game board for problem 6.4.7
end CHALLENGE

8. Try to reproduce Figure 6.8. The inside green disk has a radius of 0.7 units, and the white diskhas a radius of 1.5 units. Do not use loops.

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

4

Figure 6.8: Two disks
9. Create an imitation of a noisy signal as shown in Figure 6.9. Try to reproduce the figure. Do notuse loops.

10. Create an imitation of a noisy signal as shown in Figure 6.10. Try to reproduce the figure. Markthe minimum and the maximum of the signal with yellow square markers.

60 CHAPTER 6. DATA AND SIMPLE STATISTICS

0 200 400 600 800 1000
−3000

−2000

−1000

0

1000

2000

3000

time

si
g

n
a

l

Figure 6.9: Noisy signal #1

0 200 400 600 800 1000
−600

−400

−200

0

200

400

600

800

time

a
m

p
lit

u
d

e

Figure 6.10: Noisy signal #2

CHAPTER 6. DATA AND SIMPLE STATISTICS 61

0 500 1000 1500 2000
−3000

−2000

−1000

0

1000

2000

3000

4000

Figure 6.11: Noisy signal #3
11. Create an imitation of a noisy signal as shown in Figure 6.11. Try to reproduce the figure.
12. Craft one fill command to produce the grey shading as shown in Figure 6.12.

0 1 2 3 4 5 6 7
1

2

3

4

5

6

7

8

9

Figure 6.12: Grey regions.
Next, generate two random vectors x and y. Each must have 1000 elements, so that the (x, y)points are within the limits of the axes shown in the figure. Use one logical expression todetermine if a point is in the grey region. Plot only the points that are in the shaded regions onyour figure.

62 CHAPTER 6. DATA AND SIMPLE STATISTICS
13. Generate 10 points in the unit square and plot them with black dots. Generate another randompoint and plot it with a red x. Your code should identify the closest black point and draw a redcircle around it. One possible output is shown in Figure 6.13.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 6.13: Example of the output of the nearest-point problem
14. Generate 2000 random values (not just integers) for x in the interval [−35, 165] and y in theinterval [−20, 80]. Figure 6.14 contains two ‘flowers’. One is a circle centred at (30,40), withradius 30. The other is a circle centred at (−10, 0), with radius 40. Each flower (seen in red)has green petals in the form of a circle at the same centre and radius 8. Reproduce the figuredepicting x and y with the respective colours. Do not use loops.

−20 0 20 40 60 80 100 120 140 160

0

20

40

60

Figure 6.14: The two-flowers figure
15. Carry out random search to find a minimum of the following function:

f (x1, x2) = 2 sin(4x21) cos(6x32) − √
|x1| (x2 − 5)

CHAPTER 6. DATA AND SIMPLE STATISTICS 63
using ranges: −4 < x1 < 4 and −4 < x2 < 4. Apply 1000 trials. Print the results in the MATLABCommand Window. Plot in a figure the best value of the function versus the number of trials. Anexample of the plot is shown in Figure 6.15.

0 200 400 600 800 1000
−1

0

1

2

3

4

5

M
in

im
u

m
 F

Trial

Figure 6.15: Current minimum as a function of the number of iterations
16. Two-by-Two Matrices

(a) Using Monte Carlo simulations (a large number of random solutions), estimate whatproportion of the integer-valued 2×2 matrices are singular, where the matrix entries are inthe interval [−10, 10]. Format and display your answer in the MATLAB Command Window.(Use at least 10000 random solutions.)
(b) Consider the integer-valued 2×2 matrices whose entries are in the interval [−k, k]. Calculatethe proportion of singular matrices of this type for k = 1, 2, . . . , 50. Plot the results on agraph and give a short comment.

17. Two Needles in a Haystack
The following code is used by the teacher to generate the same dataset for an entire class.
% prepare the data file

Data = randn(1000,11);

rp = randperm(11); % choose which variables to modify

Data(:,rp(1)) = -Data(:,rp(2)) + randn(1000,1)*.05;

Data(:,rp(3)) = Data(:,rp(4)).*cos(Data(:,rp(4))) + randn(1000,1)*.05;

clear rp;

save DataFile

You will need to run the snippet to obtain DataFile before clearing your workspace to continuewith this problem.

64 CHAPTER 6. DATA AND SIMPLE STATISTICS
(a) Import ‘DataFile’, containing the array Data, into your workspace. Each column correspondsto a variable and each row is a data point described by the variables in the columns. Findthe means of all variables and display them in a bar chart. An example of the desired outputformat is shown in Figure 6.16.

Figure 6.16: An example of the desired bar chart output for problem 6.4.17 (a)
(b) While most of the variables are random noise, there are relationships between two pairs ofvariables (the ‘needles in the haystack’). Find a way to visualise all pairs of variables inorder to discover which pairs have the relationships plotted in Figure 6.17. Show the codethat you used for this visualisation. Plot the relationships you discovered as shown in thefigure. Put the true numbers of the variables instead of #X and #Y .

Figure 6.17: The relationship between two pairs of variables (the ‘two needles in the haystack’)
18. Poker Hands

(a) Write MATLAB code to draw randomly a poker hand: 5 cards out of a standard deck of52 cards (four suits: clubs ♣, diamonds ♦, hearts ♥ and spades ♠, and 13 values for eachsuit: 2, 3, 4, ... 10, J, Q, K, A). Check whether the hand contains 3-of-a-kind. Keep samplinguntil a hand with 3-of-a-kind is generated. Display the result the Command Window. Forexample, the hand (10♦, 10♣, 2♦, K♠, 10♠) should be shown as 10D, 10C, 2D, KS,

10S.

CHAPTER 6. DATA AND SIMPLE STATISTICS 65
Also, print the number of hands sampled before reaching the 3-of-a-kind. Note; you shouldguard against a ‘full house’ pattern where the remaining two cards are of the same value,for example (10♦, 10♣, K♦, K♠, 10♠). This is not acceptable as a 3-of-a-kind hand.

(b) Rank a poker hand into one of these categories:-
1. high card (none of the following 8)2. one pair3. two pairs4. three of a kind5. straight (consecutive cards, mixed suits)6. flush (same suit, any value)7. full house (three of a kind and a pair)8. four of a kind9. straight flush (consecutive cards, same suit)

Your code should draw a random poker hand, display it as in part (a), and display its valuein words. For example:-
10D, 10C, 2D, KS, 10S

three of a kind

19. A Welsh Village
Consider a hypothetical Welsh village with 10,000 inhabitants, of which 50% are male and 50%are female. 20% of the male inhabitants are bald. 30% of female inhabitants are blond. 37% ofthe inhabitants from the whole village population wear glasses. 10% of the inhabitants share thesurname Jones. 5% of the female population are called Carys, and 7% of the male population arecalled Dafydd. (Bear in mind that the percentages are exact, not approximate figures.)

(a) Create a random matrix V that will hold the information about all the 10,000 inhabitants ofthe village. Each row of V represents a person, and the columns represent the informationabout that person from the description above.
(b) Take a random sample of 200 different villagers from V . Within that sample, find and displayin the Command Window (with precision 2 decimal places) the percentage of the following:

(i) People called Carys Jones or Dafydd Jones.(ii) Blond ladies wearing glasses.(iii) Bald gentlemen who are not called Dafydd.
20. Estimating Areas of Intersection

(a) Pick a random centre and radius of a circle in 2d. Pick also the coordinates of the bottomleft corner of a rectangle, as well as its width and height. All values should be randomlydrawn integers between 1 and 10.

66 CHAPTER 6. DATA AND SIMPLE STATISTICS
(b) Plot the circle and the square.
(c) Run Monte Carlo simulations to estimate the area of the intersection between the circleand the rectangle. If the circle is contained entirely within the rectangle, or the rectangleis contained entirely within the circle, the area should be calculated (not estimated).
(d) Visualise the result as in the example in Figure 6.18.

−5 0 5 10 15

0

5

10

Area = 8.5023

Figure 6.18: An example of the output for the area estimation problem in problem 6.4.20
21. Government Agency X is planning to dispose of radioactive waste in the form of particles atlocation (p, q). The pollution pattern follows a normal distribution centred at (p, q), with standarddeviation s km. The agency is concerned about a small village situated m km south and n kmwest of the source of pollution. The zone of concern is a circle with radius k km around thevillage.

(a) Give values to the parameters p, q, s,m, n, and k , and plot a figure to illustrate the pollutionpattern and the zone of concern.
(b) Create a function which will take the parameters as input, together with a number ofreleased particles. The output should be the number of particles in the zone of concern.

The values of the parameters for the remaining sub-problems are:-
p = 10; q = 50; s = 60; m = 90; n = 80; k = 20;

(c) Run Monte Carlo simulations to estimate the pollution rate in the zone of concern(proportion). Note that you will have to call your function many times for this estimateto be accurate.
(d) Evaluate the pollution as the number of particles per square kilometre (PPSK) if N thousandparticles were released by the source. Show a graph by varying N . Annotate the axesproperly. Show a progress bar during the calculation (waitbar).

CHAPTER 6. DATA AND SIMPLE STATISTICS 67
(e) The waste is expected to release one cloud of 15 thousand particles. Assume that the legalpollution limit is 0.04 particles per square km. The agency has an option to move the wastepoint north. Find (to the nearest kilometre) the southernmost possible position so that thepollution in the zone of interest does not exceed the limit.(f) Format and print in the Command Window a short report for Government Agency X,containing your findings for the values given in (e). A few lines will suffice, for example

Currently chosen location of the waste point: (10,50).

Number of particles per square kilometre (PPSK): ...

Current PPSK safety limit: 0.04.

Suggested new location of the waste point: (...,...)

PPSK for the new location: ...

22. Largest Number of 1s
Demonstrate the operation of an evolutionary algorithm for the following problem.
• The chromosome is a binary vector of length 625.
• The fitness function is the number of 1s in the chromosome – the larger, the better.
• Start with a random population with 10 chromosomes.
• Use only mutation; set the mutation probability to 0.15.
• Run your algorithm for 20 generations.

At each new generation, plot the best chromosome in the current population using the ‘spy’command. Format the chromosome as a 25×25 matrix. An ideal chromosome will have all spacesfilled. The worst chromosome will be an empty square in the figure.
At the end, print out the fitness value of the best chromosome, and show the chromosome asexplained above.

23. How important is the mutation probability Pm?
Take the code from the previous problem and estimate the role of the mutation probability Pm. Runit for values of Pm between 0.01 and 0.35 and plot a graph of the fitness of the best chromosomeagainst Pm. Give a short comment on the result.

24. Simulation of virtual bugs.
Write a MATLAB script to simulate the behaviour of virtual bugs. The rules are:
• The bugs are initially randomly spread on a grid of 25×25 cells. Each grid cell receives abug with probability 0.4.
• At each step, a bug moves to a random neighbouring cell: up, down, left or right.
• If the move happens to be outside the edge of the grid, the bug disappears.

68 CHAPTER 6. DATA AND SIMPLE STATISTICS
• If more than one bug fall in the same cell, the cell destroys all of them.

Run consecutive steps until there are no bugs left on the grid. Display each iteration using the‘spy’ command, and pause for 0.05 seconds to see the bugs moving. At the end of the run, printthe number of steps in the Matlab Command Window.
25. The travelling salesman problem (TSP) is defined in the following way. The salesman has tovisit n given cities. The order of visiting does not matter. The goal is to find an order of visitingso that the distance travelled is minimum.

Write a function which implements a Monte Carlo simulation for the TSP. The function shouldtake as its input argument an array of (x, y) coordinates of the n cities, and should return apermutation of the integers from 1 to n. The algorithm should check 50000 random solutions ina loop. A graph should be plotted and updated along the run, every time a better solution isfound. An example of the end solution for n = 10 cities is shown in Figure 6.19. The title of thefigure should show the iteration number (loop counter) for the solution currently displayed, aswell as the tour distance. Run your function using n = 10 cities. The cities should be generatedat random in the unit square.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration # 44261 Minimum d = 2.6006

Figure 6.19: A TSP problem
26. Write a function for the TSP (see the previous question) using a ‘greedy’ approach. Starting withthe first city, identify the nearest city and add it to the list. Identify, among the non-visited cities,the nearest one to the last city on the list. Keep growing the list until all cities are placed in it.Close the tour to calculate the tour distance. Run your function using n = 10 cities. The citiesshould be generated at random in the unit square.
27. Carry out a comparative study of the two approaches to the TSP problem using tour distanceand execution time as your two criteria. Choose a format to present your results.

Chapter 7

Strings

7.1 Encoding

In most programming languages, as with MATLAB, characters are actually represented by numbers.There are numerous encoding schemes that are used in different scenarios and languages. MATLAB(being primarily American) uses the ASCII - the American Standard Code for Information Interchange.This scheme represents 256 possible character codes as numbers between 0 and 255, with eachcharacter occupying one byte. Of these, 32 are so called ‘non-printable’ characters as they do notproduce any output on screen or when sent to a printer. There are 95 useful characters that can beentered on a western QWERTY-style keyboard. Table 7.1 shows a selection of these 95 characters -Latin numbers and letters only.
Table 7.1: ACSII characters and their decimal codes

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47! " # $ % & ’ () * + , – . /
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 630 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79@ A B C D E F G H I J K L M N O
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95P Q R S T U V W X Y Z [\] ∧ _
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111‘ a b c d e f g h i j k l m n o
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126p q r s t u v w x y z { | } ∼

69

70 CHAPTER 7. STRINGS
As characters are simply numbers, a matrix can contain a string. Each element will represent a singlecharacter, and will be an integer between 0 and 255. Your other choice when dealing with multiplestrings would be to use a cell array (see Section 2.6).
7.2 Useful String Functions

MATLAB has string handling functions, just like any other language. As with most languages thefunction names (in the most part) start with str. Table 7.2 contains a list of the most common and usefulstring handling functions in the MATLAB language.
Table 7.2: Common String Functions.

Command What it does
strcmp(a,b) Compares a and b, returning 1 if identical.

strfind{a,b} Finds occurrences of b in a, returning a vector of the start positions.
strrep(a,b,c) Forms a new string, replacing all instances of b, in a with c.

strtok(a) Returns the first and the second parts of a split by a token.
strtrim(a) Returns a copy of a with the leading and the trailing whitespace removed.
isstr(a) Returns 1 if a is a string, and 0 otherwise.

str2num(a) Returns the number represented by the string of digits a.
input(p, ’s’) Inputs a string from the Command Window where p is a string prompt for the user.
sprintf(f,d) Constructs a formatted string.

disp(s) Output s in the Command Window.
7.3 Examples

7.3.1 Imaginary Planet Names

Suppose you are writing a science fiction novel, and need a collection of 10 exotic planet names. Eachname should be made of 4 to 7 letters, where the string alternates between vowels and consonants.Each run of the code below will generate a random collection of names, for example: Azine, Sunaru,Isunot, Tuso, Medutas, Abafora, Darewoz, Amiza, Tanata and Danem.
cnsnt = ’rtnmktfwbnptrgmpxndsxzzrtzsd’; % consonants to be used

for i = 1:10

name_length = randi([4 7]);

vx = vwls(randperm(numel(vwls))); % choose the vowels

cx = cnsnt(randperm(numel(cnsnt))); % choose the consonants

planet = ’’;

if rand > 0.5 % start with a vowel

planet(1:2:name_length) = vx(1:2:name_length);

CHAPTER 7. STRINGS 71
planet(2:2:name_length) = cx(2:2:name_length);

else

planet(1:2:name_length) = cx(1:2:name_length);

planet(2:2:name_length) = vx(2:2:name_length);

end

planet(1) = upper(planet(1)); % capitalise the first letter

fprintf(’%s\n’,planet);

end

7.3.2 String Formatting

Print the Receipt. Suppose that you have a small business and you sell six different products. Chooseyour products and their prices within the range of 20p to £25.00 (these could be completely fictitious).Your shop has 4 employees, one of whom will be at the till at the time of purchase. Your task is towrite the code to prepare a receipt for a fictitious transaction as explained below.
There is a customer at the till. They want to purchase 3 random products with specific quantities foreach. To prepare your receipt:

1. Select randomly 3 products from your list. For each product choose a random quantity between1 and 9.
2. Calculate the total cost.
3. Choose randomly the staff member to complete the transaction.
4. Suppose that the price includes 20% VAT. Calculate the amount of VAT included in the price.
5. Prepare the receipt as text in the MATLAB Command Window. Use the current date and time(check the command datestr(now,0)).

Your code should output the receipt in the format shown in Figure 7.1. There should be 60 symbolsacross. Choose your own shop name.
Solution.

’Tips on Life’,’Album of Cat Photos’,’Ice cream’,’Diamond Necklace’};

prices = [3.50, 2.48, 12.40, 10.90, 5.63, 11.50];

staff = {’Henrieta’,’Esmeralda’,’Katrina’,’Johann’};

% Entries

rp = randperm(6); % first 3 products were purchased

Quantity = ceil(rand(1,3)*9); % how many of which

ItemPrices = Quantity .* prices(rp(1:3));

% Frame

Rec = repmat(’ ’,16,60); % empty template

[Rec(1,:),Rec(end,:)] = deal(’-’); % side frame

72 CHAPTER 7. STRINGS

Figure 7.1: The print layout for the receipt
[Rec(:,1),Rec(:,end)] = deal(’|’); % side frame

[Rec(1,1),Rec(end,1),Rec(1,end),Rec(end,end)] = deal(’+’); % corners

% Fill in

Rec(3,3:length(datestr(now,0))+2) = datestr(now,0); % today’s date

shop_name = ’Grandma’’s Little Shop’;

Rec(3,end-length(shop_name)-1:end-2) = shop_name;

for i = 1:3

S = sprintf(’%25s (%1i) x %5.2f = Â£ %6.2f’,products{rp(i)},...

Quantity(i),prices(rp(i)),ItemPrices(i));

Rec(i+5,3:length(S)+2) = S;

end

Rec(9,29:54) = ’-’; % line under the list

Rec(10,16:27) = ’Total to pay’;

Rec(10,43:52) = sprintf(’ Â£ %6.2f’,sum(ItemPrices)); % total price

Rec(11,25:27) = ’VAT’;

Rec(11,43:52) = sprintf(’ Â£ %6.2f’,sum(ItemPrices)/6); % VAT

bye = sprintf(’Thank you! You have been served by %s’,...

staff{ceil(rand*4)});

Rec(14,3:length(bye)+2) = bye;

disp(Rec)

7.4 Exercises

1. Coded Messages
(a) Create a random coded message as a 10-by-50 matrix with integers corresponding to ASCIIcodes. See Table 7.1 for the required codes. Using the command char, display the message.

CHAPTER 7. STRINGS 73
(b) Find the number of occurrences of capital letters. Replace all such occurrences withthe symbol # (The ASCII code for # is 35. To find the ASCII code for a character, type

double(<the_character>).
(c) Turn your original message into a table with k columns, as shown below for k = 5. Noticethat the table has the same size as the original message (10-by-50). The top and bottomrows are replaced with dashes, and the respective columns are replaced by vertical bars.(You should be able to change the value of k in the code and display a table with thedesired number of columns.)

+---------+---------+--------+---------+---------+

|YJDxLsTbY|kyTXDLBuq|zRCEASUM|QEYZAFlGo|hDFhuccfE|

|zBkRfAVvM|qBhgYtPGr|jGvvsPHC|PzpSfMgdn|XOIYmDKdN|

|eGWdsvmKM|ixVwBSajA|udWKvIwH|XUqUMwizt|zaqUEBoIB|

|qOjwjmtJO|LJZWDalLi|EIbJtsFJ|fKtwFueRI|dfaLbblDK|

|ZJqIPOsnh|xLzryivOD|PYewnPoO|QAqbHsJto|vqvrudsTm|

|ZlZToSxDm|RcmFJGsey|AgaWoZFB|qAVKxlRUZ|trOjsrZib|

|zGsWgtavw|TeqyJhyQE|yQReYONR|KWJgiKwKI|WCTNIhKUo|

|xqxqmopTB|ZhUUSlovO|ACxarMmR|bZonYojEx|zCJxRmXAq|

+---------+---------+--------+---------+---------+

2. Extract the first e-mail address from a string. Check whether the e-mail is from the UK (endingwith ‘.uk’) and display the extracted address in the Command Window, indicating ‘UK’ or ‘NON-UK’. Demonstrate the work of your code on strings of your choice.
3. Construct arrays containing (i) quantifiers (e.g., all, few, many, several, some, every, each, any,no, etc.), (ii) nouns or expressions (animated), (iii) verbs and (iv) another array with nouns orexpressions. Draw randomly one word from each array to construct a funny random proverb. Afew examples:

No students hide from the relativity theory.

Some cats eat football.

All politicians adore MATLAB.

Most politicians are scared of the French.

Many zebras adore the French.

All zebras look like Adele’s songs.

4. Write a primitive Chat Bot. The conversation will start with:
>> And you were saying? ...

displayed in the Command Window. It then progresses taking a sentence from the user anddisplaying the last word in a question:
>> Really, <last word>?

74 CHAPTER 7. STRINGS
For example, if the user inputs ‘It is snowing today.’ your program should print ‘Really, today?’

5. Write MATLAB code which will do the following. Ask the user to input a short sentence. Replacethe spaces with a dash and display the text as shown in the example below.
Suppose that the text is ‘Joey is a super cat!’ Your output should be:

!

t!

at!

cat!

-cat!

r-cat!

er-cat!

per-cat!

uper-cat!

super-cat!

-super-cat!

...

a-super-cat!

-a-super-cat!

s-a-super-cat!

is-a-super-cat!

-is-a-super-cat!

y-is-a-super-cat!

ey-is-a-super-cat!

oey-is-a-super-cat!

Joey-is-a-super-cat!6. Manipulating Strings
(a) Enter the following text into a variable.

Once upon a time, a very long time ago now, about last Friday, Winnie-the-Pooh
lived in a forest all by himself under the name of Sanders. “What does ’under the
name’ mean?” asked Christopher Robin. “It means he had the name over the door
in gold letters, and lived under it.”

Make sure that your code does not exceed the width of the MATLAB editor’s page (75characters).
(b) Use the names of three celebrities of your choice to replace in the string the three names:Winnie-the-Pooh, Sanders and Christopher Robin.
(c) Find the number of characters, with and without counting the spaces. Display your answerin the following format in the Command Window:

The string contains XXX characters if counting the spaces

and XXX characters without the spaces.

(d) Find the total number of words in the string (repeated or not). Assume that any two wordsare separated by a space. Display your answer in the Command Window.
7. Count the number of words in a string, excluding ‘the’, ‘a’ and ‘and’, regardless of capitalisation.Demonstrate the working of your code with an example string.
8. Create an Anagram game using MATLAB. You will need to create a cell array with the names ofthe countries in Europe shown in Table 7.3. Next, randomly choose a country, mix-up the lettersto make an anagram, display it in capital letters, and ask the user to recognise the country. The

CHAPTER 7. STRINGS 75
user is allowed 3 attempts. If the user inputs the correct name (at any of the three attempts),display a message of congratulation and stop. If all three attempts are unsuccessful, display anappropriate message and stop.

Table 7.3: Countries of Europe
Albania Hungary PortugalAndorra Iceland Republic of MacedoniaAustria Ireland RomaniaBelarus Italy RussiaBelgium Kosovo San MarinoBosnia and Herzegovina Latvia SerbiaBulgaria Liechtenstein SlovakiaCroatia Lithuania SloveniaCyprus Luxembourg SpainCzech Republic Malta SwedenDenmark Moldova SwitzerlandEstonia Monaco TurkeyFinland Montenegro UkraineFrance Netherlands United KingdomGermany Norway Vatican CityGreece Poland

9. Write MATLAB code to print, in the Command Window, a decorated Christmas tree as shownbelow. The candles (i) and the balls (O) should be at random places. Notice the star (*) at thetop and the stump (I) at the bottom of the tree. Aim to write the shortest possible code.
*

^iO

i^^^^

^^^i^^O

^^^^^^^O^

^^^^^^^^^i^

^^O^^^^^^^^^i

^^^O^^^^^^^^^^^

^^^^O^^^i^^^^^iiO

I

10. Write a function which will take a matrix A as its input argument, and will print in the CommandWindow a LATEX script for this matrix. In LATEX syntax. The columns should be right-aligned andthe matrix should be given in large square brackets. For example, the matrix
A =

7 9 -4 10

9 3 1 -6

-7 -8 10 10

76 CHAPTER 7. STRINGS
should be coded in LATEX as the script below. When placed in the equation environment (openedwith ‘\[’ and ended with ‘\]’), the matrix should look like the one shown to the right.
\left[

\begin{array}{rrrr}

7&9&-4&10\\

9&3&1&-6\\

-7&-8&10&10\\

\end{array}

\right]

 7 9 −4 109 3 1 −6
−7 −8 10 10

11. ASCII Art #1
Write a function which takes a text string and a template as input, and places the words in theshape of the template. The template should be a binary matrix with ones where the ascii symbolsshould be. The function should return a string. An example is shown below:

If i t w

asn’t fo r t

he coffee, I’d

have no identifia

ble personality what

sover.If it wasn’t for t

he coffee, I’d have no ident

ifiable personality whatsover.If

it wasn’t for the coffee, I

’d hav e no identifiabl

e pers onality whatsove

r.If i t wasn’t for the

coffe e, I’d have no i

dentifiable pers onal

ity whatsover.If it

wasn’t for the c offe

e, I’d have no i dent

ifiable personal ity

whatsover.If it wasn’t for t

he coffee, I’d have no identifiable personality

whatsover.If it wasn’t for the coffee, I’d hav

Calling the function using:
[x,y] = meshgrid(1:18,1:18);

a = ascii_art_form(’Christmas forever!’, [fliplr(x < y) x < y]);

disp(a)

should print in the command window the pattern shown below.

CHAPTER 7. STRINGS 77
Ch

rist

mas fo

rever!Ch

ristmas fo

rever!Christ

mas forever!Ch

ristmas forever!

Christmas forever!

Christmas forever!Ch

ristmas forever!Christ

mas forever!Christmas fo

rever!Christmas forever!Ch

ristmas forever!Christmas fo

rever!Christmas forever!Christ

mas forever!Christmas forever!Ch

ristmas forever!Christmas forever!

Chapter 8

Images

8.1 Types of Image Representations

MATLAB supports the image representations detailed in the following sections. The core version has alimited set of image commands. To check whether you have a license for the Image Processing Toolbox,type in the Command Window:
license(’test’,’image_toolbox’).An answer of ‘1’ means ‘yes, you have a license’.
8.1.1 Binary Images

A binary image in MATLAB is a matrix containing 0s and 1s. An example is shown in Figure 8.1. Zerosindicate black and 1s indicate white. Command imshow() will show the black-and-white image inthe currently open figure. An alternative way to show the non-zero elements of a matrix is to usethe command spy(). This command shows the matrix on a pair of coordinate axes. The non-zeroelements are plotted with blue stars. The total number of such elements is shown as the label of thex-axis as illustrated in Figure 8.1.

imshow(eye(4))

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Image Matrix representationMATLAB command The spy command

0 5

0

5

nz = 4

Figure 8.1: Binary image representations in MATLAB.
8.1.2 RGB Images

An RGB (red-green-blue) image is stored as three matrices (colour planes) of the same size M × N ,whereM is the number of rows of pixels and N is the number of columns of pixels. Hence, an RGB image
A should be addressed with three indices A(i, j, k), where i ∈ {1, . . .M} is the row, j ∈ {1, . . . N} isthe column of the pixel, and k ∈ {1, 2, 3} is the colour plane. The colour of pixel at i, j is determined by

78

CHAPTER 8. IMAGES 79
the combination of the red intensity A(i, j, 1), green intensity A(i, j, 2) and blue intensity A(i, j, 3). Eachvalue is stored in 8 bits, as unsigned integer, format uint8. Value (0,0,0) for (A(i, j, 1), A(i, j, 2), A(i, j, 3))makes pixel (i, j) black, and value (255,255,255), makes it white. Equal values in the three planes willmake the pixel grey, with intensity determined by that value. An example of an RGB image and itsMATLAB representation are shown in Figure 8.2.

Image
1
2

.

.

.

852
Rows
of pixels

1 2 ... 1136 Columns of pixels

Red plane

Green plane

Blue plane

(215, 210, 191)

(33, 55, 16)

33

55

16

Light grey

Dark green

Figure 8.2: An RGB image representation in MATLAB using uint8 format.
8.1.3 Grey Intensity Images

A grey intensity image is represented as a matrix A of size M ×N . Again, M is the number of rows ofpixels and N is the number of columns of pixels. Using the uint8 format, A(i, j) takes integer valuesbetween 0 (black) and 255 (white), specifying the grey level intensity of the pixel in row i and column
j . Each of the three planes of an RGB image is an intensity image itself.
An example of constructing a grey intensity image is shown in Figure 8.3.

MATLAB code

a = repmat(0:255,700,1);
b = fliplr(a);
figure('color','w')
imshow(uint8([a b(:,1:80)]))

1
2
.
.
.

700

Image

Figure 8.3: Construction of a grey intensity image.

80 CHAPTER 8. IMAGES
8.1.4 Indexed Images

An indexed image is a matrix A of size M × N , accompanied by a matrix C of size k × 3, called ‘thecolour map’. Each row in the colour map matrix defines a colour. The values are between 0 and 1.White is encoded as [1,1,1], and black, as [0,0,0]. All colours can be represented as combinations of threefloating point numbers between 0 and 1. For example, [0.5,0,0.5] is purple, and [0.4,0.1,0] is brown. Theentries in A are taken to be row index of C . An example of indexed image is shown in Figure 8.4.
Resolution: 25x46 pixels

5 colours

3 3 3 1 4 4 4 0 4 4 2 2 4

3 3 2 4 0 0 0 0 0 0 0 2 0

1 2 4 0 0 2 2 2 2 2 0 0 2

2 4 2 0 0 2 1 1 1 1 0 0 2

3 3 3 0 0 2 2 1 1 2 2 0 0

3 3 3 1 0 0 1 2 2 2 0 0 2

3 3 3 3 0 0 0 1 2 0 0 2 3

3 3 3 3 3 0 0 0 0 0 1 3 3

3 3 3 3 3 3 3 1 1 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3

0 0.07 0.08 0.18

1 0.70 0.71 0.86

2 0.36 0.38 0.64

3 0.99 0.99 0.99

4 0.06 0.07 0.55

Colour map

Figure 8.4: Examples of an indexed image.
8.2 Useful Functions

To extract the three planes from an RGB image A, use:
R = A(:,:,1); % red plane

G = A(:,:,2); % green plane

B = A(:,:,3); % blue plane

To (re-)assemble an image from three planes, R , G , and B, use:
A = cat(3,R,G,B);

This command will concatenate the three planes on the third dimension.
Sometimes it is necessary to store the coordinates of the pixels in an image. Consider the followingcommand
[x,y] = meshgrid(1:5,1:3);

The output are two arrays of size 3×5 containing coordinates:
x =

1 2 3 4 5

1 2 3 4 5

CHAPTER 8. IMAGES 81
1 2 3 4 5

y =

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

Notice that the y coordinate starts from top and increases with the row index. This is the ij-coordinatesystem available in MATLAB. To plot in a figure, with this system, set the axes by axis ij.
Table 8.1 contains useful commands and functions for handling images in MATLAB.

Table 8.1: Common Image Functions.
Command What does it do?
imread(i) Loads an image into a matrix.
imshow(A) Displays an image matrix in a figure.

imagesc(A) Scales a matrix into an image and displays the image.
colormap(m) Sets the active colormap.
rgb2gray(A) Converts an RGB image into a grayscale image.

8.3 Examples

8.3.1 Image Manipulation

Load an RGB image and display it so that the top diagonal half is grey, and the bottom part isunchanged. An example is shown in Figure 8.5.

Figure 8.5: An example of a half-grey image.
One potential approach for solving this problem is shown in Figure 8.6. The code is shown below.
A = imread(’flower.jpg’); % load the RGB image in matrix A

B = rgb2gray(A); % convert to grey

s = size(B);

82 CHAPTER 8. IMAGES
Hmm, how do I solve this problem?...

1. Upload the RGB image in variable A.

2. Convert to grey and store in B.

3. Find the diagonal that should split the two halves.

4. Run a double loop and check the pixel coordinates with the
left-hand side (LHS) of the equation. If negative, assign the
grey value to the three colour planes.

1

s1

1 s2

Two pixel coordinates (1,s1) and (s2,1)
Equation:
(x-1)/(s2-1) = (y-s1)/(1-s1)
(x-1)/(s2-1) - (y-s1)/(1-s1) = 0

Above diagonal: (-) side
Checked with (1,1)

For pixel (i,j)

Substitute x=j, y=i.
If LHS < 0, set

A(i,j,1:3) = B(i,j)

Image

Figure 8.6: A possible approach for the solution of the half-grey-image problem.
for i = 1:s(1)

for j = 1:s(2)

if (j-1)/(s(2)-1) - (i-s(1))/(1-s(1)) < 0; % top half

A(i,j,:) = B(i,j);

end

end

end

figure,imshow(A)

While this approach works; it is slow, and not in the spirit of the language. Instead of the double loop,we can create a mask which will have values TRUE for the top diagonal half. Then we will replacethe top diagonal halves of the RGB planes of A with the the corresponding values in B, and finallyre-assemble A. The code for this version is shown below.
A = imread(’flower.jpg’); % load the RGB image in matrix A

B = rgb2gray(A); % convert to grey

s = size(B);

[x,y] = meshgrid(1:s(2),1:s(1)); % x-y coordinates for all pixels

mask = (x-1)/(s(2)-1) - (y-s(1))/(1-s(1)) < 0; % top half

r = A(:,:,1); r(mask) = B(mask); % red plane

g = A(:,:,2); g(mask) = B(mask); % green plane

b = A(:,:,3); b(mask) = B(mask); % blue plane

figure,imshow(cat(3,r,g,b)) % open a figure and show concatenated image

CHAPTER 8. IMAGES 83
8.3.2 Tone ASCII Art

ASCII art can be created using the tone of the image. The grey levels are matched to characters.Darker characters are, for example, ‘@’ and ‘#’, and the lightest are ‘.’ and the blank space.
To create an ASCII version of a grey image, rescale it to a desired resolution, and convert it to indeximage using gray2ind command. The number of shades in the colour map should be the same asthe number of symbols used to represent grey values. For example, you may wish to use the followingset of characters:
S = ’#n*:. ’;

An example using this character set is shown in Figure 8.7. To achieve a good result, the background ofthe original image should be removed. The colours should be preferably in patches. Good candidatesfor ASCII art are cartoon images.
.......

...:::.:::..::...

.::::::::::*:****:::

.:******::**nn**nnn*:..

.****nn:*nn*::nnnn**:::::..

:***nnn*:n##n:.:nnn**n*****:.

.***nn*n*****:::*nn*nnnnnn**n*.

:*******nnnnnnnnnnn*nn##nn#nnn:

.*******nnnnnnnnnnnnnnnnn##n*.n:

.:***n*nnnnnnnnnn***nnn*:***..*.

.::**nnnnnnnnn*******nnnn: ..

:::****nnnnn*********nnn*.

.:::::********************

..::::::******************:

....::::::::::***********::::

.......::::::************:::::::

.............::::::****:::::::::::::.

.......::.....::::::::::::::::::::::::::.

.......::.........:::::::::::::::::::::::::..

......::...........:.:::*:::::::::::::******:::..

.........................::**:::::::**********:***:.

...::.........................::****:****::*****::*n***:

..::::::**..........................:*************::::*nnn**.

.:**nnnn*******:................:::::::::.:*****************nnnn*:

.n#nnn********::..........:.:.:::::::::::*n****************nnnn:

..:*nnnnnnnn*::****:::::::::::::.::::::::::*nn****************nnn*:

...::::*nn#nnnnnnnn*::**nnn*::::::::::::::::::::**nnn*****************:.

..:::***********nnnnnnnnnnn*::nnnnnn***:::::::**::**n**nnn*******************.

.:*nnnnnnnnnnnnnnnnnnnnn*****nnnnnn*nn**nnn*::********nnnnnnnnnnn***********nnnn**:

..:**nnnn*****:::.... ...:****nnnnnnnnn##n###n*nnnnnnnnnnn**nnnn**nnnnn**::.

..:nn##n#n#####nnnnnnnnnnnnnnnnnnnn*******nnn**::. .

.:*n#nn#nnnnnnnnnnnnnnn#nnnn*:..:**n*: .:::.

.:*nnnnnnnnnnn##nn**:.. .::::::::..::**.

.:nnnnnnnn:.. ..:**:::**:...

.*nnnnnn. ..:.

:nnnnn#n:.

.:****n#n*:......

..::..::::*#####nnnnnnn*::::..

:nnnn#nnnnn**::::........

...

Figure 8.7: An example of a tone ASCII art.
The code is shown below:
I = imread(’Parrot4.png’); figure, imshow(I) % choose an RGB image

A = rgb2gray(I); figure, imshow(A) % convert to grey

B = imresize(A,[60 120]); % resize (tune by hand for now)

S = ’#n*:. ’; % character string from dark to light

C = gray2ind(B,length(S)); % convert to index image

S(C+1) % display the ASCII in the Command Window

84 CHAPTER 8. IMAGES
Notice the particularly elegant way to construct the ASCII output, S(C+1). The set of characters Sis indexed with the index image values. These values are meant to be entries in the colour map, alsosorted from dark to light. The output is shaped as the index C .
The indexed image, however, starts the counting from 0, while the array with the characters S mustbe addressed, according to the MATLAB rules, from 1. Therefore we add 1 to C when using it asindex.
8.4 Exercises

1. Ask the user for a number between 1 and 4. Depending on the entered number, create anddisplay a matrix of a random colour, where the respective quadrant has a different randomcolour. Examples of the four outputs are shown in Figure 8.8. Use the switch-case operator.

Figure 8.8: An example of possible outputs for quadrants 1-4
2. Reproduce Figure 8.9 by creating manually an indexed image and setting the respective colourmap.

Figure 8.9: An example of indexed image
3. Generate a matrix and colour it so that it resembles the tartan pattern in Figure 8.10 or anothersimilar pattern.
4. Load a JPEG image and plot the histograms of the red, green and blue panes of the image asshown in Figure 8.11. Note; the histograms should appear on one figure.

CHAPTER 8. IMAGES 85

Figure 8.10: An example of a tartan-like pattern

0 50 100 150 200 250
0

5

x 10
5 Red

0 50 100 150 200 250
0

5

x 10
5 Green

0 50 100 150 200 250
0

5

x 10
5 Blue

(a) (b)
Figure 8.11: The original image (a), and the histograms of the three panes (b)

5. Load a JPEG image and convert it to an indexed image with 5 colours. Create a random colourmap for the new image. Show the original and the new image. An example is shown in Figure 8.12.
6. Load a JPEG image and reduce its intensity to make it into a watermark image as demonstratedin Figure 8.13. Do not use the ‘brighten’ command; manipulate the image with your own code.
7. Load a JPEG image of your choice. Convert it to grey and calculate the mean and the standarddeviation of the grey level intensity. Display a new image where all pixels within one standarddeviation from the mean are coloured in red, and the remaining pixels stay unchanged.

An example of an original and the manipulated image is shown in Figure 8.14.
8. Write a function that will take an RGB image and a character, which can be only R, G or B,as input arguments. The output of the function should be an RGB image of the same size asthe input image, where the indicated panel (red, green or blue) is replaced by a random matrix.Demonstrate the work of your function by writing a script, calling the function with each of the

86 CHAPTER 8. IMAGES

Figure 8.12: The original image and the indexed image with 5 random colours

Figure 8.13: The original image and the watermark image

Figure 8.14: The original image and the manipulated image.
three character values. Organise the output into a 3-by-1 montage and show it in a new figure.An example is shown in Figure 8.15.

CHAPTER 8. IMAGES 87

Figure 8.15: A montage with random red, green and blue panels
9. Write a function that will load an image chosen by the user and create an ‘old movie’ effect:tinted, faded, scratched and torn at the bottom. An example of the original image and the desiredeffect is shown in Figure 8.16.

Figure 8.16: An example of the ‘old-movie’ effect
10. Take a grey image and inset 6 progressively smaller versions of it into the top left corner, asshown in Figure 8.17. Each subsequent image should be half of the size of the previous imagein both dimensions.
11. Construct and display the image in the left plot of Figure 8.18, containing red, green and bluepanels where the colour appears gradually from left to right, starting with black.

Next, add three more panels combining the RGB colours as in the right plot of Figure 8.18. Thecolours in the bottom row should be approximately brown, purple and tobacco.
12. Take a JPEG image and tint the four quadrants with transparent overlays as shown in Figure 8.19.
13. Frame Factory

(a) Create a function which frames an image. The input arguments are the image, a proportion
p that defines the frame size, and the frame colour. The frame colour should be given asa vector of three numbers between 0 and 1. The proportion for the frame width should be

88 CHAPTER 8. IMAGES

Figure 8.17: A grey image with progressively smaller copies inset within

Figure 8.18: Three colour panels

Figure 8.19: Four transparent colours
taken from the smaller of the two dimensions of the image. The frame should be inside theimage. Examples of framed images are shown in Figure 8.20. Demonstrate the output ofyour function in a similar way with three different sets of parameters.

CHAPTER 8. IMAGES 89

(a) frame 20% (b) frame 10% (c) frame 3%[0.8 0.3 0.2] [0.4 0.7 1.0] [0.5 0.2 0.2]
Figure 8.20: Frame Factory

(b) Use your function in a loop to create a montage as shown in Figure 8.21. The frame widthand the frame colour should be random. The frame width should be no larger than 30%.

Figure 8.21: A montage of framed images
14. Load a JPEG image and draw a grid with 10 rows and 10 columns of cells on it, as shown inFigure 8.22. The grid lines should be embedded in the image, and not merely plotted on thesame axes. The width of the lines should be chosen in such a way that the lines are visible.Also, make your code re-usable so that it can work on any image you upload. (This means thatthere should be no hard coded constants in your function/script.)
15. Play a game with your friends. Encrypt a colour image of size [M,N, 3] using a randompermutation of the integers from 1 to M × N × 3. Save the encrypted image in a mat file,together with M , N and the permutation used. Challenge your friends to decrypt the image fromthe mat file. You can run a contest to find the first person to show the correct original image.
16. Construct the function shuffle_image that will take an RGB image and two integers, M and

N . The function should split the image into M rows and N columns of ‘tiles’. It should return an

90 CHAPTER 8. IMAGES

Figure 8.22: A 10-by-10 grid imposed on an image
image of the size of the original input but with shuffled tiles. An example of the original imageand the shuffled image, for M = 4 and N = 5 is shown in Figure 8.23.
Note: If needed, make the image sizes multiples of M and N , respectively, by losing a smallnumber of bottom rows and right-hand side columns of pixels.

Figure 8.23: The original image and the 4×5 shuffled image.
17. Create a function named image_blocks. The input arguments are: x , an RGB image; N ,number of rows of blocks; M , number of columns of blocks; and p, a parameter to chose betweenmean/median/mode.

The output should be an RGB image y of the same size as x , split into N rows and M columns ofblocks of colour. The colour of each block should be the mean/median/mode colour of the pixelswithin this block in the original image. The value of p will determine which one of the three

CHAPTER 8. IMAGES 91
options is used. Examples of an original image and the outputs for the three options are shownin Figure 8.24.

(a) original image (b) mean (c) median (d) mode
Figure 8.24: Examples of the output for the block-image problem.

18. Create a MATLAB function which takes as input a cell array with words (strings) and an integermode. The length of the array is not limited. The function should display the words around ashape as shown in Figure 8.25. If the switch mode is 1, the words should be sorted alphabeticallybefore displaying. Finally, load and display an image, create axes within it, and call the functionto display the entries in the cell array as in the Figure. (Hints: (i) You may need to darken theimage for the text to be clearly visible. (ii) The function output should have the handles to thelines so that their visibility can be turned off.)

M
o
n
da
y

Tu
esd
ay

Wednesday

Thursday

Friday

Saturday

Su
nd
ay

be
ar

ca
t

cow

dog

elephant

foxgoat

m
onkey

m
ouse

sheep

squirrel

tig
er

wo
lf

(a) mode 0 (b) mode 1 (c) image with mode 0
Figure 8.25: Examples of the output for the circular text problem.

19. Paint by Numbers
(a) Load a JPEG image (for best effect, this should be a low resolution, nearly square cartoonimage). Choose the number of rows, M , and the number of columns, N , for the painting grid.Resize the image to the required grid size.
(b) Convert the JPEG image into an indexed image with 8 colours and show it as inFigure 8.26 (b).
(c) Prepare a figure that displays the colour map as shown in Figure 8.26 (c).
(d) Prepare a figure that shows the grid and the numbers of the colours as in Figure 8.27.

92 CHAPTER 8. IMAGES

(a) Original image (b) 40-by-40 pixels (c)
Figure 8.26: Painting by numbers

start CHALLENGE

Paint by Numbers - with as few Strokes as Possible

Write the script for problems (a)-(d) using the minimum possible number of lines. The rules are:(1) Each line has a maximum of 75 symbols. (2) The number of characters does not matter. (3)The figures may be produced in any order but each figure must be opened with the figurecommand. (The authors’ current record is 7 lines.) Best of luck!
end CHALLENGE

20. 3D Colours
Each pixel in an image can be regarded as a point in a 3-dimensional space: RGB. Thus the pixelscan be plotted using command plot3 or scatter3. In addition, each pixel can be plotted withits own colour. Examples of three images and the respective 3D plots are shown in Figure 8.28.
Create a similar colour cube for an image of your choice. If you are plotting in a loop using
plot3, make sure that you rescale the image to a much smaller size so that the number ofplotted points does not exceed, say, 50,000. Otherwise the plotting will be too slow.

CHAPTER 8. IMAGES 93

Figure 8.27: Paint-by-numbers grid for the Parrot image.

94 CHAPTER 8. IMAGES

0
100

200
300 0

100

200

300
0

50

100

150

200

250

0 50 100 150 200 250

0

200

400

0

50

100

150

200

250

0 50 100 150 200 250
0

200

400

0

50

100

150

200

250

Figure 8.28: Images and 3d colour cubes.

Chapter 9

Animation

9.1 Animation Methods

There are several ways to produce animation in a figure in MATLAB. The figure can be redrawn withthe new positions of the objects being animated. Another (and more elegant) way is to keep the figureand change only the positions of the objects. To do this, we need to take handles of the objects ofinterest. These handles contain information about all properties of the respective objects, includingposition and colour. An example of creating a handle is shown below;
h = plot(0,0,’k.’);

To view the properties available and their values, type:
get(h)

Among the many properties displayed in the Command Window, there are:
Color: [0 0 0]

LineStyle: ’none’

LineWidth: 0.5000

Marker: ’.’

MarkerSize: 6

MarkerEdgeColor: ’auto’

MarkerFaceColor: ’none’

XData: 0

YData: 0

The coordinates of the marker are in properties XData and YData. Each property can be modifiedusing the set command. For example;
set(h,’Marker’,’d’,’Markersize’,40,’Linewidth’,3)

will replace the dot marker in the figure with a diamond marker of size 40, drawn with a thick blackline. Note that any number of properties can be changed with one set command. MATLAB is notcase sensitive with respect to the properties’ names, so XData is the same as xdata. (In some casesthe properties can even be abbreviated; however until you are more familiar with them use, the fullproperty name.)
95

96 CHAPTER 9. ANIMATION
To make the animation work, the changes must be displayed with a short time delay. Use thecommand
pause(s)

where s is a number of seconds. You will usually use a fraction of a second between two consecutiveappearances of the animated objects.
When an object is drawn using a sequence of x, y coordinates, the set function will assign all the newvalues together. For example, if the object h is a triangle, both the XData and the YData will containthree values. Then
set(h,’XData’,[3,2,9],’YData’,[12,4,3])

will assign the new coordinates to the respective vertices of the triangle.
9.2 Mouse Control

The execution of a script or function can be paused in anticipation of a mouse click or a key-press byusing:
waitforbuttonpress

This function returns 0 when terminated by a mouse click, or 1 when a key is pressed.
Mouse clicks can be used to grab an object. For example, upon a mouse click, the variable gco containsthe handle of the object on which the click fell. If the click was not on any drawn object, gco willreturn the handle to the figure. For example, try the code below. It will draw a triangle and changeits colour every time you click on the object. The loop will stop when a key is pressed.
h = fill(rand(1,3),rand(1,3),rand(1,3));

axis off

while ~waitforbuttonpress

if gco == h

set(h,’FaceColor’,rand(1,3))

end

end

The coordinates of the last mouse click can be read into a variable using;
point = get(gca,’CurrentPoint’);

In two dimensions, the x coordinate is in point(1,1), and the y coordinate is in point(1,2). Figure 9.1shows an example of a line drawing using mouse clicks.

CHAPTER 9. ANIMATION 97

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

mouse position
(in axes

coordinates)

figure, hold on, axis([0 1 0 1]), axis square, grid on

last = [];

while ~waitforbuttonpress

point = get(gca,'CurrentPoint');

if isempty(last), last = point; end

plot([last(1,1) point(1,1)],[last(1,2) point(1,2)],'k.-')

last = point;

end

Figure 9.1: An example of a line drawing using mouse clicks.
Another useful command that you should look up is;
[x,y] = ginput(n);

start CHALLENGE

Without running the code below through MATLAB, try to figure out what it will do within 2 minutes.Draw on a piece of paper your predicted output. Subsequently, run the code and check whether youwere correct.
figure(’color’,’k’)

axes(’Position’,[0 0 1 1]), hold on

axis([-1 2 -1 2],’off’)

for i = 1:15

pl = ginput(1);

fill(pl(1)+rand(1,3)-0.5,pl(2)+rand(1,3)-0.5,...

rand(1,3),’EdgeColor’,’w’)

end

end CHALLENGE

9.3 Examples

9.3.1 Shivering Ball

To plot a ‘ball’, we can use one large marker. After fixing the axes, the x and y coordinates will receivedifferent random values, and the ball will appear to ‘shiver’. To make the example more interesting,let us change the colour of the ball to a random colour at each move. The code for this animation isshown in Figure 9.2.

98 CHAPTER 9. ANIMATION

figure
h = plot(0,0,'k.','markersize',200);
axis([-1 1 -1 1])
axis square off

% Make it "shiver" and change colour
for i = 1:100

set(h,'XData',randn*0.01)
set(h,'YData',randn*0.01,'color',rand(1,3))
pause(0.04)

end

this reduces the noise, so the
point does not do large jumpsthis makes sure that the point

“shivers” about its original spot

the handle

hovering
about the
centre

Figure 9.2: The shivering ball animation
9.3.2 Three Moving Circles

The task is sketched in Figure 9.3. Three circles, red green and blue, start from the bottom left cornerof a square, move along the sides and the diagonal, and arrive together at the top right corner.

Start here

Finish here
together!

Hmm, how do I solve this problem?...

1.Plot the three dot markers and save the handles.
2. Run a loop where the blue marker moves right

and the green marker moves up reaching the respective
corners. The red should be half way through the diagonal
at the end of the loop.
3. Run a second loop to complete the movement.

Figure 9.3: The three circles animation
Solution. The animation is coded below.
figure,hold on

h1 = plot(0,0,’r.’,’markersize’,100); % red marker

h2 = plot(0,0,’b.’,’markersize’,100); % blue marker

h3 = plot(0,0,’g.’,’markersize’,100); % green marker

plot([0 100 100 0 0],[0 0 100 100 0],’k-’) % outline the square

axis([-3 103 -3 103]) % set the axes

CHAPTER 9. ANIMATION 99
axis square off

for i = 1:100 % loop 1 (half way)

set(h1,’XData’,i/2,’YData’,i/2) % red marker goes twice more slowly

set(h2,’YData’,i), set(h3,’XData’,i)

pause(0.02)

end

for i = 1:100 % loop 2

set(h1,’XData’,i/2+50,’YData’,i/2+50) % red marker starts from half up

set(h2,’XData’,i), set(h3,’YData’,i)

pause(0.02)

end

9.3.3 A Fancy Stopwatch

Create MATLAB code which will simulate a stopwatch. Initially, the figure should contain the clockarm (with a proper tip) at 12:00. The clock arm should move with 1 second offset to its new place.At the time it reaches the new spot, a ‘fancy random tick’ should appear near the tip, as shown inFigure 9.4 (a) (zoomed in sub-plot (b)). A very short ‘beep’ sound should be played at each move.

(a) (b) zoom of (a) (c) full circle
Figure 9.4: Fancy stopwatch

Solution. Recall the rotation matrix
R = [cos(θ) sin(θ)

− sin(θ) cos(θ)
]
,

where theta is the rotation angle in radians.1
% Fancy Stopwatch

bzz_freq = 1600; % needed for the short beep sound

fs = 8000; % the sampling frequency

1A full circle contains 2π radians.

100 CHAPTER 9. ANIMATION
t = 0:1/fs:0.05; % the carrier variable

y = sin(bzz_freq*2*pi*t); % the short beep signal

figure

axis([-1.1 1.1 -1.1 1.1],’square’,’off’) % format the axes

hold on

plot(0,0,’ko’,’markersize’,8,’linewidth’,2) % the pivot

% create the tip coordinates

tipCoord = [0 0 0.05 0 -0.05 0;[0.03 0.08 0 0.03 0 0.08]+0.8];

armCoord = [0 0; 0 0.8]; % arm coordinates

th = fill(tipCoord(1,:),tipCoord(2,:),’k’,’linewidth’,2); % tip handle

ah = plot(armCoord(1,:),armCoord(2,:),’k’,’linewidth’,2); % arm handle

theta = 2*pi/60; % angle corresponding to 1 second

R = [cos(theta) sin(theta);-sin(theta) cos(theta)]; % rotation matrix

pause % start the stopwatch by pressing a key

tic % measure time to determine the pause needed to make up 1s

for i = 1:60

tipCoord = R*tipCoord; % rotate tip at angle for 1 second

armCoord = R*armCoord; % rotate arm at angle for 1 second

sound(y,fs) % short beep

% update the tip and the arm handles

set(th,’XData’,tipCoord(1,:),’YData’,tipCoord(2,:))

set(ah,’XData’,armCoord(1,:),’YData’,armCoord(2,:))

% create the fancy ticks at the tip of the hand

fill((rand(1,5)-0.5)*0.1+armCoord(1,2)*1.2,...

(rand(1,5)-0.5)*0.1+armCoord(2,2)*1.2,rand(1,3))

pause(0.93) % pause corresponding to 1s => needs tuning

end

toc

sound(y,fs),sound(y,fs),sound(y,fs),sound(y,fs),sound(y,fs)Listing 3: A fancy stopwatch.
9.4 Exercises

1. Fireworks. Use the mouse to create figures similar to the ones in Figure 9.5. On a mouse click,the centre of the star should be plotted at the position of the mouse. 100 random rays shouldbe drawn from the centre. The next mouse click will generate a new star centred at the mouseposition. The colours of the stars are random. The script should finish when a key, on thekeyboard (rather than on the mouse), is pressed.
2. Highlighting

CHAPTER 9. ANIMATION 101

(a) 5 stars (b) 100 stars
Figure 9.5: Examples of ‘fireworks’

Load and show an image of your choice. When the user clicks on the image, highlight the regionaround the position of the click. The size of the region should be a changeable constant in yourcode. An example is shown in Figure 9.6.

Figure 9.6: An example of a highlight
3. Create an animation whereby a filled square will grow progressively in 10 steps.
4. Create an animation so that 10 squares, nested as in Figure 9.7, evolve simultaneously. Theouter square disappears at the next step, and all 9 inside squares grow by one size. At eachstep, a new smallest square of a random colour appears in the middle. Each square must keepits colour during the growing stages. An example of 4 consecutive steps is shown in Figure 9.7.

Figure 9.7: Four steps of an animated sequence of nested squares

102 CHAPTER 9. ANIMATION
5. The dashed lines in Figure 9.8 show two trajectories: sin(θ) and cos(θ), where θ varies from0 to 4π . Create an animation where a black square marker and a red triangle marker movesimultaneously in 400 steps, following the respective trajectories.

0 50 100 150 200 250 300 350 400
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) During motion (b) End position
Figure 9.8: Animated triangle and square markers moving along a sine and a cosine trajectories
6. Open a figure with a yellow background. Place a text string ‘Stopwatch’ near the top left corner.Use large letters, and a font of your choice (not the default font). Position anywhere in the figurethe number zero, with a larger size of the chosen font. Ask the user to input a number of seconds.Get your stop watch to count the seconds in nearly real time. An example of the clock face isshown in Figure 9.9.

Take into account that there is a slight delay due to the printout, so the ‘pause’ command shouldnot be exactly for 1 second but a little less. (Hint: Use tic and toc to time 10 seconds andtune the argument of the ‘pause’ function accordingly.)
Stopwatch

16
Figure 9.9: An example of the stopwatch face

7. Plot a circle trajectory as shown in Figure 9.10 (a). Plot a large black round marker on the zenithof circle. Shade the bottom half of the figure grey. Make the marker complete a full circle on thedrawn trajectory in 100 steps. Change the dot into a diamond when it enters the shaded zone,

CHAPTER 9. ANIMATION 103
and revert it back to dot marker when it leaves the zone. In addition, make the diamond changeits fill colour randomly at each step. An example is shown in Figure 9.10 (b).

(a) Starting position (b) Marker within the shaded zone
Figure 9.10: Animated circular motion

8. Planets
Write MATLAB code to do the following:-

(a) Create an animation of a solar system with one sun and two planets. Each planet orbitsthe sun in a circular orbit. The two orbits have different radii. One of the planets goesclockwise, and the other goes anti-clockwise. The outer planet takes twice longer to makeone full circle than the inner planet. Plot in the animated figure the two orbits with dashedlines. Remove the axes and make sure that they stay square and fixed (don’t float with theanimation).
(b) Give the outer planet a moon. Plot the just the orbit of this moon (a circle around the planet)and make sure that the moon and its orbit move together with the planet. The moon itselfdoes not have to follow its orbit for now.
(c) Make the moon orbit its planet at a speed that you choose.

An example of the required figure is shown in Figure 9.11. The text is NOT required. It is foryour reference only

Sun

Inner planet

Outer planet Moon

Figure 9.11: A solar system

104 CHAPTER 9. ANIMATION
9. Fish Tank

Use MATLAB to draw a fish tank as shown in Figure 9.12. Place a fish near the left wall. Youcan draw the fish using markers and filled polygons. Make the fish move slowly across to theright wall of the tank. When the fish reaches the middle; it should breathe out three bubbleswhich float towards the surface. Figure 9.12 (a)–(d) show the beginning, middle and end of theanimation.

(a) (b) (c) (d)
Figure 9.12: Stages in the fish tank animation

10. The Umbrella
(a) Create a function which that has two input arguments; a number of sectors N , and a colour

v (a vector of red/green/blue, each component in the interval [0,1]). Open up a figure andplot consecutively N sectors (triangles) in a circle. Starting with a white sector, animateeach subsequent sector appearing. The sector should have an interpolated colour betweenwhite and v . An example of the output is shown in Figure 9.13 (a). Make sure that the figuresize does not change with each new sector that appears. Write a script to demonstrate thefunction and give examples of the output.
(b) Expand the function written in (a) to include a third boolean (true/false) input parameter. Iftrue, the starting colour is white; if false, the starting colour is black. An example with ablack start sector is shown in Figure 9.13 (c).
(c) Write MATLAB code which calls your function, and then waits for a mouse click. If the clickis on a sector, the colour of this sector changes to the opposing colour. For example, if thecurrent colour is [0.3 0.7 0.2], the opposing colour is [1, 1, 1] − [0.3, 0.7, 0.2] = [0.7, 0.3, 0.8].If the click does not fall on any sector, close the figure. An example with several clicks isshown in Figure 9.13 (d).

11. Rotating Random Shapes
(a) Write a MATLAB function that will take three input arguments: k , the number of verticesfor a shape component, r ∈ [0, 1], a scaling factor, and m the axis limit (for formatting theaxes using axis([-m m -m m]). The function must open up a figure, plot a symmetricalshape of a random colour, scale it by r , and rotate it about the middle to a full circle using

CHAPTER 9. ANIMATION 105

(a) During Animation (b) End State (c) Black Start Sector (d) Opposing Colours
Figure 9.13: Examples of the ‘Umbrella’ problem outputs.

100 steps. An example of the type of the required shape is shown in Figure 5.11 (see theproblem about producing this shape).
(b) Write a script that calls the function from the previous problem 10 times, with the samescaling factor and axes limit. After the calls, the current figure should have all 10 formsin it as shown in Figure 9.14 (a). On a new figure, make 10 calls to the function with aprogressively decreasing scaling factor. An example of the figure at the end of the 10 callsis shown in Figure 9.14 (b).

(a) Without scaling (b) With scaling
Figure 9.14: Examples of the 10-shapes output.

12. Rotating Square
Create an animation starting with three squares as shown in Figure 9.15 (a). The black squarerotates clockwise and completes a full circle around the centre. Figure 9.15 (b) shows a positionof the square during the animation.

13. Rotating Triangles
Write MATLAB code to produce the following animation. Plot two triangles as shown inFigure 9.16 (a). Each of the two triangles should rotate in a full circle about the centre. The tworotations should be in different directions as shown in Figure 9.16 (b) to (d). The final positionshould be the same as the starting position. The rotation should be done in 100 steps. At each

106 CHAPTER 9. ANIMATION

(a) Starting and ending position (b) During animation
Figure 9.15: Rotating-square animation

step, each triangle should assume a new random colour. The tips of both triangles should producea dot trace as shown in Figure 9.16 (b) to (d).

(a) (b) (c) (d)
Figure 9.16: Rotating triangles

14. Write a script that will run 15 random jumps of a ‘frog’ within a ‘pond’. The pond should be theunit square coloured in blue. The frog must pause for 0.5 seconds at each location. It should andleave a trajectory behind, plotted with a dashed green line. The initial position of the frog is thepoint (0.5,0.5). The frog should be presented as a green triangle. The expected output at the endof the animation is shown in Figure 9.17.
15. Pastel Folders

Plot a collection of 9 folders of random pastel colours. Offset them as shown in Figure 9.18. (Hint:use function rectangle which allows for round corners.) Label the folders with the numbersfrom 1 to 9 as shown in the figure. After a key is pressed, make the folders shrink and disappear,one at a time, in a random order. The folder number should disappear before the shrinking starts.
16. Scrambled Eggs

Recall the problem, from the Images Chapter, where you had to create a function that breaks upan image into blocks, and shuffles the blocks? Use your solution to help with this problem.

CHAPTER 9. ANIMATION 107

Figure 9.17: Expected output at the end of the animation for the jumping frog problem

Figure 9.18: Pastel-coloured folders
Load an image, called the ‘Original’ (you don’t need to use a picture of eggs!). Split the imageinto 4-by-5 tiles and shuffle them, the ‘Scrambled eggs’ - as shown in Figure 9.19.
Here comes the twist: manipulate the scrambled image further, so that one random tile is missing,and another random tile is repeated in its place. Display the image as in Figure 9.19 ‘Repeatedtile’. Hold for 3 seconds, and then display another figure where the whole image is darker apartfrom the two repeated tiles, which should stay of the same colour.

Figure 9.19: The ‘scrambled eggs with a twist’ problem
Challenge your friends to discover the repeated tile within the three second interval.

108 CHAPTER 9. ANIMATION
17. Load a JPEG image and make the four quadrants blink with different transparent colour: red,green or blue only, in a clockwise pattern. An example of a full rotation of four random colours isshown in Figure 9.20. (Hint: The transparent colour is obtained by setting the respective colourpane to the maximum value while keeping the other colour panes.)

Figure 9.20: Four transparent colours
18. The Grazer

Create a 10 by 10 matrix filled with ones which will be the grazing ground. Plot the groundusing the spy command, as shown in Figure 9.21. Create a ‘grazer’ at a random position in thearray.

0 5 10 15 20 25

0

5

10

15

20

25

nz = 571

Figure 9.21: The Grazer problem with a 25-by-25 grazing ground

CHAPTER 9. ANIMATION 109
The grazer moves to a randomly chosen neighbouring cell at each time step. Neighbouring cellsare only north, south, east and west (i.e. four-connected cells). The grazer is not allowed to moveout of the borders of the grazing ground. It eats the provision in the cell it is in, which is markedas empty space in the Figure. The grazer itself is a red square marker.
Your animation should show the grazing ground and the grazer’s position at each step. The codeis run until there is no food left.
You can run a competition with your friends for the fastest grazer.

19. Load a JPEG image and, after a key is pressed, make a red horizontal red ‘laser beam’ line rundown from top to bottom. The part above the line should turn grey and the part underneathshould remain in colour. Make a very short beep sound with each step of the line movement. Anexample is shown in Figure 9.22.

Figure 9.22: Laser beam revealing the grey image

Chapter 10

Graphical User Interfaces - GUI

10.1 Programming GUIs

GUIs can be created interactively using the guide command. Alternatively, you can program theelements of the GUI and set up their parameters from within your code. Figure 10.1 illustrates the twoapproaches.

>> guide >> figure, uicontrol

Interactive GUI construction Programmatic GUI construction

a button appears here

various s
positioned a

om here

>> guide

Figure 10.1: Two approaches to creating GUI in MATLAB
In this book, we take the second approach, and confine the examples and the exercises to using onlythe push button object. Like with any object in a MATLAB figure, the properties of the button arereachable using the get and set commands.
The most important property is the Callback, which determines what the button does when pressedand released. The Callback can be set as a string in the definition of the button or afterwards, usingthe set command. For example,
figure, uicontrol(’Callback’, ’beep’)

will create a button at the bottom left corner of the figure, which will beep (with the unpleasant soundof a MATLAB error :)) when pressed.
110

CHAPTER 10. GRAPHICAL USER INTERFACES - GUI 111
The callback can be given as a function handle instead of a string. Usually the whole GUI is containedwithin one function file. The Callback function must have two compulsory parameters – object andevent. Any input parameter which you want to transmit to the function will be listed next. As anexample, try the code below.
function my_first_gui

figure

for i = 0:9

uicontrol(’Units’, ’Normalized’, ’Position’, [0,i,i+1,1]/9, ...

’BackgroundColor’, rand(1,3), ’Callback’, @long_button)

end

function long_button(o,~)

p = get(o,’Position’);

if p(1) == 0, p(1) = 1-p(3); else p(1) = 0; end

set(o, ’Units’, ’Normalized’, ’Position’, p)

10.2 Examples

10.2.1 One Colour Button

Design a figure with one button in the middle as shown in Figure 10.2. When the button is pressedthe background colour of the figure should change to a random colour. The three numbers that makeup the colour should be displayed as the button string.

Figure 10.2: Random colour GUI
Solution.

The code is shown below. The default ‘uicontrol’ object is a push button, so we don’t have to specifythis explicitly. Normalised units are easier to use than pixel units, in order to position the button inthe middle of the figure. The code below includes a choice of font and font size. The Callback consistsof three actions: (1) Generate a new colour as three random values (array t); (2) Set the figure colourto t; and (3) Set the string if the button to the values in t . For the latter, the values must be convertedfrom number to string, hence the ‘num2str’ command.

112 CHAPTER 10. GRAPHICAL USER INTERFACES - GUI
figure

uicontrol(’Units’,’Normalized’,’Position’,[0.10 0.45 0.80 0.1],...

’FontName’,’Candara’,’FontSize’,16,’Callback’,...

’t = rand(1,3);set(gcf,’’Color’’,t);set(gco,’’String’’,num2str(t))’);

Note that the code can be shortened by using only the beginning of the words for the properties andtheir values. The words can be shortened to the minimum number of letters which eliminates anyambiguity. For example, ‘Units’ can be shortened to ‘Un’, and ‘Position’ to ’Po’. The font set-up isoptional, so the code can be as follows:
figure, uicontrol(’Un’,’N’,’Po’,[1 4.5 8 1]/10,’Ca’,...

’t = rand(1,3);set(gcf,’’Color’’,t);set(gco,’’Str’’,num2str(t))’);

When using string Callbacks, pay particular attention to apostrophes. As MATLAB uses these to delimitstrings, you can end up with broken callbacks. This is why in the previous examples, the apostrophesare escaped by a second apostrophe.
10.2.2 Disappearing Shapes

Create a set of 5 random shapes, each one having 20 random vertices and filled with a random lightcolour. Plot the shapes in a row as shown in Figure 10.3. When left-clicked upon, the shape shouldchange its colour to a darker colour. The 7th click on any of the shapes should delete it.

Figure 10.3: Light colour shapes which progressively darken and disappear with the 7th click.Shape #4 has been clicked on 4 times
Solution.

Some thoughts about the solution are given in Figure 10.4.
The code for the solution is shown below:
figure, hold on, axis([1 6 -0.3 1.3]), axis equal off

h = []; % initialise the array with the handles

for i = 1:5 % plot the figures

h(i) = fill(rand(1,20)+i,rand(1,20),rand(1,3)*0.4+0.6,...

’EdgeColor’,’none’); % store the handles in array ’h’

end

times = zeros(1,5); % initialise the array with ’times-clicked’

CHAPTER 10. GRAPHICAL USER INTERFACES - GUI 113
Hmm, how do I solve this problem?...

1. The shapes don’t look like UI buttons.
2. I can use “fill”, create handles to the shapes, and use the mouse

coordinates to get the object.
3. I will need an array with 5 elements to keep the record of the clicks.
4. Use “waitforbuttonpress”. If the object clicked upon is among the

handles, darken it and check how many clicks it has received. If 7, delete.

5. How many times should I repeat these actions? There is no instruction about this so I
can choose my own option. There is no point keeping the loop open if there are no
shapes, so I can close the loop when all objects have been deleted. Alternatively, I can
break the loop upon a right-click or a key from the keyboard. WHILE loop is needed.

Figure 10.4: Thoughts about the solution of the disappearing shapes problem.
while ~isempty(h) % run until there are no more shapes

waitforbuttonpress

j = find(gco==h); % identify the shape clicked upon

if ~isempty(j) % if not clicked outside a shape

set(h(j),’FaceColor’,get(h(j),’FaceColor’)*0.78) % darken

times(j) = times(j) - 1; % record the click

if times(j) == 7 % if clicked 7 times

delete(h(j)) % remove from the figure

h(j) = []; times(j) = []; % shrink ’h’ and ’times

end

end

end

10.2.3 Catch-me-up Game

Create a timed game where the player has to click on 10 randomly drawn triangles. The trianglesappear one after another. If the click is not on the triangle, play a ‘beep’ sound and continue withthe next triangle. At the end of the game, display the time taken since the appearance of the firsttriangle.
Solution.

figure, hold on, axis([0 1 0 1]), axis square off

h = fill(rand(1,3),rand(1,3),rand(1,3)); % first triangle

tic % starting the timer

hits = 0;

while hits < 10

set(h,’XData’,rand(1,3),’Ydata’,rand(1,3),’FaceColor’,rand(1,3))

w = waitforbuttonpress;

if w == 0 && gco == h

hits = hits + 1; % hit

else

114 CHAPTER 10. GRAPHICAL USER INTERFACES - GUI
beep

end

end

time10hits = toc; % time taken for 10 hits

t = text(0.7,0.8,sprintf(’Your time: %.2f s’,time10hits));

set(t,’FontName’,’Candara’,’Fontsize’,16)

10.3 Exercises

1. Spaceship, Moon and Stars
(a) Use the mouse to draw a ‘spaceship’. While the mouse button is being clicked, keepcollecting points. When a key from the keyboard is pressed, fill the ship with grey colourand set the background to black. (You may need to close the shape manually as the usermay not select the same first and last point).
(b) Upon the next mouse click, plot a moon centred at the position of the mouse.
(c) Plot four constellations centred at the positions of four subsequent mouse clicks. Eachconstellation should have 10 stars of different sizes.

An example is shown in Figure 10.5.

Figure 10.5: Spaceship, moon and stars
2. Create a figure with 26 buttons displaying the letters of the Latin alphabet as shown inFigure 10.6.

CHAPTER 10. GRAPHICAL USER INTERFACES - GUI 115

Figure 10.6: Button alphabet
When pressed, each button should turn its colour to black. Two randomly chosen buttons shouldhide ‘bombs’. When pressed, a bomb button will delete all buttons and turn the figure backgroundto black.

3. Write a script which displays a panel of 2 rows by 4 columns of push buttons with differentrandom background colours. (This is possible with one loop!) When a button is pressed, thetitle of the panel is changed to the RGB values of the button’s colour, and the background of thepanel is changed to that colour. An example is shown in Figure 10.7.

Figure 10.7: A panel of colour buttons
4. Open a figure with a black background. Create a green push button when the user left clickswith the mouse. The button should be centred at the point of the mouse click. The button stringshould be ‘Press to disappear’. When the button is pressed, the string should disappear, and thebutton should shrink in 100 steps towards its centre. Finally, the button should disappear, andthe figure should change its background to green.
5. Create the layout shown in Figure 10.8. When presses, a button should move the whole panelwith 4 buttons in the said direction. The panel should not leave the figure space. When an edgeor a corner is reached, pressing the button for continuing in the same direction should have noeffect.

116 CHAPTER 10. GRAPHICAL USER INTERFACES - GUI

Figure 10.8: The layout for the moving panel problem
6. Scrabble Helper.

In the game of Scrabble, it is important to have at hand a view of the remaining tiles. The totalnumber of tiles is 100. There are 27 different tiles: 26 for the letters of the alphabet, and twoempty tiles which can be placed as any letter. The number of tiles for each letter correspondsroughly to this letter’s frequency in the English language. The letter set, including the 2 emptytiles at the end, and the corresponding frequencies can be introduced in MATLAB using the twolines below:
ltf = [9 2 2 4 12 2 3 2 9 1 1 4 2 6 8 2 1 6 4 6 4 2 2 1 2 1 2];

let = [’A’:’Z’,’ ’];

The Scrabble helper should show you the available tiles for a given game. Create a function withno input arguments. The function should open up a figure with 10× 10 buttons corresponding tothe Scrabble tiles, as shown in Figure 10.9.
Upon pressing, a button should change its background colour. If the colour is light, it shouldbecome dark, and vice versa. In this way, the tiles that have been used in the game are maskedwith a dark colour in the figure.

7. Open up a (nearly) square figure. Create 16 square buttons with random colours, as shown inFigure 10.10 (a). A random ASCII character should be displayed on each button - see Table 7.1.The characters don’t have to be unique. When pressed, a button should disappear.
One randomly chosen button should have a different behaviour. It should wipe the figure cleanwith a black background, and plot 10 ‘fireworks’ at random places and with random colours. Each‘explosion’ should have 100 rays of different length and direction, as shown in Figure 10.10 (b).

CHAPTER 10. GRAPHICAL USER INTERFACES - GUI 117

Figure 10.9: The Scrabble helper

(a) ASCII labelled buttons (b) Fireworks
Figure 10.10: ASCII labelled buttons

(Hint: command ‘randn’ will be useful here.) The firework should be shown consecutively, atrandom time intervals, each interval not exceeding 1 second.
8. Write a script which will open a figure and position 4 push buttons in the corners as shown inFigure 10.11. Initially, fill the four squares with white colour, then square and remove the axes.

When a button is pressed, the respective square is shown in random colour while the remainingsquares are shown in white. (In the example in the Figure, the top right button is pressed.)Display underneath the figure the RGB values which make up the colour of the non-whitesquare, as shown.

118 CHAPTER 10. GRAPHICAL USER INTERFACES - GUI

Figure 10.11: Four squares with random colours, one filled at a time
9. Write the shortest code to accomplish the following:

(a) Create a figure with 20 buttons with colours gradually changing from black to yellow, asshown in Figure 10.12 (a).
(b) When pressed, each button should change its colour to the colour’s complement, that is, thecolour that completes it to white. For example, a colour [0.2, 0.4, 0.1] has a complement [0.8,0.6, 0.9]. An example is shown in Figure 10.12 (b).
(c) Choose any three random buttons. In addition to changing their colour, when pressed, thethree bottons should do the following. The first button should label the buttons with thenumbers 1-20. The second button will check whether there are numbers on the buttons; ifso, it will shuffle the buttons each time it is pressed. If there are no numbers, the buttonwill do nothing. The third button will remove the labels from all of the buttons.

(a) (b)
Figure 10.12: Black to yellow row of buttons

10. Random Triangles
(a) Generate a figure with 20 random triangles in the unit square, filled with random colours(Figure 10.13). Plot each triangle, only if its area is greater than 0.05. Hint: The area oftriangle with vertices A(a1, a2), B(b1, b2) and C (c1, c2) is;

S = 12 × | a1(b2 − c2) + b1(c2 − a2) + c1(a2 − b2) |

CHAPTER 10. GRAPHICAL USER INTERFACES - GUI 119

Your time is 8.73 s.

(a) Starting figure (b) Ending figure
Figure 10.13: Remove-the-triangles game

Note: The vertical bars are mathematical ‘jargon’ for the absolute value. This will producea positive value even if the result of the expression is negative.
(b) Program the game so that, in order to remove a triangle, you need to click with the mouseover it. Remove the triangles in reverse order of the way they were generated - i.e. lasttriangle goes first or the user must click the ‘top’ triangle each time. If the user clickson a different location, i.e. not the triangle whose turn it is to be moved, produce a shortbeep-beep sound. The game finishes when all 20 triangles have been removed. To time theuser’s performance, start the clock when the user clicks with the mouse over the figure forthe first time (correct or incorrect click). When the game finishes, show the user’s time inthe centre of the figure as in Figure 10.13 (b).

11. Random Rectangles
(a) Plot k random-sized rectangles of random colours at positions indicated with the mouse. Ateach click, the respective rectangle should appear in the figure. An example of the outputwith k = 15 is shown in Figure 10.14 (a).
(b) Delete a rectangle if the user clicks on it with the mouse. Measure the time from the firstclick to the end of the game where all rectangles disappear. Display, in the centre of thefigure, the time taken at the end of the game play.

12. Colour boxes game.
Begin by displaying a 4-by-5 matrix of black boxes. A random box changes its colour to a randomcolour. When the mouse is clicked on that box, the box disappears and a new box changes itscolour. The game finishes when all the boxes disappear from the figure. At the end, the timetaken to remove all the boxes is displayed. An example of the layout is shown in Figure 10.15.
Design a further feature of your choice for this game. This could be sound, text, new rule, newlevel, a text window showing the number of wrong clicks, changing background, etc.

120 CHAPTER 10. GRAPHICAL USER INTERFACES - GUI

Figure 10.14: Random rectangles created at the points of mouse click

Figure 10.15: An example of the layout of the Colour boxes game during game play
13. Program a graphical user interface (GUI) as follows. The layout should be as shown inFigure 10.16. All blocks are push buttons, and start as all grey. When pressed, each buttonshould change its colour to a random new colour, as shown in the figure. Plant a ‘destroyer’ ata random position in the matrix. Once the destroyer is pressed, instead of changing colour, thebuttons in its row and in its column are deleted.
14. How fast can you find the numbers?

CHAPTER 10. GRAPHICAL USER INTERFACES - GUI 121

Figure 10.16: The 10× 10 array with buttons
(a) Create a GUI figure with 100 push buttons, arranged in 10 rows and 10 columns. Each buttonshould have a dark random background as shown in the Figure 10.17 (a). The numbers from1 to 100 should be randomly assigned to the buttons and displayed in white.
(b) Create a game which starts the clock, displays the buttons, and finishes when the playerhas pressed all 100 buttons in the correct order, starting with 1, 2, 3, and so on, up to 99,100. If an incorrect button is pressed, a random two-note sound is made (two beeps withdifferent random frequencies). If the correct button is pressed, this button is disabled, itsbackground is turned to white, and a ‘click’ sound is played. A snapshot of the game isshown in Figure 10.17 (b). When the last button (100) is pressed, the game should wipe outthe figure and show the time elapsed since the start of the game.

(a) Beginning of the game (b) During play
Figure 10.17: Examples of the 1 to 100 Game output.

15. Create a game similar to the games in the TV show ‘The Cube’.

122 CHAPTER 10. GRAPHICAL USER INTERFACES - GUI
Prepare a figure with a button and a counter set to 0, as shown on in Figure 10.18 (a). Uponpressing the button ‘Go’, the numbers should start going up towards 100, fairly quickly. The aimis to stop the counter between 90 and 99 inclusive. The string on the button should change to‘Stop!’. Pressing the button again should stop the counter and disable the button. If the numberis between 90 and 99 (inclusive), display ‘Well Done!’ as the button string and change the figurebackground to green (Figure 10.18 (c)). If the count reaches 100, display a suitable messageand change the figure background to red (Figure 10.18 (d)). After 2 seconds, enable the button,change the background back to yellow and, change the button string to ‘Play again?’ If thebutton is pressed, start the game again.

0 46 96 100

(a) (b) (c) (d)
Figure 10.18: Examples of the set-up and the output of the reaction-gauging game featured in the TVshow ‘The Cube’.

16. Use uigetfile to select and load a JPEG image. Create GUI with the layout shown inFigure 10.19 (a). The top push button should display the original image. The bottom push buttonshould display the flipped image as shown in Figure 10.19 (b). A green button should indicatewhich of the two images is currently shown.

(a) (b)
Figure 10.19: Layout for the mirror-image GUI.

CHAPTER 10. GRAPHICAL USER INTERFACES - GUI 123
17. The DrawMaster

Load and display a JPEG image. Create handles for the figure and the axes. Create a loop forselecting a sequence of points on the figure. Plot and join the consecutive points with a yellowline and a dot marker as shown in Figure 10.20. The loop should run, until a key from thekeyboard is pressed. Collect the points in an array.

Figure 10.20: Examples for the DrawMaster problem
18. Moving Car

Create an animation where an object (for example, a car) moves horizontally from left to rightand back. The figure should contain three buttons as shown in Figure 10.21. Buttons ‘Froward’and ‘Backward’ should move the object a little, but visible, step in the respective direction. Themiddle button, ‘Move’, should cause the object to move from the current position to the right edge,
turn back, move to the left edge, and turn forward again.

Figure 10.21: The GUI set-up for the moving car problem

124 CHAPTER 10. GRAPHICAL USER INTERFACES - GUI
19. Puzzle

Construct a GUI as in Figure 10.22 (a).

(a) Start (b) Middle (c) End
Figure 10.22: The puzzle GUI.

Choose an image for the puzzle, upload it and resize it to [240, 300] pixels. Create a grid of 4×5push buttons which will serve as the puzzle tiles.
Chop the image into 4 rows and 5 columns of 60×60 tiles. Chose a random sequence of showingthe tiles, one at a time. Show the first tile in the window at the bottom right of the grid.
The player’s task is to click on the grid button where the shown tile should be. Selecting awrong button has no consequences. If the correct button is pressed, the tile should appear asthe foreground of the button. An example of the mid-game play is shown in Figure 10.22 (b).
Upon placing the penultimate tile, complete the game by putting the last two tiles in place, anddisplay the player’s time taken to finish the puzzle. An example is shown in Figure 10.22 (c).

Chapter 11

Sounds

11.1 Sounds as Data

Sound is made up by waves which are often simplified to a sine function shown in Figure 11.1. Thesine way is characterised by amplitude, frequency and phase. The phase is important when a soundcontains more than one waves and they are offset by their phases. The amplitude determines howloud the sound is, and the frequency determines the pitch.

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

amplitude full oscillation (2π)

1 full oscillation in 1 second = 1Hz

time

samples

40 samples per second (sampling frequency)

sig
na

l

Figure 11.1: Sine wave
Usually sounds are much more complicated than a single sine wave, including many sine-like wavestogether. A sound can be reproduced if we find the sine waves it is made up from.
MATLAB command wavread reads Microsoft WAVE (“.wav”) sound file. Figure 11.2 plots two examples:a chain-saw sound and a 4-short-beeps sound.
Both examples in the figure are sampled with one of the standard frequencies, fs = 8000 (samples persecond). Note: the difference between the signal frequency and the sampling frequency. The samplingfrequency is the number of measurements of the signal that we take per second. The signal frequencyis the number of full sine waves contained within one second (this is measured in a unit called Hertz,Figure 11.3).
A full piano keyboard is shown in Figure 11.4. The note frequencies are indicated as well.

125

126 CHAPTER 11. SOUNDS

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-1

-0.5

0

0.5

1 second = 8000 samples

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-1

-0.5

0

0.5

Chain saw sound

Four short beeps

Less than 1 second

Figure 11.2: Two examples of sounds
Note frequencies can be calculated from a single frequency, which is usually A from first octave (A4),
f (A) = 440 = f0 Hz. The equation is:

f (n) = f0 × anwhere n is the number of half steps away from A. For higher notes n is positive, and for lower notes,negative. f (n) is the frequency of the note n half steps away. The constant is:
a = 2 112 ≈ 1.05946 Hz

Sound can be created as a sine function and played in MATLAB using the sound command. The codebelow creates and plays middle A4 for 2 seconds.
fs = 8000; % the sampling frequency

T = 2;% length of the note in seconds

t = 0:1/fs:T;

F = 440; % frequency of A4

y = sin(F*2*pi*t); % the signal

sound(y,fs)

Consider another example, where C5 is played for 3 seconds while fading away. In this case theamplitude should gradually decrease to zero while the frequency will stay unaltered. The code isshown below. Note the element-wise multiplication where each value of the sine signal is multipliedby the respective amplitude value.

CHAPTER 11. SOUNDS 127
Hertz – number of oscillations per second

5 Hz

12 Hz 20 KHz40 Hz 79 KHz

0 0.2 0.4 0.6 0.8 1
-1

0

1

0 0.2 0.4 0.6 0.8 1
-1

0

1

2 Hz

0 0.2 0.4 0.6 0.8 1
-1

0

1

1 Hz

human cat

Who hears what?

1 second 1 second 1 second

Figure 11.3: Illustration of Herz

fs = 8000; % the sampling frequency

T = 3;% length of the note in seconds

t = 0:1/fs:T;

F = 523.25; % frequency of C5

A = (T - t)/T;

y = A .* sin(F*2*pi*t); % the signal

sound(y,fs)

To produce a more natural tone, add overtones with smaller amplitudes. Add one overtone with twicethe frequency, which will be an octave higher, and another overtone with half the frequency, whichwill be an octave lower. When running the sound command, MATLAB will clip all values of the signaloutside the range [−1, 1]. Therefore, to include overtones, you should use amplitude 0.5 for the basesignal and amplitude 0.25 for both overtones.
Look up the play command as an alternative to sound.
11.2 Exercises

1. Utter Noise
Carry out the sequence of tasks below:

(a) Create and play one second of ‘utter noise’ (random values in the interval [−1, 1]).
(b) Insert a pause (zero values) in the interval [0.45, 0.55] of the second.

128 CHAPTER 11. SOUNDS

A

55
.0

B

6
1.

7

C

6
5.

4

D

73
.4

E

8
2.

4

F

8
7.

3

G

9
8

.0

A

11
0

.0

B

12
3.

5

C

13
0

.8

D

14
6

.8

E

16
4

.8

F

17
4

.6

G

19
6

.0

A

22
0

.0

B
24

6
.9

C
26

1.
6

D

29
3.

7

E

32
9

.6

F

34
9

.2

G

39
2.

0

A

4
4

0
.0

B

4
9

3.
9

C

52
3.

3

D

58
7.

3

E

6
59

.3

F

6
9

8
.5

G

78
4

.0

A

8
8

0
.0

B

9
8

7.
8

C

10
4

6
.5

D

11
74

.7

E

13
18

.5

F

13
9

6
.9

G

15
6

8
.0

A

17
6

0
.0

B

19
75

.5

C

20
9

3.
0

58
.3

6
9

.3

77
.8

9
2.

5

10
3.

8

11
6

.5

13
8

.6

15
5.

6

18
5.

0

20
7.

7

23
3.

1

27
7.

2

31
1.

1

37
0

.0

4
15

.3

4
6

6
.2

55
4

.4

6
22

.3

74
0

.0

8
30

.6

9
32

.3

11
0

8
.7

12
4

4
.5

14
8

0
.0

16
6

1.
2

18
6

4
.7

Middle C (C4)

first second thirdsmallgreatcontra

Figure 11.4: Note frequencies
(c) Alter the noise signal to quieten between 0s and 0.45s and progressively raise in amplitudebetween 0.55s and 1s.

2. Piano Keyboard
Create a working piano keyboard. All the keys from C4 to C5 should be shown (both the whiteand the black ones). Upon pressing a key with the mouse, the respective tone should be playedfor 1 second, with the volume fading away. An example of the graphical output is shown inFigure 11.5.

Figure 11.5: Piano keyboard C4 to C5

CHAPTER 11. SOUNDS 129
start CHALLENGE

Shortest piano code

Write the script for the Piano Keyboard problem using the minimum possible number of lines.The rules are: (1) Each row has a maximum of 75 symbols. (2) The number of characters doesnot matter. (3) The figure must be opened with the figure command. (The authors’ currentrecord is 5 lines.) Best of luck!
end CHALLENGE

3. Find and download a Wave file of your choice, for example a police siren. Read the signal intoMATLAB using wavread. Modify the signal so that it starts from silence, amplifies to a maximumand then fades away to silence again.
4. Musical Scales

(a) Write a script to play an ascending musical scale. Each note should be played for 0.8seconds and should fade linearly. Include overtones.
(b) Add a second melody playing the scale backwards (descending), four times quieter than theleading melody. The harmony should be played together.
(c) Modify the melody you created in (b) so that it ‘speeds up’. For example, if the first notelasts 1 second, the last one should last 0.1 seconds.
(d) Plot the first 30 milliseconds of the sound signal in (b). Label the axes and add a title. Theplot should look like the one in Figure 11.6.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5
The first 30 ms of the harmony scale signal

time [ms]

so
u

n
d

 s
ig

n
al

Figure 11.6: Expected signal shape for problem 4
5. Horror Movie Music

Write a script that will compose a piece of music for a horror movie. Here are the rules:

130 CHAPTER 11. SOUNDS
(i) The music should be created with a significant random element in it. This means that you canre-use parts of the ‘melody’ but there should be random sampling as well.
(ii) All sounds should have proper frequencies, that is frequencies corresponding to existing notes.The array below contains the allowed frequencies:
Note = [246.94 261.63 277.18 293.66 311.13 329.63 349.23 369.99 392.00 415.30...

440.00 466.16 493.88 523.25];

(iii) The length of the notes should be related to the ‘beat’. If a beat has length h seconds, yournotes may be of size 0.25h, 0.5h, h, 1.5h 2h and 3h. The total length of your piece should beabout 30 seconds. Choose randomly from the lengths and the frequencies until the total lengthreaches 30 seconds. Use beat h = 0.5s.
(iv) Use pauses (zeros) in the signal. They may have any of the lengths that other notes mayhave.
(v) Use fading sounds.
(vi) Save the signal. For example, you can use:
save(’Horror_Music’,’y’,’fs’)

where y is the variable containing your signal and fs is the sampling frequency. This line willsave variables y and fs in a mat file. If you want to play the piece again later, load the file andthen use sound(y,fs).
6. What Does Music Look Like?

Write the function see_music to visualise a music piece. The function should take one inputparameter, the signal y. Split the signal into T equal intervals (for example, T = 2000). For eachinterval, calculate an approximation of the pitch (main frequency of the sound) by finding howmany times the signal crosses the x-axis. Plot the T pitches in a complete circle, as shown inFigure 11.7 for the simple scales. Each interval should be a spoke with length proportional tothe approximated pitch. The pitch does not have to be one of the note frequencies; it will onlyserve to trace the pattern of the music piece. The earliest spokes should be dark. The colourshould lighten progressively to a colour of your choice.
Figure 11.8 shows examples of visualisation of five music pieces. (Note that the visualisation isnot required to be animated.)

CHAPTER 11. SOUNDS 131

start

Figure 11.7: Visualisation of the scale (one octave)

(a) (b) (c) (d) (e)(a) Wolfgang Amadeus Mozart, Piano Sonata No.16 in C Major K.545 (Sonata Facile)(b) Wolfgang Amadeus Mozart, Serenade no.13 in G major K.525 (Eine Kleine Nachtmusik)(c) Johann Sebastian Bach, Air on the G String(d) Johann Sebastian Bach, Ave Maria, harp and violin.(e) Dubstep, ‘I am waiting for you last summer - Medley season’
Figure 11.8: Music pictures.

Chapter 12

Solutions
These are the solutions of problems with even numbers.
Chapter 1: Getting Started

• 1.4.2
Type in the command window help imagesc. MATLAB will display:
imagesc Display image with scaled colors

imagesc(...) is the same as IMAGE(...) except the data is scaled

to use the full colormap.

• 1.4.4
Type in the command window:
sqrt((4.172+9.131844)^3-18)/(-3.5+(11.2 - 4.6)*(7-2.91683)^-0.4)The MATLAB output is: 186.1859
• 1.4.6
Type in the command window log(exp(10)) and then exp(log(10)). Both expressions shouldreturn the value 10.
• 1.4.8
Denote the left-hand side of the equation by f (x). Starting with the middle of the interval (x = 3) findout in which half the solution lie. For example, check x = 2 next. As both f (3) and f (2) are negative,the solution must be in [3, 4]. Then keep dividing (and guessing, if you like) to shorten the interval ofthe solution until the interval length is 0.1. Return the x such that f (x) and f (x ± 0.1) have differentsigns.
>> x=3;

>> 0.5*(x-2)^3 - 40*sin(x)

ans =

-5.1448

>> x=2;

>> 0.5*(x-2)^3 - 40*sin(x)

ans =

132

CHAPTER 12. SOLUTIONS 133
-36.3719

>> x=3.5;

>> 0.5*(x-2)^3 - 40*sin(x)

ans =

15.7188

>> x=3.25;

>> 0.5*(x-2)^3 - 40*sin(x)

ans =

5.3044

>> x = 3.12;

>> 0.5*(x-2)^3 - 40*sin(x)

ans =

-0.1612

>> x = 3.18;

>> 0.5*(x-2)^3 - 40*sin(x)

ans =

2.3574

>> x = 3.14;

>> 0.5*(x-2)^3 - 40*sin(x)

ans =

0.6771

>> x = 3.13;

>> 0.5*(x-2)^3 - 40*sin(x)

ans =

0.2578

Since f (3.12) < 0 and f (3.13) > 0, the solution lies between the two values. Therefore we can returneither of them, say, x = 0.12.
Chapter 2: MATLAB: The Matrix Laboratory

• 2.7.2
We have not studied loops thus far, therefore use:
E = {eye(1),eye(2),eye(3),eye(4),eye(5),eye(6),eye(7),eye(8)};

• 2.7.4
First, create the vector with all integers from 1 to 100 by the colon operator and then apply thecommand ‘sum’.
sum(1:100)

• 2.7.6
Create arbitrary matrices that can be multiplied as required (ABC) and calculate the two expressions.The results should match.
A = [2 3 1;-3 2 5]; % 2-by-3

134 CHAPTER 12. SOLUTIONS
B = rand(3); % random 3-by-3

C = [3 1;-2 4;5 -6]; % 3-by-2

disp((A*B*C)’)

disp(C’*B’*A’)

• 2.7.8
v = 20:25;

w = 5*v;

• 2.7.10
a = linspace(1,2*pi,100);

• 2.7.12
First, create a zero matrix A of size 100-by-100 and then replace all values in the even numberedcolumns with value 2.
A = zeros(100);

A(:,2:2:100) = 2;

• 2.7.14
A = ones(10)*8; % 10-by-10 matrix of 8s

A(3:8,3:8) = 0; % inset a 6-by-6 matrix of 0s

A(5:6,5:6) = 3; % inset a 2-by-2 matrix of 3s

figure, imagesc(A), axis equal off

• 2.7.16
There are many ways to construct these matrices. For part (a), the matrix is constructed by repeatinga tile of 2 rows. The top row are the numbers from 1 to N, and the second row are the numbers fromN down to 1.
N = input(’Number of columns: ’);

tile = [1:N;N:-1:1];

A = repmat(tile,8,1); % 8 tiles = 16 rows

figure, imagesc(A), axis equal off

For part (b), the matrix is concatenated from four parts. Then the central pixels are assigned the samevalue, different from the values of the four parts.
A = [ones(5), ones(5)*2;ones(5)*3, ones(5)*4];

A(3,3) = 0; A(8,3) = 0; A(3,8) = 0; A(8,8) = 0;

figure, imagesc(A), axis equal off

In part (c), we need to address the edges suitably so that the corners hold the respective colour.

CHAPTER 12. SOLUTIONS 135
M = input(’Matrix size: ’);

A = zeros(M);

A(1,1:M-1) = 1;

A(1:M-1,M) = 2;

A(M,2:M) = 3;

A(2:M,1) = 4;

figure, imagesc(A), axis equal off

• 2.7.18
To find the solution using matrix equation, we should recall that we need the matrix with the coefficientsin frond of the variables (A) and the vector with the right-hand-side values (b):

A = [7 −1212 −45
]
, b = [−4

−26
]
.

The solution is x = A−1b.
A = [7 -12;12 -45]; % coefficients

b = [-4;-26]; % right-hand side vector

x = inv(A)*b; % solution [x;y]

disp(x)

For this problem, the solution is x = 0.7719, y = 0.7836.
• 2.7.20
Suppose m = 4 and n = 3. Using ‘meshgrid’, we can create all row and column indices i and j :
[cols,rows] = meshgrid(1:n,1:m);

The results are
rows =

1 1 1

2 2 2

3 3 3

4 4 4

>> cols

cols =

1 2 3

1 2 3

136 CHAPTER 12. SOLUTIONS
1 2 3

1 2 3

Notice that the columns are the x-coordinate, therefore they are the first output arguments of ‘meshgrid’,and the rows are the second output argument. With these two arrays in place, the code is:
m = 4; n = 3;

[cols,rows] = meshgrid(1:n,1:m);

A = (cols - 4).^2 .* (rows + 1).^-3 + rows.*cols;

The resultant matrix A is
A =

2.1250 2.5000 3.1250

2.3333 4.1481 6.0370

3.1406 6.0625 9.0156

4.0720 8.0320 12.0080

Just to be sure, let’s check with one of the values, A(2, 3)
A(2, 3) = (3− 4)2(2 + 1)−3 + 2× 3 = 6.0370.

• 2.7.22
To calculate the x and y for part (a), we can use
x = [0:10 10:-1:0]; % bottom x’s followed by top x’s (reverse)

y1 = [repmat([1 0],1,5) 1]; % bottom y’s

y2 = y1 + 3; % top y’s (no need to be reversed)

y = [y1 y2]; % put the y’s together

%

% Bonus (we haven’t studied plotting at this point)

figure, plot(x,y,’b.-’), grid on

For part (b), y goes from 1 to 40 while x goes forth and back. We can create one of the upward linesof x ’s, and shift it by 10 to obtain the other. Then we need to merge them like the teeth of two cogwheels:
x1 = 1:20; % left

x2 = x1 + 10; % right

x(1:2:40) = x1; % insert the left x’s (odd)

x(2:2:40) = x2; % insert the right x’s (even)

y = 1:40;

figure, plot(x,y,’b.-’), grid on

Part (c) is quite similar to part (b). This time y oscillates between 0 and 1. One possible solutionis:

CHAPTER 12. SOLUTIONS 137
x1 = 1:20; % left

x2 = x1 + 10; % right

x(2:2:40) = x1; % insert the left x’s (odd)

x(1:2:40) = x2; % insert the right x’s (even)

y = repmat([0 1],1,20);

figure, plot(x,y,’b.-’), grid on

Chapter 3: Logical Expressions and Loops

• 3.6.2
disp(37:37:1000) % first way

find(~mod(1:1000,37)) % second way

% third way

x = 1:1000;

disp(x(floor(x/37)==ceil(x/37)))

% fourth way

i = 2;

z = 37;

while z < 1000

disp(z)

z = 37*i;

i = i + 1;

end

• 3.6.4
z = rgb2gray(imread(’peppers.png’)); figure, imshow(z)

z(z<=100) = 0; % black

z(z>100&z<200) = 150; % light grey

z(z>=200) = 255; % white

figure, imshow(z)

• 3.6.6
To check your solution, plug the logical expression you created in the code below, as indicated. Forthis wrapper script to work, you need to make sure that your expression allows for vector variables xand y.
figure, hold on, grid on, axis square

x = rand(10000,1)*10; y = rand(10000,1)*10;

ind = <YOUR EXPRESSION>;

plot(x(ind),y(ind),’k.’,’markersize’,10)

plot(x(~ind),y(~ind),’g.’,’markersize’,10)

138 CHAPTER 12. SOLUTIONS
The solutions are:
ind = x>3 & x<8 & y<4 & y>1; % (a)

ind = (x-3).^2 + (y-8).^2 < 4; % (b)

ind = x < y; % (c)

ind = 2*x + 3*y -18< 0; % (d)

ind = xor(((x-6).^2 + (y-6).^2 < 4) , x > y); % (e)

ind = (8*x-3*y-13 > 0) & (-8*x-3*y+67>0) & (y > 1); % (f)

ind = xor(((8*x-3*y-13 > 0) &(-8*x-3*y+67>0)&(y > 1)),...

((x-5).^2 + (y-4).^2 < 1)); % (g)

ind = ~((x>4.5&x<5.5&y>1&y<9)|(x>1&x<9&y>4.5&y<5.5)); % (h)

• 3.6.8
NumberToGuess = randi(10);

UserGuess = input(’Please enter your guess -> ’);

if UserGuess == NumberToGuess

disp(’Congratulations! You won!’)

else

disp(’You lost! Better luck next time! The number was’)

disp(NumberToGuess)

end

• 3.6.10
For problem (a), pad array A with one cell on each edge so that each cell of A has 8 neighbours. Thenconstruct a double loop to go through the rows and the columns of A.
m = 20; n = 30;

A = rand(m,n) < 0.1; % sparse

% A = rand(m,n) < 0.5; % medium

% A = rand(m,n) < 0.7; % dense

B = zeros(m+2,n+2); % padding

B(2:end-1,2:end-1) = A; % inset A

S = 0; % sum of neighbours

for i = 2:m+1

for j = 2:n+1

if B(i,j) % bug

S = S + sum(sum(B(i-1:i+1,j-1:j+1))) - 1; % only neighbours

end

end

end

disp(’Averge number of neighbours per bug:’)

disp(S/sum(B(:)))

Uncomment the other versions of creating A to see how the average number of neighbour bugschanges.

CHAPTER 12. SOLUTIONS 139
Part (b) can be programmed by checking the neighbourhood for each cell and applying the rule thatfits. The important trick here is not to destroy the current grid A while calculating the ‘tomorrow’s grid.This is why we use G to store the tomorrow’s bugs calculated from the neighbourhood in A.
A = rand(m,n) < 0.7;

B = zeros(m+2,n+2); % padding

G = B; % the new generation

B(2:end-1,2:end-1) = A; % inset A

for i = 2:m+1

for j = 2:n+1

on = sum(sum(B(i-1:i+1,j-1:j+1))) - B(i,j); % only neighbours

if (B(i,j) && (on == 2 || on == 3)) || (~B(i,j) && on == 3)

G(i,j) = 1;

end

end

end

A = G(2:m-1,2:n-1); % the new generation

Part (c) requires only to include the code from part (b) in loop.
A = rand(m,n) < 0.3;

B = zeros(m+2,n+2); % padding

B(2:end-1,2:end-1) = A; % inset A

figure, spy(B), axis off

figure

for k = 1:50

G = zeros(m+2,n+2); % the clean grid for the new generation

for i = 2:m+1

for j = 2:n+1

on = sum(sum(B(i-1:i+1,j-1:j+1))) - B(i,j); % only neighbours

if (B(i,j) && (on == 2 || on == 3)) || (~B(i,j) && on == 3)

G(i,j) = 1;

end

end

end

B = zeros(m+2,n+2); % padding

B(2:end-1,2:end-1) = G(2:m+1,2:n+1); % new generation

spy(B), axis off

pause(0.2)

end

The glider gun in part (d) is the code in part (c) initialised with the pattern of bugs shown inFigure 3.9.
m = 25; n = 40;

A = zeros(m,n);

gb = [6,2;6,3;7,2;7,3;6,12;7,12;8,12;5,13;9,13;4,14;10,14;4,15;10,15;...

7,16;5,17;9,17;6,18;7,18;8,18;7,19;4,22;5,22;6,22;4,23;5,23;6,23;...

140 CHAPTER 12. SOLUTIONS
3,24;7,24;2,26;3,26;7,26;8,26;4,36;5,36;4,37;5,37]; % the gun bugs

A(sub2ind([m,n],gb(:,1),gb(:,2))) = 1; % position the gun bugs

B = zeros(m+2,n+2); % padding

B(2:end-1,2:end-1) = A; % inset A

figure, spy(B), axis off

figure

for k = 1:250

G = zeros(m+2,n+2); % the clean grid for the new generation

for i = 2:m+1

for j = 2:n+1

on = sum(sum(B(i-1:i+1,j-1:j+1))) - B(i,j); % only neighbours

if (B(i,j) && (on == 2 || on == 3)) || (~B(i,j) && on == 3)

G(i,j) = 1;

end

end

end

B = zeros(m+2,n+2); % padding

B(2:end-1,2:end-1) = G(2:m+1,2:n+1); % new generation

spy(B), axis off

pause(0.02)

end

Chapter 4: Functions

• 4.6.2
function D = euclidean_distance_arrays(A,B)

for i = 1:size(A,1)

x = A(i,:); % ith row of A

for j = 1:size(B,1)

y = B(j,:); % jth row of B

D(i,j) = sqrt(sum((x-y).^2));

end

end

Here is a solution without loops:
function D = euclidean_distance_arrays2(A,B)

N = size(A,1); M = size(B,1);

AA = repmat(A,M,1); BB = repmat(B’,1,N)’;

D = reshape(sqrt(sum((AA-BB).^2,2)),M,N);

Check with:
P = [3 4;1 2]; Q = [-2 5;3 -1; 7 4];

disp(euclidean_distance_arrays(P,Q))

• 4.6.4

CHAPTER 12. SOLUTIONS 141
function is_in = point_in_a_square(x,y,p,q,s)

is_in = x >= p & x <= p + s & y >= q & y <= q + s;

Here we assume that if the point is on the edge or corner, it is in the square. Check with thisexample:
point_in_a_square(0.3,0.8,0,0,1)

point_in_a_square(0.3,1.8,0,0,1)

point_in_a_square(1,0.8,0,0,1)

The first and the third points are in, and the second is out of the unit square.
• 4.6.6
function o = fibo_recursive(k)

if k < 2

o = k;

else

o = fibo_recursive(k-1) + fibo_recursive(k-2);

end

Check with:
for i = 1:10

disp(fibo_recursive(i))

end

end

• 4.6.8
Bubble sort operates by swapping neighbouring elements in the array if they are not in the right order.It finishes when no swaps are made passing through the whole array.
function A = bubble_sort(A)

SWAP = true;

i = 1;

N = numel(A);

while SWAP

SWAP = false;

for j = 1 : N - i

if A(j) > A(j+1)

A([j,j+1]) = A([j+1,j]);

SWAP = true;

end

end

i = i + 1;

end

Example of applying the algorithm to an array:

142 CHAPTER 12. SOLUTIONS
>> a = randi(500,1,10) - 250

a =

92 131 -37 -126 -154 -90 -50 -82 -122 44

>> bubble_sort(a)

ans =

-154 -126 -122 -90 -82 -50 -37 44 92 131

Chapter 5: Plotting

• 5.3.2
The function for plotting a circle:
function plot_circle(x,y,r,c)

theta = linspace(0,2*pi,100);

fill(x+sin(theta)*r,y+cos(theta)*r,c)

The script:
figure, hold on, axis equal off

for i = 1:30

plot_circle(rand,rand,rand*0.2,rand(1,3))

end

• 5.3.4
figure, hold on

for i = 1:20

ver = randi([3,6]);

fill(rand(ver,1),rand(ver,1),rand(1,3))

end

axis([0.2 0.8 0.2 0.8])

axis square off

• 5.3.6
function nested_squares(k)

hold on

for i = 1:k

w = k-i+1;

fill([w,w,-w,-w],[-w,w,w,-w],rand(1,3))

end

axis equal off

• 5.3.8
figure, hold on

k = 10; x = [0; rand(k-1,1)]; y = [0; rand(k-1,1)];

% vertex (0,0) is needed for touching in the centre

CHAPTER 12. SOLUTIONS 143
co = rand(1,3); % fill colour

fill(x,y,co); fill(-x,y,co);fill(x,-y,co);fill(-x,-y,co);

axis equal off

• 5.3.10
(a)
figure, hold on

ind = 1;

h = zeros(1,25);

for i = 1:5

for j = 1:5

h(ind) = fill(rand(1,6)+0.9*i,rand(1,6)+0.9*j,rand(1,3));

ind = ind + 1;

end

end

axis equal off

(b)
figure

subplot(1,2,1), hold on

ind = 1;

X = rand(25,6); Y = rand(25,6); C = rand(25,3); % the forms

for i = 1:5

for j = 1:5

fill(X(ind,:)+0.9*i,Y(ind,:)+0.9*j,C(ind,:));

ind = ind + 1;

end

end

axis equal off

title(’Original’)

subplot(1,2,2), hold on

% permute the figures

rp = randperm(25); X = X(rp,:); Y = Y(rp,:); C = C(rp,:);

ind = 1;

for i = 1:5

for j = 1:5

fill(X(ind,:)+0.9*i,Y(ind,:)+0.9*j,C(ind,:));

ind = ind + 1;

end

end

axis equal off

title(’Shuffled’)

• 5.3.12

144 CHAPTER 12. SOLUTIONS
% (a)

figure, hold on

T = 5;

for i = 1:T

plot([0 i 0 -i 0],[-i 0 i 0 -i],’k-’,’color’,[i 0 0]/T,’linewidth’,5)

end

axis equal off

% (b)

figure, hold on

T = 100;

for i = 1:T

if i <= T/2

plot([0 i 0 -i 0],[-i 0 i 0 -i],’k-’,...

’color’,2*[0 i 0]/T,’linewidth’,5)

else

plot([0 i 0 -i 0],[-i 0 i 0 -i],’k-’,...

’color’,[0 0 i-T/2]/(T/2),’linewidth’,5)

end

end

axis equal off

• 5.3.14
(a)
function draw_balloon(x,y,r,c,l)

t = linspace(0,2*pi,100);

fill(sin(t)*r + x, cos(t)*r + y, c) % draw balloon

b = rand*2*pi; % random phase of the string

zy = linspace(0,l,50);

zx = linspace(0,3*rand*pi+2*pi,50);

plot(x+sin(zx+b)*0.15*r-sin(b)*0.15*r,...

y-r-zy,’k-’) % draw string, amplitude 0.15*r

p = 0.08*r; % the blower triangle offset

fill([x-p x+p x],[y-r-p y-r-p y-r],c) % draw blower

plot(x,y-r,’k.’)

% draw light reflection

l1 = 80; l2 = 92;

fill([sin(t(l1:l2))*0.8*r + x, sin(t(l2:-1:l1))*0.68*r + x], ...

[cos(t(l1:l2))*0.8*r + y,cos(t(l2:-1:l1))*0.6*r + y],...

’w’,’EdgeColor’,’none’)

(b)
figure, hold on, axis equal off

for i = 1:20

CHAPTER 12. SOLUTIONS 145
draw_balloon(rand, rand, rand*0.1+0.05, rand(1,3), rand*0.3+0.3)

end

(c)
figure, hold on, axis equal off

for i = 1:20

ra = rand*0.1+0.05; % radius

draw_balloon(rand, 1-ra, ra, rand(1,3), rand*0.3+0.3)

end

v = axis;

fill([v(1) v(2) v(2) v(1)],[v(4) v(4) v(4)+0.1 v(4)+0.1],[0.7 0.7 0.7])

Chapter 6: Data

• 6.4.2
a = randn(30,1)*20 + 100;

• 6.4.4
(a) Generate a random number k between -30.4 and 12.6.

k = rand * (12.6 - (-30.4)) - 30.4;

Note that the expression in the parentheses can be calculated as a single constant. Theexpression was left in this form here for readability. The random number should be multipliedby the (max - min) and then the minimum should be added.
(b) Generate an array A of size 20-by-20 of random integers in the interval [−40, 10]. Subsequently,replace by 0 all elements of A which are smaller than k .

A = randi([-40, 10],20);

A(A < k) = 0;

(c) Find the mean of all non-zero elements of A.
mnzA = mean(A(A~=0));

(d) Pick a random element from A.
rndA = A(randi(numel(A)));

(e) Visualise A using a random colour map containing exactly as many colours as there are differentelements of A.

146 CHAPTER 12. SOLUTIONS
figure, imagesc(A), axis equal off

c = numel(unique(A)); % how many colours are needed

colormap(rand(c,3))

(f) Extract 4 different random rows from A and save them in a new array B.
r = randperm(size(A,1),4); % rows # to extract

B = A(r,:);

(g) Find the proportion of non-zero elements of B.
propnzB = mean(B(:)~=0); % B is reshaped into a vector

(h) Display in the Command Window the answers of (a), (c), (d) and (g) with a proper description ofeach one.
disp(’A random number between -30.4 and 12.6:’), disp(k)

disp(’Mean of all non-zero elements of A:’), disp(mnzA)

disp(’A random element of A:’), disp(rndA)

disp(’Proportion of non-zero elements of B:’), disp(propnzB)

• 6.4.6
1. Generate an array of 10,000 random outcomes of the three slots of the machine.

outcomes = randi(6,10000,3);

2. Find the total number of winning combinations among the 10,000 outcomes.
wins = sum(outcomes(:,1) == outcomes(:,2) & ...

outcomes(:,1) == outcomes(:,3));

3. Assume that the entry fee for each run is 1 unit of some imaginary currency. Each winningcombination is awarded a prize of 10 units except for the combination of three 1s, which isawarded a prize of 50. Assuming you are the owner of the slot machine, calculate your profitafter the 10,000 runs of the game.
win_index = outcomes(:,1) == outcomes(:,2) & ...

outcomes(:,1) == outcomes(:,3);

profit = 10000 - sum((win_index & outcomes(:,1) ~= 1) * 10) - ...

sum((win_index & outcomes(:,1) == 1) * 50);

disp(’Profit = ’), disp(profit)

CHAPTER 12. SOLUTIONS 147
• 6.4.8
a = randn(5000,2);

ind = sqrt(a(:,1).^2+a(:,2).^2) < 0.7 | sqrt(a(:,1).^2+a(:,2).^2) > 1.5;

figure

plot(a(ind,1),a(ind,2),’g.’)

axis equal, grid on

• 6.4.10
a = randn(1,1000).*(1:1000)*0.2; % random signal with increasing amplitude

y_offset = linspace(-400,200,1000); % increasing slope to add

s = a + y_offset; % the signal

[mins,ind_mins] = min(s);

[maxs,ind_maxs] = max(s);

figure, hold on, grid on

xlabel(’time’), ylabel(’amplitude’)

plot([ind_mins, ind_maxs],[mins maxs],’ys’,’markersize’,20,...

’MarkerFaceColor’,’y’)

% plot the min and the max first so that the signal plot goes over

plot(s,’k-’)

plot([0 1000],[-400, 200],’r-’,’linewidth’,1.5)

axis([0 1000 -600 800])

• 6.4.12
figure, grid on

fill([0 1 1 7 7 5 5 0],[1 1 8 8 9 9 5 5],[0.7 0.7 0.7])

x = rand(1000,1) * 7;

y = rand(1000,1) * 8 + 1;

index = (x > 0) & (x < 1) & (y > 1) & (y < 5) | ...

(x > 1) & (x < 5) & (y > 5) & (y < 8) | ...

(x > 5) & (x < 7) & (y > 8) & (y < 9);

hold on

plot(x(index),y(index),’k.’)

• 6.4.14
x = rand(2000,1) * 200 - 35;

y = rand(2000,1) * 100 - 20;

index1 = ((x - 30).^2 + (y - 40).^2 < 900) | ...

((x + 10).^2 + y.^2 < 1600);

index2 = ((x - 30).^2 + (y - 40).^2 < 64) | ...

((x + 10).^2 + y.^2 < 64);

figure, hold on

plot(x(~index1&~index2),y(~index1&~index2),’k.’,’markersize’,15,...

’color’,[0.7 0.7 0.7])

plot(x(index1&~index2),y(index1&~index2),’rx’,’linewidth’,2.5,...

’markersize’,10)

plot(x(index2),y(index2),’g+’,’linewidth’,2.5,’markersize’,10)

148 CHAPTER 12. SOLUTIONS
grid on, axis equal tight

• 6.4.16
(a)
k = 10; % range of the matrix entry

T = 10000; % number of iterations

count = 0;

for i = 1:T

m = randi([-k k],2);

if det(m) == 0 % singularity check

count = count + 1;

end

end

fprintf([’Proportion of singular 2x2 integer-valued matrices in ’,...

’[-%i,%i]: %.4f\n’],k,k,count/T)

(b)
c = zeros(1,50);

for k = 1:50

count = 0;

for j = 1:T

m = randi([-k k],2);

if det(m) == 0

count = count + 1;

end

end

c(k) = count;

end

figure

plot(c/T,’k-’)

grid on

title(’Proportion of singular 2x2 matrices with integer entries in [-k,k]’)

xlabel(’k’)

The output is shown in Figure 12.1. The proportion of singular 2-by-2 matrices with integers between
−k and k decreases exponentially with increasing k .
• 6.4.18
(a)
% checking for three-of-a-kind

Values = {’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’,’J’,’Q’,’K’};

Suits = {’C’,’D’,’H’,’S’};

CardValue = zeros(1,5);

k = 0; % counter

while sum(CardValue==max(CardValue)) ~= 3 || numel(unique(CardValue)) ~=3

k = k + 1;

CHAPTER 12. SOLUTIONS 149

Figure 12.1: Output for problem 6.4.16 (b)
rp = randperm(52); % generate a new hand

hand = rp(1:5);

CardSuit = ceil(hand/13); % suit index

FrequenciesOfCards = zeros(1,13);

CardValue = mod(hand,13) + 1;

end

for i = 1:5 % display the hand

fprintf(’%s%s ’,Values{CardValue(i)},Suits{CardSuit(i)})

end

% print the number of trials

fprintf(’\n\nNumber of trials before 3-of-a-kind = %d\n\n’,k)

(b)
% evaluating a hand

Values = {’A’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’,’J’,’Q’,’K’};

Suits = {’C’,’D’,’H’,’S’};

ph = {’high card’,’one pair’,’two pairs’,’three of a kind’,’straight’,...

’flush’,’full house’,’four of a kind’,’straight flush’};

% 1 high card (none of the following)

% 2 one pair

% 3 two pair

% 4 three of a kind

% 5 straight (consecutive cards, mixed suits)

% 6 flush (same suit, any value)

% 7 full house (three of a kind and a pair)

% 8 four of a kind

150 CHAPTER 12. SOLUTIONS
% 9 straight flush (consecutive cards, same suit)

rp = randperm(52); % generate a new hand

hand = rp(1:5);

mask = zeros(13,4);

mask(hand) = 1;

ranking = zeros(9,1);

M = sum(mask,2); % how many of each value

mM = max(M); % largest number of equal values

if mM == 4

ranking(8) = 1; % four

elseif (mM == 3)

if isempty(find(M == 2)) %#ok<*EFIND>

ranking(4) = 1; % three

else

ranking(7) = 1; % full house

end

else

if sum(M==2) == 2

ranking(3) = 1; % two pair

elseif sum(M==2) == 1

ranking(2) = 1; % one pair

end

end

if max(sum(mask)) == 5 % all of the same suit

if max(find(M)) - min(find(M)) == 4 %#ok<MXFND> % consecutive

ranking(9) = 1; % straight flush

else

ranking(6) = 1; % flush

end

else

if mM == 1 % all different and different suits

if (max(find(M)) - min(find(M)) == 4) ... % consecutive

|| all(find(M’) == [2 3 4 5 13]) % A 2 3 4 5

ranking(9) = 1; % straight

end

end

end

% After all ranking 2:9 have been explored

if sum(ranking) == 0 %(none of the fancy hands)

ranking(1) = 1; % high card hand

end

CardSuit = ceil(hand/13); % suit index

CardValue = mod(hand,13) + 1;

for i = 1:5 % display the hand

fprintf(’%s%s ’,Values{CardValue(i)},Suits{CardSuit(i)})

end

fprintf(’\n’)

r = find(ranking);

CHAPTER 12. SOLUTIONS 151
disp(ph{r})

• 6.4.20
(a)
cx = randi(10); cy = randi(10); r = randi(10);

bx = randi(10); by = randi(10); w = randi(10); h = randi(10);

(b)
figure, hold on, axis equal, grid on

theta = linspace(0,2*pi,100);

plot(sin(theta)*r+cx,cos(theta)*r+cy,’b-’,’linewidth’,2) % plot circle

Rx = [bx,bx+w,bx+w,bx,bx]; Ry = [by,by,by+h,by+h,by];

plot(Rx,Ry,’b-’,’linewidth’,2) % plot rectangle

(c)
% check whether to calculate or simulate

R = [Rx’ Ry’];

T = [];

if all(sum((R - repmat([cx,cy],5,1)).^2,2) < r^2) % rectangle within

ar = w * h; % area

elseif cx-r>=bx && cx+r<=bx+w && cy-r>=by && cy+r<=by+h % circle within

ar = pi * r^2;

else

T = 30000; % number of points for the Monte Carlo simulation

% generate points within the tight square around the circle

x = rand(T,1)*2*r+cx-r; y = rand(T,1)*2*r+cy-r;

% find the number within the intersection

in_rectangle = x>bx & x<bx+w & y>by & y<by+h;

in_circle = (x-cx).^2 + (y-cy).^2 - r^2 < 0;

ind = in_rectangle & in_circle;

number_in = sum(ind);

ar = number_in/T * (2*r)^2;

end

(d)
figure, hold on, axis equal, grid on

if T % area has been estimated (not calculated)

plot(x,y,’k.’,’markersize’,2)

plot(x(ind),y(ind),’r.’,’markersize’,8)

end

title([’Area = ’,num2str(ar)])

plot(sin(theta)*r+cx,cos(theta)*r+cy,’b-’,’linewidth’,2) % plot circle

plot(Rx,Ry,’b-’,’linewidth’,2) % plot rectangle

• 6.4.22

152 CHAPTER 12. SOLUTIONS
% The chromosome is a binary vector of length 25x25 matrix = 625.

% The fitness function = number of 1s in the chromosome; large is better.

% Start with a random population with 10 chromosomes.

% Use only mutation; set the mutation probability to 0.15.

% Run your algorithm for 20 generations.

gs = 25; % grid size

ps = 10; % population size

P = rand(ps,gs^2) > 0.5; % population

Pm = 0.15; % mutation probability

F = sum(P,2); % evaluation of P

figure

for i = 1:400 % up to 20 generations

O = P; % offspring

M = rand(size(O)) < Pm; % mutation mask

O(M) = 1 - O(M); % mutate offspring

FO = sum(O,2); % evaluation of offspring

FA = [F;FO]; % concatenate the fitness

A = [P;O]; % all chromosomes available

[~,ind] = sort(FA,’descend’);

P = A(ind(1:ps),:); % selected population

F = FA(ind(1:ps)); % corresponding fitness

% At each new generation, plot the best chromosome in the current

% population using the ‘spy’ command. Format the chromosome as a

% 25x25 matrix. An ideal chromosome will have all spaces filled.

% The worst chromosome will be an empty square in the figure.

spy(reshape(P(1,:),gs,gs))

title([’Best chromosome at iteration ’ num2str(i)])

drawnow

end

% At the end, print out the fitness value of the best chromosome,

% and show the chromosome as explained above.

figure, hold on

spy(reshape(P(1,:),gs,gs))

title([’Best chromosome’’s fitness value: ’ num2str(F(1))])

• 6.4.24
figure

P = rand(25) > 0.4;

directions = [1 0;0 1;-1 0;0 -1]; % for possible moves

k = 0; % counter of the steps

while sum(sum(P)) > 0 % bugs left

W = zeros(25); % new canvas

for i = 1:25

for j = 1:25

if P(i,j) % bug

move = ceil(rand*4);

CHAPTER 12. SOLUTIONS 153
if (i + directions(move,1) > 0) &&...

(i + directions(move,1) < 26) ...

&& (j + directions(move,2) > 0) &&...

(j + directions(move,2) < 26)

% inside the grid

W(i + directions(move,1),j + directions(move,2)) = ...

W(i + directions(move,1),j + ...

directions(move,2)) + 1;

end

end

end

end

W(W>1) = 0; % kill the multiple bugs in a cell

P = W;

spy(P)

k = k + 1; % steps

pause(0.05)

end

close

fprintf(’Number of steps = %d\n’,k)

• 6.4.26
The function:
function [p,d] = greedy_tsp(cities)

n = size(cities,1); di = zeros(n);

for i = 1:n-1

for j = i+1:n

di(i,j) = sum((cities(i,:) - cities(j,:)).^2);

di(j,i) = di(i,j);

end

end

di = sqrt(di);

d = 0;

p = 1; % cities visited

cn = 2:n; % cities not visited yet

for i = 1:n-1

[sd,next_city] = min(di(cn,p(end)));

d = d + sd; % add the smallest distance sd

p = [p, cn(next_city)]; % add the new city to the list

cn(next_city) = []; % remove the new city from non-visited

end

d = d + di(p(end),1);

The calling script:
ci = rand(10,2); % cities’ positions

154 CHAPTER 12. SOLUTIONS
[g,dg] = greedy_tsp(ci);

figure, hold on

plot([ci(g,1);ci(g(1),1)],[ci(g,2);ci(g(1),2)],...

’go-’,’linewidth’,2,’markersize’,12);

plot([ci(g,1);ci(g(1),1)],[ci(g,2);ci(g(1),2)],...

’ro’,’linewidth’,2,’markersize’,8);

axis square, grid on

title([’GREEDY Minimum d = ’,num2str(dg)])

Chapter 7: Strings

• 7.4.2
s = [’Try to distinguish between e-mail addresses ending with "uk", ’...

’and those ending with something else. For example, check with ’,...

’n.o.body@fiction.co.uk and print out the result.’];

[first_part,second_part] = strtok(s,’@’);

blanks_first_part = strfind(first_part,’ ’);

address1 = first_part(blanks_first_part(end)+1:end);

blanks_second_part = strfind(second_part,’ ’);

address2 = second_part(1:blanks_second_part(1)-1);

dots = strfind(address2,’.’);

network_extension = address2(dots(end)+1:end);

address = [address1 address2];

if strcmp(network_extension,’uk’)

fprintf(’UK address: %s\n’,address)

else

fprintf(’non-UK address: %s\n’,address)

end

% Change "n.o.body@fiction.co.uk" to "n.o.body@fiction.co.net"

% and run this part of the code again

• 7.4.4
s = input(’And you were saying?... ’,’s’);

% Explain how this next line works ... :)

fprintf(’Really, %s?\n’,fliplr(strtok(fliplr(s))))

• 7.4.6
(a)
s = [’Once upon a time, a very long time ago now, about last Friday, ’,...

’Winnie-the-Pooh lived in a forest all by himself under the ’,...

’name of Sanders. "What does ’’under the name’’ mean?" asked ’,...

’Christopher Robin. "It means he had the name over the door in ’,...

’gold letters, and lived under it."’];

(b)

CHAPTER 12. SOLUTIONS 155
s = strrep(s,’Winnie-the-Pooh’,’Dawn French’);

s = strrep(s,’Sanders’,’Stephen King’);

s = strrep(s,’Christopher Robin’,’Bahama Mama’);

(c)
N1 = numel(s);

N2 = sum(s~=’ ’);

fprintf(’The string contains %i characters if counting the spaces\n’,N1)

fprintf(’and %i characters without the spaces.\n\n’,N2)

(d)
fprintf(’The total number of words is %i.\n\n’,N1-N2+1)

• 7.4.8
C = {’Albania’;’Andorra’;’Austria’;’Belarus’;’Belgium’;...

’Bosnia and Herzegovina’;’Bulgaria’;’Croatia’;’Cyprus’;...

’Czech Republic’;’Denmark’;’Estonia’;’Finland’;...

’France’;’Germany’;’Greece’;’Hungary’;’Iceland’;...

’Ireland’;’Italy’;’Kosovo’;’Latvia’;’Liechtenstein’;...

’Lithuania’;’Luxembourg’;’Malta’;’Moldova’;’Monaco’;...

’Montenegro’;’Netherlands’;’Norway’;’Poland’;...

’Portugal’;’Republic of Macedonia’;’Romania’;...

’Russia’;’San Marino’;’Serbia’;’Slovakia’;...

’Slovenia’;’Spain’;’Sweden’;’Switzerland’;...

’Turkey’;’Ukraine’;’United Kingdom’;’Vatican City’};

S = upper(C{randi(numel(C))});

SS = S(randperm(length(S)));

InputString = sprintf([’Anagram of a European country --%s--’,...

’.\nYour guess? --> ’],SS);

trial = 1;

while trial < 4

UserC = input(InputString,’s’);

if strcmpi(UserC,S) % compare the string ignoring the case !!!

fprintf(’\n\nCongratulations! %s is correct!\n\n’,S)

break

else

trial = trial + 1;

if trial == 4 % exit with no success

disp([’GAME OVER! The country was ’ S ’.’])

else

fprintf(’Not correct. Try again!\n’)

end

end

end

156 CHAPTER 12. SOLUTIONS
• 7.4.10
function M = LaTeX_matrix(A)

% outputs a string array with the LaTeX syntax for matrix A

[m,n] = size(A);

s = ’\\left[\\begin{array}\n{’;

for i = 1:n, s = [s,’r’]; end

s = [s,’}’];

for i = 1:m

s1 = ’’;

for j = 1:n

s1 = [s1,’%d&’];

end

s1 = [s1(1:end-1), ’\\\\\n’];

s = [s, s1];

end

s = [s,’\\end{array}\\right]’];

A = A’;

M = sprintf(s,A(:)’);

Chapter 8: Images

• 8.4.2
House =[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 3 3 3 3 3 3 0 0 0 0 0

2 2 2 2 3 4 3 3 3 3 2 2 2 2 2

2 2 2 2 3 4 3 4 4 3 2 2 2 2 2

2 2 2 2 3 3 3 4 4 3 2 2 2 2 2

2 2 2 2 3 3 3 4 4 3 2 2 2 2 2

];

house = [

0 0 1 % blue

1 0 0 % red

0 1 0 % green

0.8 0.8 0.8 % grey

0 0 0 % black

];

f = figure;

CHAPTER 12. SOLUTIONS 157
imagesc(House);

colormap(house)

axis equal off

• 8.4.2
A = imread(’BabyC.jpg’);

ti = {’Red’,’Green’,’Blue’};

figure

for i = 1:3

subplot(3,1,i)

p = A(:,:,i); hist(double(p(:)),50);

title(ti{i})

grid on

if i == 1, axis tight, v = axis; else axis(v), end

end

• 8.4.6
A = imread(’bangor.jpg’);

B = A*0.3;

figure, imshow(255*0.7+B)

• 8.4.8 The function
function A = randomise_image_panel(A,s)

A(:,:,strfind(’RGB’,s)) = uint8(rand(size(A,1),size(A,2))*255);

The script
A = imread(’JazzieSleepTail.jpg’);

B = [randomise_image_panel(A,’R’),randomise_image_panel(A,’G’),...

randomise_image_panel(A,’B’),];

figure(’Position’,[100,100,800,220]),imshow(B)

• 8.4.10
A = rgb2gray(imread(’Joey.jpg’)); % read image and convert to grey

for i = 1:6

B = imresize(A,.5);

A(1:size(B,1),1:size(B,2)) = B; % resize and inset

end

figure, imshow(A)

• 8.4.12
A = imread(’Joey.jpg’);

s = size(A);

midR = round(s(1)/2); midC = round(s(2)/2);

A(1:midR,1:midC,1) = 255; % red top left

A(1:midR,midC+1:end,3) = 255; % blue top right

158 CHAPTER 12. SOLUTIONS
A(midR+1:end,1:midC,2) = 255; % green bottom left

A(midR+1:end,midC+1:end,[1 3]) = 255; % purple bottom right

figure, imshow(A)

• 8.4.14
A = imread(’joey_and_robot.jpg’);

figure, imshow(A)

s = size(A);

lw = ceil(s(1)/200);

tenrows = round(linspace(1,s(1)-lw,11));

tencolumns = round(linspace(1,s(2)-lw,11));

B = A;

for i = 1:lw

B(tenrows+i-1,:,:) = 0;

B(tenrows+i-1,:,2) = 255;

B(:,tencolumns+i-1,:) = 0;

B(:,tencolumns+i-1,2) = 255;

end

figure, imshow(B)

• 8.4.16
The function:
function Im = shuffle_image(A,M,N)

if ndims(A)==2 %#ok<*ISMAT>

A = cat(3,A,A,A); % make a grey image into rgb

end

Rows = floor(size(A,1)/M);

Columns = floor(size(A,2)/N);

Im = uint8(zeros(size(A)));

% Shuffle index

RP = reshape(randperm(M*N),M,N);

k = 1;

for i = 1:M

for j = 1:N

T = A((i-1)*Rows + 1 : i*Rows,...

(j-1)*Columns + 1 : j*Columns,:); % take current block

[new_r,new_c] = find(RP == k);

Im((new_r-1)*Rows + 1 : new_r*Rows,...

(new_c-1)*Columns + 1 : new_c*Columns,:) = T; % position

% in the new row/column

k = k + 1;

end

end

CHAPTER 12. SOLUTIONS 159
The script:
A = imread(’winter_mountain.jpg’);

B = shuffle_image(A,4,5);

figure,imshow(A)

figure,imshow(B)

• 8.4.18
The function:
function [p,q,r] = words_around_shape(C,mode)

N = numel(C);

if mode == 1

C = sort(C);

end

hold on

axis([-2 2 -2 2])

axis square off

t = 2 * pi / N;

Co = [0; 1];

R = [cos(t) sin(t);-sin(t) cos(t)];

for i = 1:N

r(i) = text(Co(1),Co(2),C{i},’Rotation’,90 - t*(i-1)/pi*180);

q(i) = plot([0 Co(1)],[0 Co(2)]);

Co1 = R * Co;

p(i) = plot([Co(1) Co1(1)],[Co(2) Co1(2)]);

Co = Co1;

end

• 8.4.20
A = double(imresize(imread(’winter_mountain.jpg’),0.05));

r = A(:,:,1); g = A(:,:,2); b = A(:,:,3);

figure, hold on

set(gca,’FontName’,’Candara’,’FontSize’,12)

grid on

scatter3(r(:),g(:),b(:),6,[r(:),g(:),b(:)]/255,’filled’)

rotate3d

Chapter 9: Animation

• 9.4.2 Highlight
A = imread(’ConnorsCars2.jpg’);

r = A(:,:,1); g = A(:,:,2); b = A(:,:,3);

160 CHAPTER 12. SOLUTIONS
figure, imshow(A)

waitforbuttonpress

t = get(gca,’CurrentPoint’);

% create mask

[x,y] = meshgrid(1:size(r,2),1:size(r,1));

ra = 600; % radius of the region of interest

mask = (x-t(1,1)).^2 + (y-t(1,2)).^2 < ra^2;

r(~mask) = r(~mask)*0.5;

g(~mask) = g(~mask)*0.5;

b(~mask) = b(~mask)*0.5;

B = uint8(cat(3,r,g,b));

figure,imshow(B)

• 9.4.4 Squares in a loop
k = 10;

co = rand(k,3);

figure, hold on, axis equal off

for j = 1:30

for i = 1:k

w = k-i+1;

fill([w,w,-w,-w],[-w,w,w,-w],co(i,:))

end

co(1,:) = [];

co = [co;rand(1,3)];

pause(0.1)

end

• 9.4.6 Stopwatch
S = input(’Number of seconds? ---> ’);

figure(’color’,’y’)

hold on

text(-0.10,0.95,’Stopwatch’,’FontName’,’Tempus Sans ITC’,’Fontsize’,20);

t = text(0.2,0.5,’0’,’FontName’,’Tempus Sans ITC’,’Fontsize’,140);

axis off

for i = 1:S

set(t,’String’,num2str(i))

pause(0.98)

end

• 9.4.8 Planets (a), (b) and (c)
figure, hold on

plot(0,0,’y.’,’markersize’,80) % the sun

theta = linspace(0,2*pi,100);

r1 = 1; % radius of orbit1

r2 = 3; % radius of orbit2

% Orbit trajectories

plot(sin(theta)*r1,cos(theta)*r1,’k--’)

CHAPTER 12. SOLUTIONS 161
plot(sin(theta)*r2,cos(theta)*r2,’k--’)

theta1 = linspace(0,4*pi,250);

theta2 = linspace(0,4*pi,500);

h1 = plot(0,1,’r.’,’markersize’,50); % planet 1 (inner)

h2 = plot(0,3,’b.’,’markersize’,40); % planet 2 (outer)

h3 = plot(sin(theta)*0.8,cos(theta)*0.8+r2,’k--’); % orbit of moon

h4 = plot(sin(theta(30))*0.8,cos(theta(30))*0.8+r2,’k.’,...

’markersize’,30); % moon of planet 2

axis([-4 4 -4 4])

axis square off

for i = 1:500

set(h1,’Xdata’,r1*sin(theta1(mod(i,250)+1)),...

’Ydata’,r1*cos(theta1(mod(i,250)+1)))

set(h2,’Ydata’,r2*sin(theta2(mod(i,500)+1)),...

’Xdata’,r2*cos(theta2(mod(i,500)+1)))

set(h3,’Ydata’,r2*sin(theta2(mod(i,500)+1))+cos(theta)*0.8,...

’Xdata’,r2*cos(theta2(mod(i,500)+1))+sin(theta)*0.8)

% fixed moon

% set(h4,’Ydata’,r2*sin(theta2(mod(i,500)+1))+cos(theta(30))*0.8,...

% ’Xdata’,r2*cos(theta2(mod(i,500)+1))+sin(theta(30))*0.8)

% orbiting moon

set(h4,’Ydata’,r2*sin(theta2(mod(i,500)+1))+cos(theta2(i))*0.8,...

’Xdata’,r2*cos(theta2(mod(i,500)+1))+sin(theta2(i))*0.8)

pause(0.02)

end

• 9.4.10 The umbrella
(a) The function
function draw_sectors(N,Co)

figure

hold on

axis([-1 1 -1 1])

axis square off

theta = linspace(0,2*pi,N+1);

r = linspace(1,Co(1),N);

g = linspace(1,Co(2),N);

b = linspace(1,Co(3),N);

for i = 1:N

fill([0 cos(theta(i)) cos(theta(i+1)) 0],...

[0 sin(theta(i)) sin(theta(i+1)) 0], [r(i),g(i),b(i)])

pause(0.1)

end

end

(b) The extended function
function draw_sectors_BW(N,Co,bw)

figure

162 CHAPTER 12. SOLUTIONS
hold on

axis([-1 1 -1 1])

axis square off

theta = linspace(0,2*pi,N+1);

r = linspace(bw,Co(1),N);

g = linspace(bw,Co(2),N);

b = linspace(bw,Co(3),N);

for i = 1:N

fill([0 cos(theta(i)) cos(theta(i+1)) 0],...

[0 sin(theta(i)) sin(theta(i+1)) 0], [r(i),g(i),b(i)])

pause(0.1)

end

end

(c) The script
draw_sectors(20,[0.3 0.2 0.8])

draw_sectors_BW(20,[0.3 0.2 0.8],0)

draw_sectors_BW(20,[0.6 0.9 0.1],0)

while true

waitforbuttonpress

if gco == gcf

delete(gco)

break

else

coo = get(gco,’FaceColor’);

set(gco,’FaceColor’,1-coo)

end

end

• 9.4.12 Rotating square
figure, hold on

fill([-1 1 1 -1],[-1 -1 1 1],’w’); % white square

fill([0 1 1 0],[0 0 1 1],’r’); % red square

h = fill([0 0.5 0.5 0],[0 0 0.5 0.5],’k’); % black square

fill([0 0.25 0.25 0],[0 0 0.25 0.25],[0.7 0.7 0.7]); % grey square

axis square off

plot([-1 1],[0 0],’k-’)

plot([0 0],[-1 1],’k-’)

theta = 2*pi/100;

R = [cos(theta) sin(theta); -sin(theta) cos(theta)]; % rotation matrix

for i = 1:100 % rotate the black square

X1 = get(h,’XData’);

Y1 = get(h,’YData’);

NewPoints = R * [X1(:)’;Y1(:)’]; % incremental rotation

set(h,’XData’,NewPoints(1,:),’YData’,NewPoints(2,:))

pause (0.05)

end

CHAPTER 12. SOLUTIONS 163
• 9.4.16 Jumping frog
figure

hold on

axis([0 1 0 1])

fill([0 1 1 0],[0 0 1 1],’b’,’edgecolor’,’b’) % pond

axis square off

f = fill([0.47 0.53 0.5],[0.47 0.47 0.53],’g’,’edgecolor’,’g’); % frog

oldx = 0.5; oldy = 0.5;

for i = 1:15 % 15 jumps

x = rand; y = rand; % new position

X = [x-0.03,x+0.03,x]; % frog coordinates

Y = [y-0.03,y-0.03,y+0.03];

set(f,’XData’,X,’YData’,Y); % update frog position

plot([oldx,x],[oldy,y],’g--’) % plot the trace

oldx = x; oldy = y; % save the current point as "old"

pause(0.5)

end

• 9.4.16 Scrambled eggs
A = imread(’eggs.jpg’); % the original image

M = 4; % rows

N = 5; % columns

Rows = floor(size(A,1)/M); % Tile size - rows

Columns = floor(size(A,2)/N); % Tile size - columns

A = A(1:M*Rows,1:N*Columns,:); % reduce the image to match

RP = randperm(M*N); % shuffle index

Tiles = mat2cell(A,ones(1,M)*Rows, ones(1,N)*Columns,3);

Tiles = reshape(Tiles(RP),M,N);

B = cell2mat(Tiles); % shuffled image

RepeatedRP = randperm(M*N);

Tiles(RepeatedRP(2)) = Tiles(RepeatedRP(1));

C = cell2mat(Tiles);

% calculate the dark image

DarkTiles = mat2cell(A*0.3,ones(1,M)*Rows, ones(1,N)*Columns,3);

DarkTiles(RepeatedRP(2)) = Tiles(RepeatedRP(2));

DarkTiles(RepeatedRP(1)) = Tiles(RepeatedRP(2));

D = cell2mat(DarkTiles);

figure

subplot(2,2,1), imshow(A)

set(gca,’FontName’,’Candara’,’FontSize’,12)

title(’Original image’)

subplot(2,2,2), imshow(B)

set(gca,’FontName’,’Candara’,’FontSize’,12)

title(’Scrambled eggs’)

subplot(2,2,3), imshow(C)

set(gca,’FontName’,’Candara’,’FontSize’,12)

title(’Repeated tile’)

pause(3)

164 CHAPTER 12. SOLUTIONS
subplot(2,2,4), imshow(D)

set(gca,’FontName’,’Candara’,’FontSize’,12)

title(’Reveal’)

Chapter 10: GUI

• 10.3.2 Button alphabet
figure(’Units’,’Normalized’,’Position’,[0.1 0.4 0.8 0.2])

le = ’A’:’Z’;

for i = 1:26

b(i) = uicontrol(’Units’,’Normalized’,’Position’,...

[(i-1)*(1/26)+0.0003,0.1,(1/26)-0.001,0.8],...

’BackgroundColor’,rand(1,3),’String’,le(i),...

’FontName’,’candara’,’FontSize’,20);

set(b,’Callback’,’set(gco,’’BackgroundColor’’,’’k’’)’)

end

rp = randperm(26);

set(b(rp(1)),’Callback’,’delete(b),set(gcf,’’color’’,’’k’’)’)

set(b(rp(2)),’Callback’,’delete(b),set(gcf,’’color’’,’’k’’)’)

• 10.3.4 Disappearing green button
figure(’color’,’k’,’Units’,’Normalized’,’Position’,[0.1 0.1 0.8 0.8])

a = 0.2; b = 0.1;

stepsx = linspace(a,0.001,100);

stepsy = linspace(b,0.001,100);

waitforbuttonpress

p = get(gcf,’CurrentPoint’);

uicontrol(’Units’,’Normalized’,’Position’,[p(1)-a,p(2)-b,2*a,2*b],...

’BackgroundColor’,’g’,...

’String’,’Press to disappear’,’Fontname’,’Candara’,’FontSize’,16,...

’Callback’,[’set(gco,’’String’’,’’’’),for i = 1:100,’,...

’set(gco,’’Position’’,[p(1)-stepsx(i),p(2)-stepsy(i),’,...

’stepsx(i)*2,stepsy(i)*2]),pause(0.01),end,’,...

’delete(gco),set(gcf,’’color’’,’’g’’)’])

• 10.3.6 Scrabble helper
function scrabble_helper

figure

% letter tile frequencies (100 tiles in total)

ltf = [9 2 2 4 12 2 3 2 9 1 1 4 2 6 8 2 1 6 4 6 4 2 2 1 2 1 2];

let = [’A’:’Z’,’ ’];

to_show = ’’; % the sequence of 100 tile

for i = 1:27

to_show = [to_show, repmat(let(i),1,ltf(i))];

end

k = 1; % index in array to_show

CHAPTER 12. SOLUTIONS 165
for j = 10:-1:1

for i = 1:10

uicontrol(’Un’,’N’,’Pos’,[i-1,j-1,1,1]/10,’Str’,to_show(k),...

’FontName’,’Candara’,’FontSize’,18,...

’ForegroundColor’,[0.8 0.4 0.4],’Callback’,...

’co = get(gco,’’Ba’’);set(gco,’’Ba’’,1 - co)’);

k = k + 1;

end

end

• 10.3.8 Four coloured squares
figure, hold on, axis equal off

x = [0 7 7 0]’; y = [0 0 7 7]’;

sq = fill([x -x -x x],[y y -y -y],’w’);

str = text(-3,-8,’’);

q =’3412’;f=’1432’;

for i = 1:4

uicontrol(’str’,[’Square ’ f(i)],’Un’,’N’,’Pos’,[x(i) y(i) 1 1]/8,...

’Ca’,[’c=rand(1,3);set(sq,’’Facec’’,’’w’’),set(sq(’,q(i),’),’,...

’’’Facec’’,c),set(str,’’St’’,num2str(c))’]);

end

• 10.3.10 Remove-the-triangle game
f = figure; hold on, axis([0 1 0 1]), axis square off

triangle_count = 0;

h = zeros(1,20); % array with handles

while triangle_count < 20

S = 0;

while S < 0.05

X = rand(1,3); % x-coordinates of the vertices

Y = rand(1,3); % y-coordinates of the vertices

S = abs((X(2)*Y(1)-X(1)*Y(2))+(X(3)*Y(2)-X(2)*Y(3))+ ...

(X(1)*Y(3)-X(3)*Y(1)))/2; % area

end

triangle_count = triangle_count + 1;

h(triangle_count) = fill(X,Y,rand(1,3));

end

% Create a sound effect

fs = 8000; % the sampling frequency

T = 0.1;% length of the note in seconds

t = 0:1/fs:T;

C = 800; % frequency

y = [sin(C*2*pi*t) zeros(1,20) sin(C*2*pi*t)]; % the signal

j = 20;

while j > 0

k = waitforbuttonpress;

166 CHAPTER 12. SOLUTIONS
hh = gco;

if k == 0

if j == 20

tic

end

if hh == h(j)

set(hh,’visible’,’off’)

j = j - 1;

else

sound(y,fs)

end

end

end

t = toc;

fill([0 1 1 0],[0 0 1 1],[0.8 0.8 0.8],’edgecolor’,’none’)

tt = text(0.25,0.5,sprintf(’Your time is %.2f s.\n’,t));

set(tt,’FontName’,’Candara’,’FontSize’,18)

• 10.3.12 Colour boxes game
figure

k = 1;

for j = 1:4

for i = 1:5

h(k) = uicontrol(’units’,’normalized’,’backgroundcolor’,’k’,...

’position’,[0.1+(i-1)*0.16, 0.18+(4-j)*0.16, 0.16, 0.16]);

k = k + 1;

end

end

order_of_squares = randperm(20);

tic

for i = 1:20

set(h(order_of_squares(i)),’Backgroundcolor’,rand(1,3))

k = 1;

while (k ~=0)||(gco ~= h(order_of_squares(i)))

k = waitforbuttonpress;

end

delete(h(order_of_squares(i)))

end

st = sprintf(’Done in %.2f s’,toc);

end_text = uicontrol(’style’,’text’,’units’,’normalized’,...

’position’,[0.2, 0.5, 0.55, 0.1],’backgroundcolor’,get(gcf,’color’),...

’FontName’,’Trebuchet MS’,’FontSize’,16,’string’,st);

• 10.3.14 How fast can you find the numbers?
k = 1; % button counter

rp = randperm(100); % number distribution

tic % start the clock

topress = 1; % next number to press

CHAPTER 12. SOLUTIONS 167
fs = 8000; cli = sin(2*pi*800*(0:1/fs:0.1)); % click sound

t = (0:1/fs:0.05)*15000; % prepare the frequencies for sound "wrong"

fi = 20; % <--- final number to count to

figure

for i = 1:10 % rows of buttons

for j = 1:10 % columns of buttons

uicontrol(’Un’,’N’,’Po’,[(i-1)/10,(j-1)/10,0.1,0.1],...

’Ba’,rand(1,3)*0.4,’Str’,num2str(rp(k)),...

’For’,’w’,’FontN’,’Candara’,’FontS’,16,...

’Callback’,[’nu = str2num(get(gco,’’Str’’));’,...

’if nu == topress, topress = topress + 1;’,...

’set(gco,’’Enable’’,’’off’’,’’Ba’’,’’w’’),’,...

’sound([cli,cli],fs);else,’,...

’w = [sin((0.5+rand*0.5)*t),sin((0.5+rand*0.5)*t)];’,...

’sound(w,fs),end, if topress == fi+1, clf,’,...

’annotation(’’textbox’’,’’position’’,[0.2 0.2 0.6 0.6],’,...

’’’Horiz’’, ’’center’’,’’Vert’’, ’’middle’’,’’String’’,’,...

’[’’Your time: ’’ num2str(toc) ’’ s’’],’’FontN’’,’,...

’’’Segoe Print’’,’’FontS’’,14,’’EdgeColor’’,’’none’’);end’]);

k = k + 1;

end

end

• 10.3.16 Mirror image
[filename, pathname] = uigetfile(’*.jpg’);

a = imread([pathname filename]);

flippedIm(:,:,1) = fliplr(a(:,:,1));

flippedIm(:,:,2) = fliplr(a(:,:,2));

flippedIm(:,:,3) = fliplr(a(:,:,3));

gr = [0.8 0.8 0.8]; % grey colour for the button background

f = figure;

axes(’position’,[0.05 0.05 0.9 0.75])

axis off

imshow(a)

b(1) = uicontrol(’Parent’,f,’Style’,’push’,...

’units’,’normalized’,’position’,[0.2 0.9 0.6 0.08], ...

’string’,’Original image’,’BackgroundColor’,’g’,...

’Callback’,[’imshow(a),set(b(1),’’BackgroundColor’’,’’g’’),’,...

’set(b(2),’’BackgroundColor’’,gr)’]);

b(2) = uicontrol(’Parent’,f,’Style’,’push’,...

’units’,’normalized’,’position’,[0.2 0.82 0.6 0.08], ...

’string’,’Flipped image’,’BackgroundColor’,gr,...

’Callback’,[’imshow(flippedIm),set(b(1),’’BackgroundColor’’,gr),’,...

’set(b(2),’’BackgroundColor’’,’’g’’)’]);

set(b,’FontName’,’Candara’,’FontSize’,14)

• 10.3.18 Moving car
figure(’Color’,’w’)

168 CHAPTER 12. SOLUTIONS
A = imread(’YellowCar.jpg’);

h = axes(’position’,[0.02,0.5,0.3,0.1]);

imshow(A)

b(1) = uicontrol(’Un’,’N’,’Pos’,[0.05,0.05,0.25 0.1],’Str’,’Backward’,...

’Callback’,[’p = get(h,’’Pos’’);,’,...

’set(h,’’Pos’’,[max(p(1)-0.01,0),p(2),p(3),p(4)])’]);

b(2) = uicontrol(’Un’,’N’,’Pos’,[0.7,0.05,0.25 0.1],...

’Str’,’Forward’,...

’Callback’,[’p = get(h,’’Position’’);,’,...

’set(h,’’Position’’,[min(1-p(3),p(1)+0.01),p(2),p(3),p(4)])’]);

b(3) = uicontrol(’Un’,’N’,’Position’,[0.4,0.05,0.2 0.1],...

’Str’,’Move’,’Callback’,’move_the_car’);

set(b,’FontN’,’Tempus Sans ITC’,’FontS’,18,’Ba’,[0 0 0],’For’,[1 1 1])

This code requires a file with the Callback for the Move button with name move_the_car.m

p = get(h,’Position’);

while p(1)+p(3) < 1

set(h,’Position’,[p(1)+0.005,p(2),p(3),p(4)])

p = get(h,’Position’);

pause(0.005);

end

CarFlip(:,:,1) = fliplr(A(:,:,1));

CarFlip(:,:,2) = fliplr(A(:,:,2));

CarFlip(:,:,3) = fliplr(A(:,:,3));

imshow(CarFlip)

p = get(h,’Position’);

while p(1)-0.01 > 0

set(h,’Position’,[p(1)-0.005,p(2),p(3),p(4)])

p = get(h,’Position’);

pause(0.005);

end

imshow(A)

Chapter 11: Sound

• 11.2.2
function piano_keyboard

figure(’Units’,’Normalized’,’Position’,[1 1 4 6]*.1)

f = 440*2.^((-9:3)/12); % note frequencies

q = [1:2:5 6:2:12 13];

for i = 1:8 % white keys

uicontrol(’Un’,’N’,’Pos’,[i,1,1,8]/10,’Ba’,’w’,...

’Callback’,{@n,f(q(i))});

end

CHAPTER 12. SOLUTIONS 169
r = [2 4 0 7:2:11];

for i = [1 2 4 5 6] % black keys

uicontrol(’Un’,’N’,’Pos’,[.6+i,3.4,.7,5.6]/10,’Ba’,’k’,...

’Callback’,{@n,(f(r(i)))});

end

function n(~,~,F)

fs = 6^5;

T = 1;

t = 0:1/fs:T;

sound((T-t)/T.* sin(2*pi*t*F),fs)

end

end

• 11.2.4 Music scales
A piece of code needed for all sub-problems
noteFrequency = [261.63 293.66 329.63 349.23 392.00 440.00 493.88 523.25];

fs = 8000; % sampling frequency

(a)
y = [];

T = 1; % time in seconds

t = 0:1/fs:T;

A = (T - t) / T; % fading amplitude

for i = 1:8

no = noteFrequency(i);

s = A .* (sin(2*pi*t*no) + 0.2*(sin(pi*t*no) + sin(4*pi*t*no)));

y = [y, 0 s];

end

sound(y,fs)

(b)
y = [];

T = 1;

t = 0:1/fs:T;

A = (T - t) / T;

for i = 1:8

no = noteFrequency(i);

noback = noteFrequency(9-i);

s1 = A .* (sin(2*pi*t*no) + 0.2*(sin(pi*t*no) + sin(4*pi*t*no)));

s2 = A .* (sin(4*pi*t*noback) + 0.2*(sin(2*pi*t*noback) + ...

sin(8*pi*t*noback)));

y = [y, 0 0.8 * s1 + 0.2 * s2];

end

sound(y,fs)

%wavwrite(y,fs,’scales_harmony.wav’)

yb = y; % save the signal for the plot in 2(d)

170 CHAPTER 12. SOLUTIONS
(c)
y = [];

T = linspace(1,0.1,8);

fs = 8000;

for i = 1:8

t = 0:1/fs:T(i);

no = noteFrequency(i);

noback = noteFrequency(9-i);

A = (T(i) - t) / T(i); % amplitude is specific for duration T(i)

no = noteFrequency(i);

noback = noteFrequency(9-i);

s1 = A .* (sin(2*pi*t*no) + 0.2*(sin(pi*t*no) + sin(4*pi*t*no)));

s2 = A .* (sin(4*pi*t*noback) + 0.2*(sin(2*pi*t*noback) + ...

sin(8*pi*t*noback)));

y = [y, 0 0.8 * s1 + 0.2 * s2];

end

sound(y,fs)

(d)
% fs per second, fs/1000 per milisecond, round(30*fs/1000) per 30 ms

N = round(30*fs/1000); % number of samples corresponding to 30 ms

X = linspace(0,30,N); % prepare x-axis

figure, plot(X,yb(1:N),’k-’)

set(gca,’FontName’,’Candara’,’FontSize’,12)

title(’The first 30 ms of the harmony scale signal’)

xlabel(’time [ms]’)

ylabel(’sound signal’)

• 11.2.6 What Does Music Look Like?
The function:
function see_music(y)

N = numel(y);

T = 2000;

hos = floor(N/T); % split into T pieces

ints = floor(N/hos);

y = y(1:ints*hos); % truncate to a multiple of hos

r = reshape(y,hos,[]); % arrange consecutive intervals of length hos

pf = mean(abs(diff(r>0))); % find a proxy for the frequencies

Q = linspace(0,2*pi,T);

figure, hold on

for i = 1:min(ints,T)

plot([0 pf(i)*sin(Q(i))],[0 pf(i)*cos(Q(i))],’k-’,’color’,[0 i/ints 0])

end

axis equal off

Call the function with:

CHAPTER 12. SOLUTIONS 171
load handel

see_music(y)

Index.* Hadamard Product, 5, 16
all, 26any, 26axis, 11, 44, 45
bar, 54bubble sort, 40
case, 27ceil, 5, 72cell array, 17challenge, 52, 59, 92, 97, 129clc, 3clear all, 3close all, 3colon operator, 13, 27, 30, 45, 71, 72, 82,100, 126colormap, 81cos, 4, 5, 16, 45
delete, 113diary, 3disp, 7, 27, 70, 72
edgecolor, 45else, 26elseif, 26eps, 8exist, 26exp, 4, 6, 16, 38eye, 12, 13, 78
Fibonacci, 40figure, 41fill, 42, 45, 100fille, 45find, 16, 31, 113fliplr, 16, 45flipud, 16floor, 5for, 27, 30, 45, 56, 100, 111fprintf, 71function, 36function handle, 39, 111
get, 95, 110, 111, 113ginput, 97

global, 39glyphplot, 54gray2ind, 83
handles, 95hist, 54hold, 44, 45
i, 8if, 23, 26imagesc, 5, 11, 20, 81imread, 21, 31, 81, 82imresize, 83imshow, 21, 31, 78, 79, 81, 82indexing, 10, 17, 30, 31, 71, 72Inf, 8inline, 38input, 32, 70inv, 16isempty, 26, 113ismember, 26isstr, 70
length, 72linewidth, 45linspace, 14log, 4, 16logical indexing, 10, 25, 82logical operations, 23, 24
markersize, 44max, 16mean, 54median, 54meshgrid, 14, 80min, 16, 36mode, 54
NaN, 8numel, 16, 30, 31
ones, 12, 13
pause, 96pi, 8pie, 54plot, 41, 44, 56, 95, 100plot3, 92

rand, 12, 13, 31, 34, 45, 53, 56,113randi, 53randn, 53, 63randperm, 53, 63, 71range, 54relational operations, 24, 56repmat, 11, 12, 16, 29, 44, 72,79reshape, 12, 16rgb2gray, 31, 81, 82round, 5
save, 63set, 95, 110, 113sin, 4, 5, 16, 38, 45, 126size, 8, 16, 31, 82sort, 16sound, 100, 126sprintf, 70, 72spy, 78sqrt, 4–6, 16std, 54str2num, 70strcmp, 70strfind, 70strrep, 70strtok, 70strtrim, 70sum, 16switch, 27
tic, 100, 102tilde symbol, 36toc, 100, 102
uicontrol, 110, 112, 113uint8, 21unique, 16
var, 54
waitforbuttonpress, 96, 113while, 27, 29, 31
xor, 23
zeros, 12, 13, 113

172

