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Abstract

Animal re-identification is the process of recognising individual animals across different

images or video frames, often captured at varying times or locations. Unlike general

object detection, which identifies the presence of an animal, re-identification focuses on

distinguishing one specific animal from others of the same species. This task is important

in ecological monitoring, wildlife conservation, and behavioural studies, where tracking

individuals over time provides insights into movement patterns, social interactions, and

health status. Due to differences in appearance, pose, lighting, and occlusion, animal

re-identification is a challenging problem that often requires specialised datasets and

tailored machine learning techniques.

The emergence of machine learning and computer vision has facilitated the automation

of animal re-identification, predominantly through supervised learning frameworks

and deep learning architectures that depend on manually annotated datasets to achieve

consistent and reliable performance. However, the availability of such datasets remains

limited, highlighting the necessity for additional benchmark datasets to support the

development and evaluation of novel animal re-identification methodologies. In response

to this need, a multi-species animal video dataset was constructed, incorporating

bounding boxes, identity labels, and multiple feature representations. This dataset

served both to evaluate the proposed methods in this work and to address the scarcity of

benchmark resources within the field.

As animal re-identification solutions are typically designed for a bespoke subpopulation

of a single species, there is a clear need for the development of generalisable

methodologies. In response, this work presents the design of a fully autonomous

species-invariant animal re-identification pipeline capable of operating in both online

and offline scenarios. As a foundational step, an experimental study was conducted to

identify the most reliable feature representation for the benchmark dataset in the context

of animal re-identification. The results indicated that simple RGB-based features were
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effective for animal re-identification across species, and were consequently employed in

all subsequent experiments.

The development of a novel object detection paradigm is introduced, combining outputs

from object detection and multiple object tracking techniques via intersection over

union thresholding and connected component extraction to enhance detection accuracy

and reliability. To assess and manage the structural complexity of the dataset, both

hierarchical and centroid-based constrained clustering approaches were evaluated, with

hierarchical clustering proving more successful due to the presence of elongated cluster

formations commonly observed in the data.

Building on these findings, the work presented in this thesis contributed to the conception

and development of both offline and online semi-supervised clustering methods.

Two offline approaches are proposed. The first employs hierarchical clustering of

object tracks derived from object detection and multi-object tracking algorithms,

with tracks subsequently merged based on classification outputs and a resubstitution

confusion matrix. The second approach uses a semi-supervised clustering ensemble,

in which a set of constrained clustering algorithms is applied to generate a library

of base partitions, which are then integrated using a cumulative adjacency matrix.

In addition, an online method was designed to support real-time video analysis by

incorporating spatio-temporal constraints into an incremental clustering framework and

a likelihood thresholding mechanism to distinguish between new and existing identities.

This enables streamlined updates and summarisation of clusters while maintaining

low memory requirements and high re-identification accuracy. All proposed semi-

supervised clustering methods were evaluated against state-of-the-art baselines and

consistently demonstrated superior performance in achieving species-invariant animal

re-identification across the benchmark video dataset.
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Nomenclature

Glossary of Terms

Common Terminology

Abbreviation Meaning

CL Cannot-Link (Constraints)

ML Must-Link (Constraints)

MOT Multiple Object Tracking

BBs Bounding Boxes

PCA Principal Component Analysis

CVIs Cluster Validity Indices

Metrics

Abbreviation Meaning

ARI Adjusted Rand Index

NMI Normalised Mutual Information

AP Average Precision

Notations

Notation Definition

X The dataset comprising all data points under consideration.

𝑁 The total number of data points contained in X.

𝑐 The total number of classes in the dataset.

𝑥𝑖 The 𝑖th data point in X.

x𝑖 The feature vector representation of data point 𝑥𝑖.

𝑑 The dimensionality of the feature vector x𝑖, i.e., the number of features.

Y The set of labels associated with the data points.
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Notation Definition

𝑦𝑖 The predicted label corresponding to data point 𝑥𝑖.

Y𝐺𝑇 The set of ground truth labels for all data points.

𝑦𝐺𝑇
𝑖

The ground truth label corresponding to data point 𝑥𝑖.

Y𝑇 The set of track labels returned by the MOT algorithm.

𝑦𝑇
𝑖

The track label assigned to data point 𝑥𝑖.

𝑓 A classifier function that maps feature vectors x𝑖 to predicted labels 𝑦𝑖.

𝑁𝐶 The total number of constraints in the dataset.

𝑃𝐶 The proportion of constraints considered or applied.

𝜏𝑀𝐿 The intersection-over-union threshold that defines a ML constraint.

ML The set of ML constraints.

CL The set of CL constraints.

D𝑀𝐿 The set of detections for which ML constraints are defined.

𝑇 The total number of frames in a video sequence.

𝐿 The temporal length of a video, expressed in seconds.

V A video stream consisting of an ordered set of frames.

𝐹𝑡 The 𝑡th frame in the video streamV.

D𝑡 The set of detections observed in frame 𝐹𝑡 .

𝐷𝑡,𝑖 The 𝑖th detection in frame 𝐹𝑡 .

𝑀 The number of detections contained in a single frame.

𝑊𝑆 The number of consecutive frames in a temporal window.

B The set of bounding boxes in a frame or sequence.

B𝑑𝑒𝑡 The set of bounding boxes produced by an object detector.

B𝑡𝑟 The set of bounding boxes produced by an object tracker.

𝐵𝑖 The 𝑖th bounding box in B.

T The set of frame indices corresponding to bounding boxes.

𝑡𝑖 The frame index in which bounding box 𝐵𝑖 appears in videoV.

P A partition of X obtained by a clustering algorithm.

C The set of clusters induced by partition P.

𝐶𝑖 The 𝑖th cluster in C.

𝐾 The total number of clusters in C.

𝐸 The total number of ensemble members in a clustering ensemble.

𝑛𝑖 The number of data points contained in cluster 𝐶𝑖.
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Notation Definition

𝑛𝑖 𝑗 The number of data points shared between clusters 𝐶𝑖 and 𝐶 𝑗 .

𝜇𝑖 The multivariate mean (centroid) of cluster 𝐶𝑖.

Σ𝑖 The covariance matrix of cluster 𝐶𝑖.

𝛿𝑖 The number of frames elapsed since a new data point was last added to cluster 𝐶𝑖.

C𝐿 The subset of clusters that have been assigned at least one data point.

C𝑈 The subset of clusters that have not yet been assigned any data points.

𝐺 A graph defined as the pair (𝑉, 𝐸).

𝑉 The set of vertices in graph 𝐺.

𝐸 The set of edges in graph 𝐺.

𝑊 The set of weights assigned to edges in 𝐸 .

𝑣 A vertex element of 𝑉 .

𝑒 An edge element of 𝐸 .

𝑤 A weight element of𝑊 .

M𝑚,𝑛 A matrix of dimensions 𝑚 × 𝑛.

𝑀𝑖 𝑗 The (𝑖, 𝑗)th entry of matrix M.

L The likelihood function associated with a probabilistic model.

M𝐿 A matrix in which each entry contains a log-likelihood value.

H The set of assignments (𝐷𝑡,𝑖, 𝐶 𝑗 ) returned by the Hungarian algorithm.

𝛼 A novelty parameter controlling the influence of new data points on a cluster mean 𝜇𝑖.

𝛽 A log-likelihood threshold used to determine cluster membership for a data point.
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Chapter 1

Introduction

1.1 The Problem

The human ability to detect patterns and derive meaning from them has been fundamental

to our evolutionary advancement, allowing us to make sense of data that might initially

appear ambiguous or unreliable. Among the most notable of these abilities is re-

identification, or the recognition of objects we have encountered before. With the

emergence of machine learning, these skills have been effectively transferred to machines,

enabling high-precision pattern recognition across a wide range of domains—including

human detection and re-identification, vehicle tracking, medical diagnostics, speech

and character recognition, and industrial automation. However, animal re-identification

remains a relatively under-explored field. Although it shares conceptual similarities

with person re-identification, it poses distinct challenges—primarily due to the vast

diversity of species, each exhibiting unique biometric characteristics. Consequently,

existing solutions tailored to human subjects often prove inadequate when applied

to animals. Given the increasing urgency surrounding biodiversity conservation and

sustainable agricultural practices, the need for reliable and accurate monitoring systems

has never been more critical.

Designing systems that leverage video footage introduces an additional layer of

complexity, driven by the unpredictable behaviour of subjects in dynamic environments.

Key challenges include object occlusion, low video quality, camera movement, and

concept drift. Each of these issues presents distinct challenges, requiring carefully

designed approaches to ensure reliable and substantively valuable outcomes.
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This thesis addresses these challenges by proposing novel approaches to the problem of

animal re-identification.

1.2 Aims and Objectives

This work seeks to advance the creation of a fully autonomous software pipeline

for species-invariant animal re-identification using video footage. We propose two

distinct approaches: an offline pipeline designed for comprehensive analysis of complete

datasets, and an online pipeline intended for real-time application. Both pipelines are

illustrated in Figure 1.1. Each contribution presented in this work pertains to a specific

component within one of the two pipelines. The components to which contributions

have been made are denoted in Figure 1.1 using numbered coloured boxes. In several

cases, multiple contributions are associated with a single component within a pipeline.

Each chapter outlining a contribution highlights the relevant component by displaying

the corresponding numbered coloured box.

Detections Feature Extraction

Dataset
Offline Clustering

Live Video 

Detections Feature Extraction

Frame Data
Online Clustering

Frame

Video

Offline Pipeline

Online Pipeline

1
2

3

4
2

Figure 1.1: Offline and Online versions of our pipeline

To accomplish the aim, the following objectives have been identified

• Create a comprehensive dataset encompassing a diverse range of animal species

and incorporating realistic challenges commonly encountered in real-world

scenarios, to effectively evaluate the proposed methods.
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• Maximise the performance of object detection to reduce the complexity of

subsequent animal re-identification.

• Investigate the effectiveness of various clustering techniques applied to datasets

with complex spatial structure.

• Develop online constraint-based clustering methods to support real-time animal

re-identification.

• Develop offline constraint-based clustering methods tailored to the task of animal

re-identification.

1.3 Contributions

This thesis presents work carried out in collaboration with Prof. Ludmila I. Kuncheva,

Francis J. Williams, Prof. Juan J. Rodriguez, José Luis Garrido-Labrador and Ismael

Ramos-Péres. As a result, the extent of my individual contribution varies across the

different projects discussed. The main contributions of this work are as follows:

1. Creating a 5-video dataset including the Ground Truth (GT) annotations (15%).

Providing an in depth analysis of the characteristics and challenges involved

(85%).

2. Combining bounding boxes output from an object detector and an object tracker

as a form of ensemble to improve the overall detection of animals in video frames.

(30%)

3. Comparing hierarchical and non-hierarchical clustering for complex data

configurations present in animal data. (75%)

4. Proposing an online constrained clustering solution for species-invariant animal

re-identification. (85%)

5. Evaluating a constrained clustering ensemble method for clustering a variety of

real and synthetic datasets. (35%)
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6. Proposing a classification-based clustering method for clustering a range of

real-world video datasets. (40%)

1.4 Related Publications

1. L. I. Kuncheva, F. Williams, S. L. Hennessey, and J. J. Rodríguez, “A benchmark

database for animal re-identification and tracking,” in 2022 IEEE 5th International

Conference on Image Processing Applications and Systems (IPAS), 2022, pp.

1–6.

2. L. I. Kuncheva, J. L. Garrido-Labrador, I. Ramos-Pérez, S. L. Hennessey, and J. J.

Rodríguez, ”An experiment on animal re-identification from video.” Ecological

Informatics, 2023, 74, p.101994.

3. L. I. Kuncheva, F. J. Williams, and S. L. Hennessey, “A bibliographic view on

constrained clustering,” arXiv preprint arXiv:2209.11125, 2022.

4. F. J. Williams, L. I. Kuncheva, J. J. Rodríguez, and S. L. Hennessey, “Combination

of object tracking and object detection for animal recognition,” in 2022 IEEE 5th

International Conference on Image Processing Applications and Systems (IPAS),

2022, pp. 1–6.

5. S. L. Hennessey, F. J. Williams, and L. I. Kuncheva, “Hierarchical Vs Centroid-

Based Constraint Clustering for Animal Video Data,” in 2024 IEEE 12th

International Conference on Intelligent Systems (IS), 2024, pp. 1–6. (Winner of

the Best Paper Award)

6. F. J. Williams, S. L. Hennessey, L. I. Kuncheva, J. F. Diez-Pastor, and J. J.

Rodríguez, “A Constrained Cluster Ensemble Using Hierarchical Clustering

Methods,” in 2024 IEEE 12th International Conference on Intelligent Systems

(IS), 2024, pp. 1–6.

7. F. J. Williams, S. L. Hennessey, L. I. Kuncheva, “Animal Re-Identification in

Video through Track Clustering” Pattern Analysis and Applications 28, no. 3

(2025): 125.
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8. S. L. Hennessey, F. J. Williams, and L. I. Kuncheva, “Real-Time Online Animal

Re-Identification from Video using Spatio-temporal Constraints” (Under Review

in Ecological Informatics))

1.5 Thesis Overview

Chapter 3 introduces a new benchmark dataset for animal re-identification, alongside

an in-depth analysis of the challenges inherent in the data and an experimental study

evaluating the generalisability of various feature representations. Chapter 4 outlines a

novel object detection paradigm. Chapter 5 presents an experimental investigation into

the most effective clustering methodologies for handling the structural complexities

of animal video data, and proposes a novel online constrained clustering method for

animal re-identification. Chapter 6 introduces two novel offline constrained clustering

approaches designed for the same purpose. Finally, Chapter 7 presents a comprehensive

discussion of the findings and their implications, along with recommendations for future

research.
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Chapter 2

Background

2.1 Preliminaries

Animal re-identification constitutes a highly interdisciplinary research area, integrating

methodologies and insights from multiple domains that may, at first glance, appear

conceptually distinct. As such, certain related fields are addressed only briefly within the

scope of this work. To contextualise the multifaceted nature of animal re-identification,

we outline the principal areas contributing to its development, as illustrated in Figure

2.1:

• Animal Re-identification

• Multiple Object Tracking

• Classification, Clustering (including constrained and online clustering), Cluster

Ensemble and Cluster Validity indices.

2.2 Animal Re-Identification

2.2.1 History of The Problem

The recognition of individual animals predates modern technological developments, with

evidence indicating that such practices have been employed for several millennia [28].

Historically, humans relied upon biometric characteristics—including coat patterns, horn

morphology, scars, and other distinctive features [66]—as well as artificial markers such

as brands and tags, to distinguish between individuals [28]. The advent of photography

represented a pivotal advancement, enabling ecologists to systematically document
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Figure 2.1: Overview of Related Literature Topics

these distinguishing traits. This facilitated more rigorous long-term monitoring and

laid the groundwork for contemporary methodologies of animal identification.

By the mid-twentieth century, advances in optical and photographic technologies

allowed for more systematic approaches to photo-identification. Researchers identified

individual animals manually or semi-automatically, drawing upon distinctive biometric

features such as whale flukes, penguin belly patterns, or zebra stripes. A notable

milestone occurred in the 1970s when Michael Bigg and colleagues pioneered the

photographic identification of killer whales through dorsal fins and saddle patches

[26]. In the following decades, computational methods—including feature-matching

algorithms such as SIFT [126]—were introduced. The early 2000s witnessed the

launch of the Penguin Recognition Project at the University of Bristol, which employed

computer vision to non-invasively identify African penguins via their unique chest spot
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patterns [39], thereby transforming conservation practice by supplanting more intrusive

techniques such as flipper bands.

The twenty-first century has seen the proliferation of camera trap technology, generating

extensive image datasets. However, conventional feature-engineering methods often

proved inadequate under the complex conditions encountered in the field [153]. This

limitation has driven the adoption of computer vision and machine learning techniques,

many of which were adapted from human re-identification research. Since the mid-2010s,

deep learning—particularly convolutional neural networks and metric learning—has

catalysed substantial progress in the detection, localisation, and accurate recognition of

individual animals [151, 10, 153].

2.2.2 Foundations and Species-Specific Biometrics

Animal re-identification is a field that leverages biometric traits to recognise individual

animals that were previously encountered. The ability to re-identify individual animals

is not only crucial for population monitoring and conservation but also plays a significant

role in advancing behavioural analysis. By reliably tracking individuals over time,

researchers, ecologists, and zookeepers can observe patterns of movement, social

interaction [154], and health-related behaviours [37, 80, 147, 112, 166]. This enables the

development of real-time monitoring systems that support proactive welfare management,

allowing for early detection of stress, illness, or changes in routine that may require

intervention [165].

The broader discipline of animal biometrics is an emerging area focused on quantifying

phenotypic characteristics—such as appearance, behaviour, and morphological

features—for species and individuals alike [107, 111]. A foundational example

of re-identification through species-specific biometrics involved humans recognising

individual swans based on the distinct patterns of their bills [66]. The progression

of machine learning, pattern recognition, and computer vision techniques has since

enabled this process to be automated with increasing sophistication [169].

Biometric characteristics used in re-identification vary widely across species due to

differences in physiology, morphology, and ecological adaptation. In mammals, features

such as facial structure [15, 54, 70], coat patterns [206, 38, 208], and even nose prints
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[5] are commonly employed. Avian species, in contrast, may rely more heavily on

plumage colouration [158] or vocal signatures [107]. Other identifiers like retinal

patterns [6, 18], body morphology [78], or gait [1] can also be successful but vary in

their applicability and reliability across taxa.

These interspecific differences underscore the need for customised biometric systems

tailored to each species’ unique traits.

2.2.3 Techniques and Approaches for Animal Re-identification

A critical step in re-identification pipelines is the accurate localisation of relevant

image content. Object detection [122, 150] and segmentation techniques allow for

the precise isolation of animals from their background and the delineation of their

contours [206, 1, 143]. This enables the extraction of visually informative features,

such as stripe or spot patterns, facial markings [70, 119], and body shape [205, 36,

95, 39]. By focusing analysis on species-relevant regions of interest (ROIs), these

techniques enhance the accuracy and consistency of identification, even under variable

environmental conditions [139].

Importantly, the location and type of ROI differ across species [60]. For example, facial

features are especially informative in primates [57], while flank patterns or dorsal fins

are more relevant for species such as zebras and dolphins [53, 32]. These anatomical

and phenotypic differences often limit the performance of generalised re-identification

models, necessitating the development of species-specific solutions that can capture

and leverage the most discriminative visual cues for each animal.

The features extracted from ROIs—such as texture, colour distribution, shape descriptors,

or spatial arrangements—are essential for differentiating individuals. In species with

unique markings, such as tigers, giraffes and penguins, localised textures and pattern

configurations serve as strong identifiers [39, 36, 53, 158, 160]. In contrast, animals

with less distinctive patterns, like elephants or marine mammals, may be more reliably

identified by morphological cues such as ear contours [15], dorsal fin contours [78], or

skin folds.
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Hand-crafted descriptors like Scale-Invariant Feature Transform (SIFT) and Speeded-

Up Robust Features (SURF) have demonstrated strong performance in animal re-

identification, particularly for species with distinctive traits such as fur patterns, skin

textures, or body shapes [53, 38, 63, 136, 143]. These methods are resilient to changes

in scale, orientation, and lighting, enabling the extraction of consistent local features

without the need for extensive training.

On the other hand, deep learning approaches have become central to animal re-

identification due to their ability to learn highly discriminative features directly from

labelled images [10, 11, 22, 144, 208]. These models are particularly successful at

capturing subtle, species-specific traits but typically require large volumes of training

data, making them best suited to single-species applications with well-represented

datasets. Their performance often declines when applied across taxa, as the learned

features may not generalise well without significant retraining [33, 43, 57, 82, 89, 144].

To address data scarcity, recent studies have explored similarity learning techniques

[112, 151, 152], such as triplet loss, which embed images into a feature space where

visually similar individuals are positioned closer together. This strategy has enabled

successful re-identification with limited data across various species, including lions,

zebras, chimpanzees, pandas, and tigers [60]. However, its success still depends on the

diversity and quality of the training dataset.

Continual learning offers a promising avenue for improving adaptability. Through

mechanisms like active learning and human-in-the-loop feedback, models can

incrementally update to recognise new individuals and accommodate appearance

changes over time [30]. However, it still largely operates within a single-species

framework and does not fully address the issue of cross-species generalisation.

2.2.4 Limitations, Alternatives, and Future Directions

Traditional machine learning approaches have demonstrated considerable success in

animal re-identification, particularly in scenarios where clear visual patterns—such as

stripes, spots, or other biometrics—can be extracted and used for matching individuals.

These methods typically rely on feature descriptors and pattern-matching algorithms to

compare new images against a database of known individuals [107, 54, 78, 113, 63].
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One of their strengths lies in their relative simplicity and ability to generalise across

species, especially those with distinct coat or skin patterns. However, these approaches

are inherently dependent on the existence of prior examples for each individual in the

dataset, limiting their capacity to identify previously unrecorded identities [153].

In situations where animals do not possess naturally distinctive patterns, researchers have

occasionally resorted to artificially applying visual markers to facilitate re-identification.

This may involve using dyes, tags, or even branding techniques to create unique,

identifiable patterns [98, 95, 64, 172]. While successful in controlled environments

such as livestock farms or zoos, this approach is not viable for wildlife populations.

The use of a unified system for species-level re-identification has shown promising

results, with many models successfully distinguishing between different species of

animals from images [49, 67, 186, 135, 139, 150, 170]. These systems typically rely on

well-established classification architectures trained on diverse datasets encompassing

multiple species. However, this success has not translated to individual-level re-

identification across multiple species.

All current state-of-the-art solutions for animal re-identification rely on supervised

learning approaches [82, 89], which require large volumes of annotated training

data [5, 10, 17, 22, 67]. To date, no dependable unsupervised approach has been

developed or widely adopted for animal re-identification. Traditional machine learning

techniques—such as keypoint matching or template-based methods—still depend on

curated reference data [15, 53, 113, 117, 158, 160].

The development of unsupervised or self-supervised methods could therefore open new

avenues for more scalable and adaptable re-identification systems in the future.

2.2.5 Available Datasets

A significant bottleneck in the advancement of animal re-identification systems is

the lack of large-scale, high-quality datasets. In contrast to human re-identification,

which benefits from a wealth of publicly available and diverse benchmarks, animal

datasets are typically limited in scope, species-specific, and often collected in controlled

or localised settings [91, 175, 103, 120]. This scarcity stems from the inherent
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challenges of capturing consistent, labelled images of individual animals in natural

environments—where lighting conditions, occlusion, pose variability, and complex

backgrounds pose significant obstacles. Furthermore, many animal species lack distinct

visual identifiers, making it difficult to compile annotated datasets with sufficient

intra-class variation. As a result, models trained on these datasets often face difficulties

in generalising to new individuals, settings, or species. Overcoming this limitation calls

for collaborative data-sharing efforts, the adoption of data-efficient learning paradigms,

and a shift toward unsupervised or few-shot methods capable of functioning successfully

under data-scarce conditions.

While efforts have been made to autonomously gather animal imagery from the web

for species classification tasks [21], using web crawlers and large-scale data to build

general-purpose models across multiple taxa, no analogous method currently exists for

individual-level re-identification. The primary reason lies in the lack of labelled web

images that associate each animal with a known identity, along with the fine-grained,

species-specific biometric features needed for re-identification, which are often absent

or inconsistent in web-sourced data. Consequently, individual re-identification remains

heavily reliant on curated datasets acquired through manual annotation or structured

data collection, some of which are summarised in 2.1. This reliance significantly limits

scalability and impedes the development of systems capable of generalising across

species or deployment in unconstrained environments.

Table 2.1: A table of available databases for animal re-identification, indicating the species, the
number of images in each dataset (𝑁), the number of individual identities (𝑐), and providing a
link to the dataset.

Ref. Species 𝑁 𝑐 Notes

Livestock

[72] Cattle 8670 181 https://data.bris.

ac.uk/data/dataset/

4vnrca7qw1642qlwxjadp87h7

[9] Cattle 7043 46 https://data.bris.

ac.uk/data/dataset/

10m32xl88x2b61zlkkgz3fml17

Continued on next page
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Ref. Species 𝑁 𝑐 Notes

[8] Cattle 46340 23 https://data.bris.

ac.uk/data/dataset/

3owflku95bxsx24643cybxu3qh

[204] Yak 2247 103 Maybeavailableonrequest

Aquatic Wildlife

[46] Humpback

Whale

9850 4251 https://www.kaggle.com/c/

humpback-whale-identification

[87] Beluga Whale 5902 788 https://www.lila.science/

datasets/beluga-id-2022/

[3] Sea Turtle 8729 438 https://www.kaggle.com/

datasets/wildlifedatasets/

seaturtleid2022

[91] Great White

Shark

2456 85 https://www.saveourseas.com

[185] Humpback

Whale

7173 3572 https://www.cascadiaresearch.

org/projects/photo-id

[24] Killer Whale 86789 367 https://www.baycetology.org

[45] Whale 438613 50271 https://www.happywhale.com/

whaleid

[185] Bottlenose

Dolphin

10713 401 https://www.sarasotadolphin.

org/meet-dolphins

[35] Zebrafish 6672 6 https://www.kaggle.com/

datasets/aalborguniversity/

aau-zebrafish-reid/data

[132] Saimaa Ringed

Seals

2080 57 https://etsin.

fairdata.fi/dataset/

22b5191e-f24b-4457-93d3-95797c900fc0

Terrestrial Wildlife

Continued on next page
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https://etsin.fairdata.fi/dataset/22b5191e-f24b-4457-93d3-95797c900fc0


Ref. Species 𝑁 𝑐 Notes

[68] Bird 17500 50 https://drive.google.

com/drive/folders/1YkH_

2DNVBOKMNGxDinJb97y2T8_wRTZz

[125] Chimpanzee 598 24 “ChimpZoo” https://www.saisbeco.

com

[125] Chimpanzee 1432 71 “ChimpTai” https://www.saisbeco.

com

[129] Giraffe 29806 82 https://www.lila.science/

datasets/wni-giraffes

[175] Panda 6874 50 https://www.github.com/

iPandaDateset/iPanda-50

[104,

103]

Elephant 2078 276 https://inf-cv.uni-jena.

de/home/research/datasets/

elpephants/

[190] Macaque

Monkey

6280 34 https://www.github.com/

clwitham/MacaqueFaces

[117] Zebra N/A 85 https://www.researchgate.

net/publication/221318569_

Biometric_animal_databases_

from_field_photographs_

Identification_of_individual_

zebra_in_the_wild

[33] Gorilla 5428 7 https://vilab.blogs.

bristol.ac.uk/2021/01/

great-ape-facial-identification/

[120] Tiger 9496 92 https://cvwc2019.github.io/

challenge.html

[138] Giraffe, Zebra 6925 2056 https://www.lila.

science/datasets/

great-zebra-giraffe-id

Continued on next page
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Ref. Species 𝑁 𝑐 Notes

Lab Animals

[130,

149]

(Fruit) Fly 2.6M 60 https://www.borealisdata.ca/

dataset.xhtml?persistentId=doi:

10.5683/SP2/JP4WDF

2.3 Pattern Recognition

Pattern recognition constitutes a fundamental discipline within the domains of artificial

intelligence and machine learning, concerned with the automatic identification, analysis,

and classification of patterns inherent in data [27]. It encompasses the development of

algorithms capable of learning from data, discerning latent structures, and generating

accurate predictions or classifications. Central to this field are methodologies such

as supervised and unsupervised learning, feature extraction and selection, statistical

modelling, and neural network-based techniques, each addressing distinct facets of

pattern discovery and representation [27]. The applications of pattern recognition are

both extensive and varied, encompassing areas such as biometric identification [93],

handwriting recognition, medical image analysis [157], and financial forecasting. By

facilitating the processing and interpretation of complex, high-dimensional datasets,

pattern recognition underpins the creation of intelligent systems that can adapt

to dynamic environments and enhance decision-making processes with improved

accuracy and reliability. Moreover, its inherently interdisciplinary character draws

upon mathematics, computer science, cognitive science, and engineering, thereby

highlighting its importance in both theoretical research and practical technological

advancement [27].

2.3.1 Object Classification

Object classification refers to a supervised learning process whereby models are

developed and trained to identify and categorise objects within images or videos into

predefined classes, utilising techniques from computer vision and machine learning [27].

Training such models necessitates a substantial volume of labelled examples for each

class, collectively termed the training set. This dataset facilitates the partitioning of the
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feature space into distinct regions, each corresponding to a specific class. Once trained,

these models should be capable of accurately classifying previously unseen, unlabelled

data by determining the region of the feature space to which the object belongs [83].

The performance of a classification model is contingent upon numerous factors. A

primary determinant is the quantity and diversity of training data; a larger and more

varied dataset enables the model to learn more precise decision boundaries between

class distributions, thereby enhancing classification accuracy [61]. Equally significant

is the quality of the feature representation: the ability to capture discriminative and

representative attributes allows for a clearer separation between classes and thus

contributes to improved overall performance. Furthermore, the complexity of the

dataset exerts considerable influence; more complex datasets necessitate the division of

the feature space into more intricate regions, thereby requiring the employment of more

sophisticated models. However, as model complexity increases, so too does the risk of

overfitting, wherein the model learns spurious patterns or noise specific to the training

data rather than generalisable features [27]. To mitigate this risk, a greater volume of

high-quality training data is essential to ensure that the model generalises successfully

and performs reliably on previously unseen data.

Significant progress in the field has been driven by the advent of deep learning,

particularly through the utilisation of convolutional neural networks (CNNs) [106].

CNNs are capable of automatically learning hierarchical feature representations directly

from raw data, thus diminishing dependence on manual feature engineering. These

networks can be integrated into larger deep learning architectures that partition the

learned feature space into highly nuanced and complex regions, thereby accommodating

the demands of intricate and diverse datasets [86]. Their capacity to model sophisticated,

non-linear decision boundaries has enabled CNNs to achieve remarkable accuracy and

consistency in object classification tasks, even under challenging conditions.

Object classification plays an integral role in numerous real-world applications,

including facial recognition systems [162], autonomous vehicles [47], medical imaging

[124], and surveillance technologies [123]. In these contexts, accurate classification

is essential for enabling decision-making processes, enhancing security protocols,

and allowing autonomous systems to interpret and interact successfully with their
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environment. Nevertheless, challenges such as variations in illumination, occlusion,

changes in viewpoint, and intra-class variability necessitate the development of stable

and generalisable models [178]. The performance of such models is typically evaluated

using metrics such as accuracy, precision, recall, and F1-score, with cross-validation

techniques employed to assess their generalisation capability on unseen data.

2.3.2 Object Clustering

Object clustering constitutes an unsupervised learning process in which objects within

a dataset are grouped into clusters based on their similarity, typically quantified using

a distance metric within the feature space [196]. Smaller distances between objects

indicate a higher degree of similarity. In contrast to classification, clustering does

not rely on predefined labels or a training set to build a model capable of grouping

similar objects. Instead, its primary aim is to uncover the intrinsic structure present

within the data, thereby allowing patterns and relationships among objects to emerge

autonomously and organically [92, 196].

A wide array of clustering methods exists, reflecting the substantial diversity of real-

world data in terms of structure, scale, dimensionality, and underlying distributions

[69]. Different approaches have been developed to address these challenges and to

accommodate varying notions of similarity and cluster shape [133].

Partitioning methods, such as k-means, assume that clusters are approximately spherical

and of similar size [92]. While reliable for simple, well-separated datasets, these methods

perform inadequately when confronted with more complex or irregular structures [92].

Hierarchical methods enable a multi-level representation of data relationships without

requiring a priori specification of the number of clusters [131]; however, they are often

computationally intensive and sensitive to noise [196]. Density-based approaches,

such as DBSCAN, are capable of identifying clusters of arbitrary shape and explicitly

handling noise, yet they struggle when cluster densities differ significantly [105].

Model-based clustering methods adopt probabilistic assumptions to generate more

flexible and interpretable cluster assignments [69]. However, these assumptions

regarding data distributions may not always hold in practice. Grid-based approaches, by

contrast, prioritise computational efficiency and scalability, making them particularly
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suitable for large spatial datasets. Nevertheless, they are highly dependent on grid

resolution and generally perform poorly in high-dimensional contexts.

The diversity of clustering methods underscores the necessity of accommodating a

wide range of data characteristics and analytical objectives. There exists no universally

optimal method — a concept formalised by the "No Free Lunch" theorem in machine

learning [191] — and thus the selection of an appropriate approach must be guided by

the specific properties of the dataset and the goals of the analysis.

Object clustering finds extensive application across various fields, including image

segmentation [2], market segmentation, anomaly detection [44], and bioinformatics

[142]. In these contexts, it facilitates the discovery of structural groupings and simplifies

complex datasets for subsequent analysis. By enabling the autonomous organisation of

large volumes of data, clustering plays a vital role in knowledge discovery, providing

insights that inform decision-making and shape further analytical processes. Its

reliability, however, is heavily contingent on the choice of similarity measures and

the quality of feature representation, rendering it an ongoing area of research and

refinement.

Constrained Clustering

Constrained clustering constitutes a semi-supervised learning paradigm representing a

sophisticated extension of traditional clustering methodologies. Conventional clustering

approaches are wholly unsupervised and operate without prior knowledge concerning

relationships among data points. Consequently, they may fail to uncover the genuine

structure and underlying patterns within a dataset, particularly when these are obscured

by complex or high-dimensional feature spaces. By incorporating domain knowledge or

user-provided guidance in the form of constraints, the clustering process can be guided

towards a more precise and comprehensive representation of the intrinsic data structure

[173, 58, 55].

Constraints encode relationships within the data and guide the algorithm towards

partitions that respect these relationships. The most commonly employed constraints are

instance-level, namely must-link (ML) and cannot-link (CL) constraints. ML constraints

require that two instances be assigned to the same cluster, whereas CL constraints
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stipulate that two instances must not be placed in the same cluster. By integrating

such constraints, algorithms produce clustering outcomes that are more consistent with

domain knowledge [19].

Constrained clustering has demonstrated considerable success across diverse

applications, including object and face clustering in videos [192, 96, 41, 198, 12],

document clustering [200], cybersecurity [195], image segmentation [194], and

bioinformatics [163]. In document clustering, constraints derived from metadata,

citation networks, or expert annotations ensure that semantically related documents are

grouped together, enhancing topic modelling and information retrieval [173]. In image

analysis, constrained clustering supports more coherent segmentation by enforcing

spatial consistency, thereby improving perceptual quality [79].

In bioinformatics, constraints informed by functional relationships or biological

pathways facilitate the identification of informative clusters in gene expression or protein

interaction data, revealing latent biological processes and improving interpretability

[19]. In marketing and e-commerce, constraints can encode demographic or behavioural

similarities, enabling more precise customer segmentation and targeted recommendation

systems [196]. In anomaly detection, constraints help distinguish normal from

anomalous patterns, thereby enhancing fraud detection and cybersecurity measures.

Social network analysis also benefits, as known social ties or group memberships encoded

as constraints facilitate accurate community detection and structural analyses [102]. In

robotics and autonomous systems, spatial and temporal consistencies serve as constraints

to improve object segmentation and environmental understanding, supporting tasks

such as navigation and object tracking [127]. In animal ecology and re-identification,

spatio-temporal co-occurrence patterns from video or camera trap data enable species-

invariant individual tracking, reducing reliance on manual labelling and enhancing

system reliability.

Despite its advantages, constrained clustering presents certain challenges, notably

the formulation and selection of appropriate constraints, as well as the increased

computational complexity associated with enforcing them. The specification of

constraints frequently relies on domain experts, who may introduce errors or provide
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incomplete or suboptimal constraint sets. This dependence also restricts the potential

for fully automated clustering workflows, as considerable expert effort may be necessary

to develop a sufficiently informative set of constraints [19]. However, in surveillance

systems, constraints can be constructed autonomously by exploiting the inherent spatial

and temporal relationships among detected objects within video data, thereby reducing

reliance on manual specification and enhancing scalability.

Approaches to integrating constraints include modifying the objective function by

adding penalty terms that discourage constraint violations, thereby guiding optimisation

towards feasible solutions [173, 102]. Alternatively, similarity or distance metrics

may be adapted so that ML pairs are treated as highly similar, whereas CL pairs are

assigned large dissimilarities [127]. Other methods enforce constraints directly during

cluster assignment or adjust the underlying affinity or adjacency matrix in graph-based

approaches by strengthening or removing edges. More advanced techniques, such

as semi-supervised and probabilistic frameworks, incorporate constraints as priors or

probabilistic penalties, enabling a balance between data-driven structures and external

knowledge [19].

Online Clustering

Online clustering represents a dynamic extension of traditional clustering methods,

specifically devised to process data in a sequential manner by incrementally updating

cluster structures as new data points arrive [4, 210]. This approach is particularly well

suited to real-time applications and continuous data streams, in which it is neither

practical nor feasible to store and repeatedly process the entire dataset.

A central challenge inherent to online clustering is the phenomenon of concept drift,

wherein the underlying data distribution evolves over time [71]. Consequently, online

clustering algorithms must possess the capacity to adapt to such shifts to ensure that the

resulting clusters remain representative as new data is observed.

An additional significant advantage of online clustering is its resource-conscious

utilisation of memory. In contrast to batch clustering techniques, which generally

require access to the complete historical dataset, online methods retain compact

representations or micro-clusters, thereby considerably reducing memory demands [4,
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40]. This property is particularly vital for applications involving high-throughput or

large-scale data streams, such as real-time video analysis, sensor networks, and online

recommendation systems [159, 134].

In addition, online clustering algorithms offer excellent scalability, enabling them to

handle continuously growing data volumes without necessitating the reprocessing of

prior observations. By incrementally updating model parameters, these approaches

can process individual data points with precision and speed, thereby facilitating timely

decision-making in streaming contexts [209].

Online clustering approaches can generally be categorised into single-stage and two-

stage frameworks. Single-stage methods directly update cluster assignments and model

parameters upon the arrival of each new instance, without further refinement. In

contrast, two-stage methods, such as CluStream, maintain intermediate summaries

(e.g., micro-clusters) during an online phase and periodically perform more detailed

clustering of the micro-clusters in an offline phase, thereby striking a balance between

adaptability and clustering accuracy [4, 73].

A range of window-based strategies have been developed to regulate the impact of

historical data on clustering decisions. The landmark window considers all data from a

specific starting point to the present, the sliding window maintains a fixed-size segment

that moves forward with time, and the damped window applies a decay function to

progressively reduce the influence of older data. These mechanisms enable fine-grained

adaptation to dynamic data distributions [71, 210].

Such windowing techniques are central to both single-stage and two-stage online

clustering paradigms, providing a principled means of managing the unbounded nature

of data streams. In single-stage approaches, clustering is performed directly within the

active window—typically a sliding or tumbling window—thereby restricting analysis to

the most recent observations and promoting responsiveness to concept drift. Conversely,

two-stage methods utilise windowing in the initial, online phase to construct and update

micro-clusters, which serve as succinct representations of the data within the current

window. These summaries are subsequently leveraged in the offline phase to produce

refined macro-clusters. In both cases, window-based strategies support bounded memory
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usage, computational tractability, and adaptability to temporal variation, making them

essential for scalable, real-time stream clustering.

Constraints may also be incorporated into online clustering algorithms, allowing the

integration of prior knowledge or domain-specific relationships, even in streaming

contexts. By embedding ML and CL constraints into incremental update steps or

objective functions, these methods can produce partitions that remain consistent with

user-defined relationships while adapting to new data.

Collectively, these advantages render online constrained clustering the most appropriate

method for real-time animal re-identification from live video footage.

Cluster Validity Indices

In the context of clustering, their evaluation is typically conducted through the use

of cluster validity indices (CVIs), which provide quantitative measures of clustering

quality. Such indices may generally be categorised into two principal types: internal

and external validity indices.

Internal validity indices assess the quality of the clustering solution based solely on the

intrinsic properties of the data, without reference to external information. These indices

evaluate aspects such as compactness — the degree to which data points within a cluster

are close to one another — and separation — the extent to which different clusters are

distinct from each other. Prominent examples include the Silhouette coefficient [146],

the Davies–Bouldin index [56], and the Dunn index [62].

By contrast, external validity indices measure clustering performance through

comparison with an external ground truth or pre-existing class labels, thereby quantifying

the degree to which the discovered clusters correspond to known categories. Notable

examples of such indices include the Rand Index and its adjusted version, the ARI [90],

NMI [171], and the F-measure.

Together, these evaluation approaches offer a comprehensive framework for assessing

the accuracy, stability, and reliability of unsupervised clustering algorithms [196],

thereby informing the selection and refinement of methods in practical applications.
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Ensemble Methods

Ensemble methods have emerged as a prominent paradigm within machine learning

and data analysis, aiming to enhance the performance and reliability of individual

models by aggregating the outputs of multiple learners [207]. The fundamental premise

underpinning ensemble approaches is that combining diverse models can help mitigate

the limitations and biases inherent in any single method, thereby producing more

accurate and stable results [116].

In the domain of clustering, ensemble techniques—commonly referred to as cluster

ensembles or consensus clustering—operate by integrating multiple clustering solutions

into a unified partition that more comprehensively reflects the underlying data structure

[168]. These base clusterings may be derived from different algorithms, initialisations,

parameter configurations, or subsets of features or data points [202]. By leveraging such

diversity, ensemble clustering seeks to reduce sensitivity to noise and initial conditions,

both of which are prevalent challenges in conventional clustering methodologies.

The ensemble clustering process is generally divided into two key stages: generation

and combination. During the generation phase, a collection of diverse base clusterings

is produced. This is followed by the combination phase, in which these results are

merged to form a consensus clustering. Various methods have been proposed for

this purpose, including co-association matrices, voting-based schemes, and graph

partitioning techniques. For instance, the co-association matrix records how frequently

pairs of data points are grouped together across different base clusterings, providing a

similarity measure for deriving the final partition [94].

A considerable challenge, commonly referred to as the labelling correspondence problem

[168] in clustering ensembles, arises from the fact that cluster labels are inherently

arbitrary and hold no intrinsic meaning across different clustering solutions. For

instance, one algorithm may allocate a particular set of data points to Cluster 1, whilst

another may assign the same set to Cluster 3. As these labels serve merely as symbolic

identifiers, the direct comparison or aggregation of multiple clustering outcomes can

lead to inconsistencies if the label assignments are not appropriately aligned. To

mitigate this issue, a range of strategies—such as label alignment [177], permutation

matching [7], or the application of label-invariant similarity measures [161]—have been
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advanced to ensure that clusters across different partitions are compared in a coherent

and consistent manner, rather than being obscured by arbitrary labelling conventions.

The advancement of constrained clustering has led to growing interest in incorporating

constraints within ensemble clustering frameworks [77]. In particular, semi-

supervised clustering algorithms have been employed to generate base partitions for

ensemble methods [202], which are subsequently aggregated using various consensus

techniques—most commonly majority voting strategies, such as NCuts and CSPA [77].

However, generating base partitions using constrained clustering algorithms can reduce

diversity among ensemble members [199]. This is mainly due to the fact that some

constrained methods enforce all available constraints strictly, resulting in highly similar

or even identical partitions across different runs. Such low variance among ensemble

components weakens one of the key advantages of ensemble learning—its capacity to

generalise beyond individual clustering outcomes. This challenge may be addressed

by using different feature subspaces [202], or by applying a variety of constrained

clustering algorithms to obtain heterogeneous partitions [184].

To mitigate this issue, alternative strategies for incorporating constraints into ensemble

clustering have been proposed. These include embedding constraints directly into

the consensus function [118] and utilising constraint-aware quality metrics to guide

the selection of ensemble members [199]. Furthermore, theoretical analysis has

demonstrated that, under reasonable assumptions—such as the reliability of prior

knowledge and the independence of base clusterings—the accuracy of a semi-supervised

clustering ensemble converges asymptotically to 1 as the number of base partitions

increases [48].

In summary, ensemble methods represent a flexible and widely adopted approach to

improving clustering performance. Their ability to integrate multiple perspectives

and incorporate domain knowledge makes them particularly suitable for applications

that require high levels of accuracy and interpretability, including image analysis,

bioinformatics, and animal re-identification tasks [94].
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2.4 Multiple Object Tracking

Multiple Object Tracking (MOT) is a pivotal challenge in computer vision, involving

the detection and persistent identification of multiple objects across video frames

[52, 121, 14]. Its foundations lie in early radar and surveillance programmes, which

predominantly depended on handcrafted motion models and simplistic appearance

cues. Initial techniques frequently employed Kalman filters [14] or particle filters

[100], placing emphasis on motion continuity at the expense of appearance information.

Though successful in controlled or low-density situations, these methods faltered in

crowded scenes or during frequent occlusions [201].

Later advances integrated richer appearance models, such as colour histograms and SIFT

descriptors, enhancing stability in cluttered environments [174]. The advent of deep

learning marked a watershed moment, with convolutional neural networks significantly

improving object detection. Consequently, the tracking-by-detection paradigm became

predominant in both academic research and real-world applications [52].

This paradigm operates in two principal phases: object detection and object association.

First, objects are detected in each frame using modern detectors such as Faster R-CNN,

YOLO, or DETR [85, 29, 42]. Next, these detections are associated across frames into

trajectories (‘tracks’) by leveraging appearance characteristics, spatial analysis, and

motion dynamics. This approach boasts modularity, enabling independent enhancement

of detection and tracking components, integration of state-of-the-art detectors, and

scalability to multi-category, large-scale scenarios. Nevertheless, tracking performance

remains highly dependent on detection accuracy, and issues such as occlusion and

motion blur continue to undermine reliability [52].

Despite notable progress, MOT continues to be hampered by several enduring challenges.

Occlusion causes track fragmentation and identity switching [201]. Identity preservation

is complicated further when objects share similar appearance traits—common in sports

or dense urban areas—leading to frequent mismatches [121, 52]. Re-identification

across non-overlapping cameras or long time gaps remains challenging for surveillance

and monitoring systems.
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Furthermore, achieving a compromise between accuracy and real-time computation

is an unresolved issue. Top-performing trackers often rely on elaborate models or

global optimisation strategies, which hinder real-world deployment in applications

such as autonomous vehicles and live analytics [180]. Domain generalisation also

remains limited; models trained under specific conditions often underperform in novel

environments featuring different lighting, weather, or background elements [121].

Tracking small or fast-moving objects, such as drones or sports equipment, remains

especially difficult due to limited visual information and rapid movement [174].

In recent years, MOT has progressed from traditional motion-based methods to deep

learning architectures incorporating transformers, graph neural networks, and end-to-

end paradigms [180]. While tracking-by-detection has facilitated significant advances, it

continues to face inherent limitations in identity preservation, and real-time performance.

Ongoing research focuses on improving accuracy, enhancing efficiency, and developing

lightweight, generalisable systems capable of reliable operation in complex real-world

environments.

In the context of animal tracking [145, 203, 167, 51], particularly within dynamic and

unconstrained environments [100, 137], MOT presents a significant challenge. When

animals interact closely—through overlapping movement, physical contact, or social

behaviours—standard MOT algorithms often struggle to maintain consistent identity

assignment. These difficulties stem from visual ambiguity during interactions, which

can cause tracking models to confuse individuals and perform identity switches. Once

an identity switch occurs, the error often propagates over time, resulting in random or

incorrect identity assignments unless manual correction is performed. This undermines

the reliability of long-term tracking and can compromise downstream tasks such as

behavioural analysis or movement ecology.

To mitigate these issues, the integration of biometric markers into tracking frameworks

has become increasingly important. Biometric features—such as unique coat patterns,

facial structures [197], or morphological traits—offer dependable visual cues that persist

over time and remain distinguishable even during close interactions. By incorporating

these identifiers into MOT pipelines, algorithms can leverage re-identification techniques

to reassert the correct identity of each animal following occlusion or interaction events.
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This approach, known as re-identification-based tracking, enhances the resilience and

stability of MOT systems in complex, multi-animal scenes [197].

Re-Identification-based tracking not only reduces identity switching but also allows for

more consistent and long-term monitoring without the need for manual intervention [140].

By matching appearance features extracted from regions of interest (ROIs) to an existing

gallery of known individuals, the system can recover from temporary tracking failures and

maintain continuity over extended observation periods. This methodology is particularly

valuable in ecological studies, wildlife monitoring, and captive animal management,

where accurate identity maintenance is critical for understanding individual-level

behaviours, health, and social structures.

As such, the integration of animal biometrics into MOT algorithms represents a

promising avenue for improving the fidelity and applicability of automated tracking

systems [176]. By anchoring identity assignments to species-specific visual signatures,

these systems can offer more dependable and scalable solutions for long-term animal

monitoring in both natural and controlled environments.
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Chapter 3

Benchmark Database

Benchmark datasets play a critical role in the development and evaluation of re-

identification systems. They provide a standardised and repeatable framework for

comparing algorithm performance across diverse scenarios, enabling the research

community to assess progress objectively. In the context of re-identification, where

models must accurately recognise individuals or objects across different viewpoints,

lighting conditions, and temporal gaps, well-curated datasets are essential for capturing

the complexities and variations encountered in real-world applications. Moreover,

benchmark datasets often include annotations, identity labels, and challenging conditions

that require researchers to identify limitations in existing methods and foster innovation

through the development of more stable, generalisable solutions. Without these shared

datasets, it would be difficult to ensure fair comparisons or track improvements over

time within the field.

Despite advancements in re-identification research, there remains a notable lack of

benchmark datasets specifically designed for animal re-identification. Unlike human

re-identification, which benefits from a wealth of large-scale, annotated datasets,

the animal domain suffers from limited, fragmented, and often species-specific

datasets that lack consistency in data quality, annotation standards, and scale. This

scarcity hampers the development and fair evaluation of algorithms intended for

wildlife monitoring, conservation efforts, and behavioural studies. The absence of

comprehensive, standardised benchmarks makes it difficult to assess generalisability

across species or environments, impeding progress in building stable, transferable

models for real-world animal tracking scenarios. Addressing this gap is essential

to advancing automated animal identification technologies and their deployment in

ecological and zoological research.
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This chapter presents an overview of our benchmark dataset, accompanied by an in-depth

analysis of the challenges it poses. It also includes an experimental study aimed at

determining which feature representation performs best when a range of classification

methods are applied. The highest-performing feature representation identified in this

study will be used in all subsequent experiments.

In an unsupervised re-identification context, the sole information available for processing

comprises unlabelled bounding box detections produced by a multi-object tracking

algorithm. The subsequent objective is thus to aggregate and assign these unlabelled

detections to distinct identity groups, whilst addressing the inherent complexities and

ambiguities present within the data. It is therefore essential to explicitly identify and

articulate the challenges posed by such data, in order to inform the development of

successful solutions. Moreover, it is imperative to employ the most informative and

discriminative feature representations to support this task.

Contributions covered in this Chapter

Creating a 5-video dataset including the Ground Truth (GT) annotations. Providing an

in depth analysis of the characteristics and challenges involved.

Publications 1 & 2 in Section 1.4

1

3.1 Overview

This dataset can be found at https://zenodo.org/records/7322821, and

comprises five short videos sourced from Pixabay https://pixabay.com/ under the

Pixabay license, with durations ranging from 9 to 24 seconds. Each video features a

group of animals belonging to a single species, capturing their natural movements within

the scene. While most animals remain visible throughout the clips, some intermittently

enter and exit the camera’s field of view. All videos were manually annotated with

individual animal identities, and the annotations are provided in a standardised format

across the dataset. Representative frames from each video are shown in Figure 3.1, and

the characteristics of each video are summarised in Table 3.1.
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(a) Koi (b) Pigeons (Square) (c) Pigeons (Pavement)

(d) Pigeons (Kerb) (e) Pigs

Figure 3.1: Illustrative examples of annotated frames from the animal re-identification database.
Each animal is enclosed within a bounding box and labelled with its corresponding identity,
which serves as the ground truth for the subsequent evaluation of the proposed methods

Table 3.1: Characteristics of the videos

Video T L N c Min p/f Max p/f Avr p/f Imbalance
Koi fish 536 22 1635 9 1 6 3.1 2.8

Pigeons (square) 300 9 4892 27 1 23 16.3 24.8
Pigeons (pavement) 600 24 3079 17 3 8 5.1 19.3

Pigeons (Kerb) 443 17 4700 14 8 13 10.6 3.1
Pigs 500 16 6184 26 4 20 12.4 10.5

Table notes: 𝑇 is the number of frames; 𝐿 is the video length in seconds; 𝑁 is the number
of objects (individual animal clips); 𝑐 is the number of classes (animal identities); Min
p/f is the minimum number of animals per frame (image); Max p/f and Avr p/f are
respectively the maximum and the average numbers; Imbalance represents the size of
the largest class divided by the size of the smallest class.

Each dataset comprises a collection of BBs, parametrised by the top-left corner

coordinates (𝑥, 𝑦) and the spatial extent defined by width 𝑤 and height ℎ. These are

encoded as a 4-tuple (𝑥, 𝑦, 𝑤, ℎ) and are linked to the corresponding video frame index

and a distinct identity label assigned to the tracked object. Additionally, each dataset is

provided with 5 distinct feature representations, each capturing unique characteristics

that can be leveraged to differentiate between objects.

3.2 Feature Extraction

Designing a species-invariant re-identification solution presents a range of challenges

and design constraints. Most existing online approaches are species-specific, and

are therefore considerably less complex than those intended to operate across
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multiple species. While deep learning has become foundational in modern machine

learning, artificial intelligence, and pattern recognition—often delivering superior

performance—its effectiveness is typically maximised in single-species scenarios. In

such contexts, deep neural networks can extract highly specialised and distinctive feature

representations for individual animals, resulting in well-separated clusters that enhance

the performance of downstream clustering algorithms.

However, due to the substantial inter-species variability in biometric traits, applying

deep learning for feature extraction across multiple species is largely impractical as

the amount of available training data is insufficient to produce robust representations

capable of reliably distinguishing individuals. Despite this limitation, we have included

certain deep feature representations within this benchmark dataset. The extracted feature

types for each of the five datasets are as follows:

• AE (Autoencoder). An autoencoder is a specialised deep learning architecture

designed to encode input data into a lower-dimensional latent space, followed by

reconstruction through a decoding process that mirrors the encoding procedure,

as illustrated in Figure 3.2. By omitting the decoder, the encoder can be employed

as a feature extractor, enabling dimensionality reduction by projecting the data

into a latent representation learned via deep learning.

Input

Encoder Decoder

Output

Latent Space

Figure 3.2: Depiction of the general architecture of an autoencoder network. The illustration
demonstrates how the input is processed through the encoder component and mapped to a
latent space representation, which is subsequently reconstructed into the original input via the
decoding process.

To extract the AE features for each dataset, we utilised the MATLAB function

trainAutoencoder with its default parameter settings to establish a baseline

representation without manual tuning, ensuring consistency and reproducibility

across all datasets. This produced a latent representation of size 10, yielding 10

AE features. The network was trained on the complete dataset.
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• HOG (Histogram of Oriented Gradients). HOG features are extensively used in

computer vision for object detection [156, 181, 97], as they encode the structural

attributes of an image by analysing gradient orientations and magnitudes within

localised regions known as cells. This approach is especially effective at

characterising shapes and edges, making it well-suited for object detection tasks

and potentially applicable for distinguishing individuals within video sequences.

Each image was resized to a square by extending the image outward from its

central point until one of the edges, either the height or the width, was reached.

The HOG features were then extracted from the colour image using MATLAB’s

extractHOGfeatures function with its default settings to create a baseline

representation. The resulting feature vector comprised 576 HOG features.

• LBP (Local Binary Patterns). Local Binary Patterns (LBP) is a texture descriptor

widely utilised in image processing and computer vision to capture the local

structural features of an image. It works by analysing the neighbourhood of each

pixel—excluding those on the borders—and comparing the intensity values of

surrounding pixels with that of the centre pixel. A new value is then assigned

to the centre pixel based on this comparison. Once the entire image has been

processed, the resulting LBP pixel values are typically converted into a histogram,

which can be used for classification and recognition tasks.

To extract the LBP features, each image was resized and converted to greyscale,

followed by the application of the MATLAB function extractLBPfeatures

with the default parameters, with the exception of the ’Upright’ setting, which

was set to false to allow for rotationally invariant features. The resulting feature

representation comprised 10 LBP features.

• MN2 (MobileNetV2). For the MN2 features, we employed the Keras

MobileNetV2 model pre-trained on ImageNet; the network configuration is

illustrated in Figure 3.3. By removing the final layer and replacing it with

a GlobalAveragePooling layer, we obtained a feature representation with a

dimensionality of 1280. MobileNetV2 was selected due to its lightweight
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architecture and strong performance on a range of visual recognition tasks,

making it well-suited for efficient feature extraction.

Convolutional, 32 filters, 3-by-3 (with bias), stride 1

Maxpool, pool size 2 in both dimensions

R
e

LU

Convolutional, 64 filters, 3-by-3 (with bias), stride 1

R
e

LU

Dropout, rate 0.25

Flatten

IN
P
U
T

O
U
T
P
U
T

Dropout, rate 0. 5

Dense, softmax
activation

Figure 3.3: Visualises the MobileNetV2 network architecture, showing the network’s layers
along with the corresponding activation functions and layer parameters.

• RGB (RGB Moments). RGB moments describe the colour features present within

an image. They are extracted using the following process: the image—or, in

this case, the detection—is divided into 3-by-3 blocks of equal size. Each of the

colour channels (red, green, and blue) is then separated. For each block, the mean

and standard deviation are calculated for each of the three colour channels. These

values are then stored, resulting in a 54-dimensional feature vector. An illustrated

example of the process is depicted in Figure 3.4.

𝜇, 𝜎 𝜇, 𝜎 𝜇, 𝜎

𝜇, 𝜎 𝜇, 𝜎 𝜇, 𝜎

𝜇, 𝜎 𝜇, 𝜎 𝜇, 𝜎

𝜇, 𝜎 𝜇, 𝜎 𝜇, 𝜎

𝜇, 𝜎 𝜇, 𝜎 𝜇, 𝜎

𝜇, 𝜎 𝜇, 𝜎 𝜇, 𝜎

𝜇, 𝜎 𝜇, 𝜎 𝜇, 𝜎

𝜇, 𝜎 𝜇, 𝜎 𝜇, 𝜎

𝜇, 𝜎 𝜇, 𝜎 𝜇, 𝜎

…

Figure 3.4: Illustrative example of the RGB feature extraction process, showing the separation
of the colour planes and the subsequent computation of the mean and standard deviation values
for each block.

It should be noted that the development of each feature representation is based on

distinct extraction methodologies, which consequently result in notable differences
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in dimensionality. Such variation can render certain representations less suitable for

clustering tasks due to the curse of dimensionality—a concept that encompasses the

challenges inherent in analysing data within high-dimensional spaces, where the number

of features far exceeds the capacity of standard algorithms to process effectively. With

increasing dimensionality, the feature space grows exponentially, causing data to become

sparse and undermining the reliability of statistical inference. In these conditions,

traditional measures of distance and similarity lose their discriminative power, as

data points tend to appear uniformly distant from one another, thereby weakening

the performance of methods such as clustering, nearest-neighbour search, and density

estimation. Additionally, the computational burden of learning tasks escalates with

dimensionality, frequently leading to overfitting and reduced generalisability.

3.3 Dataset Challenges

There are many challenges involved in processing video footage, largely due to the

unpredictable nature of the subjects within the frame. As these challenges cannot be

controlled at the source, any effective video analysis solution must incorporate methods

to address them. Some of the most common challenges found in surveillance video

footage—many of which are also present in our datasets—are highlighted in this section.

3.3.1 Multiple Objects

The number of objects within a single frame significantly influences the complexity of

developing a solution to the proposed problem. As the number of objects increases,

so does the difficulty, primarily due to higher levels of occlusion. This added

complexity affects object detection and tracking, while the likelihood of feature

blending—particularly in dense scenes—rises. Such conditions make the task of

re-identification considerably more challenging, as feature representations may become

diluted or contaminated.

Figure 3.5 illustrates the number of objects present in each frame across the videos in the

dataset, in relation to the number of classes represented. It is evident that the number of

objects per frame varies throughout each video; however, there are consistently multiple

objects within each frame, with the exception of a few outlier frames observed in the

Pigeons (Square) video and a handful of frames in the Koi dataset.
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Figure 3.5: Visualises the number of objects per frame across the five datasets. Higher numbers
of objects within a single frame correspond to increased complexity of the task.

3.3.2 Occlusion

Occlusion refers to the extent to which a subject within a frame is blocked or obscured

by another object. Separating an occluded subject from the rest of the scene is extremely

challenging without depth perception and must instead be handled through alternative

techniques. As feature extraction methods are designed to process BBs with a consistent

number of descriptors, the content within each bounding box plays a crucial role in

accurately representing the subject. If occlusion occurs within a bounding box, the

resulting feature description may inadvertently include elements of another identity,

contaminating the representation. This section highlights the levels of occlusion present

in our dataset and illustrates the difficulty of developing solutions capable of managing

this challenge.

Benchmark Database 38



To visualise the location and frequency of occlusion within each video, occlusion

heatmaps are presented in Figure 3.6. For each video, a matrix matching the dimensions

of the video frame is initialised, with all values set to zero. Each value represents the

number of times a corresponding pixel in the image has been occluded. For every frame

in each video, the intersection between all pairs of BBs is computed, and every pixel

within these intersecting regions is incremented by one. After processing all frames,

the resulting matrix reveals both the spatial distribution of occlusions and the number

of times each pixel has been affected.
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Figure 3.6: Displays occlusion heatmaps for each of the five datasets, with brighter regions
indicating a higher frequency and spatial concentration of occluded objects within the frame,
while the colour bar represents the relationship between the number of occlusions and the plot
intensity.

The visualisations in Figure 3.6 show that occlusion within the videos is not confined to

a specific area or small section of the frame. As objects are free to move throughout the

scene, any identity may experience occlusion at various points, potentially leading to its

feature representation being contaminated by multiple other identities present in the

video.
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While the location and frequency of occlusion provide valuable insight into the presence

of occlusion, they do not offer a complete understanding of its impact within the video.

Another crucial factor is the proportion of each detection that is actually obstructed by

another object. This percentage can indicate the extent to which a feature representation

may be contaminated—higher occlusion percentages imply greater contamination, as

more of another identity may be included in the representation. To visualise these

levels, the average percentage of occlusion is calculated for each pair of BBs detected in

every frame. This is done by computing the intersection area between a pair of BBs

and dividing it by the area of the bounding box of the individual detection, thereby

estimating the proportion of the object that is occluded. The average occlusion value is

then calculated for each frame, the results of which are shown in Figure 3.7.
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Figure 3.7: Displays the average percentage of object occlusion within each frame of each video,
where each value represents the mean proportion of an object occluded by others, averaged
across all objects in the frame.

Figure 3.7 presents the average percentage of object occlusion per frame across the five

video sequences. The plots indicate that the extent of occlusion varies considerably
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from one frame to another. Nevertheless, with the exception of the Koi video, all

other sequences demonstrate a consistent presence of occlusion throughout. The

anomaly observed in plot (b) arises due to the presence of only two objects within the

frame, whose corresponding BBs exhibit substantial overlap, thereby resulting in a high

percentage of occlusion for that particular frame.

Table 3.2: Occlusion percentage values averages across frames for each datasets.

Dataset Overall Occlusion (%)
Koi 5.09

Pigeon (Square) 2.68
Pigeon (Pavement) 8.48

Pigeon (Kurb) 7.93
Pigs 6.09

Table 3.2 presents the overall occlusion for each dataset. Each value was derived by

computing the average occlusion across all frames within each video, thereby yielding

a representative measure of the occlusion present throughout the video.

3.3.3 Concept drift

Concept drift refers to the phenomenon where the distribution of an identity within the

feature space changes over time. When the drift is significant, it can render pre-trained

models ineffective at correctly assigning class labels. Concept drift is primarily a

concern in online processing and real-time applications, and as such, it will only

be considered when developing solutions intended for those scenarios. Nonetheless,

assessing the degree of concept drift present in each dataset is important, as it highlights

the complexity involved in creating a dependable and adaptable solution.

Figures 3.8, 3.9, 3.10, 3.11, and 3.12 present each dataset in the space of the first two

principal components (PCA)[88], for the five feature representations. It is important

to note that differences in dimensionality between the feature representations and any

subsequent dimensionality reduction for visualisation, as in this case, can produce

substantially different projections. In datasets with a very high number of dimensions,

such as MN2, the curse of dimensionality and the consequent convergence of distances

between points may hinder a feature reduction algorithm, such as PCA, from identifying

the features that best capture the maximal variance in the dataset. As a result, intrinsic
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structures within the data may be obscured or lost after projection to a visible number

of dimensions.

In each visualisation, a single, consistent identity is highlighted in black within the

feature space, with temporal progression represented by lines connecting each point

to its immediate successor. All other identities visible within the video are shown

in light grey. This visual distinction enables an intuitive assessment of the focal

identity’s dispersion relative to the broader feature distribution. While not a quantitative

metric, this approach offers visual insight into the extent of variation that an identity’s

representation may exhibit over time.

The aforementioned figures demonstrate that the feature representation of a single identity

can spread across a substantial portion of the feature space over time, irrespective

of the representation method employed. This dispersion highlights the variability

arising across frames, suggesting that an individual’s representation is not confined to

a tightly bounded cluster but instead spans a broader region. Such behaviour reveals

temporal fluctuations in the extracted features and offers clear evidence of concept drift

throughout the progression of a video.

One of the contributors to concept drift observed within the datasets is the intermittent

presence of animals within the video frames. When an animal exits and subsequently

re-enters the frame, it may do so in a previously unseen orientation, potentially revealing

aspects of its appearance that were not previously captured. This can result in a novel

feature representation that differs significantly from those previously associated with

the same identity, thereby introducing substantial variability into the feature space.

Figure 3.13 depicts a single identity from the pig video using the RGB feature

representation, following dimensionality reduction via PCA for visualisation purposes.

The identity’s trajectory is segmented into continuous periods of presence, each

represented by a distinct colour. Whenever the animal exits and subsequently re-enters

the scene, a new colour is assigned to its trajectory. The sequence of these appearances,

along with their corresponding colours, is indicated in the plot legend, where 0 denotes

the animal’s initial appearance and track 7 its final one. This colour segmentation

enables clear visual comparison between different episodes of presence, illustrating how

Benchmark Database 42



(a) AE (b) HOG (c) LBP

(d) MN2 (e) RGB

Figure 3.8: 2D representation of the Koi dataset using PCA for dimensionality reduction
applied to all feature representations. A single identity, consistent across all plots, is highlighted
in black, visualising the temporal evolution of its feature representation relative to the overall
feature space, shown in light grey.

the feature representation evolves between reappearances. Notably, most reappearances

occupy distinct regions of the feature space relative to earlier tracks. As in previous

figures, all other identities within the video are shown in grey, providing context for the

focal identity’s dispersion within the overall feature distribution.

While Figure 3.13 illustrates the evolution of the feature representation across multiple

reappearances, it also reveals how the representation changes within a single period

of continuous presence—depicted by a single colour in the plot. This intra-window

evolution reflects the degree of concept drift occurring even within a single appearance.

Notably, the extent of this drift tends to increase with the duration of the animal’s

presence in the frame. This can be attributed to the fact that longer visibility allows for

a greater variety of the animal’s features to be observed and, consequently, incorporated

into the feature representation. Additionally, extended periods in the frame increase the

likelihood of occlusion events, which may introduce noise or distortion into the feature

data, further contributing to concept drift within a single appearance window.
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(a) AE (b) HOG (c) LBP

(d) MN2 (e) RGB

Figure 3.9: 2D representation of the Pigeon (Square) dataset using PCA for dimensionality
reduction applied to all feature representations. A single identity, consistent across all plots, is
highlighted in black, visualising the temporal evolution of its feature representation relative to
the overall feature space, shown in light grey.

Although numerous metrics exist to quantify the extent of concept drift within data

[59, 109, 183, 182, 141], their applicability depends heavily on the nature of the data

being analysed. Each metric requires careful consideration to ensure it aligns with

the characteristics and assumptions of the dataset. Consequently, I have chosen not to

incorporate a specific calculated metric to quantify concept drift in this work. Instead, I

rely on the visual examples presented in this section, which effectively illustrate the

presence and nature of concept drift within the datasets. These visualisations provide

an intuitive understanding of how feature representations evolve over time—both within

individual appearances, across successive reappearances, and throughout the entire

duration of each video.

3.3.4 Intra-Cluster Compactness Vs Inter-Cluster Separability

Inter-cluster separability fundamentally influences the difficulty of classification and

clustering tasks. The ability to distinguish between different clusters forms the foundation

of performance in these tasks. Consequently, when clusters exhibit high similarity, it

becomes increasingly challenging to separate them effectively. This issue is particularly
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(a) AE (b) HOG (c) LBP

(d) MN2 (e) RGB

Figure 3.10: 2D representation of the Pigeon (Pavement) dataset using PCA for dimensionality
reduction applied to all feature representations. A single identity, consistent across all plots, is
highlighted in black, visualising the temporal evolution of its feature representation relative to
the overall feature space, shown in light grey.

pronounced in our animal datasets, where each video contains multiple individuals of

the same species. These individuals are often visually indistinguishable even to the

human eye, necessitating reliance on additional information—such as the capacity to

track an object over time—to differentiate between nearly identical animals. To visualise

the similarity between identities within the datasets, Figure 3.14 presents the mean

appearance of each identity across the entire duration of their respective videos. These

figures highlight the low inter-cluster variance and visually emphasise the challenge of

distinguishing between identities, as many appear nearly identical even to the human

eye.

While Figure 3.14 visually demonstrates the complexity involved in distinguishing

between identities—and, by extension, the challenge inherent in their corresponding

feature representations—it does not quantify the complexity of the structures within

each feature space. This structural complexity ultimately dictates the difficulty of the

clustering problem under consideration.
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(a) AE (b) HOG (c) LBP

(d) MN2 (e) RGB

Figure 3.11: 2D representation of the Pigeon (Kerb) dataset using PCA for dimensionality
reduction applied to all feature representations. A single identity, consistent across all plots, is
highlighted in black, visualising the temporal evolution of its feature representation relative to
the overall feature space, shown in light grey.

CVIs are commonly used to evaluate the quality of clustering results [13, 84]. Internal

CVIs assess clustering performance based solely on the data and the resulting cluster

structure, while external CVIs require ground truth labels and compare the predicted

clusters to the actual labels. To quantify how challenging our datasets are to cluster, we

can take advantage of the design characteristics of internal CVIs.

Internal CVIs are constructed based on a combination of intra-cluster compactness and

inter-cluster separation [101], under the principle that clustering quality improves when

clusters are both tightly grouped and well-separated from one another. By applying

an internal CVIs to our datasets—using the ground truth labels in place of predicted

clusters—we can estimate how inherently difficult the datasets are to cluster. Poor CVI

scores would suggest low compactness within clusters and poor separation between

them, indicating that the true structure of the data is complex or poorly defined, and

therefore harder to recover through clustering.
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(a) AE (b) HOG (c) LBP

(d) MN2 (e) RGB

Figure 3.12: 2D representation of the Pigs dataset using PCA for dimensionality reduction
applied to all feature representations. A single identity, consistent across all plots, is highlighted
in black, visualising the temporal evolution of its feature representation relative to the overall
feature space, shown in light grey.

The Silhouette Index [146] was selected as the internal clustering validation index for

this purpose due to its point-level evaluation approach rather than utilising aggregate

cluster-level measures such as centroids, as is done in the Davies–Bouldin index [56].

Intra-cluster compactness is assessed based on how close each point is to other points

within the same cluster, while inter-cluster separation is measured by the distance

from that point to points in the nearest neighbouring cluster. Additionally, it is one

of the few internal CVIs that is inherently normalised in the range [−1, 1], making it

particularly well-suited for comparing clustering solutions or, in this case, different

feature representations.

The Silhouette Index is a summation-based metric, where higher values indicate better

clustering quality or more easily separable data. The index for a clustering solution or

partition P is calculated using equations 3.1-3.3:

𝑆𝑖𝑙 (P) = 1
𝑁

∑︁
𝐶𝑘∈C

∑︁
𝑥𝑖∈𝐶𝑘

𝑏(𝑥𝑖, 𝐶𝑘 ) − 𝑎(𝑥𝑖, 𝐶𝑘 )
max{𝑎(𝑥𝑖, 𝐶𝑘 ), 𝑏(𝑥𝑖, 𝐶𝑘 )}

, (3.1)
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Figure 3.13: PCA visualisation of the tracked reappearances of a single identity in the Pigs
dataset, using the RGB feature representation. Each appearance of the identity is numbered and
depicted in a distinct colour, as indicated by the legend.

where 𝑁 is the number of data points, C = {𝐶1, . . . , 𝐶𝐾} is the set of 𝐾 clusters, 𝑥𝑖 is a

point in the data set, and

𝑎(𝑥𝑖, 𝐶𝑘 ) =
1
|𝐶𝑘 |

∑︁
𝑥 𝑗∈𝐶𝑘

𝑑𝑒 (𝑥𝑖, 𝑥 𝑗 ) (3.2)

𝑏(𝑥𝑖, 𝐶𝑘 ) = min
𝐶𝑙∈C\𝐶𝑘

{
1
|𝐶𝑙 |

∑︁
𝑥 𝑗∈𝐶𝑙

𝑑𝑒 (𝑥𝑖, 𝑥 𝑗 )
}

(3.3)

Here | · | denotes cardinality, and 𝑑𝑒 (𝑥𝑖, 𝑥 𝑗 ) is a chosen distance between objects 𝑥𝑖 and

𝑥 𝑗 . In this case, 𝑑𝑒 (𝑥𝑖, 𝑥 𝑗 ) was defined as the Euclidean distance.

Table 3.3 presents the silhouette scores for each dataset across five distinct feature

representations. These scores were computed using the ground-truth labels, thereby

providing insight into the underlying structural complexity of the data. The table offers
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(a) Koi (b) Pigeons (Square)

(c) Pigeons (Pavement) (d) Pigeons (Kerb)

(e) Pigs

Figure 3.14: An example of inter-class similarity. In each subplot (corresponding to a video),
the BBs for every identity have been averaged into a single representation—depicting their mean
appearance across all frames in which they are present.
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an indication of which feature representations may be more appropriate for clustering

tasks. Representations yielding the lowest scores are highlighted in red, while those

achieving the highest scores are shown in green. The LBP features appear to be the

least effective, consistently producing the lowest silhouette scores.

All values in the table are negative, reflecting the poor separability between identities.

This suggests that the clusters within the data are highly intertwined, making them

challenging to distinguish through clustering. Furthermore, feature representations

with a higher number of dimensions tend to yield higher silhouette values, indicating

improved separability between identities. This observation highlights the inherent

spatial sparsity of high-dimensional data and its influence on cluster separability.

However, as noted previously, increasing dimensionality also exacerbates the difficulty

of clustering due to the convergence of distances between points in high-dimensional

space. Consequently, the most favourable feature representation is one with sufficiently

high dimensionality to enhance cluster separability while retaining the discriminative

power of distance and similarity metrics for subsequent clustering tasks. In this context,

RGB features appear to meet these criteria most effectively. We observe that this

metric alone does not definitively determine the most suitable feature representation for

clustering. A classification experiment would be more suitable for selecting among the

feature representations.

Table 3.3: Silhouette scores for each dataset using the various feature representations, with the
highest and lowest values for each dataset highlighted in green and red respectively.

Video Feature Representation
AE HOG LBP MN2 RGB

Koi -0.558 -0.315 -0.686 -0.181 -0.378
Pigeons (Square) -0.456 -0.385 -0.465 -0.321 -0.205

Pigeons (Pavement) -0.598 -0.444 0.648 -0.257 -0.313
Pigeons (Kerb) -0.233 -0.178 -0.261 -0.202 -0.200

Pigs -0.511 -0.426 0.542 -0.219 -0.211

3.3.5 Arbitrarily-shaped clusters

The shape of clusters within a feature space plays a crucial role in determining the

effectiveness of a clustering algorithm. As clusters become more irregular or arbitrarily

shaped, they often reflect increasingly complex underlying structures in the dataset.

Traditional clustering methods, such as k-means, rely on assumptions of convex,

similarly shaped clusters—typically spherical—which makes them poorly suited to
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datasets containing arbitrarily shaped clusters. As a result, applying such methods to

complex data can lead to inaccurate or misleading groupings. In contrast, algorithms

capable of identifying clusters with varying densities and irregular boundaries are

essential in real-world applications, such as image recognition and re-identification,

where data structures are often non-linear and intricate. The ability to adapt to such

complexity enables algorithms to uncover deeper, more insights from the data.

(a) AE (b) HOG (c) LBP (d) MN2 (e) RGB

Figure 3.15: Example of cluster shape from a single consistent identity across all feature
representations under PCA dimensionality reduction of the Koi dataset.

(a) AE (b) HOG (c) LBP (d) MN2 (e) RGB

Figure 3.16: Example of cluster shape from a single consistent identity across all feature
representations under PCA dimensionality reduction of the Pigs dataset.

To illustrate the presence of complex structures within our benchmark dataset, Figure 3.15

and Figure 3.16 depict the spatial distribution of a single identity across all feature

representations under PCA dimensionality reduction for the Koi and Pig datasets,

respectively. These figures underscore the critical influence of feature representation on

clustering outcomes, as they lead to markedly different cluster geometries. Specifically,

LBP and MN2 features tend to yield clusters with predominantly convex shapes,

whereas AE, HOG, and RGB features give rise to significantly more irregular, non-

convex structures. This variation highlights the importance of both feature selection

and clustering methodology in the design of effective clustering solutions for complex

datasets.

3.4 Experimental Studies

To identify the most effective feature representation for our datasets, we designed an

experimental protocol comprising two main stages: feature extraction and classification,
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as illustrated in Figure 3.17. Feature extraction is performed on the complete set of

detections within each video, without consideration of class labels. For classification,

a two-fold cross-validation approach is employed to evaluate various state-of-the-art

models, where each video is split into two halves. The video is kept intact during

splitting to prevent near-identical instances from temporally adjacent frames being

divided between training and testing sets. Such splits, which would occur under

randomised cross-validation, could lead to artificially inflated accuracy scores.

Feature extraction

Labelled images 
(bounding 
boxes) with one 
animal in each

Extract Deep Learning 
features through 
Autoencoder, CNN, etc.

Extract basic feature 
representations (colour, 
texture, shape)

Test classifier models 
by two-fold cross-
validation (split the 
video into time-
contingent halves)

Test Deep Learning models 
by two-fold cross-validation 
(split the video into time-
contingent halves)

Pick the best 
classification model

Figure 3.17: Diagram of the proposed experimental protocol for animal re-identification [114].

We included 23 classifiers from the Python library lazypredict, based on scikit-learn.

These were all the classifiers in this library that could be applied to our data. We

grouped the classifiers into: baseline, linear, non-linear, and ensembles, as shown in

Table 3.4. Details of these methods can be found in the scikit-learn documentation.

These classifiers were applied to the five data representations detailed in Section 3.1.

The Largest Prior classifier (Classifier 1 in the Table; also known as Majority or ZeroR

classifier) was chosen as a baseline.

Figures 3.18 to 3.22 display glyph plots illustrating classification accuracies, with a

separate figure provided for each video. Each figure contains five plots, corresponding

to the five different feature representations. Classification accuracy is indicated by

the length of the spokes in each plot. The subplots are scaled such that the longest

spoke represents the highest accuracy achieved across all feature representations for that

particular video, and this maximum is highlighted in red. The average classification

accuracy for each feature representation, calculated over all 25 classifiers, is shown

in parentheses in the subplot titles. The classifier groups defined in Table 3.4 are

distinguished by different shading. Notably, the feature representation with the highest

average accuracy does not always yield the best result for a given classifier.
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Table 3.4: Classifiers used in this study. The colour boxes correspond to the colours in the
figures, with results 3.18 – 3.22. In the electronic version of the document, classifier names
include a hyperlink to the classifier implementation documentation.

Baseline
1. Largest Prior classifier (ZeroR/ Majority)

Linear

2. Bernoulli (Naïve Bayes)
3. Calibrated CV
4. Gaussian Naïve Bayes
5. Linear Discriminant Analysis
6. Linear SVM
7. Logistic Regression
8. Nearest Centroid
9. Passive Aggressive Classifier
10. Perceptron
11. Ridge Regression
12. Ridge Regression CV
13. SGD

Non-Linear

14. DecisionTree (C45)
15. Extra Tree
16. K-nn
17. Quadratic Discriminant Analysis
18. SVM

Ensembles

19. AdaBoost
20. Bagging
21. Extra Tree Ensemble
22. LGBM
23. Random Forest

Deep Learning

24. Convolutional Neural Network (CNN)
25. Transfer learning using MobileNetV2 (MNV2)
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Figure 3.18: Classification accuracy of the 25 classifiers for the five feature representations for
the Koi Fish video. Best accuracy of 34.13% was achieved with RGB feature representation and
the LDA classifier. [114]

Figure 3.19: Classification accuracy of the 25 classifiers for the five feature representations
for the Pigeons (square) video. Best accuracy of 49.13% was achieved with RGB feature
representation and the LDA classifier.[114]

Figure 3.23 presents the ranking of feature representations, where each combination

of classifier and video is treated as a distinct item. Consequently, each feature

representation is associated with 23×5=115 rankings. The figure demonstrates that the

RGB representation consistently outperforms the others. Accordingly, RGB will be

adopted as the feature representation of choice in all subsequent experimental studies,

as well as in the development of clustering solutions aimed at addressing the animal

re-identification challenge.

3.5 Summary

This chapter introduced a benchmark dataset developed for the task of animal re-

identification from video. To support the development of potential solutions, a

comprehensive analysis of the dataset’s inherent challenges was undertaken. This

included:

• An examination of the number of objects per frame,

• An examination of the degree of occlusion in each video,

• A visual exploration to illustrate concept drift,
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Figure 3.20: Classification accuracy of the 25 classifiers for the five feature representations
for the Pigeons (pavement) video. Best accuracy of 18.41% was achieved with RGB feature
representation and the QDA classifier.[114]

Figure 3.21: Classification accuracy of the 25 classifiers for the five feature representations for
the Pigeons (curb) video. Best accuracy of 38.53% was achieved with RGB feature representation
and the Calibrated CV classifier.[114]

• An examination of the structural complexity of the data, and the difficulty of

separating clusters assessed by internal CVIs,

• A visual illustration showing the presence of arbitrarily shaped clusters.

To complete the analysis of the data collection, an experimental study was conducted. Its

main purpose was to determine the most effective feature representation for the dataset.

As a by-product, the classification experiment gives us an idea about the achievable

classification accuracy in such a type of data. The results indicated that colour-based

RGB features consistently outperformed alternative representations. Consequently, RGB

features are recommended as the preferred representation in all subsequent experimental

investigations and in the development of clustering methodologies for addressing the

animal re-identification task.

Table 3.5 summarises the key findings presented in this chapter. It reports the highest

classification accuracy achieved for each dataset, all of which were obtained using the

RGB feature representation. The table also includes the overall occlusion within each

video, expressed as the percentage of an object that is occluded, the silhouette score for

each dataset under the RGB feature representation—reflecting the structural complexity

of the data—and the average number of objects per frame across the videos.
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Figure 3.22: Classification accuracy of the 25 classifiers for the five feature representations for
the Pigs video. Best accuracy of 34.51% was achieved with RGB feature representation and the
LDA classifier.[114]
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Figure 3.23: Box plot illustrating the comparative ranking of the five feature representations,
arranged from best (left) to worst (right) based on their mean performance, indicated by the
red dot. The plot conveys the distribution of rankings across multiple evaluations, highlighting
variability and relative consistency among the feature representations.

[114]

From Table 3.5, the relationship between the dataset challenges and classification

accuracy using the RGB feature representation becomes evident. A general trend

can be observed whereby increased levels of occlusion correspond to a reduction in

classification accuracy. However, the Koi and Pigeons (Kerb) datasets present exceptions

to this trend, exhibiting an inverse relationship. This discrepancy can be explained by

the structural complexity of the datasets, as indicated by the silhouette scores. Although
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Table 3.5: Summary of the key findings throughout the chapter

Koi
Classification Accuracy Overall Occlusion (%) Silhouette Score Average Objects p/f

34.13% 5.09 -0.378 3.1

Pigeon (Square)
Classification Accuracy Overall Occlusion (%) Silhouette Score Average Objects p/f

49.13% 2.68 -0.205 16.3

Pigeon (Square)
Classification Accuracy Overall Occlusion (%) Silhouette Score Average Objects p/f

18.41% 8.48 -0.313 5.1

Pigeon (Kerb)
Classification Accuracy Overall Occlusion (%) Silhouette Score Average Objects p/f

38.53% 7.93 -0.200 10.6

Pigs
Classification Accuracy Overall Occlusion (%) Silhouette Score Average Objects p/f

34.51% 6.09 -0.211 12.4

the Koi dataset exhibits lower levels of occlusion compared to the Pigeons (Kerb) dataset,

its greater structural complexity results in a lower classification accuracy. This suggests

that structural complexity may, in certain cases, have a more pronounced impact on

performance than occlusion alone.
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Chapter 4

Bounding Box Detection

The development of a fully autonomous pipeline for animal re-identification necessitates

the integration of accurate and dependable components in order to be viable for real-

world deployment. The most critical element in both online and offline pipelines is

the capacity to detect animals within video footage. In the absence of a reliable object

detection mechanism, the credibility of the pipeline’s output is significantly undermined.

It is therefore imperative to employ the highest-performing object detector available,

as its accuracy has a direct impact on all subsequent stages. An unreliable detector

may generate false positives, fail to identify key instances, or produce incomplete

BBs—leading to feature representations of irrelevant or partial objects. Such flawed

inputs can introduce outliers into the clustering process, thereby impairing the overall

performance of any method utilised for animal re-identification.

This chapter introduces a novel object detection approach that integrates both detection

and tracking paradigms, with the aim of harnessing the strengths of each while addressing

their respective limitations. This integrated method enhances the pipeline by providing

a more accurate object detection framework, demonstrating improved performance as

measured by the Average Precision (AP) metric, which is commonly used to evaluate

the efficacy of object detection algorithms.

Contributions covered in this Chapter

Combining bounding boxes output from an object detector and an object tracker as a

from of ensemble to improve the overall detection of animals in video frames

Publication 4 from Section 1.4

2
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4.1 Methodology

While the field of object tracking and detection is continually advancing and has

likely progressed since this study was undertaken, the most up-to-date benchmark

methods available at the time were employed. These included approaches for both

tracking and detection, obtained from "Papers with Code", a reputable platform offering

machine learning resources such as academic publications, source code, and datasets.

Specifically, the detection method utilised was the MMDetection (MMDet) object

detector, and the tracking method implemented was UniTrack.

4.1.1 Object Detection

MMDetection [50] (MMDet) is an object detection toolbox that includes a comprehensive

collection of object detection and instance segmentation methods, along with associated

components and modules. The code and modules are available at 1. Although the

model architectures of various detectors differ, they share common components, which

can be broadly categorised into the following classes:

• Backbone. The Backbone is the component of the model responsible for

transforming an image into its corresponding feature map.

• Neck. The Neck is the component that links the backbone to the heads. Its

purpose is to refine or reconfigure the raw feature maps produced by the backbone.

• DenseHead. The DenseHead is the component that operates on densely distributed

regions of the refined or reconfigured feature maps.

• RoIHead. The RoIhead is the component that extracts region-of-interest (RoI)

features from one or more feature maps using RoI pooling-like operations.

The MMDetection toolbox provides a wide range of object detectors, spanning from

single-stage to two-stage architectures, along with an extensive selection of components

for each part of the detection pipeline. Although there were numerous options available,

we chose to adopt a two-stage object detection architecture due to its superior precision
1https://github.com/open-mmlab/mmdetection
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and more accurate localisation, particularly in complex or cluttered scenes. Figure 4.1

shows an illustration of the steps involved in two-stage bounding box detection.

Figure 4.1: Illustrates the two-stage detection pipeline of the MMDet toolbox. The input image
is first processed by the backbone to generate a raw feature map, which is subsequently refined
by the neck. The refined feature map is then passed to both the dense head and the RoI head,
which focus on dense regions and regions of interest, respectively. The RoI head additionally
utilises the output of the dense head and ultimately produces the bounding boxes of objects
present in the image.

4.1.2 Tracking

UniTrack [179] is among the top-performing methods on benchmark datasets commonly

used by the MOT community, offering a unified solution that addresses five distinct

tasks within a single framework. It features a single, task-agnostic appearance model

that can be trained either in a supervised or self-supervised manner, alongside several

’head’ components designed for specific tasks, which do not require additional training.

This versatile framework supports a range of applications, including Single Object

Tracking (SOT), Video Object Segmentation (VOS), and MOT. For our experiments,

we focus on the MOT component of the framework.

The UniTrack framework approaches all tracking tasks as a combination of two

fundamental components. The first is a propagation component, which estimates the

object’s state—such as its bounding box, mask, or pose—in the current frame based on

information from the previous frame. The second is an association component, which

matches and identifies objects across frames using various appearance features.

The MOT tracking process in UniTrack comprises two primary stages. The first involves

the Appearance Model, which converts the 2D video frame into a feature map; in our

implementation, we used the recommended ’default’ YOLOX detector. The second stage

is Association, where features from the current frame are matched with those in adjacent

frames to construct object tracks. This is done using a reconstruction-based similarity

metric, which evaluates how effectively the features of one object can be reconstructed

from another—an approach that improves resilience to occlusion, pose changes, and
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noise. A distance matrix is generated between existing tracks and new detections, and

the Hungarian algorithm is applied to establish the optimal matches across frames. For

this stage, we also adopted the ’default’ setting, utilising Imagenet-ResNet18-s3. The

MMDetector produces BBs for each frame, each assigned a unique track ID.

4.1.3 Proposed Fusion Method

Our preliminary experiment showed that the detector returns duplicate BBs.

Occasionally, it also returns inadequately small BBs. Therefore, we set up a percentile

threshold 𝑃 and removed the smallest false positive BBs from the detector output.

The next phase is aggregating the BBs from the two outputs. To complete this phase,

we apply the following steps for each frame 𝐹𝑡 :

1. Identify the BBs in frame 𝐹𝑡 returned by the detector. Denote this list by B𝑑𝑒𝑡 .

Identify the BBs in frame 𝐹𝑡 returned by the tracker. Denote this list by B𝑡𝑟 . Pool

together the two lists into a single list B = B𝑑𝑒𝑡 ∪ B𝑡𝑟 .

2. Calculate a square matrix M|B|,|B| with IoU values between all pairs of BBs in B.

Set the main diagonal of M to zeros to eliminate the match between each box

with itself.

3. Apply a duplicate threshold 𝐷 on the values of 𝑀 . All pairs of BBs whose IoU is

greater than 𝐷 are perceived to be the same bounding box. This transforms M

into a binary matrix M𝑏𝑖𝑛
|B|,|B|.

4. Considering M𝑏𝑖𝑛 as an adjacency matrix of a graph, identify the connected

components. Each component is fused into a single bounding box. The fusion

takes the minimum top left corner (on both coordinates) and the maximum

bottom right corner (on both coordinates). The detector output contains a value

of certainty attached to each bounding box, while the tracker output places the

same certainty to all boxes. To calculate the certainty of a fused bounding box

(connected component), we take the maximum certainty of the boxes being fused.

Bounding Box Detection 61



The parameters of our combination methods are the percentile threshold 𝑃 and the

duplicate threshold 𝐷. Below we carry out grid-like experiments to demonstrate that

the proposed method is capable of outperforming both the detector and the tracker taken

individually.

4.2 Experimental Study

Our experimental study consists of two parts. First, we evaluate the performance

of the object detector (MMDet) and the MOT tracker (UniTrack) using their default

settings and configurations to ensure a fair comparison between the two. The second

part involves comparing our proposed fusion method against both the detector and the

tracking approaches. Each stage of the experiment was carried out using the benchmark

datasets discussed in Chapter 3.

4.2.1 Comparison between the Detector and the Tracker

To demonstrate the motivation behind our experiment and provide insight into our

fusion approach, we highlight the discrepancies between the object detector and the

MOT tracker in Figure 4.2. We compute the AP for both methods on a frame-by-frame

basis. Plots (a) and (b) present the same video frame with outputs from the object

detector (blue boxes) and the MOT tracker (red boxes), compared against the ground

truth (green boxes). In this case, the detector outperforms the tracker. In contrast, plots

(c) and (d) depict a different frame from the video, again showing outputs from both

methods alongside the ground truth. Here, the MOT tracker demonstrates superior

performance compared to the detector.

The frame-by-frame variability in performance, as illustrated in Figure 4.2, highlights

the need for a more consistent approach to object detection. Since neither method

consistently outperforms the other, the most effective solution—when both outputs

are available—is to adopt a fusion strategy that leverages the strengths of each while

compensating for their individual shortcomings.

To further highlight the differences between the two approaches, we analysed the number

of BBs generated by each method per frame across the five videos in our benchmark

dataset. Table 4.1 presents the minimum, maximum, and average number of BBs
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Frame # 497: Detector wins

(a) Detector 𝐴𝑃 = 100 % (6 BB) (b) Tracker 𝐴𝑃 = 33.33 % (1 BB)

Frame # 438: Tracker wins

(c) Detector 𝐴𝑃 = 27.78 % (6 BB) (d) Tracker 𝐴𝑃 = 100 % (3 BB)

Figure 4.2: Example from the Koi fish video of differences in object detection between the
Detector and the Tracker methods. The ground truth is shown with blue, the Detector results, in
red, and the Tracker results, in green. In both images there are three ground truth BBs. [187]

produced by both the detector and the MOT tracker, with ground truth values included

for comparison. The table reveals that the detector frequently overestimates the number

of objects, while the MOT tracker tends to underestimate them.

Table 4.1: Number of detections from MMDet (MM) and UniTrack (UT) for each video. The
ground truth (GT) value is given for comparison.

Video Min/frame Max/frame Avg/frame

GT MM UT GT MM UT GT MM UT

Koi Fish 1 1 0 6 11 6 3.1 5.3 2.1
Pigeons (Ground) 3 2 1 8 15 7 5.1 6.8 4.6

Pigeons (Kerb) 8 3 1 13 16 11 10.6 8.8 6.6
Pigeons (Square) 9 14 13 23 28 24 16.3 20.2 18.6

Pigs 4 8 2 20 37 18 12.4 20.4 9.6

To further explore the number of BBs produced by both methods, Figure 5.5 plots

the ground truth counts (blue), detector counts (red), and MOT tracker counts (green)

against the frame number. Each curve has been smoothed using a window size of 40

frames. The plots show that the detector consistently produces more BBs than the MOT
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tracker. However, the tracker’s output is generally closer to the ground truth, with the

exception of the Pigeons (Kerb) video, where the detector more accurately aligns with

the ground truth values.

(a) Koi (b) Pigeons (Square) (c) Pigeons (Pavement)

(d) Pigeons (Kerb) (e) Pigs

Figure 4.3: The 𝑥-axis is the frame number and the 𝑦-axis is the number of BBs per frame. The
blue curve is the ground truth, the red is the detector output, and the green is the tracker output.
[187]

As illustrated in Figure 4.2, the detector can produce noisy or duplicate BBs, which

may account for the higher detection counts per frame. However, this increase does

not substantially affect the AP, as the metric generally disregards near-duplicate or

excessively small BBs.

To better assess overall performance, AP was calculated for both methods across all

five videos, with the results displayed in Figure 4.4. Interestingly, although the tracker

generally produced a bounding box count more closely aligned with the ground truth,

the AP metric consistently favoured the detector—except in the Koi Fish video. This

highlights that performance depends not only on detecting the correct number of

objects, as achieved by the MOT tracker, but also on the precision of object localisation

within each bounding box, where the detector appears to excel. These findings further

emphasise the disparity between the two approaches and reinforce the motivation for

developing a fusion method that leverages the strengths of both.

4.2.2 The Fusion Method

The proposed fusion method was applied to the outputs of both the detector and the

MOT tracker for each video in our benchmark dataset. To assess the impact of the
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Figure 4.4: AP scores for object detection are presented for the five videos, with MMDetection
(MMDet) indicated in red and UniTrack indicated in green. The plot enables a direct comparison
of the performance of the two methods across different video sequences, highlighting variations
in detection accuracy and consistency. [187]

two key parameters—the percentile threshold 𝑃 and the duplicate threshold 𝐷—the

experiment was run on each dataset using every unique combination of parameter values,

with 𝐷 = 0.40, 0.45, 0.50, . . . , 0.95 and 𝑃 = {1, 3, 5, 10, 15, 20, 25, 30}. The results

of these experiments report the AP for each datasets and are visualised in Figures 4.5

and 4.6.

Figure 4.5: Example of the 𝐴𝑃 obtained by the combination method in comparison with the
𝐴𝑃 of the detector (red plane) and the tracker (green plane) for the Pigeons (Kerb) video. The
surface is drawn in the space of values spanned by the duplicate threshold 𝐷 and the percentile
threshold 𝑃.[187]

Figure 4.5 illustrates that the AP values achieved using the fusion method exceed those

of both the detector and the tracker across the majority of parameter combinations.
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(a) Koi (b) Pigeons (Square)

(c) Pigeons (Pavement) (d) Pigs

Figure 4.6: 𝐴𝑃 surface obtained from the combination method for different parameter values
𝑃 and 𝐷. The red plane is the constant 𝐴𝑃 value for the detector and the green plane is the
constant 𝐴𝑃 value for the tracker.[187]

Figure 4.6 presents the corresponding performance surfaces for the remaining four

videos. While the improvements over the individual methods are less pronounced than

in the example shown in Figure 4.5, noticeable gains are still evident in the Pigeons and

Pigs videos. In the Koi Fish video, the fusion method slightly outperforms the tracker,

reaching a peak AP of 0.5736 only at 𝑃 = 30 and 𝐷 = 0.50.

Figure 4.6a demonstrates a markedly different behaviour of the proposed fusion method,

a change that can be attributed to the elevated false positive rate of the detector, as

shown in Figure 4.3a. The topology of the AP surface suggests that the false positive

percentile threshold 𝑃 influences the overall performance of the method only in cases

where false positives are highly probable. In all other scenarios, the threshold 𝑃 appears

either to be irrelevant or to diminish performance.
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4.3 Summary

This chapter examined the strengths and weaknesses of object detection and object

tracking paradigms, and introduced a fusion approach that integrates the outputs of

both methods. By combining the results from the object detector and the tracker, it was

possible to leverage the advantages of each while mitigating their respective limitations.

The proposed fusion method was shown to outperform the individual components across

all videos in our benchmark animal dataset, as outlined in Chapter 3.
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Chapter 5

Online Animal Re-Identification

An online solution for animal re-identification offers a valuable tool for agriculture

professionals and ecologists, enabling real-time tracking and monitoring of individual

animals without the need for physical tagging or manual oversight. By facilitating

continuous, non-intrusive observation through live video analysis, such systems support

more efficient livestock management, enhance wildlife conservation efforts, and improve

the quality of ecological research. Real-time data allows for the prompt detection

of behavioural changes, health issues, and movement anomalies, enabling timely

interventions and promoting better animal welfare outcomes. This approach not only

increases operational efficiency but also supports more ethical and sustainable practices

across agricultural and ecological domains. Furthermore, the automated analysis of

live video footage enables scalable monitoring in complex, real-world environments,

allowing for informed decision-making and effective resource allocation in animal

health and behavioural studies.

Developing a solution for real-time re-identification presents distinct challenges when

compared to offline settings. Any approach designed for real-time application must give

careful consideration to data summarisation, as the potentially unbounded nature of

data streams makes complete storage impractical. To ensure the effectiveness of such

a solution, it is crucial to minimise the volume of stored data without compromising

the performance of the clustering algorithm. In addition to the inherent difficulties

of online processing, the various challenges associated with the datasets—outlined in

Section 3.3—must also be taken into account when devising a solution for real-time

analysis.
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This chapter explores and compares the effectiveness of hierarchical and centroid-

based constrained clustering for animal re-identification, highlighting the performance

disparities observed when applied to varying data window sizes. Furthermore, it

proposes a novel real-time constrained clustering solution to advance the field of animal

re-identification from live video footage as a part of the proposed fully autonomous

re-identification system.

Contributions covered in this Chapter

Comparing hierarchical and non-hierarchical clustering for complex data

configurations present in animal data & Proposing an online constrained clustering

solution for species-invariants animal re-identification.

Publications 5 & 8 from Section 1.4.

4

5.1 Hierarchical clustering Vs Centroid-based

clustering

This section presents a comparative analysis of constraint-based hierarchical and

centroid-based clustering applied to the benchmark dataset. As video data frequently

gives rise to arbitrarily shaped clusters it is crucial to determine which clustering

approach is best suited to accommodate such complexity in both online and offline

contexts.

By contrasting hierarchical and centroid-based techniques, we aim to determine the

most suitable method for the animal re-identification task. Hierarchical clustering tends

to perform better with elongated, string-like clusters, while centroid-based methods are

typically more effective with convex-shaped clusters. While both types of structures

appear within the RGB feature space, cluster shape alone does not provide a conclusive

basis for method selection. This study seeks to empirically assess performance, shedding

light on the dominant structural patterns present in the data.

Importantly, the use of video footage allows us to derive instance-level constraints

in the form of must-link and cannot-link relationships. These constraints can be

seamlessly integrated into both clustering approaches to enhance their accuracy. Since
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such constraints can be automatically generated from video data—without the need

for domain expert annotation—it would be a missed opportunity to overlook this

valuable source of information when designing or evaluating clustering algorithms for

re-identification from video.

5.1.1 Preliminaries

This study adopts an online processing approach, whereby each video in the benchmark

dataset is divided into consecutive windows of equal size, ranging from 2 to 20 frames.

Each window thus represents a small portion of the dataset, containing the objects

present across a limited temporal span—from as few as two consecutive frames to as

many as twenty. These windows are processed independently using a set of comparative

methods, with any remaining frames that do not constitute a complete window excluded

from analysis. For each window size, all methods are applied across all segments,

yielding a corresponding metric value for each window. As the number of frames

per window decreases, the structural complexity of the data is reduced. Applying

hierarchical and centroid-based clustering algorithms to these simplified segments

facilitates the identification of prominent structures that may otherwise be obscured by

the complexity of the full dataset.

It should be noted that, although this online processing approach reduces the structural

complexity of the dataset, smaller window sizes may not contain sufficient data to enable

the formation of informative clusters. Conversely, larger windows may encompass more

complex or overlapping clusters, which can be difficult to distinguish, as indicated by

the dataset analysis in Chapter 3.

5.1.2 Constraint Generation

Constraints are traditionally derived through manual annotation by domain experts—a

process that is both time-consuming and prone to inaccuracies and human error. However,

when using video data, such constraints can instead be inferred automatically from the

spatial and temporal properties of object detections. By leveraging the temporal and

spatial information of each detection, we can determine with high confidence whether

two objects should be must-linked or, conversely, cannot-linked.
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CL constraints

CL constraints are straightforward to generate, as they rely solely on temporal information

and can be derived on a frame-by-frame basis. For a given video frame 𝐹𝑡 , which

contains one detection per object—represented as D𝑡 = {𝐷𝑡,1, 𝐷𝑡,2, . . . , 𝐷𝑡,𝑀𝑡
}, where

𝑀𝑡 detections have been identified—it can be inferred that these detections occurred

simultaneously. Assuming the detector provides a single, accurate detection per object,

it follows that each detection corresponds to a distinct individual, thereby allowing for

the construction of 𝑀𝑡 (𝑀𝑡−1)
2 CL constraints with a high degree of confidence.

To illustrate the procedure for generating CL constraints, consider the example depicted

in Figure 5.1. The frame 𝐹𝑡 comprises five unique detections (using the ground truth

labelling), each delineated by a bounding box surrounding a different fish. Under the

assumption that each detection pertains to a separate individual, CL constraints can be

established between every possible pair of detections within the frame.

Figure 5.1: Example of an annotated frame from a Koi video containing five distinct identities,
each labelled with its identity and enclosed within a bounding box.

This relationship is depicted in Figure 5.2 as a complete graph 𝐺 = (𝑉, 𝐸), where

each node 𝑣 ∈ 𝑉 represents a detection, and each edge 𝑒 ∈ 𝐸 denotes a CL constraint

between a pair of detections. The set of CL constraints denoted by CL are derived

from the frame, and thus corresponds directly to the edge set 𝐸 of the graph 𝐺.
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Figure 5.2: Illustration of the CL relationship within a frame, where detections are represented
as nodes and CL constraints are represented as edges.

ML constraints

To generate the set of ML constraints denoted byML, more information is required.

They rely not only on temporal relationships but also on spatial relationships between

detections. By examining pairs of consecutive frames (𝐹𝑡 , 𝐹𝑡+1) and the BBs detected

in each-denoted byD𝑡 andD𝑡+1—we can evaluate pairs of detections that do not appear

in the same frame. For each such pair, we compute the intersection over union (IoU) to

assess their spatial similarity. Since the frames are consecutive, the object’s location

is unlikely to have shifted significantly between detections, and the degree of overlap

between BBs can help indicate whether the detections correspond to the same object.

To illustrate the process of creating ML constraints, let 𝐹𝑡 and 𝐹𝑡+1 denote the consecutive

frames shown in Figure 5.3, each containing three detections. In this example, the

detections have been annotated with their identities; however, the calculations only

require the BBs. The identities are included solely to aid comparison.

Figure 5.3: Example of two consecutive frames from the Koi dataset, illustrating the temporal
continuity of object appearances and the spatial positions of the annotated identities across
successive frames.
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Figure 5.4 presents D𝑡 and D𝑡+1 together in a single plot, aligned with the reference

frame, to visualise the overlap between BBs across both frames. Let the detections in

frame 𝐹𝑡 (on the left) be represented by D𝑡 = {𝐴, 𝐵, 𝐶}, shown in red, and those in

frame 𝐹𝑡+1 (on the right) by D𝑡+1 = {𝐷, 𝐸, 𝐹}, shown in green.

A

BC

D

EF

Figure 5.4: Bounding boxes from two consecutive frames, where red boxes denote the first
frame and green boxes represent the subsequent frame. Each bounding box is positioned with
reference to its respective frame and is labelled with a letter for identification.

A comparison is then performed between each bounding box in D𝑡 and each in D𝑡+1,

where the area of intersection for each pair is calculated and divided by the area of

their union to compute the Intersection over Union (IoU). Figure 5.5 illustrates these

comparisons, with the overlapping region highlighted in yellow. Each subplot also

displays the corresponding IoU value at the top of the plot.

To aid the visualisation we can represent the comparisons between BBs as a weighted

graph 𝐺 = (𝑉, 𝐸,𝑊), as shown in Figure 5.6. In this graph, each node in 𝑣 ∈ 𝑉

corresponds to a bounding box from a frame, with node colours consistent with those in

Figure 5.5. Each edge 𝑒 ∈ 𝐸 represents a comparison between BBs, and the weight

𝑤 ∈ 𝑊 assigned to an edge denotes the IoU value between the corresponding BBs.

Once all comparisons have been completed and an IoU value has been calculated for

each, a threshold 𝜏𝑀𝐿 can be applied to the edges 𝑒 ∈ 𝐸 . Any edge with a weight less

than 𝜏𝑀𝐿 is removed from the graph. The resulting graph is shown in Figure 5.7, and it

highlights the ML constraints between the consecutive frames 𝐹𝑡 and 𝐹𝑡+1.

In this example, there are no competing edges—each detection in 𝐹𝑡 is connected to

only one detection in 𝐹𝑡+1. However, in cases where multiple edges exceed the threshold
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Figure 5.5: Illustrates the IoU calculations for each pair of labelled bounding boxes across
consecutive frames, with the intersecting region highlighted in yellow. The corresponding IoU
value is displayed at the top of each subplot.
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Figure 5.6: Illustrates a weighted graph of detections and their IoU values. Each node represents
a bounding box detection with its associated label and is coloured according to the frame in
which it appears. The edges are weighted by the corresponding IoU value.

𝜏𝑀𝐿 , the edge with the highest weight (i.e., the highest IoU) is retained to ensure only a

single ML constraint exists between a single pair of detections.

Although the displacement of detections across successive frames may fluctuate due

to factors such as camera motion, frame rate, or the velocity of the tracked subject,

these variables are typically controlled in standard animal tracking contexts. Camera

movement is generally minimised, frame rates remain consistent, and, provided the
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Figure 5.7: Weighted graph of detections and their IoU values after the application of
thresholding, with non-conforming edges removed. Each node corresponds to a bounding box
detection with its associated label and is coloured according to the frame in which it appears.
The remaining edges are weighted by their respective IoU values.

animals are not excessively fast-moving, their inter-frame displacement tends to be

relatively limited. Each of these potential sources of variation may impact the choice of

the overlap threshold, 𝜏𝑀𝐿 , required to reliably infer that two detections correspond to

the same object.

In cases where the animals move at such speed that the displacement of bounding boxes

between consecutive frames yields an IoU value of zero, a more advanced approach

is necessary to derive the ML constraints. A viable strategy would be to estimate the

animal’s trajectory and interpolate bounding boxes along this path, thereby enabling the

calculation of IoU values through comparison between the interpolated bounding boxes

and the trajectory’s end points.

5.1.3 Experimental Study

This section presents the experimental study conducted to evaluate and compare the

effectiveness of hierarchical and centroid-based constrained clustering methods on the

benchmark dataset outlined in Chapter 3.

Methods Compared

• Constrained Agglomerative Hierarchical clustering: Klein et al. [102] argued

that the incorporation of constraints into hierarchical clustering methods does

not necessitate alterations to the unsupervised algorithm itself. Owing to the

intrinsic properties of hierarchical techniques—namely, the ability to derive a
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clustering partition from a distance matrix—it is feasible to integrate constraints

by modifying the distance matrix accordingly.

Firstly, the set of ML constraints (ML) does not necessarily represent a complete

collection. There may exist object pairs that, while not explicitly included inML,

are implicitly linked through transitive closure. Consequently, we expandML

toML𝑎 so as to incorporate all object pairs that should be connected via ML

relations. To achieve this, a graph is constructed with 𝑁 nodes, where 𝑁 is the

number of data points. An edge is placed between each pair of nodes specified by

ML. The connected components of this graph are then identified. For instance, if

the pairs (𝑖, 𝑗) and ( 𝑗 , 𝑘) are present inML, the associated connected component

will comprise all three objects: 𝑥𝑖, 𝑥 𝑗 , and 𝑥𝑘 . Accordingly,ML is augmented

with all pairwise combinations within each connected component.

Let M𝑁,𝑁 = (𝑀𝑖 𝑗 ) denote a distance matrix, where 𝑀𝑖 𝑗 represents the distance

between data points 𝑥𝑖 and 𝑥 𝑗 . Constraints are embedded into M by adjusting

the entries 𝑀𝑖 𝑗 in accordance with the constraints applicable to points 𝑥𝑖 and 𝑥 𝑗 .

Specifically, if (𝑖, 𝑗) ∈ ML𝑎, then 𝑀𝑖 𝑗 = 0; if (𝑖, 𝑗) ∈ CL, then 𝑀𝑖 𝑗 = ∞.

Following the modification of the distance matrix to reflect the setsML𝑎 and CL,

conventional unsupervised hierarchical clustering algorithms—such as average

linkage, single linkage, and complete linkage—can be applied to generate a

partitioning of the data. The respective constrained variants of these methods will

be referred to as CAL (Constrained Average Linkage), CCL (Constrained Complete

Linkage), and CSL (Constrained Single Linkage).

• COP K-Means: Wagstaff et al. [173] introduced COP K-Means, a variant of the

widely used centroid-based clustering method K-Means, designed to accommodate

pairwise constraints such as ML and CL. The algorithm is presented in Table 5.1.

Since the order of points to be assigned to clusters is random, COP k-means often

ends prematurely, without returning a viable solution.

• Pairwise Confidence Constraints Clustering (PCCC): Beumann et al. [20]

presented the PCCC algorithm, offering users the flexibility to specify pairwise

constraints as either hard constraints (ML, CL), which must be strictly adhered to,
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Table 5.1: COP K-means Algorithm

Algorithm: COP-kmeans(Dataset X, must-link constraintsML, cannot-link
constraints CL)
1. Let 𝐶1, . . . , 𝐶𝑘 be the initial cluster centres.
2. For each point 𝑥𝑖 ∈ X, assign it to the closest cluster 𝐶 𝑗 such that violate-
constraints(𝑥𝑖, 𝐶 𝑗 ,ML, CL) is false. If no such cluster exists, fail (return {}).
3. For each cluster 𝐶𝑖, update its centre by averaging all of the points 𝑥 𝑗
assigned to it.
4. Iterate between (2) and (3) until convergence.
5. Return {𝐶1, . . . , 𝐶𝑘 }.
Procedure: violate-constraints (data point 𝑥, cluster 𝐶, must-link constraints
ML, cannot-link constraints CL)
1. For each (𝑥, 𝑥=) ∈ ML: If 𝑥= ∉ 𝐶, return true.
2. For each (𝑥, 𝑥≠) ∈ CL: If 𝑥≠ ∈ 𝐶, return true.
3. Otherwise, return false.

or soft constraints (SML, SCL), where violations are permitted with associated

penalties. The algorithm consists of five sequential steps: preprocessing,

initialisation, assignment, update, and post-processing.

Prior to the algorithm’s execution, the data is arranged as a weighted undirected

graph 𝐺 = (𝑉, 𝐸), where the vertices 𝑉 correspond to the objects, and the edges

𝐸 denote the constraints, categorised into four distinct groups: 𝐸𝑀𝐿 for hard

ML, 𝐸𝐶𝐿 for hard CL, 𝐸𝑆𝑀𝐿 for soft ML, and 𝐸𝑆𝐶𝐿 for soft CL. Notably, edges

representing soft constraints are assigned weights denoted by a confidence value

𝑤𝑖 𝑗

In the preprocessing phase, the graph 𝐺 = (𝑉, 𝐸) undergoes a transformation

into another weighted undirected graph 𝐺′ = (𝑉 ′, 𝐸′). This transformation

involves contracting all edges (𝑖, 𝑗) ∈ 𝐸𝑀𝐿 , merging nodes connected by hard

ML constraints, and adjusting edges to reflect hard CL constraints, along with

any remaining soft ML and CL constraints.

In the initialisation step, the initial positions of the 𝑘 cluster centres are established,

offering two distinct methods: either a random selection of points or the adoption

of the K-Means++ algorithm introduced by Arthur et al. [16].
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During the assignment step, every node in the graph 𝐺′ = (𝑉 ′, 𝐸′) is allocated to

one of the 𝐾 clusters, aiming to minimise the total distance between nodes and

their respective centres while adhering to both hard and soft pairwise constraints.

Following the assignment step, the positions of the cluster centres are adjusted

based on the node assignments from the preceding step, a process iterated as long

as there is potential for decreasing the objective function value. The assignment

with the most favourable objective value upon termination is forwarded to the

postprocessing step. Here, the labels of the graph 𝐺′ = (𝑉 ′, 𝐸′) are remapped to

the original representation 𝐺 = (𝑉, 𝐸) and returned as the final assignment.

Metrics

The metrics used in this study are widely recognised within the clustering community for

evaluating the similarity between clustering results. Their design enables informative

comparison between a clustering solution and a ground truth partition by quantifying

their level of agreement. Both NMI and the ARI are capable of performing this task.

While they are both similarity metrics, they differ in their underlying formulations

and evaluation focus: ARI emphasises precise pairwise agreement between partitions,

whereas NMI captures the overall structural similarity between clusterings. The specific

formulations of each metric are outlined below.

• Normalised Mutual Information (NMI) [128]: NMI is rooted in information

theory and is particularly valuable in scenarios where cluster labels themselves are

arbitrary, and only the grouping structure is informative. At its core lies Mutual

Information (MI), which measures how much knowing the cluster assignment in

one clustering reduces uncertainty about the assignment in the other. A high MI

value indicates that the two clusterings share substantial information, signifying a

strong similarity. However, because MI is unbounded and sensitive to the number

of clusters, it is normalised to allow fair comparisons across different datasets

and clustering configurations.

Consider two clustering results C1 = {𝐶1,1, 𝐶1,2, . . . , 𝐶1,𝐾} and C2 =

{𝐶2,1, 𝐶2,2, . . . , 𝐶2,𝐿}, where𝐶1,𝑘 and𝐶2,𝑙 denote individual clusters in clusterings

C1 and C2, respectively. Let 𝑁 be the total number of data points, 𝑛𝑘𝑙 the number
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of data points shared between clusters 𝐶1,𝑘 and 𝐶2,𝑙 , 𝑛𝑘 · the number of data points

in cluster 𝐶1,𝑘 , and 𝑛·𝑙 the number in cluster 𝐶2,𝑙 .

The mutual information, which quantifies the shared information between the two

clusterings, is given by equation 5.1:

𝐼 (C1;C2) =
𝐾∑︁
𝑘=1

𝐿∑︁
𝑙=1

𝑛𝑘𝑙

𝑁
· log

(
𝑁 · 𝑛𝑘𝑙
𝑛𝑘 · · 𝑛·𝑙

)
(5.1)

The entropies of C1 and C2, representing the uncertainty within each clustering,

are calculated using equations 5.2:

𝐻 (C1) = −
𝐾∑︁
𝑘=1

𝑛𝑘 ·
𝑁
· log

(𝑛𝑘 ·
𝑁

)
and 𝐻 (C2) = −

𝐿∑︁
𝑙=1

𝑛·𝑙
𝑁
· log

(𝑛·𝑙
𝑁

)
(5.2)

Finally, NMI, which adjusts for cluster size and scales the mutual information

between 0 and 1, is computed using equation 5.3:

NMI(C1, C2) =
2 · 𝐼 (C1;C2)

𝐻 (C1) + 𝐻 (C2)
(5.3)

• Adjusted Rand Index (ARI): ARI improves upon the original Rand Index by

accounting for the agreement that could occur purely by chance, resulting in

a more stable and interpretable evaluation metric. It operates by considering

all possible pairs of data points and assessing whether they are assigned to the

same or different clusters across both clustering solutions. An ARI value of 1

indicates perfect agreement, 0 reflects the level of similarity expected by random

assignment, and negative values suggest less agreement than would be expected

by chance. The ARI is symmetric and invariant to permutations of cluster labels,

making it particularly well-suited for evaluating unsupervised clustering outcomes

against a known ground truth or alternative clustering result.
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The ARI is computed from the contingency table of the two clusterings. Let 𝑛𝑘𝑙

denote the number of elements shared between cluster 𝐶1,𝑘 in clustering C1 and

cluster 𝐶2,𝑙 in clustering C2, 𝑐1𝑘 =
∑
𝑙 𝑛𝑘𝑙 , and 𝑐2𝑙 =

∑
𝑘 𝑛𝑘𝑙 . Let 𝑁 be the total

number of data points. The ARI is defined with equation 5.4:

ARI =

∑
𝑖, 𝑗

(𝑛𝑘𝑙
2
)
−
[∑

𝑘

(𝑐1𝑘
2
) ∑

𝑙

(𝑐2𝑙
2
) / (𝑁

2
) ]

1
2
[∑

𝑘

(𝑐1𝑘
2
)
+∑𝑙

(𝑐2𝑙
2
) ]
−
[∑

𝑘

(𝑐1𝑘
2
) ∑

𝑙

(𝑐2𝑙
2
) / (𝑁

2
) ] (5.4)

This formulation adjusts the raw agreement score by subtracting the expected

agreement due to random chance and normalising by the maximum possible

agreement.

Experimental Protocol

Each video is segmented into windows, where a window comprises a sequence of𝑊𝑆

consecutive frames. Our data sets contain the BBs, their description as points in a

multidimensional feature space, as well as the label (identity) for each bounding box.

Constraints are generated for each window using the protocol outlined in Section 5.1.2.

Once the constraints are established, each semi-supervised clustering method is applied

to the window to create a partition. Then, we calculate the NMI and ARI between

the resulting partition and the ground truth labels. Finally, we compute the average

NMI and ARI values across all windows of size𝑊𝑆 ∈ [2, 3, 4, 5, 10, 15, 20] for each

clustering method and dataset.

Results

The results of the experiment shown in Figure 5.8 indicate that reducing the window

size significantly lessens the complexity of the problem, which in turn allows all the

evaluated methods to perform more efficiently. By simplifying the task, the environment

becomes more manageable, enabling the algorithms to detect underlying structures with

improved clarity and accuracy.

At smaller window sizes, hierarchical clustering methods exhibit superior performance

when compared to their centroid-based counterparts. This superiority is reflected

not only in the quality of the clustering structure—particularly due to the elongated,
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Figure 5.8: Illustrates the NMI and ARI values for each window size, dataset, and clustering
method. Each clustering method is distinguished by a unique colour and marker, as indicated in
the plot legend.

string-like clusters observed in these tighter windows—but also in the alignment between

the clustering results and the known ground truth. The data characteristics within
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smaller windows appear to align well with the assumptions underpinning hierarchical

techniques.

However, as the window size increases, the complexity and diversity of the problem

also expand. In these scenarios, the distinction between clustering approaches becomes

increasingly ambiguous. This trend suggests that as additional data are incorporated

into the window, the resulting cluster structures exhibit greater heterogeneity in form,

thereby reducing the clarity in selecting an appropriate clustering method.

Overall, the key insight is that simplifying the problem—specifically by reducing the

window size—leads to improved performance across all methods. This highlights

the potential effectiveness of adopting an online approach, where data is handled

incrementally in smaller, more manageable portions, enabling more consistent and

reliable clustering results over time.

It should be noted that this study does not address the linking of consecutive windows,

which would provide a more comprehensive evaluation of each clustering approach in a

truly online setting. While identities are established independently within each window,

deriving an overall performance metric would require the association of these identities

across successive windows. This would enable the construction of a consistent set of

identities observed throughout the entire video sequence, allowing comparison against

the ground truth.

Although tracking and maintaining identities across an entire sequence is a key

component of online re-identification, the aim of this study was to evaluate the

suitability of different clustering approaches for the types of data structures commonly

found in animal video footage. These structures were made more discernible by reducing

complexity through the use of smaller window sizes.

5.2 A New Online Constrained Clustering Approach

In this section, a new Real-Time, Species-Invariant (RTSI-ReID) approach is presented

for the online re-identification of animals in live video footage. Building upon the

findings from the experimental study in Section 5.1, which showed that processing
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fewer frames at a time improved the performance of all clustering methods evaluated,

the logical next step involves analysing the video one frame at a time.

5.2.1 Method Overview

Given a video stream V = {𝐹1, . . . , 𝐹𝑇 } consisting of 𝑇 frames — where 𝑇 may be

unbounded — the objective is to re-identify animals appearing in the scene and annotate

each frame of V with BBs and their corresponding identities. To achieve this, we

propose a frame-by-frame online constrained clustering approach that addresses the

intrinsic difficulties associated with online clustering and animal re-identification, as

well as each of the challenges outlined in Section 3.3.

With the continuous advancement of object detection techniques and feature extraction

methods, it is essential to develop a solution capable of adapting to these developments.

As such, the initial stages of the animal re-identification process are considered external

to the real-time algorithm introduced in this section, thereby allowing users the flexibility

to select their preferred object detector and feature representation technique.

As each frame 𝐹𝑡 is received, the selected object detector is first applied to identify and

return the BBs of all detected objects within the frame. Each bounding box is represented

as a four-tuple of pixel coordinates within the frame, denoted 𝐵𝑖 = ⟨𝑥top, 𝑦top, 𝑤, ℎ⟩.

These BBs are then transformed into the feature space using the chosen feature extraction

method. Once all BBs and their corresponding feature representations x𝑖 have been

obtained, they are passed into the proposed algorithm. The resulting pairs of BBs and

features, denoted 𝐷𝑡,𝑖 = ⟨𝐵𝑖, x𝑖⟩, are referred to as detections.

When developing an online clustering solution to process a potentially unbounded

stream of data, careful consideration must be given to how the data is stored. Retaining

all data received is not only impractical but also impossible, as no system can store an

infinite volume of information. To address this limitation, protocols have been devised

to summarise cluster information using a range of statistical measures, sometimes

referred to as the cluster footprint [25]. Common examples include the cluster centroid,

covariance matrix, count of assigned points, and temporal statistics such as the timestamp

of the most recent update.
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By maintaining a cluster footprint for each cluster, based on the data observed up to

time 𝑡, the algorithm is able to discard individual data points from memory once they

have been processed. This approach supports a memory-efficient solution suitable for

handling continuous and unbounded data streams. However, it is crucial to carefully

select which summary statistics are retained, as they directly impact the algorithm’s

ability to perform effectively without access to the full historical data. Accordingly, we

represent each cluster 𝐶𝑖 using the following statistics:

𝐶𝑖 = ⟨𝜇𝑖, Σ𝑖, 𝐵𝑖, 𝑛𝑖, 𝛿𝑖⟩, 𝑖 = 1, . . . , 𝐾,

where, 𝜇𝑖 denotes the multivariate mean of the cluster, Σ𝑖 represents the covariance

matrix, 𝐵𝑖 corresponds to the bounding box of the most recently added object in the

cluster, 𝑛𝑖 indicates the number of objects within the cluster, 𝛿𝑖 is the number of frames

since the last object was added to the cluster, and 𝑐 is the current number of clusters.

We denote the collection of all 𝐶𝑖 by C.

Storing the multivariate mean 𝜇𝑖 of a cluster enables us to monitor the cluster’s locality

within the feature space and provides a reference point for comparison with incoming

data. The covariance matrix Σ𝑖 defines the relationship between the points within the

cluster and, in the context of a multivariate normal distribution, allows us to estimate the

convex bounding region of the cluster. The covariance matrix also enables us to estimate

the likelihood of a point belonging to a given cluster, assuming a multivariate normal

distribution. One of the most challenging aspects of online animal re-identification is

determining whether a newly observed object belongs to an existing cluster (identity)

or represents a new one. By leveraging both 𝜇𝑖 and Σ𝑖, we aim to distinguish between

existing and novel clusters.

As each object is removed from memory once it has been processed, it is vital that we

store the bounding box of the last object, 𝐵𝑖, to be added to a cluster 𝐶𝑖, along with

a time stamp, 𝛿𝑖, to determine how long ago this object was added. The purpose of

these summary statistics is to enable the algorithm to calculate the instance-level ML

constraint between the objects in the current frame 𝐹𝑡 and the existing clusters. By

ensuring that the time stamp of a cluster 𝐶𝑖 indicates that the last time an object was
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added to that cluster was in the previous frame, we can then apply the protocol outlined

in Section 5.1.2 between 𝐵𝑖 and each detection in 𝐹𝑡 , denoted byD𝑡 = {𝐷𝑡,1, . . . , 𝐷𝑡,𝑀},

where 𝑀 detections have been identified.

The RTSI-ReID algorithm operates on video data in a sequential, frame-by-frame

manner, with the objective of assigning a consistent identity label to each object

detected within a given frame 𝐹𝑡 . The algorithm is initialised with an empty set of

clusters, C = ∅, and remains idle until a frame containing at least one detection is

encountered. Upon detection, each of the 𝑀 detections in the frame initiates a new

cluster 𝐶𝑖 = ⟨𝜇𝑖, Σ𝑖, 𝐵𝑖, 𝑛𝑖, 𝛿𝑖⟩: the object’s feature representation serves as the cluster

mean 𝜇𝑖, the covariance matrix Σ𝑖 is set to the identity matrix, 𝑛𝑖 = 1, 𝐵𝑖 corresponds

to the bounding box of the detection, and the timestamp 𝛿𝑖 = 0, for each 𝑖 = 1, . . . , 𝑀 .

Each new cluster 𝐶𝑖 is then added to C, i.e. C = C ∪ {𝐶𝑖} such that, C become the

collection of cluster footprints {𝐶1, . . . , 𝐶𝑀}.

The process begins by evaluating ML constraints between all BBs 𝐵𝑖 associated with

detection from the previous frame D𝑡−1 = {𝐷𝑡−1,1, . . . , 𝐷𝑡−1,𝐿} and the detections in

the current frame. D𝑡 = {𝐷𝑡,1, . . . , 𝐷𝑡,𝑀}. This evaluation yields 𝐿 × 𝑀 IoU values.

An IoU score exceeding the predefined threshold 𝜏𝑀𝐿 = 0.6 indicates a potential ML

constraint, a threshold informed by IoU guidelines, which recommend values between

0.5 and 0.7 as indicative of sufficient overlap in object detection tasks. However, given

that the present context involves moving objects, the overlap requirement is relaxed to

avoid overly restrictive matching. In cases where multiple ML constraints are identified

for a single detection, the association with the highest IoU value is selected, ensuring

that at most one ML constraint is assigned to each detection.

Detections that satisfy the ML criterion are assigned to their corresponding clusters,

which are subsequently updated. Any remaining detections—those not matched via ML

constraints—must either be allocated to an unused cluster or used to initialise a new

one, depending on their similarity to existing clusters. To facilitate this, the algorithm

maintains a set of linked clusters C𝐿 = ∅ at the onset of each frame’s processing,

which records clusters that have already been updated. When a detection is assigned

to a cluster 𝐶𝑖, the identification number 𝑖 of the cluster is added to the set C𝐿 , i.e.,
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C𝐿 = C𝐿 ∪ {𝑖}. This mechanism ensures that no more than one detection is assigned to

any individual cluster per frame, thereby upholding the CL constraint.

Following the ML assignment phase, any detections that remain unassigned are either

matched to a cluster not yet updated in the current frame, denoted C𝑈 = C \ CC𝐿 ,

where CC𝐿 represents the set of cluster footprints corresponding to the identification

numbers in C𝐿 , or used to initialise new clusters. To distinguish between previously seen

identities and novel ones, the log-likelihood of each unassigned detection belonging to

each candidate cluster 𝐶𝑖 ∈ C𝑈 is computed under a multivariate normal distribution

model, using the following expression:

logL(x | 𝐶𝑖) = −
𝑑

2
log(2𝜋) − 1

2
log |Σ𝑖 | −

1
2
(x − 𝜇𝑖)⊤Σ−1

𝑖 (x − 𝜇𝑖), (5.5)

where x denotes the feature representation of the detection, and 𝑑 is the dimensionality

of x which, in this instance, equals 54 since RGB features are employed.

The Hungarian algorithm [108] is then applied to the negative log-likelihood matrix

−M𝐿 , where M𝐿
𝑗𝑖
= logL(x 𝑗 | 𝐶𝑖), to determine the set of optimal assignment of

detections to clusters, denote this set byH . A detection 𝐷𝑡, 𝑗 is assigned to cluster 𝐶𝑖

if the log-likelihood logL(x 𝑗 | 𝐶𝑖) exceeds a predefined threshold 𝛽. Conversely, if

logL(x 𝑗 | 𝐶𝑖) < 𝛽, the detection is considered to represent a new identity and is used

to initialise a new cluster.

Whenever a detection is added to an existing cluster 𝐶𝑖, the cluster’s summary statistics

are updated accordingly. The updated parameters are computed as follows:

𝜇𝑖 = (1 − 𝛼) · 𝜇𝑖 + 𝛼 · x, (5.6)

where 𝛼 ∈ [0, 1] is a novelty parameter that determines the degree to which the new

observation influences the cluster mean. A value of 𝛼 = 0 results in no change to the

mean, while 𝛼 = 1 fully replaces it with the new feature vector x 𝑗 .
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Σ𝑖 = 𝐼, (5.7)

𝐵𝑖 = 𝐵x, 𝑛𝑖 = 𝑛𝑖 + 1, 𝛿𝑖 = 0. (5.8)

Equation 5.7 denotes the reduction of the covariance matrix Σ𝑖 to the identity matrix 𝐼.

This simplification entails that the evaluation of logL(x | 𝐶𝑖) is likewise simplified,

as inter-feature covariance is neglected in the computation. As a result, Equation 5.5

reduces to a formulation equivalent to the Euclidean distance with an associated penalty,

which may be expressed as follows:

logL(x | 𝐶𝑖) = −
𝑑

2
log(2𝜋) − 1

2
(x − 𝜇𝑖)2, (5.9)

Furthermore, Equation 5.8 specifies the updates to 𝐵𝑖, 𝑛𝑖, and 𝛿𝑖 within the summary

statistics of a cluster when a new point is incorporated. The bounding box 𝐵𝑖 is updated

to correspond to the bounding box of the newly added detection 𝐷𝑡, 𝑗 , the number of

points 𝑛𝑖 in the cluster is increased by one, and the time variable 𝛿𝑖, representing the

interval since the previous object was added, is reset to zero.

These updates ensure that the cluster representation remains current and reflective of

the most recent assignment, while also preserving computational efficiency suitable for

online, streaming data scenarios. Note that, in the basic version of our RTSI-ReID, we

have chosen to update only the cluster mean and not the covariance matrix. Also, note

that no prior probabilities are included in the model. This reflects the fact that we expect

that animals will appear in the video, in and out of camera view, in an unpredictable

manner.

The RTSI-ReID algorithm for processing one frame is detailed in Algorithm 1 and

continued in Algorithm 2.
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Algorithm 1 RTSI-ReID
Input: Current cluster footprints (C)
Detections in the current frame D𝑡 = {𝐷𝑡,1, . . . , 𝐷𝑡,𝑀}
Parameters 𝛼 (novelty) and 𝛽 (acceptance log-likelihood)

Output: The updated cluster footprints C and the labels 𝑦1, . . . , 𝑦𝑀 of the detections.

1: Initialise liked clusters C𝐿 = ∅
2: Initialise the number of clusters 𝑘 = |C|
3: if Current clusters is empty C = ∅ then
4: Initialise C with detections D𝑡 .
5: else
6: D𝑀𝐿 ← Calculate which of the detections in D𝑡 that have ML constraints.
7: for each detection 𝐷𝑡, 𝑗 in the set D𝑀𝐿 do
8: Identify the cluster 𝐶𝑖 that 𝐷𝑡, 𝑗 is linked with.
9: Add 𝐷𝑡, 𝑗 to cluster 𝐶𝑖 and Update the cluster 𝐶𝑖 footprint using equations

(5.6)-(5.8) and novelty parameter 𝛼.
10: Add the identifier of cluster 𝐶𝑖 to linked clusters C𝐿 i.e. C𝐿 ← C𝐿 ∪ {𝑖}.
11: Assign the cluster label 𝑖 to the detection 𝐷𝑡, 𝑗 i.e. 𝑦 𝑗 ← 𝑖.
12: end for
13: CC𝐿 ← The cluster footprints C𝑖 of clusters identified in C𝐿

14: C𝑈 ← Calculate the set of clusters which have not been added to C \ CC𝐿

15: if There are clusters that have not been added to i.e. C𝑈 ≠ ∅ & there are
detections not yet assigned to a cluster i.e. D𝑡 \ D𝑀𝐿 ≠ ∅ then

16: M𝐿
|C𝑈 |,|D𝑡\D𝑀𝐿 | ← Initialise the log-likelihood matrix to all zeros

17: for each detection 𝐷𝑡, 𝑗 without a ML constraint i.e. 𝐷𝑡, 𝑗 ∈ D𝑡 \ D𝑀𝐿 do
18: for each unassigned cluster 𝐶𝑖 ∈ C𝑈 do
19: M𝐿

𝑗𝑖
← calculate the log-likelihood of detection 𝐷𝑡, 𝑗 belonging to

cluster 𝐶𝑖 using equation 5.5 logL(𝐷𝑡, 𝑗 |𝐶𝑖) and update the log-likelihood matrix
M𝐿 .

20: end for
21: end for
22: H ← Calculate the optimal pair assignment of unassigned detection to

unlinked clusters by applying the Hungarian algorithm on −M𝐿

23: for each pair of detections and clusters inH i.e. (𝐷𝑡,𝑣, 𝐶𝑤) ∈ H do
24: if The log-likelihood between the pair exceeds the acceptance threshold

𝛽 i.e. M𝐿
𝑣,𝑤 > 𝛽 then

25: Add 𝐷𝑡,𝑣 to cluster 𝐶𝑤 and Update the cluster 𝐶𝑤 footprint using
equations (5.6)-(5.8) and novelty parameter 𝛼.

26: Assign the cluster labels 𝑤 to the detection i.e. 𝑦𝑣 ← 𝑤.
27: else if the log-likelihood between the pair is below the acceptance

threshold 𝛽 i.e. M𝐿
𝑣,𝑤 < 𝛽

28: Initialise a new cluster 𝐶𝑘+1 with detection 𝐷𝑡,𝑣.
29: Update the current clusters to include the newly initialised cluster

i.e. C ← C ∪ {𝐶𝑘+1}.
30: Assign the cluster labels 𝑘 + 1 to the detection i.e. 𝑦𝑣 ← 𝑘 + 1.
31: Increment the number of clusters i.e. 𝑘 ← 𝑘 + 1
32: end if
33: end for
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Algorithm 2 RTSI-ReID Continued
34: else If there are detections waiting to be assigned i.e. D𝑡 \ D𝑀𝐿 ≠ ∅ & there

are no clusters left i.e. C𝑈 = ∅
35: for Each remaining detection 𝐷𝑡, 𝑗 ∈ D𝑡 \ D𝑀𝐿 do
36: Initialise a new cluster 𝐶𝑘+1 with detection 𝐷𝑡, 𝑗 .
37: Update the current clusters to include the newly initialised cluster
C ← C ∪ {𝐶𝑘+1}.

38: Assign the cluster labels 𝑘 + 1 to the detection i.e. 𝑦 𝑗 ← 𝑘 + 1.
39: Increment the number of clusters 𝑘 ← 𝑘 + 1
40: end for
41: end if
42: end if
43: Return 𝑦1, . . . , 𝑦𝑘 and C.

5.2.2 Methods included in the experiment

• RTSI-ReID. The proposed method.

•ML-ReID. (BASELINE) This is a variant of the proposed method that utilises only

the ML constraints to form chains, with each chain corresponding to an individual

cluster. Any point that does not satisfy an ML constraint with an existing chain initiates

a new one. Consequently, this approach constructs ML chains and assigns each to a

cluster, thereby evaluating performance based solely on ML constraints.

• IKM. Incremental K-Means [155] assigns new observations to the closest cluster and

moves the centre of the cluster towards the new observation. The amount by which the

cluster centre is moved towards the new observation is determined though a parameter

halflife .

• DBSTREAM. DBSTREAM [81] is the first micro-cluster-based online clustering

component that explicitly captures the density between micro-clusters via a shared

density graph. The density information in the graph is then exploited for re-clustering

based on density between adjacent micro clusters to form macro clusters of arbitrary

shapes.

• KG. Kulshreshtha et al. [110] introduce a two-stage online clustering approach for

person re-identification, achieving results comparable to or surpassing state-of-the-art

offline and online methods. The first stage focuses on generating facial tracks from a
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given window. By employing a standard face detector alongside a deep feature extractor,

they construct these tracks using intersection over union (IoU) calculations between

bounding box detections in consecutive frames and by minimising feature distance

between corresponding representations.

In the second stage, the method clusters tracks sequentially as they appear, aiming to

identify previously seen identities and group the tracks accordingly. This process relies

on three matrices:

• Temporal Constraint Matrix (Q) – Determines the duration of each face track and

detects overlaps between different tracks, enforcing ML constraints to prevent

incorrect clustering.

• Similarity Matrix (S) – Measures the similarity between face tracks and cluster

centres within a given window.

• Weight Matrix (W) – Initially set to all ones and later updated using the temporal

constraint matrix (Q).

These matrices collectively facilitate the clustering process, enhancing the accuracy of

identity re-identification throughout the video. By computing the element-wise product

of S and W and assessing whether the maximum value exceeds a predefined threshold

𝜏, the algorithm determines whether a track should be assigned to an existing cluster or

classified as a new identity.

5.2.3 Experimental Protocol

In order to test the true capability of the proposed method, we assumed that a perfect

object detector is available. This means that, in each frame, the BBs for the objects

are the ground truth ones (human annotation). This is kept for all methods used in the

comparison.

For the evaluation of the IKM method, each frame was processed sequentially,

with individual processing of each detection found within the frames returning the

corresponding label. To maximise the algorithm’s potential for success, we used
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the true number of clusters 𝐾 while varying the ℎ𝑎𝑙 𝑓 𝑙𝑖 𝑓 𝑒 parameter ℎ𝑎𝑙 𝑓 𝑙𝑖 𝑓 𝑒 =

{0.1, 0.2, . . . , 0.9} to evaluate the performance under different amounts of concept drift.

Resulting in 9 ARI values for each dataset.

To evaluate the performance of the DBSTREAM algorithm, an identical processing

protocol was followed: each frame was handled sequentially, and every detection within

each frame was individually processed to assign a corresponding label. Only two

parameters were varied — the clustering threshold ∈ {10, 11, ..., 15}, which defines the

required density within a user-defined radius around the cluster centre, and the fading

factor ∈ {0.1, 0.2, ..., 0.9}, which determines how much influence past data has on the

current clustering state. All other parameters were held constant, with the clean-up

interval set to 4, the intersection factor at 0.05, and the minimum weight fixed at 1.

To evaluate the performance of KG, each video was segmented into windows of varying

sizes, 𝑊𝑆 = {2, 3, ..., 10} (9 values). Additionally, the user-defined parameter 𝜏 was

varied as 𝜏 = {0.5, 1.0, ..., 3.5} (7 values), a range influenced by the similarity values

within the original algorithm. Once the window segments were prepared, the KG

algorithm was applied on each set of windows of a given size in sequential order. The

KG algorithm returns labels for all objects in the entire video which are then compared

with the ground truth using the ARI. This process produced 63 individual results for

each dataset.

For all remaining methods, each dataset was divided into individual frames, where

the corresponding detections (BBs and extracted feature representations) within each

frame were batched and passed to the algorithm’s update method. With each frame, the

clusters were updated and labels were returned for each detection. After processing all

frames of a video, the assigned labels were compared to the ground truth labels using

the ARI, measuring the similarity between the two sets of labels. The frame processing

time was also recorded to evaluate the speed of the proposed method and ensure the

capability of 60fps processing speeds.

For the proposed method and its variants, each video was processed for each combination

of 𝛼 = {0.1, 0.2, ..., 0.9} and 𝛽 = {0,−100, ...,−1500}, resulting in a total of 144
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individual results for each dataset. The range of values for 𝛽 was decided upon based

on some pilot experiments.

5.2.4 Results

Table 5.2 demonstrates that the proposed method outperforms all other approaches in

the task of animal re-identification from video. This strong performance may be largely

attributed to two principal heuristics: frame-by-frame processing and the autonomous

generation of instance-level constraints by the algorithm. The effectiveness of these

constraints is further underscored by the performance of the baseline method ML-ReID,

which exceeds that of all other competing approaches despite relying exclusively on

instance-level constraints without additional processing.

Table 5.2: This table presents the highest ARI attained by each of our competitors, our
proposed method, and the baseline variant across all five datasets used in the experiment. The
top-performing method for each dataset is highlighted in green.

Method
ML-ReID IKM DBSTREAM KG RTSI-ReID

Koi Fish 0.6137 0.0000 0.1174 0.0348 0.7440
Pigeons (Square) 0.4497 0.0058 0.1783 0.0078 0.7706
Pigeons (Pavement) 0.5056 0.0924 0.0813 0.0120 0.5207
Pigeons (Kerb) 0.5077 0.0642 0.0633 0.0086 0.6829
Pigs 0.4284 0.0311 0.0707 0.0037 0.8078

The frame-by-frame approach enables the method to fully exploit both ML and CL

constraints. This strategy ensures the continuity of ML chains across successive

frames, while simultaneously supporting the consistent tracking and enforcement of CL

constraints.

Figure 5.9 illustrates the average ARI achieved by IKM across all five datasets in our

experiment, evaluated over varying values of the halflife parameter. The figure shows

that the method performs best with a halflife value of 0.7, suggesting that a greater

degree of concept drift is more suitable for our datasets. Nonetheless, the overall

performance of IKM remains poor for the given task. We attribute this to the complex

structures and highly intertwined clusters within our data. As IKM inherently favours

spherical cluster formations, it struggles to adequately capture the intricacies present

within the datasets.
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Figure 5.9: Illustrates the average ARI across all five datasets for IKM across different values
of the halflife parameter. Each halflife value is colour-coded using a gradient from red to purple,
with red indicating the best performance and purple the worst.
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Figure 5.10: Illustrates the average ARI across all five datasets for DBSTREAM over all
combinations of the clustering threshold and fading factor parameters. The surface is colour-
coded to represent performance, with values mapped to the corresponding scale shown in the
colour bar.

Figure 5.10 presents the average performance of DBSTREAM across all five datasets,

evaluated over a range of clustering threshold and fading factor values. The clustering
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threshold determines the required density around a cluster centre within a user-defined

radius, while the fading factor regulates the influence of historical data. The plot

indicates that the method performs best with a clustering threshold of 14 and lower

fading factor values.

However, the overall results suggest that DBSTREAM is not well-suited to the task

of animal re-identification from video. This limitation is likely attributable to its

density-based micro-clustering approach. While DBSTREAM can capture complex

structures by forming and merging micro-clusters based on shared density, it struggles

with the overlapping clusters and substantial concept drift characteristic of our datasets.

Consequently, it fails to consistently distinguish between identities and has difficulty

re-identifying individuals once they reappear in a different region of the feature space.
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Figure 5.11: Illustrates the Average ARI across all 5 datasets for all combinations of parameters
Window size (𝑊𝑆) and user defined parameter 𝜏 for KG. The surface is colour-coded to represent
performance, with values mapped to the corresponding scale shown in the colour bar.

Figure 5.11 displays the average ARI achieved by KG across all five datasets. Despite

its demonstrated success in facial re-identification tasks, the results indicate that KG is

not well-suited to species-invariant animal re-identification, irrespective of the window
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size employed. This limitation may be attributed to two principal aspects of the method:

its reliance on deep features and its windowed processing approach.

KG was developed with deep feature extraction at its core—an approach that performs

well in human facial recognition, where discriminative features can be effectively

captured by deep neural networks, leading to well-separated clusters in the feature

space. However, such deep, distinctive features are not readily available in our datasets,

presenting challenges that KG is unable to address effectively.

Moreover, the method’s windowed processing paradigm may further constrain its

performance. Although KG incorporates instance-level constraints akin to those in our

proposed method, processing data in fixed-size windows can disrupt the continuity of

detections. When the actual sequence of related detections spans beyond the window

boundary, the constraints may fail to establish a complete linkage, thereby reducing

overall re-identification accuracy.
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Figure 5.12: Illustrates the average ARI across all five datasets for RTSI-ReID over all
combinations of the parameters 𝛼 and 𝛽. The surface is colour-coded to represent performance,
with values mapped to the corresponding scale in the colour bar. The red surface in the plot
denotes the average ARI achieved by the baseline ML-ReID method.
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Figure 5.12 presents the ARI values comparing the labels generated by RTSI-ReID

against the ground truth. Each value corresponds to a unique combination of 𝛼 and

𝛽. The red surface in the plot represents the performance of the ML-ReID variant,

which serves as a baseline relying solely on instance-level constraints. It is evident from

the figure that the incorporation of likelihood statistics—alongside spatio-temporal

instance-level constraints—enhances the method’s capacity to discern whether a new

data point belongs to an existing cluster or represents a previously unseen identity. The

plot also indicates that a lower 𝛽 value, corresponding to a more lenient acceptance

threshold, results in improved clustering outcomes. Similarly, a lower 𝛼 value, which

governs the regulation of concept drift, enables the method to more effectively track

identities across broader regions of the feature space.

However, clustering accuracy alone is insufficient for the development of a real-time,

species-invariant clustering method. Figure 5.13 illustrates the frame processing time

of the proposed method for each combination of 𝛼 and 𝛽. The red surface in the plot

denotes the minimum required processing time to maintain a video playback rate of 60

frames per second; any value below this surface is considered acceptable. It is important

to note, however, that these timings do not include the additional processing required

for object detection and feature extraction prior to frame-level clustering. While not

a comprehensive representation of the total pipeline’s processing time, the method

demonstrates sufficient efficiency to accommodate these supplementary processes

without compromising real-time performance.

5.2.5 Ablation Study

To assess the importance of each individual component within the proposed method,

an ablation study was carried out using various configurations of RTSI-ReID. This

systematic evaluation enabled a detailed analysis of the contribution made by each

element to the overall performance of the model. By comparing different variations,

the study provided empirical evidence supporting the necessity and effectiveness of

each component in enhancing the method’s stability and accuracy.

Methods

• RTSI-ReID. The proposed method.
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Figure 5.13: This figure displays the Average processing time of a single frame across all 5
datasets for all combinations of parameters 𝛼 and 𝛽 used within the experiment. The red surface
in the plot indicates the a threshold of 1

60 i.e. the time required to process a video at 60 fps .

•ML-ReID. (BASELINE)

• LS-ReID. In this version of RTSI-ReID, instance-level ML constraints are excluded.

Instead, only likelihood statistics are used to associate detections with existing clusters or

to determine whether a detection represents a previously unseen identity. CL constraints

remain consistently integrated into the model. This configuration serves as an ablation

study to assess the contribution of ML constraints within RTSI-ReID.

• RTSI-ReID+. In this version, we incrementally update the covariance matrices within

the cluster footprints as detections are added to them. Instead of equation (5.7) we use:

Σ𝑖 =
𝑛𝑖 − 1
𝑛𝑖
· Σ𝑖 +

(x − 𝜇𝑖) (x − 𝜇𝑖)𝑇
𝑛𝑖 + 1

(5.10)
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Table 5.3: This table displays the maximum ARI achieved by each variant of our proposed
method on all 5 datasets used in our experiment. The best performing method for each dataset is
highlighted in green.

Method
ML-ReID LS-ReID RTSI-ReID+ RTSI-ReID

Koi Fish 0.6137 0.4559 0.7466 0.744
Pigeons (Square) 0.4497 0.4316 0.6115 0.7706
Pigeons (Pavement) 0.5056 0.5055 0.5056 0.5207
Pigeons (Kerb) 0.5077 0.5077 0.7086 0.6829
Pigs 0.4284 0.4269 0.6960 0.8078

Results

Table 5.3, together with Figures 5.12, 5.15 and 5.14, presents the results of the ablation

study and highlights the respective strengths of methods RTSI-ReID and RTSI-ReID+.

However, due to its greater stability, simplicity, and superior average performance, the

proposed method, RTSI-ReID, was selected over the more complex and less stable

alternative.

Figure 5.14 presents the average ARI scores (across all datasets) for LS-ReID, evaluated

across all combinations of the 𝛼 and 𝛽 parameters. The red surface represents the

baseline ML-ReID. The plot demonstrates that relying solely on likelihood statistics

is insufficient for effective species-invariant animal re-identification. Furthermore, it

highlights that the baseline ML-ReID consistently outperforms the LS-ReID variant,

underscoring the added value of incorporating instance-level constraints.

Figure 5.15 presents the average ARI values (across datasets) for RTSI-ReID+, evaluated

across varying values of 𝛼 and 𝛽. The red surface once again represents the baseline

performance of ML-ReID. It is evident that RTSI-ReID+ achieves its highest performance

with a higher acceptance threshold (𝛽) combined with a medium value of 𝛼. Additionally,

the results indicate that method RTSI-ReID+ is considerably more sensitive to the

choice of 𝛼 and 𝛽, suggesting limitations in the use of a multivariate normal distribution

to approximate the complex structures inherent in the data.
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Figure 5.14: Illustrates the average ARI across all five datasets for LS-ReID across all
combinations of the parameters 𝛼 and 𝛽. The surface is colour-coded to indicate performance,
with values mapped to the corresponding scale in the colour bar. The red surface in the plot
represents the average ARI of the baseline ML-ReID method.

Enhancements could be made through more advanced techniques for distinguishing

between new and existing identities, as well as by incorporating more detailed feature

representations that are effective across a wide range of animal species.

5.3 Summary

This chapter presented a comparative study to determine the most appropriate clustering

approach — centroid-based or hierarchical — for animal re-identification, highlighting

the superior efficacy of hierarchical clustering methodologies. The experiment also

demonstrated that reducing data complexity—specifically by decreasing the size of

the window processed by the clustering algorithm—improved the performance of

all evaluated methods. This finding suggests that online processing may represent a

more effective approach to animal re-identification compared to storing the data and

processing it in a batch manner.
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Figure 5.15: Average ARI across all five datasets for RTSI-ReID+ using the parameters 𝛼 and 𝛽
employed in the experiment. The surface is colour-coded to represent performance, with values
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Building on the results of this comparative study, a novel real-time species-invariant

constrained clustering method, RTSI-ReID, was proposed, employing a frame-by-

frame processing paradigm to capitalise on the reduced data complexity. When

compared against other online clustering approaches, including a state-of-the-art

facial re-identification clustering method, RTSI-ReID consistently outperformed its

competitors. This success is attributed to its frame-by-frame processing strategy and its

capability to track and maintain constraints throughout the video stream.
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Chapter 6

Offline Animal Re-Identification

Although online methods for animal re-identification enable real-time tracking and

monitoring—thereby enhancing livestock management and contributing to wildlife

conservation—there are scenarios, such as the analysis of pre-recorded footage, in

which the entire dataset is available in advance. In these contexts, the development of

stable offline solutions becomes crucial for achieving accurate re-identification, as the

absence of real-time restrictions allows for full exploitation of the available data.

Nonetheless, even with access to the complete dataset, designing an effective offline

clustering method for animal re-identification remains challenging. As discussed in

Section 3.3, the intricate and interconnected structures that emerge across a video

sequence pose significant obstacles to the development of reliable offline approaches.

This chapter presents two novel offline constrained clustering methods developed to

address the specific challenges of animal re-identification using video data in offline

contexts. These methods are intended to tackle the inherent complexities of video-based

datasets, such as temporal variation and individual similarity.

Contributions covered in this Chapter

Evaluating a constrained clustering ensemble method for clustering a variety of real

and synthetic datasets & Proposing a classification-based clustering method for

clustering a range of real world video datasets.

Publications 6 & 7 in Section 1.4

3
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6.1 Classification-based clustering (𝐶𝐵𝐶)

The concept of classification-based clustering involves utilising the outputs of object

detection and MOT algorithms — specifically, the generated tracks — to construct

a partial structural representation of the dataset. Although these tracks may offer an

incomplete depiction of the underlying data structures, they can nevertheless serve as

a foundation for training a classification model. This model can then be employed

to identify and merge tracks based on patterns of misclassification between classes,

ultimately facilitating the construction of a complete partition of the dataset.

6.1.1 Methodology

Preliminaries

LetV = {𝐹1, . . . , 𝐹𝑇 } denote a sequence of 𝑇 consecutive video frames comprising the

video clip. Each frame 𝐹𝑖 is considered to be an RGB image of dimensions determined

by the resolution of the recording camera. A Multi-Object Tracking (MOT) algorithm

applied toV yields a set of BBs for each frame, along with a track label assigned to

each BB. Let B = {𝐵1, . . . , 𝐵𝑁 } represent the set of all BBs identified by the MOT

algorithm. For each 𝐵𝑖 ∈ B, the MOT algorithm provides the following information:

(a) The index of the frame in which the BB appears, denoted 𝑡𝑖,

(b) The coordinates of the BB within the frame, represented as ⟨𝑥top, 𝑦top, 𝑤, ℎ⟩,

(c) The assigned track label, denoted 𝑦𝑇
𝑖
.

Furthermore, it is assumed that a feature extractor is available for application to the

contents of the BB, resulting in:

(d) A feature vector x𝑖. This vector may be derived from a range of feature extraction

methods, such as autoencoders, deep neural networks, Histogram of Oriented

Gradients (HOG), or RGB values.

The objective of the task is to assign an identity label to each 𝐵𝑖 ∈ B. This is carried

out under the assumption that the approximate number of distinct true identities present
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in the video is known beforehand. This prior knowledge guides the labelling process by

constraining the number of possible identities to be assigned.

To this end, we formulate the animal re-identification problem as a label matching task.

Each bounding box 𝐵𝑖 is associated with a ground truth label 𝑦𝐺𝑇
𝑖

. The objective is to

infer a predicted label for each 𝐵𝑖 by leveraging the track label 𝑦𝑇
𝑖
, the feature vector x𝑖,

and the frame number 𝑡𝑖. While conventional classification tasks typically rely solely on

the feature representation x𝑖 to train a classifier, the present setting provides additional

contextual information. The proposed method, termed CBC, is specifically designed to

integrate all available sources of information in order to estimate 𝑦𝐺𝑇
𝑖

more accurately.

The CBC method leverages elements (a), (c), and (d). It is assumed that the bounding box

coordinates (b) have already been utilised by the MOT algorithm for track construction.

To evaluate the utility of post-processing the MOT tracks, we assume access to the

ground truth labels, enabling a direct comparison with the output of the CBC method.

Several strategies for addressing this problem are conceivable:

A. A baseline approach involves using the raw track labels (c) as the final identity

labels, without applying any further clustering. This baseline is informative, as in

scenarios where tracks are pure—that is, each track corresponds to a consistent

unique identity—merging may be beneficial. However, in cases where tracks are

impure, as is likely with our dataset, such merging may be ineffective or even

detrimental.

B. Apply a standard, off-the-shelf clustering algorithm directly to the feature vectors

(d), disregarding the track labels entirely. This method relies exclusively on

the similarity of the feature representations to group instances, treating each

detection independently. While this can be effective when the feature space is

well-structured and separable, it neglects potentially valuable temporal and spatial

information embedded within the tracking data. Such contextual information may

be particularly important in more complex scenarios, such as those involving

animal data, where appearance alone may be insufficient for reliable identity

resolution.
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C. Perform constrained clustering directly on the feature vectors (d), incorporating

additional structure through both ML and CL constraints. In this setting, track

labels (c) are used to define ML constraints, indicating that all detections within the

same track should be assigned to the same cluster. Simultaneously, CL constraints

are inferred from frame co-occurrence data (a), under the assumption that two

detections appearing in the same frame must belong to different individuals. By

integrating both types of constraints, this approach aims to improve clustering

performance by leveraging both appearance-based similarity and contextual

information derived from temporal and spatial cues.

D. Computing a centroid for each track, denoted 𝜇𝑖, by averaging the feature vectors

(d) associated with that track. These centroids serve as compact representations

of the tracks and are subsequently clustered using a conventional clustering

algorithm. This method reduces the complexity of the problem by considering

a higher-level of abstraction. However, it assumes that the track features are

internally consistent and representative of a single identity, which may not hold

in the presence of impure tracks.

E. Exploit the implicit ML constraints within tracks and infers CL constraints

between tracks using frame index data (a). A constrained clustering algorithm is

then applied to the set of track-level centroids, denoted 𝜇𝑖, as outlined in strategy

D. By combining the reduced complexity afforded by track summarisation with

spatial and temporal constraints, this approach provides more guidance to the

clustering algorithm. However, its performance may still be limited by the

presence of impure tracks.

F. Utilise the track labels (c), frame indices (a), and feature vectors (d) jointly,

without reducing the data to centroid representations. By preserving the full set

of feature vectors, it retains the detailed variability within each track, allowing for

a more nuanced analysis of individual detections. This approach aims to exploit

all the available information to maximise its performance.

The proposed CBC approach corresponds to Strategy (F). To identify the most effective

strategy for the aforementioned task, each strategy is systematically implemented, tested,
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and compared. For Strategies (B) and (D), we employ standard, readily available

clustering algorithms. These include:

1. k-means

2. Single Linkage: The merging criterion employed in this approach is defined by

the minimum distance between any single pair of elements belonging to two

distinct clusters.

3. Average Linkage: The merging criterion in this approach is defined by the average

distance computed over all pairs of points, with each pair comprising one point

from each of the two clusters under consideration.

4. Centroid Linkage: The merging criterion in this approach is defined by the

distance between the centroids (or centres) of the two distinct clusters under

consideration.

5. Complete Linkage: The merging criterion in this approach is defined by the

maximum distance between any pair of elements belonging to two distinct clusters.

6. Median Linkage: The merging criterion is determined by the distance between the

centroids (or centres) of the two distinct clusters under consideration. Following

the merging of two clusters, the centroid of the resultant cluster is calculated as

the midpoint of the centroids of the merged clusters.

7. Ward Linkage: The merging criterion in Ward’s method is defined by the increase

in the total within-cluster variance (or error sum of squares) that would result

from merging two clusters. At each step, the pair of clusters whose merger results

in the minimum increase in this variance is chosen.

8. Weighted Linkage: The merging criterion is based on the average distance

between clusters. Following a merger, the distance between the newly formed

cluster and any other cluster is computed as the average of the distances from

each original cluster to the remaining cluster, assigning equal weight to both.
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9. FINCH. First Integer Neighbour Clustering Hierarchy [148] is a parameter-free,

hierarchical clustering algorithm designed for efficient and scalable clustering

of large datasets. Instead of relying on pairwise distance thresholds, FINCH

builds clusters by connecting each data point to its first nearest neighbour based

on similarity, forming initial groups that are then recursively merged to produce

a clustering hierarchy. This approach reduces computational complexity and

automatically determines the number of clusters at different levels, making it

particularly useful in applications such as person re-identification [34]. Our

implementation utilises the default parameters as provided in the MATLAB code

released by the original authors.

10. Gaussian Mixture Models (GMMs). These probabilistic models are employed for

clustering and density estimation, operating under the assumption that data points

are generated from a mixture of a finite number of Gaussian distributions, each

characterised by its own mean and covariance matrix. Gaussian Mixture Models

(GMMs) are particularly effective for identifying underlying groups (clusters)

within datasets, especially when these groups overlap or exhibit complex shapes.

In our implementation, we utilised diagonal shared covariance matrices and set

the maximum number of iterations to 1000.

11. DBSCAN. DBSCAN [65] is a density-based clustering algorithm that groups

together points in high-density regions while designating points in low-density

areas as outliers (noise). It relies on two parameters: 𝜖 , the radius within which

neighbouring points are considered, and 𝑀𝑖𝑛𝑃𝑡𝑠, the minimum number of points

required to form a dense region. We observed that the choice of the maximum

distance parameter 𝜖 significantly affects the clustering results. Consequently,

we ran DBSCAN over a range of 𝜖 values, specifically 𝜖 ∈ {0.5, 1.0, . . . , 4.0}.

For each 𝜖 , we varied 𝑀𝑖𝑛𝑃𝑡𝑠 across {1, 2, . . . , 8}. Finally, we selected the

combination of 𝜖 and 𝑀𝑖𝑛𝑃𝑡𝑠 that produced a number of clusters closest to the

desired count.

12. Spectral Clustering. Spectral Clustering [133] is a technique that utilises the

eigenvalues and eigenvectors of a similarity matrix derived from the data to

perform clustering. Instead of clustering directly in the original feature space,
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spectral clustering projects the data into a lower-dimensional space by leveraging

the spectrum (eigenvectors) of a graph Laplacian constructed from pairwise

similarities between data points. This approach is particularly effective for

identifying clusters that are neither necessarily spherical nor linearly separable,

allowing it to capture complex cluster structures based on the connectivity among

data points.

For approaches C and E, we use a Constrained Clustering Ensemble method (CCEN)

detailed in Section 6.2, which proved to be the best option for our type of data. CCEN

incorporates temporal pairwise ML and CL constraints. We found the optimum

parameters for this method to be an ensemble size of 5, using average linkage as the

base clusterer.

Proposed Method

The proposed CBC method seeks to utilise the track labels produced by a MOT algorithm

without collapsing—and thereby oversimplifying—the tracks into their corresponding

centroid descriptors. Furthermore, by combining frame indices with track labels,

instance-level CL constraints can be constructed and subsequently elevated to track-level

CL constraints. These constraints indicate whether two tracks should not be linked,

based on the fact that elements of each appear in the same frame at some point in the

video.

The method begins by training a chosen classifier 𝑓 using the feature descriptors x𝑖 of

the BBs and the track labels Y𝑇 produced by the MOT algorithm. Once the classifier

has been trained, the feature descriptors are resubstituted into 𝑓 to generate a new set of

predicted track labels. A confusion matrix M is subsequently computed between the

original track labels and the predicted track labels.

Before the confusion matrix M can be used to merge tracks, it is first necessary to set

its leading diagonal to zero; that is, 𝑀𝑖 𝑗 = 0 where 𝑖 = 𝑗 , since correctly assigned data

should not influence the decision to merge two distinct tracks. Next, the track-level

CL constraints must be incorporated into the confusion matrix. Let 𝑦 and 𝑧 denote

two distinct tracks (classes) such that (𝑦, 𝑧) ∈ 𝐶𝐿; then we set 𝑀𝑦,𝑧 = 𝑀𝑧,𝑦 = 0. This

ensures that no two tracks between which a CL constraint exists can be merged.
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The remaining non-zero values of the confusion matrix, i.e. where 𝑀𝑖 𝑗 > 0, indicate

the degree of similarity between the feature representations of two distinct tracks.

Since the classifier was trained using the feature vectors x𝑖, its predictions reflect

similarity in appearance. Let 𝑝 and 𝑞 denote two different tracks (classes) such that

𝑀𝑝,𝑞 > 0. A higher value of𝑀𝑝,𝑞 implies that the trained classifier 𝑓 has more frequently

misclassified objects from track 𝑝 as belonging to track 𝑞. This suggests that 𝑝 and

𝑞 are similar in the feature space and may, in fact, correspond to the same underlying

identity. However, rather than relying on the absolute number of misclassifications, we

are interested in the proportion of track 𝑝 that has been labelled as 𝑞. To this end, each

row of M is normalised such that the sum of its entries equals one.

The largest entry of the confusion matrix M, denoted 𝑀𝑖, 𝑗 , is then used to merge tracks 𝑖

and 𝑗 into a single track, and the track labels Y𝑇 are updated accordingly. This process

is repeated iteratively until one of two conditions is met: either all values of 𝑀𝑖, 𝑗 = 0,

indicating that no further merges can be performed without violating CL constraints, or

the predefined number of clusters 𝐾 has been reached as a result of previous merges.

The proposed algorithm is ’monolithic’ in nature, as it is grounded in a single core

principle: constrained clustering through classification. Among its components, the

only aspect that appears suitable for removal in the context of an ablation study is the

scaling of the confusion matrix M. This was explored in a preliminary experiment;

however, the results deteriorated significantly in the absence of this scaling step.

The algorithm is detailed in Algorithm 3:

6.1.2 Experimental Study

Data

The datasets employed in this study comprised the five video sequences described in

Chapter 3, supplemented by ten additional videos sourced from the Edinburgh Pig

Behaviour Video Dataset [23], the characteristics of which are summarised in Table 6.1.

The Edinburgh Pig dataset (EP) consists of ten videos depicting eight pigs within a

single enclosure, recorded using a stationary, top-down camera positioned above the

pen. As with the five videos discussed in Chapter 3, the scenes are densely populated,
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Algorithm 3 Classifier-Based Clustering (CBC)
Input: Dataset X = {x1, . . . , x𝑁 }, frame indices T = {𝑡1, . . . , 𝑡𝑁 }, track labels
Y𝑇 = {𝑦𝑡1, . . . , 𝑦

𝑡
𝑁
}, desired number of clusters 𝐾 (assume 𝐾 is smaller than

number of tracks).
Output: Y

1: Select classifier model 𝑓 . Set current label set Y ← Y𝑇 .
2: Initialise: True do
3: Train classifier 𝑓 on dataset X with labels Y.
4: Relabel all data in X using 𝑓 (resubstitution); construct confusion matrix M.
5: Set the diagonal of M to zero.
6: Identify CL constraints from T and Y. For each (𝑝, 𝑞) ∈ 𝐶𝐿, set 𝑀𝑝𝑞 =

𝑀𝑞𝑝 = 0.
7: Row-normalise M so that each row sums to 1.
8: Identify the largest entry 𝑀𝑖 𝑗 .
9: if 𝑀𝑖 𝑗 = 0 or number of unique labels in Y equals 𝐾 then

10: return current label set Y.
11: else
12: Merge tracks 𝑖 and 𝑗 : relabel all points in Y with label 𝑖 to label 𝑗 .
13: end if
14: end Initialise:

leading to frequent instances of occlusion between animals. Nonetheless, there are

several key differences between the EP videos and those described in Chapter 3. Firstly,

because the pigs are confined to the enclosure, individuals cannot leave or re-enter the

frame, ensuring that the number of animals remains constant throughout each video.

Secondly, the EP data have been annotated only at selected intervals, with occasional

omissions of certain animals, in contrast to the continuous annotations provided in the

benchmark videos. This sparser annotation presents challenges for machine learning

applications, as the displacement of animals between consecutive annotated frames may

be too great to support the reliable construction of robust constraints.

Although the Edinburgh Pig videos do not encapsulate all the challenging conditions

inherent in the bespoke benchmark datasets introduced in Chapter 3, they nonetheless

offer valuable insights into the performance of the proposed method (CBC). Throughout

the experiments, RGB-based feature representations were utilised, as outlined in

Section 3.1.

Track Generation

A typical tracking algorithm comprises two primary stages: object detection and

association [164, 193]. In each video frame, the detection stage identifies a set of BBs,
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Table 6.1: Characteristics of the ten Edinburgh Pigs videos videos

Video T L N c Min p/f Max p/f Avr p/f Imbalance
EP000002 600 60 3586 8 2 8 6.0 1.7
EP000005 185 60 231 8 1 8 1.2 26.5
EP000009 310 60 1361 8 1 8 4.4 1.6
EP000010 480 60 913 8 1 8 1.9 3.5
EP000016 375 60 577 8 1 8 1.5 3.0
EP000028 312 60 440 8 1 8 1.4 11.0
EP000033 483 60 979 8 1 8 2.0 1.6
EP000036 414 60 699 8 1 8 1.7 10.6
EP000060 169 60 198 8 1 8 1.2 39.2
EP000078 280 60 373 8 1 8 1.3 9.9

Table notes: 𝑇 is the number of frames; 𝐿 is the video length in seconds; 𝑁 is the number
of objects (individual animal clips); 𝑐 is the number of classes (animal identities); Min
p/f is the minimum number of animals per frame (image); Max p/f and Avr p/f are
respectively the maximum and the average numbers; Imbalance represents the size of
the largest class divided by the size of the smallest class.

and the association stage links these BBs across consecutive frames to form partial

segments of the trajectory corresponding to the tracked object known as tracklets. In

this study, we chose to bypass the detection stage by supplying the tracking algorithms

with ground truth BBs—those derived from manual video annotation. As a result,

the tracking algorithms executed only the association stage. This approach effectively

eliminates potential errors stemming from imperfect object detection, thereby allowing

us to evaluate how well tracking can support animal re-identification under the most

favourable conditions.

For the purposes of our experiments, we generated three sets of track files for each

video:

• MATLAB: The first tracking method employed the standard MATLAB tracking

algorithm available through the Automated Driving Toolbox. In this approach,

ground truth BBs were directly inserted into the algorithm in place of automatically

detected ones. The tracking process relies on a multi-object tracker that predicts

the positions of BBs in subsequent frames using a Kalman filter and performs

association via the Global Nearest Neighbour algorithm1. Importantly, BB
1https://uk.mathworks.com/help/driving/ref/multiobjecttracker-system-object.

html
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appearance features are not used during track formation. Track collisions are

resolved based on predicted motion trajectories.

• BASIC: The second method is based on temporal ML constraints, whereby BBs in

adjacent frames are linked if their intersection over union (IoU) exceeds a specified

threshold. In our implementation, this threshold was set to 0.7, corresponding to

a 70% overlap. For each pair of consecutive frames, the algorithm computes the

IoU for all possible BB pairs (one from each frame), and the Munkres algorithm

(Hungarian method) is used to determine the optimal one-to-one assignments.

This approach is particularly effective in scenarios involving occlusion, where

multiple objects may compete to match with a single candidate BB in the adjacent

frame.

• FCG: The third approach leverages Feature Combinatorial Grouping (FCG) [74],

which is predicated on the assumption that instances of the same object will

exhibit similar visual features over short temporal intervals. FCG operates in two

stages. Initially, it constructs a set of short tracklets. In the subsequent stage,

these tracklets are merged hierarchically over time through a process informed by

so-called “lifted frames”—aggregated intervals that group tracklets rather than

individual detections. Clustering is performed using the UPGMA (Unweighted

Pair Group Method with Arithmetic Mean) algorithm, which iteratively merges

the most similar cluster pairs, yielding a hierarchical structure from which the

final tracks are derived. In our implementation, we integrated RGB feature

representations into the FCG pipeline to ensure a fair comparison with the other

methods.

Experimental Protocol

The objective of this experiment is to evaluate the six strategies outlined in Section 6.1.1

for the task of animal re-identification. Accordingly, the experiment is organised into six

corresponding sections, each associated with one of the strategies, labelled A through F.

Approach A involves directly comparing the track labels generated by each of the three

tracking methods — MATLAB, BASIC, and FCG — to the ground truth labels. This
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yields three evaluation results per dataset and serves as a baseline for assessing the

reliability of track labels without any additional clustering or refinement.

Approach B applies twelve off-the-shelf clustering algorithms to the raw feature data, as

enumerated in Section 6.1.1. Each algorithm is independently applied to the dataset,

resulting in twelve clustering outcomes for each video sequence.

In Approach C, constrained clustering is applied to the raw data using both ML and CL

constraints. The ML constraints are derived from the tracks produced by each of the

three tracking methods, while the CL constraints are inferred based on the co-occurrence

of objects within the same video frame. The clustering algorithm employed in this

approach is CCEN, resulting in three outcomes — one for each set of ML constraints.

Approach D focuses on clustering the centroids of the tracks, which are computed from

the bounding box (BB) features. These centroids form a new dataset, to which the

same twelve clustering algorithms are applied. Given the three sources of track data

(MATLAB, BASIC, and FCG), this yields a total of 12 × 3 = 36 experimental results.

In Approach E, the CCEN clustering algorithm is again employed, this time on the

dataset composed of track centroids. One result is produced for each of the three sets of

tracks, resulting in three evaluations.

Finally, Approach F involves the application of the proposed Classifier-Based Clustering

(CBC) method. CBC is executed on the raw data using the initial class labels provided

by each of the three tracking methods. This configuration produces three additional

results.

In total, each dataset yields 60 experimental outcomes. For every configuration, the

assigned cluster labels are evaluated against the ground truth labels using the ARI,

providing a quantitative measure of clustering accuracy.

6.1.3 Results

Table 6.2 presents the ARI values obtained in the experiment. Based on these results,

we prepared Table 6.3, where the 60 methods are ranked from best (lowest rank) to
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worst. The best-performing method is our proposed CBC with Basic Tracks. However,

no single method is universally superior across all datasets.

To determine which group of methods is significantly better than the others, we apply the

Friedman test incrementally. Initially, we compare the top two methods; subsequently,

we add one method at a time, calculating the 𝑝-value for the hypothesis that the

methods within the group are indistinguishable. A cut-off of 𝑝 < 0.05 is used to

identify the largest group of methods at the top of the ranking that cannot be statistically

distinguished. This threshold is indicated by a horizontal line in Table 6.3.

Figure 6.1 provides a visual representation of the performance of the sixty methods

across our datasets. The rankings from Table 6.3 are illustrated as a grey block, with

black stripes marking the presence of keywords in the method labels. Subplot (a)

depicts the positions of the six approaches, with the average rank for each approach

shown above the respective block (lower values indicate better performance). Subplot

(b) presents the results grouped by track type.

MATLAB BASIC FCG

(a) Approaches (b) Track Types

Figure 6.1: Position of the category in the ranking table. The higher the position, the better the
category against the alternative. The average rank for the category is also shown. [188]

Based on the results presented in Table 6.3 and Figure 6.1, several observations can

be made. The proposed CBC method (F) achieves the best overall performance when

applied with the BASIC tracks. However, the advantage of CBC is only marginal, with

constrained clustering of the raw data (C) closely following in terms of effectiveness.

Despite this, there is no definitive winner among the methods or approaches tested.

While CBC (F) holds a slightly better overall rank than constrained clustering of the

Offline Animal Re-Identification 113



raw data (C), the difference is minimal, indicating that multiple approaches perform

comparably on the datasets examined.

Interestingly, non-constrained clustering of track centroids (D) performs worse than

the direct use of track labels alone (A). This finding challenges the commonly held

assumption in current research that clustering track centroids generally improves results.

We attribute this outcome to the intrinsic structure of our datasets, which limits the

applicability of more advanced feature extraction techniques, such as deep features.

Furthermore, constrained clustering approaches (F), (C), and (E) consistently outperform

the tracks-only baseline (A), supporting our primary assertion. Consequently, we

recommend the use of constrained post-clustering of tracks as a promising direction for

future work.

Finally, it appears that sophisticated tracking methods may not necessarily yield better

results on this type of data. The simple BASIC tracks method, based on intersection

over union (IoU) matching, proves sufficiently effective in this context.

Table 6.2: Percentage ARI scores for all methods as they perform on the video datasets.
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(A) Tracks-Only MATLAB 10 4 6 6 7 7 5 6 17 6 19 17 5 15 2

(A) Tracks-Only BASIC 5 5 4 3 2 3 2 2 13 2 64 54 9 26 3

(A) Tracks-Only FCG 1 34 1 9 15 22 4 12 91 27 13 5 1 1 1

(B) Raw - Single linkage 0 4 0 0 15 0 0 0 100 0 0 0 0 0 0

(B) Raw - Complete linkage 2 17 2 4 23 9 2 9 49 17 15 9 10 24 10

(B) Raw - Average linkage 0 19 1 0 13 8 0 8 75 16 8 5 1 12 3

(B) Raw - Weighted linkage 1 19 4 3 24 7 1 6 75 10 16 11 6 18 10

(B) Raw - Centroid linkage 0 4 0 0 6 2 0 2 75 0 4 1 1 0 1

(B) Raw - Median linkage 0 6 0 0 19 3 0 1 75 3 1 1 1 4 0

(B) Raw - Ward linkage 4 18 4 5 30 12 4 20 24 18 15 13 16 36 18

(B) Raw - Kmeans 3 20 3 4 28 13 4 14 48 15 18 14 19 35 16

(B) Raw - GMM 3 22 4 6 29 14 5 14 22 17 22 10 16 32 16

(B) Raw - FINCH 3 19 3 3 25 16 3 15 27 17 19 13 18 34 19

Continued on next page

Offline Animal Re-Identification 114



Table 6.2 – continued from previous page
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(B) Raw - Spectral 0 7 0 1 7 4 0 13 62 9 8 0 0 0 3

(B) Raw - DBSCAN 0 4 0 1 3 0 0 1 -7 3 0 0 0 0 0

(C) Raw - CCEN MATLAB 5 7 4 4 8 7 4 7 84 5 15 11 5 14 2

(C) Raw - CCEN BASIC 2 23 2 5 65 16 6 21 49 24 52 43 8 25 2

(C) Raw - CCEN FCG 0 34 1 8 15 22 4 11 91 27 13 5 1 1 1

(D) MATLAB - Single linkage 0 0 0 0 0 0 0 0 70 0 4 1 0 5 1

(D) MATLAB - Complete linkage 2 5 0 0 1 2 1 -1 35 5 10 3 3 8 2

(D) MATLAB - Average linkage 0 3 0 0 -1 1 0 1 85 0 6 3 0 6 2

(D) MATLAB - Weighted linkage 0 7 0 1 -1 4 0 1 85 3 6 3 1 6 2

(D) MATLAB - Centroid linkage 0 1 0 0 -1 1 0 0 85 0 5 1 0 5 1

(D) MATLAB - Median linkage 0 2 0 0 -1 1 0 1 85 0 5 1 0 5 1

(D) MATLAB - Ward linkage 2 10 0 1 1 6 1 1 35 5 6 11 3 9 2

(D) MATLAB - Kmeans 1 9 0 0 5 7 1 1 85 4 6 4 3 9 2

(D) MATLAB - GMM 1 2 0 1 3 2 0 2 0 5 0 9 2 0 0

(D) MATLAB - FINCH 2 0 8 4 6 7 4 1 31 4 15 17 4 10 1

(D) MATLAB - Spectral 1 1 0 0 0 0 0 0 85 0 6 12 3 13 2

(D) MATLAB - DBSCAN 0 5 0 0 4 4 0 1 28 1 5 1 0 6 0

(D) BASIC - Single linkage 0 4 0 0 4 0 0 0 100 1 0 3 0 0 0

(D) BASIC - Complete linkage 3 17 4 4 24 11 3 14 100 16 23 23 0 11 1

(D) BASIC - Average linkage 1 17 0 0 12 5 0 2 100 17 8 7 0 3 0

(D) BASIC - Weighted linkage 2 19 2 3 12 10 0 16 100 7 23 15 1 6 0

(D) BASIC - Centroid linkage 0 3 0 0 8 0 0 3 100 0 0 6 0 1 0

(D) BASIC - Median linkage 0 7 0 0 11 3 0 3 100 0 7 8 0 1 0

(D) BASIC - Ward linkage 5 16 4 4 25 12 8 20 100 23 22 23 1 12 2

(D) BASIC - Kmeans 5 18 4 5 37 12 7 17 100 14 42 28 4 13 2

(D) BASIC - GMM 4 17 4 6 34 13 5 18 0 20 27 29 1 14 2

(D) BASIC - FINCH 5 19 4 5 26 10 6 18 46 15 47 45 9 21 4

(D) BASIC - Spectral 0 15 0 1 28 9 0 11 100 14 0 27 0 5 1

(D) BASIC - DBSCAN 2 5 0 1 3 0 0 3 38 7 19 10 1 3 0

(D) FCG - Single linkage 0 34 0 0 15 21 1 6 91 23 13 0 1 1 1

(D) FCG - Complete linkage 0 34 1 2 15 21 2 6 91 23 13 2 1 1 1

(D) FCG - Average linkage 0 34 1 0 15 21 1 6 91 23 13 2 1 1 1

(D) FCG - Weighted linkage 0 34 1 0 15 21 1 6 91 23 13 2 1 1 1

(D) FCG - Centroid linkage 0 34 0 0 15 21 1 6 91 23 13 1 1 1 1

Continued on next page
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Table 6.2 – continued from previous page
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(D) FCG - Median linkage 0 34 0 0 15 21 1 6 91 23 13 1 1 1 1

(D) FCG - Ward linkage 0 34 1 2 15 21 2 6 91 23 13 2 1 1 1

(D) FCG - Kmeans 0 31 1 4 15 20 1 6 91 23 13 1 1 1 1

(D) FCG - GMM 0 0 0 0 15 0 0 0 91 0 13 0 0 0 0

(D) FCG - FINCH 0 22 1 4 15 9 1 -1 91 10 13 3 0 0 1

(D) FCG - Spectral 0 32 1 3 15 21 2 6 91 23 13 4 1 1 1

(D) FCG - DBSCAN 0 33 0 0 15 21 1 6 91 23 13 0 1 1 1

(E) CCEN MATLAB 6 5 5 2 10 5 5 4 84 3 15 10 4 14 2

(E) CCEN BASIC 2 18 2 4 67 15 5 19 49 23 60 45 7 25 2

(E) CCEN FCG 0 34 1 8 15 22 3 11 91 27 13 5 1 1 1

(F) CBC MATLAB 10 6 5 3 11 4 5 7 79 6 12 12 5 14 2

(F) CBC BASIC 10 13 6 6 36 9 6 13 94 11 74 51 9 27 2

(F) CBC FCG 1 33 1 8 15 22 4 12 91 24 13 5 1 1 1

Table 6.3: Friedman test on all methods from our proposed approaches.

Method ARI Rank p-value

(F) CBC BASIC 0.2449 10.8000 -

(C) Raw - CCEN BASIC 0.2286 11.9667 0.1967

(D) BASIC - Kmeans 0.2049 12.3667 0.5488

(D) BASIC - FINCH 0.1864 12.8667 0.5641

(E) CCEN BASIC 0.2283 14.1000 0.4873

(D) BASIC - Ward linkage 0.1838 14.1667 0.4159

(B) Raw - Ward linkage 0.1586 14.2667 0.6483

(B) Raw - GMM 0.1545 14.4667 0.8166

(B) Raw - Kmeans 0.1699 14.8000 0.8815

(B) Raw - FINCH 0.1563 15.6667 0.8991

(D) BASIC - GMM 0.1283 16.8333 0.7936

(A) Tracks-Only FCG 0.1575 19.9333 0.5244

Continued on next page
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Table 6.3 – continued from previous page

Method ARI Rank p-value

(D) BASIC - Complete linkage 0.1686 20.1667 0.1328

(B) Raw - Complete linkage 0.1346 20.3333 0.0169

(B) Raw - Weighted linkage 0.1406 21.9000 0.0012

(F) CBC FCG 0.1538 22.3333 0.0011

(E) CCEN FCG 0.1551 22.5000 0.0011

(A) Tracks-Only MATLAB 0.0870 22.6667 0.0010

(C) Raw - CCEN FCG 0.1552 22.7000 0.0010

(C) Raw - CCEN MATLAB 0.1209 22.7667 0.0003

(F) CBC MATLAB 0.1194 24.2667 0.0001

(D) BASIC - Weighted linkage 0.1439 25.1000 0

(E) CCEN MATLAB 0.1158 25.1000 0

(A) Tracks-Only BASIC 0.1313 25.1333 0

(D) FCG - Complete linkage 0.1416 27.4333 0

(D) FCG - Ward linkage 0.1418 27.5000 0

(D) FCG - Spectral 0.1415 27.9000 0

(D) FCG - Weighted linkage 0.1399 27.9333 0

(D) FCG - Kmeans 0.1383 28.2333 0

(D) FCG - Average linkage 0.1397 28.6667 0

(D) MATLAB - FINCH 0.0751 29.0000 0

(D) FCG - DBSCAN 0.1369 30.1333 0

(D) FCG - Centroid linkage 0.1386 30.6333 0

(D) FCG - Median linkage 0.1386 30.7667 0

(B) Raw - Average linkage 0.1122 31.1667 0

(D) FCG - Single linkage 0.1380 31.3333 0

(D) BASIC - Spectral 0.1410 32.3667 0

(D) FCG - FINCH 0.1132 33.8000 0

(D) MATLAB - Ward linkage 0.0619 34.8333 0

(D) MATLAB - Kmeans 0.0914 35.7333 0

(D) BASIC - Average linkage 0.1140 37.3667 0

(D) BASIC - DBSCAN 0.0612 37.8667 0

Continued on next page

Offline Animal Re-Identification 117



Table 6.3 – continued from previous page

Method ARI Rank p-value

(D) MATLAB - Complete linkage 0.0505 39.5000 0

(D) MATLAB - Spectral 0.0821 40.1333 0

(D) BASIC - Median linkage 0.0940 40.1667 0

(B) Raw - Spectral 0.0767 40.2000 0

(D) MATLAB - Weighted linkage 0.0785 41.2667 0

(B) Raw - Median linkage 0.0770 41.3000 0

(D) MATLAB - GMM 0.0185 44.0667 0

(D) BASIC - Centroid linkage 0.0806 46.1000 0

(D) MATLAB - Average linkage 0.0705 46.2667 0

(D) MATLAB - DBSCAN 0.0368 46.7667 0

(B) Raw - Centroid linkage 0.0633 47.3000 0

(D) MATLAB - Centroid linkage 0.0666 48.3667 0

(D) BASIC - Single linkage 0.0748 48.4333 0

(D) MATLAB - Median linkage 0.0670 48.5000 0

(B) Raw - Single linkage 0.0798 48.5667 0

(D) FCG - GMM 0.0789 49.6333 0

(D) MATLAB - Single linkage 0.0543 51.2333 0

(B) Raw - DBSCAN 0.0037 52.3333 0

6.2 Constrained Clustering Ensemble (𝐶𝐶𝐸𝑁)

When monitoring animals in video footage, data are expected to evolve gradually

over time. Although predicting the overall progression of data across an entire video

sequence is challenging, it is reasonable to assume that, over shorter intervals—such

as between consecutive frames—the appearance of an object changes only marginally.

Consequently, its feature representation also exhibits minimal variation, regardless of

the specific feature extraction technique employed. From this premise, it can be inferred

that data points within a video sequence tend to form string-like clusters in feature space.
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However, as the same object may reappear at different times, multiple string-shaped

clusters can emerge, potentially occupying distinct regions of the feature space.

The results of applying constrained clustering to complete animal video datasets

highlight the limitations of such methods in effectively addressing re-identification tasks.

This is evident from the performance of the methods compared in Section 6.1, as well as

from the observed decline in performance with increasing window size, as demonstrated

in Section 5.1. These findings suggest that, even in offline contexts, reducing structural

complexity through a windowed processing approach may provide a more practical

solution for offline animal re-identification, as it facilitates the identification of string-

shaped clusters within smaller segments of the dataset.

Although several clustering strategies may be applicable to this problem, recent advances

in constrained clustering have increasingly prioritised accuracy, resulting in highly

complex algorithms. This complexity often comes at the expense of computational

efficiency and interpretability, rendering such methods less suitable for online learning

or real-time applications.

While a single clustering method may suffice in certain scenarios, extensive research

in the field has demonstrated that cluster ensembles generally outperform individual

clustering algorithms [31, 75, 115]. Accordingly, this work proposes the development of

a clustering ensemble composed of simple, semi-supervised agglomerative hierarchical

methods, denoted as 𝐶𝐶𝐸𝑁 .

6.2.1 Proposed Method

To meet the requirement for time-efficient and reliable hierarchical clustering approaches,

we adopt the agglomerative hierarchical constrained clustering method proposed by

Klein et al., as described in Section 5.1.3, as the foundational technique for our ensemble,

denoted as 𝐶𝐶𝐸𝑁 .

The algorithm accepts as input the dataset X containing 𝑁 objects, the sets of instance-

level constraintsML and CL, the chosen constrained clustering base method 𝐶𝐶𝐵𝑀 ,

the desired number of clusters 𝐾 , and the number of ensemble members 𝐸 . The 𝐶𝐶𝐸𝑁

algorithm begins by initialising an empty cumulative adjacency matrix M𝐶𝐴 of size
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𝑁 × 𝑁 . Each ensemble member contributes an individual adjacency matrix, which is

then added to M𝐶𝐴. As a result, pairs of points that are consistently grouped together

across all ensemble members will have an entry of 𝐸 in M𝐶𝐴, while pairs never clustered

together will have an entry of zero.

By employing a single base hierarchical clustering method across all ensemble

constituents, we execute the base method only once and reuse the resulting dendrogram.

This dendrogram is then cut at successive levels to produce clusterings with

𝐾, 𝐾 + 1, . . . , 𝐾 + 𝐸 clusters. In this way, we construct the ensemble without incurring

the computational cost of running the clustering algorithm multiple times, thereby

preserving the efficiency of a single-method approach.

Once M𝐶𝐴 has been completed, it is converted into cluster labels. This is achieved

by first transforming M𝐶𝐴 into a binary adjacency matrix through thresholding: any

element in M𝐶𝐴 greater than 𝐸
2 is set to 1, while those less than or equal to 𝐸

2 are set

to 0. The resulting ensemble adjacency matrix, denoted M𝐸𝐴, defines an undirected

graph, whose connected components represent the final clustering structure. These

components are returned by the 𝐶𝐶𝐸𝑁 algorithm as the ensemble cluster labels Y𝐸 .

The full procedure is summarised in Algorithm 4.

6.2.2 Experimental Study

Data

The datasets used in this experiment differ from those described in Chapter 3. Instead,

a contributed collection of synthetic datasets was utilised, encompassing a wide variety

of cluster shapes and varying degrees of clustering difficulty. All datasets in this

collection have previously been employed in published studies on clustering. The

synthetic collection includes 47 two-dimensional (2D) datasets and 5 three-dimensional

(3D) datasets. A 2D visualisation of each synthetic dataset is shown in Figure 6.2, while

Table 6.4 provides details on the number of objects (𝑁), number of classes (𝐶), and

number of features (𝑑), along with corresponding identifiers for cross-referencing with

the figure.
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Algorithm 4 Constrained Cluster Ensemble (CCEN)
Input: Dataset 𝑋 , Must-Link Constraints 𝑀𝐿, Cannot-Link constraints 𝐶𝐿 ,

Constrained Clustering base method 𝐶𝐶𝐵𝑀, Number of Clusters 𝐾, Number
of Ensemble members 𝐸

Output: Ensemble labels Y𝐸

1: Initialise the Cumulative Adjacency Matrix M𝐶𝐴 = [ ]
2: for 𝑖 in 1, . . . , 𝐸 do
3: 𝐿 ← Calculate the cluster labels using base clustering method
𝐶𝐶𝐵𝑀 (𝑋, 𝑀𝐿,𝐶𝐿, 𝑘 + 𝑖 − 1)

4: M𝐴𝐷 ← calculate the adjacency matrix from returned labels 𝐿
5: M𝐶𝐴 ← Update the cumulative adjacency matrix by adding the adjacency

matrix M𝐶𝐴 +M𝐴𝐷

6: end for
7: Initialise the ensemble adjacency matrix M𝐸𝐴

8: if the value in the cumulative adjacency matrix is greater than half the number of
ensemble members M𝐶𝐴

𝑖 𝑗
> 𝐸

2 then
9: Set the value of the corresponding position in the ensemble adjacency matrix

to one M𝐸𝐴
𝑖 𝑗

= 1
10: else
11: Set the value of the corresponding position in the ensemble adjacency matrix

to zero M𝐸𝐴
𝑖 𝑗

= 0
12: end if
13: Y𝐸 ← convert the ensemble adjacency matrix to cluster labels by extracting

connected components from the corresponding undirected graph Convert(M𝐸𝐴)

In addition to the synthetic datasets, a total of 95 widely used real-world datasets were

sourced from the UCI Machine Learning Repository [99]. Detailed information about

these datasets can be found in Table 6.5.

Methods

The methods we chose for the experiments are:

• COP-KMeans (COP) [173] — This algorithm assigns data points in a manner

similar to its unsupervised counterpart, K-Means. However, during the assignment

step, a data point is only allocated to a cluster if doing so does not violate any of the

specified constraints. If a constraint is breached, the algorithm attempts to assign

the point to an alternative valid cluster; if no such assignment is possible, it may

terminate with failure. This method will serve as a baseline in the experimental

evaluation.
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Figure 6.2: Visualises all synthetic datasets employed in the experimental study within a two-
dimensional space, allowing for an intuitive understanding of the underlying cluster structures.
Each cluster within a dataset is represented by a unique colour, facilitating clear distinction and
comparison of the different groupings across the datasets.[189]
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Table 6.4: Details of the Synthetic datasets.

# Dataset N C d
1 Aggregation 788 7 2
2 Aligned_bananas 500 2 2
3 Arcs 104 4 2
4 Atom 500 2 3
5 Balls_and_baguettes 500 5 2
6 Bars 500 2 2
7 Boat 500 3 2
8 Chainlink 500 2 3
9 Cigar 500 4 2
10 Circle_2_rectangles 500 3 2
11 Circle_and_3_gaussians 500 4 2
12 Concentric_circles_3 500 3 2
13 Enclosure 622 3 2
14 Filled_circle_2 500 2 2
15 Filled_circle 500 4 2
16 Flower 500 5 2
17 Four_corners_clear 500 4 2
18 Four_corners_noise 500 4 2
19 Four_lines 500 4 2
20 Gaussians_1_big_2_small 500 3 2
21 Gaussians_3_touching 500 3 2
22 Gaussians_5_compact 500 5 2
23 Gaussians_5_unequal 500 5 2
24 Gestalt 399 6 2
25 Half_rings 500 2 2
26 Happy_wave 500 2 2

# Dataset N C d
27 Hepta 500 7 3
28 Orange 500 2 2
29 Petals 500 4 2
30 Random1 500 4 2
31 Random2 500 6 2
32 Random3 500 7 2
33 Randomised_normal 500 9 2
34 Randomised_triangle 500 10 2
35 Saturn 500 2 2
36 Sixteen_blocks 256 16 2
37 Spirals 500 3 2
38 Stormclouds 500 2 2
39 T_and_u 500 2 2
40 Ten_spherical 500 10 2
41 Tetra 500 4 3
42 Three_by_three 500 9 2
43 Three_circles 500 3 2
44 Torus_and_rod 500 2 3
45 Two_diamonds 500 2 2
46 Two_u 260 2 2
47 Wingnut 500 2 2
48 Worms 500 4 2
49 Xor 500 4 2
50 Xor_big_and_small 500 4 2
51 Xor_different_cardinalities 500 4 2
52 Yin_yang 515 4 2

• COP-kmeans - improved (COPI) – this method differs to the original by comparing

the new and old labels between iterations, rather than comparing the new and old

means

• Constrained Spectral Clustering (CSP) — This method extends traditional

spectral clustering by incorporating prior knowledge through constraints. By

embedding these constraints into the spectral embedding process, the algorithm

modifies the similarity graph or Laplacian matrix to honour the specified

restrictions, thereby steering the clustering towards more informative and accurate

partitions. Combining spectral clustering’s capability to identify complex cluster

structures with the advantages of semi-supervised learning, it enhances clustering

performance when partial label information is present. As a non-centroid-based

approach, it is particularly well-suited to the task addressed in our study.

• Constrained Average Linkage (CAL) – Calculating the distance between two

clusters as the average distances between all pairs of data points, one from each

cluster.
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Table 6.5: Details of the Real datasets.

Dataset N C d
Abalone 4177 3 8
Acute-inflammation 120 2 6
Acute-nephritis 120 2 6
Adult 48842 2 14
Annealing 850 4 31
Arrhythmia 295 10 262
Balance-scale 576 3 4
Bank 4521 2 16
Blood 748 2 4
Breast-cancer-wisc-diag 569 2 30
Breast-cancer-wisc 699 2 9
Breast-cancer 286 2 9
Car 1728 4 6
Cardiotocography-10clases 2126 10 21
Cardiotocography-3clases 2126 3 21
Chess-krvk 28029 18 6
Chess-krvkp 3196 2 36
Congressional-voting 435 2 16
Conn-bench-sonar-mines-rocks 208 2 60
Conn-bench-vowel-deterding 990 11 11
Connect-4 67557 2 42
Contrac 1473 3 9
Credit-approval 690 2 15
Cylinder-bands 512 2 35
Dermatology 297 5 34
Ecoli 272 3 7
Energy-y1 768 3 8
Energy-y2 768 3 8
Glass 146 2 9
Haberman-survival 306 2 3
Hayes-roth 129 2 3
Heart-cleveland 219 2 13
Heart-hungarian 294 2 12
Heart-va 107 2 12
Hill-valley 1212 2 100
Horse-colic 368 2 25
Ilpd-indian-liver 583 2 9
Image-segmentation 2310 7 18
Ionosphere 351 2 33
Iris 150 3 4
Led-display 1000 10 7
Letter 20000 26 16
Low-res-spect 469 4 100
Lymphography 142 3 18
Magic 19020 2 10
Mammographic 961 2 5
Molec-biol-promoter 106 2 57
Molec-biol-splice 3190 3 60

Dataset N C d
Monks-1 556 2 6
Monks-2 601 2 6
Monks-3 554 2 6
Mushroom 8124 2 21
Musk-1 476 2 166
Musk-2 6598 2 166
Nursery 12958 5 8
Oocytes_merluccius_nucleus_4d 1022 2 41
Oocytes_merluccius_states_2f 1022 3 25
Oocytes_trisopterus_nucleus_2f 912 2 25
Oocytes_trisopterus_states_5b 898 3 32
Optical 5620 10 62
Ozone 2536 2 72
Page-blocks 5445 5 10
Pendigits 10992 10 16
Pima 768 2 8
Planning 182 2 12
Ringnorm 7400 2 20
Seeds 210 3 210
Semeion 1593 10 256
Soybean 362 15 35
Spambase 4601 2 57
Spect 265 2 22
Spectf 267 2 44
Statlog-australian-credit 690 2 14
Statlog-german-credit 1000 2 24
Statlog-heart 270 2 13
Statlog-image 2310 7 18
Statlog-landsat 6435 6 36
Statlog-shuttle 57977 5 9
Statlog-vehicle 846 4 18
Steel-plates 1941 7 27
Synthetic-control 600 6 60
Teaching 102 3 5
Thyroid 7200 3 21
Tic-tac-toe 958 2 9
Titanic 2201 2 3
Twonorm 7400 2 20
Vertebral-column-2clases 310 2 6
Vertebral-column-3clases 310 3 6
Wall-following 5456 4 24
Waveform-noise 5000 3 40
Waveform 5000 3 21
Wine-quality-red 1571 5 11
Wine-quality-white 4873 6 11
Wine 130 2 13
Yeast 1350 5 8
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• Constrained Complete Linkage (CCL) – Calculates the distance between two

clusters as the maximum distance between a pair of data points, one from each

cluster.

• Constrained Single Linkage (CSL) – Calculates the distance between two clusters

as the minimum distance between a pair of data points, one from each cluster.

• Constrained Clustering Ensemble (CCEN) – The proposed method

It should be noted that we deliberately excluded certain recent and successful constrained

clustering methods from our comparisons. Although 3SHACC [76] falls within the

hierarchical clustering category, it proved to be too complex and computationally

intensive to be feasible within our experimental framework. Our primary objective is to

identify a fast and straightforward method suitable as a potential candidate for future

online constrained clustering applications. Additionally, we excluded centroid-based

methods such as PCCC [20], recognising that while they may perform effectively on

spherical datasets, such as those in our Real data collection, they fall outside the scope

of this study.

Experimental Protocol

The experiment was conducted separately on both the synthetic and real datasets. For

each dataset, 45 sets of constraints were constructed. Specifically, the number of

constraints was varied as a proportion of the total number of objects, 𝑁 . The proportions

considered were [0, 1, 2, 3, 4, 5, 10, 15, 20]%. For a given proportion 𝑃𝐶 , the number

of constraints, 𝑁𝐶 , was calculated using the equation 6.1:

𝑁𝐶 =
𝑧(𝑧 − 1)

2
, where 𝑧 = round

(
𝑁 × 𝑃𝐶

100

)
. (6.1)

After determining the number of constraints, we generated 𝑁𝐶 unique pairs of points

(𝑃𝑖, 𝑃 𝑗 )1, . . . , (𝑃𝑖, 𝑃 𝑗 )𝑁𝐶 , ensuring that 𝑖 ≠ 𝑗 . The nature of each constraint was

established by comparing the ground-truth labels of 𝑃𝑖 and 𝑃 𝑗 . If both points shared

the same label, the pair was designated as a ML constraint. Otherwise, it was classified

as a CL constraint.
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To account for the randomness inherent in constraint selection, five distinct sets of 𝑁𝐶

constraints were generated for each value of 𝑃𝐶 . The results were averaged across these

five sets to yield a single value for both NMI and ARI for each constraint proportion.

Subsequently, these values were averaged over all datasets within the corresponding

synthetic or real data groups, thereby providing an overall performance metric for each

method at each constraint proportion.

6.2.3 Results

Figure 6.3 presents the ARI and NMI scores for each method across varying proportions

of constraints, averaged over both the synthetic and real datasets. From these plots,

it is evident that the simpler methods—CAL, CCL, and CSL—consistently demonstrate

superior performance according to both metrics, irrespective of the number of constraints

provided, particularly in the case of synthetic data. This indicates that these methods

are not only effective in accurately assigning data points to the correct clusters, but

also proficient in preserving the complex structures inherent in the data. Although the

quantity of constraints does not determine whether simpler or more complex methods

perform better on synthetic datasets, the performance of the simpler methods improves

notably as more constraints are made available.

In contrast, for the real datasets, there is no clear distinction between simpler and

more complex methods at lower levels of constraint availability, with some complex

methods outperforming certain simpler ones and vice versa. However, as the number of

constraints increases, the simpler methods begin to substantially outperform the more

complex ones. This is reflected in their improved ability to correctly associate pairs of

data points with the ground truth and to maintain the underlying data structures.

Overall, these results underscore both the efficacy of the simpler methods and the

influence of constraint quantity on clustering performance. Moreover, the proposed

method, CCEN, further enhances the performance of the simpler methods across most

constraint levels, particularly when applied to real-world datasets.

Table 6.6 presents the execution times for each method on the synthetic and real datasets,

respectively. It is evident that the simpler clustering methods are capable of producing

partitions significantly faster than their more complex counterparts, with execution
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Figure 6.3: Illustrates the metric scores of the experimental methods for various values of 𝑃𝐶 ,
averaged across all datasets. Each method is represented by a unique colour and marker, as
indicated in the plot legend.

[189]

times remaining largely unaffected by the number of constraints applied. This highlights

not only their superiority in terms of computational efficiency but also their stability to

increases in constraint volume. As previously observed, the number of constraints has a

direct impact on clustering performance—more constraints generally yield better results.

Therefore, the ability of these simpler methods to efficiently incorporate additional

constraints without incurring additional computational cost is particularly advantageous.

Furthermore, it is noteworthy that the proposed method, CCEN, does not require

substantially more time to execute compared to its base method. This makes CCEN a

favourable choice for real-time or time-sensitive applications, as it balances improved

clustering performance with computational efficiency.
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Table 6.6: Shows the execution time of each method in relation to the proportion of constraints
(in milliseconds), averaged across repetitions and datasets. Each cell is colour-coded to indicate
speed, with purple representing the fastest methods and orange representing the slowest.[189]

(a) Synthetic Data

𝑃𝐶 COP COPI CSP CCL CSL CAL CCEN
0 32 23 1164 8 6 5 12
1 33 29 1051 6 6 5 10
2 29 52 891 6 6 5 10
3 17 88 803 5 6 5 10
4 15 137 834 5 6 5 10
5 13 182 946 5 6 5 10

10 11 474 1254 6 6 6 14
15 11 832 1256 6 6 6 17
20 12 1317 1264 6 6 6 18

(b) Real Data

𝑃𝐶 COP COPI CSP CCL CSL CAL CCEN
0 40 39 6624 17 17 16 33
1 56 64 6285 17 18 17 28
2 28 166 6165 17 18 16 28
3 17 342 6403 17 18 16 28
4 15 578 6982 17 18 16 30
5 15 803 7300 17 18 17 32

10 12 2566 7471 18 17 18 39
15 13 5988 7473 18 17 18 41
20 15 10729 7499 18 18 18 41

Additionally, we conducted an experimental study to examine whether increasing

the number of clusterers in the ensemble has a significant impact on performance.

Specifically, we compared the three hierarchical variants as base clusterers (CCBM) for

the ensemble. The experimental setup mirrored that described earlier, using both the

synthetic and real datasets. The results are presented in Figure 6.4. Each plot depicts a

clustering quality metric as a function of the proportion of constraints, for ensembles of

four different sizes: 1, 2, 4, and 6 clusterers. Smaller ensembles are represented with

smaller markers, whereas the largest ensemble is indicated with the largest markers.

The best-performing ensemble is highlighted using more prominent colours. All three

methods are displayed on the same plots to enable a direct visual comparison of their

performance as base clustering approaches.

The results demonstrate that larger ensembles generally outperform the single-clusterer

case (i.e., an ensemble of size 1), indicating that CCEN tends to be more effective than any

individual constrained clustering method. The only exception occurs at low constraint
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levels in the synthetic datasets (Figures 6.4a and 6.4c), where smaller ensembles

achieved slightly better performance. Furthermore, the performance difference between

ensembles of sizes 4 and 6 is marginal, suggesting that relatively small ensembles can

offer a favourable balance between accuracy and computational efficiency, particularly

in real-time clustering scenarios.
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Figure 6.4: Illustrates the metric scores for the ensemble method using different base clusterers,
each represented by a distinct colour as indicated in the plot legend, and varying numbers
of ensemble members with 𝐿 = [1, 2, 4, 6] clusterers. Ensembles with fewer members are
indicated by smaller markers, while the best-performing ensemble for each base clusterer is
highlighted using a more prominent colour.[189]

Another noteworthy observation is thatCEAL consistently outperforms the other ensemble

variants. This is consistent with earlier findings, where CAL demonstrated superior

performance relative to CCL and CSL, as shown in Figure 6.3.
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6.3 Summary

In this chapter, two offline constrained clustering methods—CBC and CCEN—were

introduced, with the overarching objective of achieving dependable performance in

animal re-identification within an offline context. By utilising information provided

by multi-object tracking (MOT) algorithms, such as track labels and frame indices, in

conjunction with feature representations extracted via a feature extractor, we developed a

method that demonstrated superior performance relative to existing approaches, through

a process referred to as classification-based clustering.

However, the experimental results indicated that applying clustering methods to an

entire animal video dataset did not yield high re-identification accuracy. This limitation

is attributed to the structural complexity inherent in the datasets when considered in

their entirety.

Following these findings, together with the results outlined in Section 5.1, it became

evident that the approach with the greatest potential—even in an offline setting—would

be to reduce the structural complexity of the data through a windowed processing

strategy. This approach results in the formation of inherently string-shaped clusters,

which are more easily recognised by clustering algorithms. Consequently, a constrained

clustering ensemble approach was developed and evaluated on datasets of varying

structural complexity. This method demonstrated strong clustering accuracy, which

improved further with an increasing number of constraints.
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Chapter 7

Conclusion

This chapter summarises and concludes the research done throughout this thesis.

7.1 Summary

Objective: Create a comprehensive dataset encompassing a diverse range of animal

species.

Contribution 1 (Presented in Sections 3.1- 3.4): A multi-species animal benchmark

dataset was created through a collaborative effort from Bangor University and

the University of Burgos, Spain. The set consists of five annotated, unique, and

unconstrained video recordings. Each video has five distinct feature representations:

Autoencoder (AE), Histogram of Oriented Gradients (HOG), Local Binary Patterns

(LBP), MobileNetV2 (MN2), and RGB Moments (RGB). A detailed analysis was

conducted on each video to illustrate the specific challenges and characteristics associated

with developing animal re-identification systems. An experimental evaluation of the

feature representations was then undertaken within the context of the re-identification

task. Results indicated that RGB-based features consistently outperformed the

alternatives, emerging as the most effective representation for identifying animals

across multiple species. These datasets were subsequently employed to evaluate the

performance of all proposed animal re-identification methodologies.

Related Publications:

• L. I. Kuncheva, F. Williams, S. L. Hennessey, and J. J. Rodríguez, “A benchmark

database for animal re-identification and tracking,” in 2022 IEEE 5th International
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Conference on Image Processing Applications and Systems (IPAS), 2022, pp.

1–6.

• L. I. Kuncheva, J. L. Garrido-Labrador, I. Ramos-Pérez, S. L. Hennessey, and J. J.

Rodríguez, ”An experiment on animal re-identification from video.” Ecological

Informatics, 2023, 74, p.101994.

Objective: Maximise the performance of object detection to reduce the complexity of

subsequent animal re-identification.

Contribution 2 (Presented in Sections 4.1.3 & 4.2): A combinatorial approach was

proposed for integrating the outputs of both object detection and MOT algorithms. This

integration was accomplished through the construction of an adjacency matrix based on

IoU thresholding between all pairs of BBs generated by both methods. The resulting

adjacency matrix was subsequently utilised to identify the connected components of

the corresponding graph, from which the final set of bounding boxes was derived.

Experimental results demonstrated that the combined approach outperformed each

individual method across all videos in the benchmark dataset.

Related Publications:

• F. J. Williams, L. I. Kuncheva, J. J. Rodríguez, and S. L. Hennessey, “Combination

of object tracking and object detection for animal recognition,” in 2022 IEEE 5th

International Conference on Image Processing Applications and Systems (IPAS),

2022, pp. 1–6.

Objective: Investigate the effectiveness of various clustering techniques applied to

datasets with complex spatial structure.

Contribution 3 (Presented in Section 5.1.3): An experimental study was undertaken

to evaluate suitable clustering techniques for animal video data. Both hierarchical

and centroid-based approaches were examined using consecutive temporal windows of

varying sizes, enabling the detection and subsequent clustering of prominent spatial

patterns within temporally segmented data. This windowed processing framework

proved particularly advantageous in revealing local structures that might otherwise
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be obscured in a global analysis. The findings indicated that the dominant spatial

relationships exhibited strong linkage characteristics, thereby supporting the use of

hierarchical clustering methods as the most appropriate for this type of data. Furthermore,

the results demonstrated that smaller window sizes facilitated more accurate detection

and clustering of latent structural patterns, thereby highlighting the potential suitability

of processing the data in an online manner.

Related Publications:

• S. L. Hennessey, F. J. Williams, and L. I. Kuncheva, “Hierarchical Vs Centroid-

Based Constraint Clustering for Animal Video Data,” in 2024 IEEE 12th

International Conference on Intelligent Systems (IS), 2024, pp. 1–6. (Winner of

the Best Paper Award)

Objective: Develop online constraint-based clustering methods to support real-time

animal re-identification.

Contribution 4 (Presented in Sections 5.2.1-5.2.5): An online constrained clustering

approach (RTSI-ReID) was proposed to process videos of animals on a frame-by-frame

basis. Each frame served to re-identify previously observed individuals while also

detecting those not yet encountered. Clusters were summarised using key functional

statistics. The distinction between re-identification and the recognition of novel

individuals was achieved via a likelihood thresholding mechanism, complemented by

the integration and ongoing application of instance-level constraints maintained across

frames.

To address concept drift, newly added data points influenced the position of the cluster

centroid, drawing it towards the new observation. The extent of this influence was

governed by a tunable function parameter, enabling adaptability to different application

contexts. A forgetting mechanism was intentionally omitted to maintain continuity in

identity representation over time.

Experimental results demonstrated that the proposed method outperformed baseline

techniques as well as a state-of-the-art online person re-identification algorithm across

all five videos in the benchmark dataset. A subsequent ablation study evaluated
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the contribution of individual components within the algorithm. While two variants

exhibited comparable performance, the less complex of the two was selected as the final

proposed solution.

Related Publications:

• S. L. Hennessey, F. J. Williams, and L. I. Kuncheva, “Real-Time Online Animal

Re-Identification from Video using Spatio-temporal Constraints” (Under Review

in Ecological Informatics))

Objective: Develop offline constraint-based clustering methods tailored to the task of

animal re-identification.

Contribution 5 (Presented in Sections 6.2.1-6.2.3): An offline constrained clustering

ensemble (CCEN) was proposed and evaluated using both real-world and synthetic

datasets, encompassing a wide range of cluster shapes and varying levels of clustering

difficulty. The method constructed a library of base partitions using a single constrained

hierarchical clustering algorithm. The resulting dendrogram was subsequently cut at

multiple levels to produce base partitions, each corresponding to a different number of

clusters. A cumulative adjacency matrix was then constructed, from which the final

partition was derived by extracting the connected components of the associated graph.

Experimental results demonstrated that the proposed method consistently outperformed

existing constrained clustering algorithms across all datasets. Furthermore, performance

was shown to improve with an increased number of constraints. A follow-up experimental

study was conducted to examine the impact of ensemble size and the choice of base

clusterers. The findings revealed that only a small ensemble was required to achieve

efficient and robust performance. Among the evaluated base clusterers, constrained

hierarchical clustering with average linkage yielded the best results and was therefore

adopted as the default base method.

Related Publications:

• F. J. Williams, S. L. Hennessey, L. I. Kuncheva, J. F. Diez-Pastor, and J. J.

Rodríguez, “A Constrained Cluster Ensemble Using Hierarchical Clustering
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Methods,” in 2024 IEEE 12th International Conference on Intelligent Systems

(IS), 2024, pp. 1–6.

Contribution 6 (Presented in Sections 6.1.1-6.1.3): A classification-based clustering

(CBC) approach was proposed and evaluated using both unconstrained and

constrained animal video datasets. The method leverages the outputs of tracking

algorithms—specifically, the labelled tracks—to train a classifier, which is subsequently

used to reclassify the raw data via resubstitution. A confusion matrix was then

constructed, implicitly encoding instance-level CL constraints. This matrix was row-

normalised, and the entry with the highest value was identified, corresponding to the

pair of tracks exhibiting the greatest similarity. These tracks were then merged. This

procedure was repeated iteratively, enabling hierarchical merging of tracks until a

predefined number of clusters was obtained.

An experimental study was conducted to evaluate various post-clustering strategies

and different tracking methods. The results demonstrated that the classification-based

clustering approach, which fully incorporated information derived from the tracking

process, achieved the best performance across all datasets. Additionally, the study

highlighted the effectiveness of even relatively simple track types in supporting the

clustering process.

Related Publications:

• F. J. Williams, S. L. Hennessey, L. I. Kuncheva, “Animal Re-Identification in

Video through Track Clustering” Pattern Analysis and Applications 28, no. 3

(2025): 125.

7.2 Future Work

Future work in the field of species-invariant animal re-identification remains extensive,

as the area is still in its early stages of development. Nonetheless, one of the most

compelling and challenging directions—particularly from my perspective—is the

construction of a universal feature representation capable of distinguishing individual
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animals across all species. The following are several proposed avenues for future

research aimed at advancing towards this overarching objective:

• Traditional feature descriptors are often designed for rectangular regions, primarily

due to the widespread adoption of BB extraction algorithms. Consequently,

these descriptors typically produce a fixed number of features, regardless of

the size of the BB. However, such BBs may compromise the quality of the

resulting feature representations, as they frequently include background elements

and, in some instances, additional animals. To address this limitation, image

segmentation techniques can be employed to isolate the target animal, thereby

removing irrelevant information and enhancing the clarity of the representation.

Building on this approach, there is a clear need to develop traditional feature

extraction algorithms specifically designed for arbitrarily shaped image segments.

These algorithms must be capable of generating a consistent number of

features—independent of the segment’s shape or size—while retaining their

capacity to distinguish between individual animals.

• Exploring the integration of simple feature descriptors that capture keypoints,

shape, texture, and colour—such as SIFT, LBP, HOG, and RGB—with image

segmentation methods to construct a more universal and generalisable species-

invariant feature representation. When combined with autonomously generated

instance-level constraints, this approach has the potential to enhance the

discrimination of individual animals across multiple species. Furthermore, it

may facilitate unsupervised learning by reducing the structural complexity of the

data, thereby improving the overall accuracy and scalability of species-invariant

animal re-identification systems.
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