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Abstract

Change Detection and its closely associated sister fields provide funda-

mental components for many vital applications such as quality control, data

mining, power distribution, network intrusion detection and adaptive classi-

fication.

There is a tremendous body of research in statistics, quality control, data

mining and applied areas that has contributed to a diverse arsenal of change de-

tectors. Whilst there has been a greater focus on the univariate problem, there

are many approaches to the more challenging problem of multivariate change

detection. Novel change detection methods continue to be actively developed.

Supervised change detection methods have a clear pathway to improve-

ment, by training on labelled data. However, there are a number of problems

for which abundant labelled data is scarce or unavailable. For these problems,

an unsupervised approach must be taken using incoming data.

It is proposed here to develop general, composable modules to improve

on the existing methods for unsupervised multivariate change detection. The

modules should be composable such that they can all be applied together

without interfering with each other.

This thesis proposes three such modules. Firstly, Principal Components Ana-

lysis (PCA) is assessed as a general purpose feature extraction and selection

step. Secondly, it is proposed to chain univariate change detection methods to

multivariate criteria, such that they act as adaptive thresholds. Finally, univari-

ate change detectors are built into subspace ensembles where each detector

v



monitors a single feature of the input space, allowing them to function as a mul-

tivariate change detector. These three modules are jointly assessed against

a challenging problem of unsupervised endogenous eye blink detection.
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Chapter 1

Introduction

1.1 Overview

Change detection in streaming data is a research area which borrows from

many fields. Data mining and stream processing allow the maintenance of

finite-sized windows from an infinite stream [176, 85, 74, 17], or streaming

statistics [53]. Elements of machine learning and statistics are used to main-

tain probabilistic [187] and empirical models [162]. Information-theoretic

measures [95] and distances and statistical tests [2, 135] offer definitions of

change. Combinations of these components can be and have been applied to

dozens of problem areas, resulting in numerous novel approaches.

We may first draw a distinction between supervised and unsupervised

stream change detection. In the former, after processing each example we

are afforded the true class label, and we can adapt our approach based on

the error. In the latter situation, we have no class labels and must operate

blindly on only the observed data. In this wholly unsupervised formula, change

detection is used to identify unforseen events for which we do not have training

examples, such as equipment failure or malicious network intrusion. This is also

applicable to adaptive learning. Many stream classifiers make the assumption

that data observations are random examples of a fixed statistical process. In

practice, these algorithms are deployed in non-stationary environments where
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the statistical process generating the examples evolves over time, so they

must detect this evolution and adapt the deployed algorithm accordingly.

Unsupervised multivariate change detectors tend to be complex pipelines

of operations, often involving feature extraction, distribution modelling and

statistical tests among other components. This work is intended to develop

general, composable alternatives which perform better than the current meth-

ods for unsupervised multivariate change detection. Their desiderata are (1)

that they should make as few assumptions as possible in order to be widely

applicable and (2) that the application of one should not necessitate or preclude

the application of the others.

1.2 Research Hypothesis

The hypothesis of this thesis consists of five parts. It is proposed that (1) It

is possible to detect change with sufficient accuracy from the distribution of

unlabelled numerical data that is i.i.d under the null hypothesis. (2) Change de-

tection approaches can be broken down into pipelines of operations. With these

in mind, the remaining parts are formulated as follows. (3) Principal Component

Analysis (PCA) is a beneficial and context-free feature extraction method for

multivariate change detection. (4) A chain of one multivariate and one univari-

ate change detector will perform better than the multivariate change detector

alone. (5) An ensemble of univariate change detectors over multivariate data

will perform better than a single multivariate change detector.
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1.3 Thesis Structure

The aim of this work is to lend empirical support to all five parts of the

hypothesis. The chapters are structured around the thesis objectives.

The objective of Chapter 2 is firstly to introduce the reader to the problem of

change detection, provide the necessary background, and show how change

can be detected in the absence of labels. Secondly, it demonstrates how

change detectors can be deconstructed into pipelines of operations. Chapter 3

experimentally investigates the application of Principal Component Analysis.

Chapter 4 experimentally investigates chains of detectors as an alternative

to thresholding for multivariate change detectors. Chapter 5 experimentally

investigates ensembles of univariate change detectors applied to multivariate

data. Chapter 6 applies the techniques introduced in the previous chapters

to the problem of endogenous eye-blink detection, demonstrating both their

viability and composability. Finally, Chapter 7 introduces an open source Java

library developed in the course of this thesis, which encapsulates the work

from Chapters 2–5.

1.4 Contributions

The contributions offered by this thesis are as follows.

1. An overview of the field of change detection and associated problems.

2. A conceptual model of change detector modules, with taxonomies for

each.

3. An experimental study on the use of Principal Component Analysis as a

general-purpose feature extraction step for multivariate change detec-
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tion problems. It is demonstrated that an unconventional use of PCA as

an unsupervised feature extraction technique was strongly correlated

with better change detection performance.

4. An experimental study on the hierarchical application of change detectors

as an alternative to the specially crafted thresholds of each change de-

tection technique. It is demonstrated that using a control chart threshold

as opposed to a bootstrapping procedure was related to a lower false

positive rate.

5. An experimental study on the use of a novel subspace ensemble to

combine existing univariate change detectors over multivariate data.

The novel ensembles considerably outperformed the pure multivariate

change detectors they were compared with.

6. An experimental study of the previous three contributions when applied

to unsupervised endogenous blink detection.

7. A Java library for the composition of change detectors from components,

evaluation of change detectors and artificial change generation.

Introduction 4



Chapter 2

Change Detection in Streaming Data

2.1 Introduction

We can define the change detection problem as follows. A data stream

can be described as a potentially infinite sequence of vectors, X={~x1,~x2,...}

where ~xt is a vector of size p arriving at time t. Suppose that these vectors are

produced by a data source (or alternatively belong to a Concept), S1, but that

at some time, this data source is replaced with another, S2. The objective is to

identify from the data that the source has changed from S1 to S2. A univariate

problem is illustrated in Figure 2.1, where observing a significant change in the

mean would be sufficient to identify the change.
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Figure 2.1: Sample streaming data with a change point at t=1000 from Data Source
1 to Data Source 2.
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Change Detection is used across a multitude of disciplines, especially those

involved with the analysis of sequential data where the source of that data is

impossible to model accurately, or is subject to unexpected change over time.

With the ubiquity of smartphones, internet-attached devices, remote sensors

and computer networks it is now extremely common for sources of data to be

continuous, and arrive at applications in a streaming fashion [54, 51, 184]. By

’streaming’, we refer to an ordered sequence of instances which can only be

processed either individually or in relatively small batches. Data processing

has traditionally involved a phase of data collection, and then operation on the

resultant static dataset. Increasingly, these two phases have become intercon-

nected, as much out of necessity of scale as out of convenience and automation.

The purpose of this chapter is to give the reader an in-depth introduction to

the field of change detection and an understanding of the nature of the problem

that it applies to, especially in the realm of streaming data. It will discuss gen-

eral frameworks and assumptions that underpin many approaches. Section 2.2

discusses types of change and establishes how change is context-dependent.

Section 2.3 overviews applications and related fields to change detection, and

provides a historical perspective. Section 2.4 reviews taxonomies for change

detection and adjacent fields, to show how approaches are organised in the

literature. Section 2.5 builds on the existing taxonomies to show how change

detection can be broken down into a pipeline of modules. Section 2.6 details

building blocks and methods that are used in the course of this thesis. Sec-

tion 2.7 is an overview of how change detection techniques can be evaluated.

The chapter is summarised in Section 2.8.

2.2 The Characterisation and Context of Change

’Change’ is a broad term, difficult to define and quantify, and highly depend-

ent on the application at hand. Since change is context-dependent, it is useful
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to characterise it so that we can reason about the type of change we wish to

detect. This section will discuss how to quantify and reason about changes and

offer a demonstration of how change varies on the context.

2.2.1 Types of Change
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Figure 2.2: Illustration of types of changes over time between two sources, S1 and
S2. [55, 186].

Gama [53] identifies two dimensions of analysis; the causes of change, and

the rate of change. Consider first how a single variable in a sequence might

change over time. There are four common patterns of change over time which

are regularly discussed in the literature [55, 186], illustrated in a single variable

in Figure 2.2.

An abrupt [176, 9, 84, 55] (sudden [186, 168, 41, 160, 55, 87], revolutionary

[66], substitution [134]) change occurs where S1 is replaced with S2 at a single

time point t, illustrated in Figure 2.2a at t= 5. An example of such a change

might be a catastrophic sensor failure.
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When a change occurs over a range of time points, it is referred to in the

literature as a gradual change, although this term can imply one of two types

of change. In the first type, points are sampled with increasing probability over

time from S2 and with decreasing probability from S1, until the concept has

changed completely to S2.
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Figure 2.3: [Probabilities of example sources over time for a gradual change. [127,
134]

For example, a person sees a product they have never bought before on

special offer, and buys it. Having developed a preference, they then buy this

product with increasing frequency on subsequent shopping trips until it is a

staple. This type is what is most commonly referred to [55, 186, 53] as gradual

change, and is illustrated in Figure 2.2b. This form of gradual change is initially

difficult to distinguish from an outlier or noise and as such challenges change

detectors to balance conservatism with responsiveness. The second type is

defined by a slow progression from S1 to S2 via a number of mixed interme-

diate concepts, as illustrated in Figure 2.2c. The latter type is also known as

incremental change. An example could be a slowly degrading sensor. Gradual

and incremental changes are closely related, because a gradual change could

be interpreted as an incremental change in the source probabilities, as in

Figure 2.3. The final type of change in this list is a reoccurring concept, where

a previously encountered concept reappears periodically but unpredictably,

illustrated in Figure 2.2d.

A fifth category, which has been omitted from this list, is outliers. This is

because change detection algorithms should ideally be robust to noise and
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outliers for the task at hand. This is by no means an exhaustive list - as

Ẑliobaité [186] notes, there are 2t ways two data sources can be combined

over a sequence of length t.

There have been a number of attempts in the literature to characterise as-

pects of change in quantifiable ways, or place changes into mutually exclusive

categories [87, 108, 127]. This is an attractive idea to ease the process of

change detector design, especially when there are strong assumptions about

the type of change. However, it is argued by Ẑliobaité [186] that categories

cannot be mutually exclusive.

All these changes over time can be described within a general framework

for non-stationary environments [134, 20]. A data source Si, i = 1, ...,K is

described by a set of class conditional probability density functions pi(~x|y) and

prior probabilities pi(y). If at any given time t there are one or more sources

providing data, then a mixing function υi(t)∈ [0,1], where
∑K

i=1υi(t)=1 for any

t, quantifies the influence of each source in a mixture distribution. Therefore

the distribution for a time t has prior probabilities

p(y,t)=
K∑
i=1

υi(t)pi(y) (2.1)

and class conditional probability density functions

p(~x|y,t)=
K∑
i=1

υi(t)pi(~x|y) (2.2)

This allows changes to be expressed in terms of mixing proportions of υi(t).

2.2.2 Streaming Data and Class Labels
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This thesis focusses on unsupervised change detection, but it is useful to

qualify what we mean by supervised, semi-supervised and unsupervised in

the context of streaming data. In Equations 2.1 and 2.2 above, we consider

changes probabilistically over time. In this model, changes arise from differing

class distributions between data sources. Assuming that the data sources are

latent and depending on the latency of class labels, we can think about the

streaming data in the following ways.

Starting with the supervised scenario, let each observation ~xt of X at time

t be a member of some class, yi, i= 1,...,K. Let Y denote the sequence of

class labels for X. Here, each example in the stream is paired with its true

class label, so X and Y have a one-to-one correspondence. The class labels

may be available after each example, or in batch after some delay. We denote

this as being a sequence of pairs of the form zt = (~x,y), Z = {z1,z2,...}. In the

unsupervised scenario, we deal only with a sequence of observations, X.

The availability of labelled data is often scarce [24, 124], so it may transpire

that there are available class labels for some observations but not all – i.e.

|X|> |Y|>0. This is termed a semi-supervised scenario.

Labels?

Features
(Multivariate)

Classifier
Univariate

change
detection

Threshold

Change

Unsupervised
multivariate

change detection

Threshold

Change

Yes

No

Error

Figure 2.4: If labels are immediately or eventually available then we have the option
of performing change detection on the univariate error stream of the classifier.

Figure 2.4 illustrates that if class labels are not available, we must inspect

the data directly. If they are available then we have the option of performing

univariate change detection on the error stream of a classifier, although this

will only reveal changes which affect the classification accuracy. The former
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scenario is the focus of this thesis, but in the supervised or semi-supervised

scenario both options are available to us.

2.2.3 Context-Dependent Definition of Change

The definition of change varies depending on the context. We will first

discuss the supervised adaptive learning problem as an example context.

Consider the problem of streaming classification in the presence of concept

drift – adaptive learning. A classifier assigns labels to incoming examples, and

the ground truth is received at some later point. If the optimum classification

boundary changes over time, the classifier will perform poorly. The problem

context is to minimise the error rate of the classifier. But not all changes in

the distribution of incoming data will result in an increased classifier error

rate [104]. Equally, a change in the error rate might not be accompanied by a

change in the distribution of the data. It is for this reason that the vast majority

of change detection for adaptive learning monitors the classifier error rate

directly. The supervised learning scenario is a good example of the contextual

nature of change, because it can be expressed formally.

Any classification problem can be described by Bayesian Decision Theory

[134, 55, 39]. For a sequence of examples of the form zt =(~x,y), let p(y) be the

prior probabilities of the classes and p(~x|y) be the class conditional probability

density functions. Then using the Bayes rule (Equation 2.3), the classification

decision is made on the posterior probabilities of the classes, p(y|~x).

p(y|~x)=
p(y)p(~x|y)

p(~x)
(2.3)
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Figure 2.5: A change in the class conditional probabilities p(~x|y), which will affect
the classifier error rate, but exhibit no change in the distribution of the raw data, p(~x).

p(~x)=
K∑
y=1

p(y)p(~x|y) (2.4)

Table 2.1: Implied meaning of changes in the component probabilities.

Change in Implies
p(~x) The distribution of the incoming data has changed.
p(~x|y) True class boundaries have changed.
p(y|~x) The optimal classification decision has changed.

Table 2.1 lists the implications of change in these component probabilit-

ies [82, 186]. Changes in the prior and class conditional probabilities might

adversely affect our classifier performance [56], only if the posterior probab-

ilities change as a result. Figures 2.5 and 2.6 illustrate the effect of changes

in p(~x|y) and p(~x) respectively. The change in p(~x|y), despite being impossible

to detect from the unlabelled data, is the contextually important change as it

affects the posterior probabilities p(y|~x). However, posterior probabilities may

also change without affecting the error rate, as in Figure 2.6. Crucially within

the adaptive learning scenario, only a supervised change detector which is

monitoring the classifier error rate will be able to detect changes in p(~x|y) as

in Figure 2.5. An unsupervised change detector, despite the advantage of not

needing to wait for ground truth, will only be able to detect changes in p(~x).
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Figure 2.6: A change in the distribution of the raw data p(~x) which will not affect the
classifier error rate.

Within the adaptive learning literature, these differing types of drifts are

distinguished as follows.

Real Concept Drift [175, 168, 34, 41, 55] Concept Shift [147], Conditional

Change [56]. Any change in p(~x) or p(~x|y) leading to change in the

posterior probabilities, p(y|~x).

Virtual Concept Drift [175, 168, 34, 41, 55] Sampling Shift [147], Feature

Change [56], Temporary Drift [108]. The distribution of the data p(~x)

changes without affecting the posterior probabilities p(y|~x).

However, as Gama et al. [55] note, the term Virtual Drift in particular has

had numerous interpretations in the literature, meaning an incomplete data

representation in Widmer and Kubat [175], a change in both p(~x) and p(y|~x) in

Tsymbal [168], and a change in p(~x) but not p(y|~x) in Delany et al. [34].

A tangential problem to concept drift is that of concept evolution [123, 129,

128], which is the emergence and disappearance of classes in the data stream.

Consider a semi-supervised scenario, where there is an abundance of data

for modelling p(~x) and a scarcity of data for modelling p(~x|y). Starting with a

minimal assumption of p(~x|y), we would be very interested in changes in p(~x)

such as those in Figure 2.6, to detect evolution of the classes over time.

Change Detection in Streaming Data 13



In summary, if class labels are not available then unsupervised change

detection may only detect changes in p(~x). In supervised and semi-supervised

scenarios, a hybrid approach may be used to detect changes in both p(~x) and

p(~x|y), but it depends on the context of the problem.

2.3 An Overview of Change Detection

2.3.1 Applications

In the last half century, there has been a proliferation of interest in applied

change detection techniques. With a diverse range of applications, there is sig-

nificant motivation for improving change detection performance. A selection

of these applications are summarised below.

Quality control Quality control is the discipline that inspired the develop-

ment of change detection techniques, with the aim of ensuring consistent

quality of manufacturing by identifying defective items or batches [150,

137, 143, 130, 105].

Classification Classifiers are often deployed in environments where the

nature of the classification problem is subject to change over time.

Change detection is used to monitor the classifier error rate or the input

space to detect change that would adversely affect the classifier [54, 176,

84, 14, 18]. It is then possible to trigger adaptation mechanisms to resolve

the problem. For example, spam filtering systems rely on the classific-

ation of emails, the content of which is subject to constant change. [34].

Data mining When trying to identify significant events in large volumes of

data, change detection or outlier detection is often employed. Some
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example areas include fraud detection [66, 44], climate change detec-

tion[10, 141] and financial time series analysis [107, 136].

Monitoring systems Change detection is used to monitor data from real-

time systems to identify problems. For example, network intrusion detec-

tion [156, 164, 22], fault detection [132], ECG segmentation [126] and

bio-signal monitoring [68, 157].

2.3.2 Related Fields

(A)
Change

Detection

(B)
Anomaly
Detection

(C)
Concept

Drift
Detection

(D)
Image

Change
Detection

(E)
Statistical
Process
Control

(F)
Sequential
Analysis

(G)
Change

Point
Detection

(H)
Outlier

Detection
(I)

Novelty
Detection

(J)
Adaptive
Learning

Figure 2.7: Closely related fields to change detection.

Figure 2.7 shows the adjacent fields to change detection. Approaches for

change detection are often transferable to similar problems, and vice versa.

For example, the subsequently referenced publications frequently review the

same, or very similar approaches. Basseville and Nikiforov [9] is a substantial
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review of abrupt change detection techniques from a data mining perspective.

Gama [53] offers an overview also in data stream mining. Ghosh and Sen [58] is

a handbook for sequential analysis. Montgomery [130] is a book of techniques

for statistical process control. In novelty and anomaly detection, there are

method reviews by Markou and Singh [122] and Pimental et al. [139], in outlier

detection, by Ben-Gal [12], in climate change detection, by Reeve et al. [141],

and in change point detection, by Aminikhanghahi and Cook [6]. Terminological

differences can be significant, usually in referring to differing assumptions as

well as applications. A brief summary follows of each field from Figure 2.7 and

their problem interpretations.

(A) Change Detection is attempting to detect when the concept that underlies

the data has changed.

(B) Anomaly Detection is the detection of patterns in data that do not conform

to a well defined notion of normal behaviour [28].

(C) Concept Drift Detection refers to change detection usually in the context

of an evolving classification problem. ’Drift’ is used to refer to gradual

change, for example, the target concept changing over time and inval-

idating a classifier [53].

(D) Image Change Detection is detecting changes or motion in images or

videos, usually through computer vision techniques or frame-to-frame

difference images. It is often referred to simply as change detection.

(E) Statistical Process Control refers to a particular family of methods that

model a data stream as a stochastic process, and assess whether that

process is ’in control’ or ’out of control’.

(F) Sequential Analysis is a term which implies a statistical approach where

the sample size is not fixed. It is typically associated with methods that
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use cumulative statistics, such as a ratio of sequential probabilities over

a sequence of data [171, 52, 55].

(G) Change Point Detection implies that the objective is not only to detect a

concept change, but also estimate its time or sequential position.

(H) Outlier Detection refers to the detection of individual points that deviate

significantly from the population [28, 63].

(I) Novelty Detection is the detection of previously unseen, or ’novel’ patterns

in data [28].

(J) Adaptive Learning is the process of adapting a classifier to a changing classi-

fication problem, typically relying on change detection in some capacity.

Of the fields just discussed, adaptive learning and typically concept drift

refer to the supervised problem. It is clear from the above summaries that

methods developed to solve a particular problem are likely to be applicable

to others. In many cases, the difference in problem statements is largely

semantic. For example, by detecting concept change (Change Detection)

we have implicitly arrived at an estimation of a change point (Change Point

Detection). Detection of previously unseen patterns in data (Novelty Detection)

may strongly imply concept change (Change Detection).

Subjectively speaking, outlier detection, novelty detection and change

detection occupy points along a continuum as depicted in Figure 2.8. If outlying

data is persistent over time, we might at various points along the continuum

call this concept a novelty or anomaly, and eventually a change. Techniques

discussed within this thesis are applicable along this continuum assuming that

they offer a parameter related to the persistence of change.
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Single outlying datum Persistent outlying data

Outlier Change

Figure 2.8: A selection of the fields lie subjectively along a continuum of outlier
persistence.
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Figure 2.9: Early advances in Change Detection 1930–1960.

2.3.3 A Chronology of Advances

Applied change detection has been an active area of research since at least

the early 20th century, pioneered by Shewhart’s 1931 work on the 3-sigma con-

trol chart [150] as a method for quality control in manufacturing. The Central

Limit Theorem implies that the average of a sequence of independent observa-

tions from any distribution will itself be normally distributed. The three-sigma

chart deems a process to be ’Out of control’ if any observation lies greater

than three standard deviations from the sample mean. In 1959, Roberts [143]

formulated a control chart based on geometric moving averages1, to incre-

mentally downweight old data. Also in 1959, a multivariate T 2 control chart

was formulated by Jackson [76]. Today there are many variations on the control

chart, which can describe any change detection scheme that defines limits on

a statistic. A number of multivariate control charts became prominent in the

80s and 90s. MacGregor and Kourti [118] offer a review of multivariate control

charts. They discuss multivariate T 2 and χ2 Shewhart charts, multivariate

cumulative sum (CUSUM) charts, and a multivariate EWMA chart.

1Frequently called an exponentially-weighted moving average (EWMA) chart
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In 1943, Abraham Wald devised the Sequential Probability Ratio Test (SPRT)

– a statistical hypothesis test where the sample size is not fixed in advance. The

impact of this technique on quality control for military manufacturing was not

lost to the Allies, and it was classified under the Espionage Act [172], eventually

published after the war [171]. This test would become the basis for many future

approaches, and is the foundation of the field of Sequential Analysis [77]. The

SPRT framework underpins a significant proportion of well known methods such

as the CUSUM procedure and the Page-Hinkley test, which were first published

in 1954 by Page [137]. In 1961, Hotelling’s T 2 test for multivariate data [70]

was adapted into sequential form by Jackson and Bradley [77].

As a statistical problem, change detection has had both Bayesian and Fre-

quentist interpretations [9], with Sequential Analysis being the latter. The

first Bayesian interpretation was by Girschick and Rubin [59] in 1952, followed

by work on optimality by Shiryaev [151] in the 1960s. In 2007, Adams and

MacKay [1] published a complete Bayesian framework for streaming change

detection.

From the late 1980s onwards, there was a proliferation of interest in change

detection techniques to adapt classifiers learning from noisy or concept-drifting

data streams (adaptive learning) and also for making sense of very high volume

data streams (data mining). In the early 90s, two large reviews of change de-

tection techniques were published; Basseville and Nikiforov [9] and Ghosh

and Sen [58]. Research from these adjacent communities yielded well known

adaptive learning systems such as STAGGER by Schlimmer and Granger [149],

FLORA by Widmer and Kubat [176] and SEA by Street and Kim [160]. Inspired

by efficient stream classification approaches like VFDT [74], data management

techniques like ADWIN [17] were developed, which can act as change detectors.

Most of these systems monitor performance indicators in the data [53] or the

log likelihood ratio of an individual observation in the SPRT-derived systems.
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As computing power becomes more readily available, methods compare the

distributions of two time windows of the data instead [83, 17, 102].

Most recently, there is increasing interest in the use of ensemble and con-

sensus clustering approaches [89, 60, 119, 177, 38, 64, 166] as well as neural

networks [178, 133].

2.4 A Review of Taxonomies

There are many avenues from which to approach a change detection prob-

lem and this makes a taxonomy very challenging. Taxonomic surveys of

change detection approaches often focus on a single application area [55,

186], or sub-domain [139, 63, 181]. Wide ranging surveys are rare due to the

non-mutually exclusive nature of many potential categories, and the scale

of review required. Here we will review a selection of the most transferable

taxonomies in the literature on change detection, anomaly, novelty and outlier

detection, adaptive learning and change point detection. Table 2.2 lists the top

level categories of the most transferable taxonomies from the subsequently

discussed publications.

Gama et al. [55] is a survey of approaches for concept drift adaptation. The

survey focuses specifically on adaptive learning rather than change detection,

but some of the taxonomies are transferable. They create modular taxonomies

which describe a particular part of any given adaptive learning approach. Their

taxonomies are; data management, forgetting mechanism, change detection,

learning and loss estimation. The first three are transferable to our general

case here. The learning and loss estimation taxonomies are less transferable,

because they are properties closely tied to supervised adaptive learning. The

data management and forgetting mechanism categories refer to how the meth-

ods manage updating of the model with new information, and the phasing out
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of old information. Change detection methods are placed into four categories

based on common algorithmic roots. Sequential Analysis refers to detectors for

which decisions are based on a ratio of sequential probabilities or use cumulat-

ive statistic, like Wald’s Sequential Probability Ratio Test (SPRT) [171]. Control

charts refers to detectors which model the input as a stochastic process, and

decide whether this process is "In control" or "Out of control" based on a set of

rules, as Shewhart’s original control chart [150] did. Detectors that monitor the

distributions of two time-windows also occupy a category, typically keeping

a window of reference data and comparing its distribution to a constantly up-

dated window of new data. The final category is contextual approaches, which

partition the input space and attempt to identify localised concepts in the data.

In a semi-supervised construction, a classifier is then trained to recognise these

localised concepts in subsequent data to monitor the evolution of the stream.

Basseville and Nikiforov [9] is a reference text on the detection of abrupt

changes. Whilst not offering an explicit taxonomy, we can take the categor-

ies from the sections of Chapter 2, "Change Detection Algorithms", where

they present similar methods grouped together. These include control charts,

filtered derivative methods, sequential probability ratio tests and bayes-type

algorithms.

Pimentel et al. [139] review the related field of novelty detection. They

place methods into 5 global categories as follows. Probabilistic methods are

those which estimate the probability density function (pdf) of the data and

subsequently test the likelihood of future observations against it. Distance

based methods include clustering and nearest-neighbour approaches, which

rely on distance metrics between data points and cluster centroids. Recon-

struction based methods train an estimator on incoming data, and attempt to

predict the next example in the stream. The distance between this prediction

and the actual observed value is used to calculate a novelty score. Domain-

based methods use training data to define a class boundary (domain). This
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Table 2.2: Transferable taxonomies of similar methods, and their top level categories

Taxonomy Top Level Categories
Change Detection for Concept
Drift, Gama et al. [55] • Sequential Analysis

• Control Charts
• Monitoring two distributions
• Contextual

Abrupt Change Detection,
Basseville and Nikiforov [9] • Sequential Probability Ratio Tests

• Control Charts
• Filtered Derivatives
• Bayesian

Novelty Detection, Pimentel et
al. [139] • Probabalistic

• Distance-based
• Domain-based
• Reconstruction-based
• Information-theoretic

Supervised Change Point De-
tection, Aminikhanghahi and
Cook [6] • Multi-class classifiers

• Binary classifiers
• Virtual classifiers

Unsupervised Change Point
Detection, Aminikhanghahi
and Cook [6] • Likelihood Ratio

• Subspace model
• Probablistic methods
• Kernel based methods
• Graph based methods
• Clustering

Anomaly Detection, Chandola
et al. [28] • Classification Based

• Clustering Based
• Nearest Neighbour Based
• Statistical
• Information Theoretic
• Spectral
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then decides if an observation will be considered a novelty, irrespective of

the observed class density. Information theoretic approaches base decisions

upon the information content of a dataset by analysing measures such as the

entropy, although this is implied to be a typically offline approach, utilising the

entire dataset. Pimental et al. further divide probabilistic methods into para-

metric and non-parametric categories depending on whether they estimate

parameters for a distribution (e.g. Gaussian Mixture Model) or build a model

from the density of the input space (e.g. Kernel Density Estimation).

Aminikhanghahi and Cook [6] survey and categorise methods for change

point detection in time series. They discern firstly between Supervised and

Unsupervised methods, producing separate taxonomies for each. By Multi

class classifiers, they refer to a supervised learning scenario where the classes

are known a priori, a classifier is trained from a training set containing all such

classes and tested on a sliding window over the data. Binary or one-class

classification comprises a supervised learning scenario where the concept

transitions in the data stream represent one class, with the other class com-

prising all other data.

Chandola et al. [28] is a wide-ranging survey of anomaly detection delib-

erately attempting to bridge several research areas and application domains.

Their top level categories are Classification Based, Clustering Based, Nearest

Neighbour Based and Statistical. However, from their meta analysis of reviews

they identify two other common categories, Information Theoretic and Spectral.

Žliobaité [186] presents an overview of learning under concept drift, with a

taxonomy of concept drift learners. The taxonomy is a wider focus on adaptive

learning techniques, abstracted too far from change detection techniques

to be directly transferable here. Gupta et al. [63] is a survey of outlier de-

tection in temporal data, which takes a data-first perspective. Whilst under

the "Data Streams" category the taxonomy contains common subcategories
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Table 2.3: Comparison matrix showing categories for change detection techniques
appearing in at least two of the reviewed surveys. The field each survey is drawn from
is denoted by the following acronyms. Concept Drift: CDr, Novelty Detection: ND,
Change Point Detection: CPD, Anomaly Detection: AD, Change Detection: CD.

Category
Supervised ◦ ◦ ◦

Unsupervised ◦ ◦
Likelihood Ratio ◦ ◦ ◦
Control Chart ◦ ◦

Sequential Analysis ◦ ◦
Probabalistic ◦ ◦

Subspace ◦ ◦
Clustering ◦ ◦

Information Theoretic ◦ ◦
Distance-Based ◦ ◦
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with Pimental et al. [139] (Evolving Prediction Models' Reconstruction-based,

Distance Based outliers' Distance-based), the data-first approach is too re-

strictive when categorising change detection techniques for the purposes of

this thesis.

The comparison matrix in Table 2.3 provides some interesting insights into

the proximity of fields. We see considerable proximity between change detec-

tion and concept drift detection, and between anomaly and novelty detection.

The concept drift survey naturally omits the "supervised" category because

adaptive learning is a supervised problem. The novelty and anomaly detec-

tion surveys were more likely to categorise supervision and discuss empirical

spatial differences in the data rather than probabilistic modelling of a process.
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2.5 Modular Taxonomies for Change Detectors

ForgettingPreprocessing

Data Management

Stream Processing

Criterion Modelling

Decision

Change Detection

Input

Output

Figure 2.10: Flowchart demonstrating the pipeline relationship between modules
in a change detector.

The categories discussed in Section 2.4 are not mutually exclusive. Ob-

serving that the categories generally refer to a particular characteristic of a

method, Figure 2.10 proposes a general pipeline of modules for building change

detectors, split into two primary groups – Stream Processing and Change Detec-

tion. The former group refers to the memory management of streaming data

(e.g. windowing) and the extraction of features ready for change detection.

The latter refers to the actual change detection process using those features.

The modules are defined as follows.
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Data Management takes examples from the data stream and retains an

appropriate amount in memory for the task at hand.

Forgetting removes examples from the memory when they are deemed no

longer relevant.

Preprocessing extracts features of interest for the task at hand.

Modelling builds an estimation of the data source or the properties of the

data source to reason about.

Criterion reduces the problem to state about which we can make a decision.

Decision makes a binary decision about the criterion it is provided: change

or no change.

Note that the construction of the flowchart implies that a number of steps

are optional. For example, a simple three-sigma control chart might take

one example at a time (data management), calculate the new rolling mean

and variance (criterion), and check whether the mean is within three stand-

ard deviations (decision). This particular detector takes a path which omits

preprocessing, forgetting and modelling.

Figure 2.11 lists taxonomies for the modules which were just defined. The For-

getting Mechanism and Data Management taxonomies from Gama et al. [55],

are already modular, because they describe particular facets of stream pro-

cessing and are therefore applicable beyond adaptive learning. The Criterion

categories are informed from the categories reviewed in Tables 2.2 and 2.3.

A taxonomy for the Decision module was omitted because it is typically a

threshold tied to the criterion assumptions.

In addition to the modules, Figure 2.12 lists two global taxonomies that any

change detection approach can be placed within. Supervision depends on
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Data Management
Single Example

Multiple Examples
Fixed Size

Variable Size

Forgetting
Abrupt

Window
Fixed Size

Variable Size
Sampling

Gradual

Preprocessing
Feature Extraction

Feature Selection
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Parametric

Semi-Parametric

Nonparametric

Criterion

Statistical

Error

Probabilistic

Distance-based

Information-theroetic

Figure 2.11: Modular taxonomies for change detection. Blue relates to Stream
Processing and green to Change Detection.

Supervision

Supervised

Semi-Supervised

Unsupervised

Framework

Sequential Analysis

Control Chart

Contextual

Monitoring Distributions

Figure 2.12: Global taxonomies for change detection.

whether the method incorporates labelled training data in its workflow. "Frame-

work" is the taxonomy by Gama et al. [55] which discriminates by common

algorithmic roots.

2.6 Methods for Change Detection

In the previous sections, we have seen how change detection methods

are categorised in the literature. This section will provide detail on specific

building blocks and change detection methods that are used throughout the

experimental portions of this thesis.
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2.6.1 Building Blocks

Distances and Divergences

We commonly wish to quantify the difference between distributions, or

express the likelihood that a particular example belongs to a distribution. The

following measures can fulfil this purpose.

The Mahalanobis distance is a multivariate distance between a p dimen-

sional point ~x and a distribution P where ~µ and Σ respectively are the mean

and covariance of P .

DM(~x,P )=

√
(~x−~µ)TΣ−1(~x−~µ) (2.5)

Intuitively, this is related to the Euclidean distance, except taking into account

the covariance of the distribution. The distance reduces to the Euclidean

distance if Σ is the identity matrix. For normal distributions, the squared

Mahalanobis distance is chi-squared distributed, with p degrees of freedom.

The Bhattacharyya distance approximates the overlap between two distri-

butions. Let P (x) andQ(x) be probability distributions of the random variable

x. Assuming, without loss of generality, that P and Q are continuous, the

Bhattacharyya distance between the two distributions is

DB(P,Q)=−ln

∫ √
P (x)Q(x)dx. (2.6)
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In this thesis we use the formulation of the distance between two multivariate

Gaussians

DB(P,Q)=
1

8
(~µP−~µQ)TΣ−1(~µP−~µQ)+

1

2
ln

(
detΣ√

detΣPdetΣQ

)
,

P ∼N (~µP ,ΣP ), Q∼N (~µQ,ΣQ),

Σ=
ΣP +ΣQ

2

(2.7)

where ~µp and Σp is the mean and covariance of distribution P , and Σ is the

pooled covariance matrix of P andQ.

The Kullback-Leibler divergence [95], also called relative entropy is a meas-

ure of the difference between two probability distributions. For two discrete

distributions P andQwithK bins, the statistic is defined as:

DKL(P ||Q)=
K∑
i=1

P (i)log
Q(i)

P (i)
(2.8)

If the two distributions are identical, then the value ofDKL(P ||Q) is zero. A

larger value indicates a higher likelihood that P andQ are different.

Tests of Equality

Consider the basic assumption in change detection that we expect to see

samples drawn from different data sources. Taking two independent, time-

adjacent samples from a data stream, we wish to test the null hypothesis that

both samples came from the same data source. Here we discuss several such

tests.

The Mann-Whitney U test [121], also known as the Wilcoxon Rank Sum test

is nonparametric test for median equivalence of two continuous, univariate
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samples. Rank based statistics are difficult to generalise to multiple dimen-

sions because of the difficulty of ordering the data [33]. Despite this, Kifer et

al. [83] showed that it was possible in principle and Lung-Yut-Fong et al. [117]

proposed a generalisation called MultiRank.

Hotelling [70] proposes a statistical test for equivalence of the means of two

multivariate samples, W1 andW2. The null hypothesis is thatW1 andW2 are

drawn independently from two multivariate normal distributions with the same

mean and covariance matrices. Denote the sample means by ~̂µ1 and ~̂µ2, the

pooled sample covariance matrix by Σ̂, the cardinalities of the two windows

byM1 = |W1| andM2 = |W2| and the data dimensionality by p. The T 2 statistic

is calculated as

T 2 =
M1M2(M1+M2−p−1)

p(M1+M2−2)(M1+M2)
×(~̂µ1−~̂µ2)

T Σ̂
−1

(~̂µ1−~̂µ2) (2.9)

Under the null hypothesis, T 2 has F distribution with degrees of freedom

p and M1 +M2−p+1. The T 2 statistic is the Mahalanobis distance between

the two sample means multiplied by a constant. The p-value of the statistical

test is instantly available and the desired significance level will determine the

change threshold.

The obvious problem with the Hotelling test is that it is only meant to detect

changes in the position of the means. Thus it will not be able to indicate change

of variance or a linear transformation of the data that does not affect the mean.

Maintaining Statistics

Change detection algorithms depend on the maintenance of basic statistics

over streaming data. To classically calculate the mean and variance at time t

would requireO(t) space complexity. Therefore simple cumulative estimations
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are very useful [53]. To arrive at cumulative estimations of the mean, variance

and standard deviation we need to store three cumulative statistics.

• The number of examples, t.

• The sum of the data points from 0...t,
∑
xi.

• The sum of the squares of the data points from 0...t,
∑
x2i .

Then the estimated mean, variance and standard deviation at time t is given

by

µt =

∑
xi
t

(2.10)

σ2
t =

∑
x2i
t
−µ2

t (2.11)

σt =
√
σ2
t (2.12)

These measures easily extend into the general multivariate case – to es-

timate these statistics for a data stream with p features will only requireO(3p)

space.

Sliding Windows

Consider that we are monitoring a stream that we expect to change. If the

stream has changed at time t, then all xi where i<t are now likely to provide

a poor representation of the new concept in the stream. This is why commonly,

algorithms are concerned with looking at the recent past, rather than the whole

past [53]. This is achieved through maintaining windows of recent examples,

in effect sliding them over the data, hence the term sliding window. A typical

implementation might involve any first in first out (FIFO) data structure, such

as a queue.
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Figure 2.13: Fixed size single sliding window.

~x0 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x7 ~x8 ~x9 ~x10
W1 W2

W1 W2

W1 W2

W1 W2

Figure 2.14: Pair of fixed size sliding windows with fixed reference window.

~x0 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x7 ~x8 ~x9 ~x10
W1 W2

W1 W2

W1 W2

W1 W2

Figure 2.15: Pair of fixed size adjacent sliding windows.

In the simplest case, we choose a fixed window size as a parameter of our

change detection algorithm. As we encounter each new example, we append

it to the windowW∪~xt. Simultaneously, we drop the oldest element from the

windowW \~xt−|W |. This process is illustrated in Figure 2.13.

A single window is useful for methods which compute statistics on recent

data. An alternative construction is where the data in two windows is com-

pared to establish whether they were generated by the same process. The

two common dual-window schemes are illustrated in Figures 2.14 and 2.15. In

the first, we fix the reference window to be the first examples we encounter,

and slide a second window over the data. Typically if change were detected,

the windows would be cleared and a new reference window taken from that
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Small |W | Large |W |

Trigger Happy Too Conservative

Figure 2.16: The continuum of window size choices.

point in the stream. In the second, we effectively take a single sliding window

of 2|W | elements, and divide it into head and tail windows for comparison.

There is a continuum that must be straddled to achieve an ideal window

size, depicted in Figure 2.16. A window that is too small will not include enough

examples to be a stable description of the concept [176] – noise or natural

variation in the stream may trigger a false alarm. On the other hand, a win-

dow that is too large may be very slow to detect concept drift due to the

weight of previous examples. Fixing a window size introduces a parameter into

change detection algorithms that may require optimization, tuning or insight

to achieve an optimal outcome. Whilst this may be an acceptable cost, there

has been considerable research into dynamic sliding windows which adjust to

supposedly optimal lengths from the observed data.

The adaptive windowing scheme for FLORA by Widmer and Kubat [174, 176]

was one of the first such algorithms. FLORA is a rule-based stream classifier

that builds a concept description online. Incoming examples are placed into

three sets of descriptors – accepted, potential and negative, depending on

their compliance with the current hypothesised concept. The window size is

adapted using a heuristic based on the current accuracy and the proportion

of accepted descriptors in the current window. Klinkenberg and Renz [85]

adapted window size based on the accuracy, precision and recall at the current

point in the stream. Klinkenberg and Joachims [84] adjusted the window size to

minimise the estimation of the leave-one-out error. Gama et al. [54] adjust to

minimise the generalisation error. Bifet and Gavaldà [17] split a window using

a threshold of subwindow differences based on the Hoeffding bound. Koychev

and Lothian [88] split a window using a procedure based on the golden ratio.
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2.6.2 Univariate Methods

Sequential Analysis and Control Charts

Recall the categories from the framework taxonomy of Gama et al. [55] in

Figure 2.12. In the literature, the terms "Sequential Analysis" and "Control

Charts" are not used mutually exclusively [55, 145]. The canonical Sequential

Analysis method is the Sequential Probability Ratio Test (SPRT) [172]. Consider

a sequence of examplesX=[x1,...,xN ]. The null hypothesisH0 is thatX is gen-

erated from a given distribution P (x), and the alternative hypothesisH1 is that

X is generated from another (known) distributionQ(x). A cumulative statistic

ΛN is calculated as the logarithm of the likelihood ratio for the two distributions:

ΛN =
N∑
i=1

log
P (xi)

Q(xi)
(2.13)

Two thresholds, α and β are defined depending on the target error rates.

If ΛN < α, H0 is accepted, else if ΛN > β, H1 is accepted. In the case where

α≤ΛN ≤β, the decision is postponed, the next example in the stream, xN+1,

is added to the set, and ΛN+1 is calculated and compared with the thresholds.

Control charts are a category of methods that are based upon Statistical

Process Control (SPC), originating from the work of Shewhart [150]. In SPC, the

modus operandi is to consider the problem as a known statistical process, and

monitor its evolution. Figure 2.17 shows the canonical XBar control chart from

the MATLAB statistics toolbox [125]. Observations of manufactured products

X=[x1,...,xN ], (e.g. load bearing capacity of a joint) are taken over time and

batched intoK fixed size subgroups S=[S1,...,SK ]. A chart is then plotted. The

centre line x̄ of the chart is calculated as the mean of the subgroup averages.

A thresholding scheme defines upper and lower limits on an in-control process,
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Figure 2.17: An example XBar chart created by the MATLAB statistics toolbox. [125]

calculated as x̄±3σ̄. There are numerous types of control chart including X-Bar,

Moving Range, and Individuals. A control chart simply comprises a plotted

statistic and control rules or limits to decide whether the process under obser-

vation is in control or out of control. Under this definition, cumulative statistics

from Sequential Analysis such as SPRT and CUSUM which define thresholds

can be and often are described as control charts.

Cumulative sum (CUSUM) [137] is a sequential analysis technique based on

the principle of accumulating how much a statistic varies from a desired value.

The test is widely used for detecting significant change in the mean of input

data. Starting with an upper cumulative sum statistic g
a

0 =0, CUSUM updates

g
a

for each subsequent example as

g
a

t =max(0,g
a

t−1+(xt−δ)) (2.14)

where δ is the magnitude of acceptable change. Change is signalled when g
a

t >

λ, where λ is a fixed threshold. If we wish to detect both positive and negative

shifts in the mean, we can also compute and threshold the lower sum as

g
`

t =min(0,g
`

t−1−(xt−δ)) . (2.15)
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The Page-Hinkley test [137] is derived from CUSUM, and adapted to detect

an abrupt change in the average of a Gaussian process [55, 53, 132]. First,

the cumulative difference between the observed values and their mean at the

current point in time is calculated.

mt =
t∑

i=1

(xi−µt−δ) (2.16)

where the δ parameter again represents the magnitude of acceptable change.

The minimum observed value of this statistic is retained asMt =min{m1,...,mt}.

Taking the statistic as

PHt =mt−Mt (2.17)

change is signalled if PHt>λ, where λ is a chosen threshold.

There are a number of control chart based approaches employed for concept

drift detection in the literature, typically assuming the supervised setting. As

the canonical chart relies on direct observations of a fixed number of examples,

stream classification problems typically use a construction as follows. Assume

that we monitor classification error. This error can be interpreted as a Bernoulli

random variable with probability of “success” (where error occurs) p. The

probability is unknown at the start of the monitoring, and is re-estimated with

every new example as the proportion of errors encountered thus far. At ex-

ample i, we have a binomial random variable with estimated probability pi and

standard deviation σi =
√
pi(1−pi)/i. One way to use this estimate is described

below [54, 55]:

1. Denote the (binary) streaming examples as x1,x2,.... To keep a running

score of the minimum p, start with estimate pmin =1, and σmin =0. Initialise

the stream counter t←1.

2. Observe xi. Calculate pi and σi. For an error and a standard deviation (pi,

σi) at example xi, the method follows a set of rules to place itself into one
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of three possible states: in control, warning, and out of control. Under the

commonly used confidence levels of 95% and 99%, the rules are:

• If pt+σt<pmin+2σmin, then the process is deemed to be in control.

• If pt + σt ≥ pmin + 3σmin, then the process is deemed to be out of

control.

• If pmin+2σmin≤ pt+σt<pmin+3σmin, then this is considered to be

the warning state.

3. If pt + σt < pmin + σmin, re-assign the minimum values: pmin ← pt and

σmin←σt.

4. t← t+1. Continue from 2.

Drift Detection Method (DDM) [54] is designed to monitor classification

error using the above control chart construction for streaming classification.

It assumes that the error rate will decrease while the underlying distribution

is stationary. Similarly, the Early Drift Detection Method (EDDM) [8] is an

extension of DDM which takes into account the time distance between errors

as opposed to considering only the magnitude of the difference, which is aimed

at improving the detector’s performance on gradual change. HDDMA and

HDDMW are extensions which remove assumptions relating the to probability

density functions of the error of the learner. Instead, they assume that the

input is an independent and bounded random variable, and use the confidence

interval from the Hoeffding Bound [48]. The Hoeffding bound implies that the

true mean of a real-valued random variable r with rangeR for which we have

n observations is at least r̄−εwith probability 1−δ [36, 67] where

ε=

√
R2ln(1/δ)

2n
(2.18)
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It is one of several useful concentration inequalities on random variables

along with the Chebyshev, Chernoff and Bernstein bounds [53] which find

common use in data stream mining.

The geometric moving average chart (GEOMMA), introduced by Roberts

[143], assigns weights to each observation such that the weight of older obser-

vations decreases in geometric progression. This biases the method towards

newer observations, improving the adaptability. This concept is applied in the

EWMA charts used by Ross et al. [144], which are also designed to monitor clas-

sification error. They maintain a weighted estimate of the error rate, and signal

change based on the expected mean and standard deviation of this estimate.

Monitoring Two Distributions

Another common pattern found in change detectors is monitoring the distri-

butions of two windows of data. This framework is rigourously defined by Kifer

et al. [83]. The basic construction involves a reference window composed of

old data, and a detection window composed of new data. This can be achieved

with a static reference window and a sliding detection window, or a sliding

pair of windows over consecutive observations. The old and new windows can

be compared with statistical tests, with the null hypothesis being that both

windows are drawn from the same distribution.

∆
λ

Output

Criterion

Data

Data Source

7 7 7 3 7 7 3 7 7

~x0 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x7 ~x8

S0 S1 S2

Figure 2.18: Distance between window distributions is expected to maximise around
the sequence boundaries.
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Such a detector would work by computing a distance2 between distributions

of two consecutive windows of observations, ∆ =D(W1,W2), and signalling

change when this statistic exceeds our threshold ∆>λ. If this was the case, we

should see a maximisation of ∆ at the points where one distribution changes

to another, as illustrated in Figure 2.18. The criterion in this example assumes

two windows of one element each. Therefore it maximises when there is one

example from each data source.

Detectors of this construction are dependent on a good choice of window

size. For fixed-sized windows, their sizes need to be decided a priori, which

poses a problem. A choice must be made along the continuum in Figure 2.16.

A method may be intended for growing and shrinking sliding windows on the

fly [17, 84, 176], but its choice of when to grow or shrink a window has a

convenient use as a change point estimation.

A widely-used approach of this type is Adaptive Windowing (ADWIN) by

Bifet and Gavaldà [17]. It keeps a variable-length window of recently seen

examples, and attempts to find a "cut point" to split it into two sufficiently large

and distinct subwindows. In its formulation as a change detector, change is

signalled when the difference of the averages of two subwindows exceeds a

computed threshold, λ. When this threshold is reached, the older subwindow is

dropped and the remaining window is then regrown from subsequent observa-

tions. The meaning of sufficiently large and distinct is defined within a rigorous

statistical test. To partition a window W into two subwindows, W1 and W2, a

threshold for the distinctness of the means is provided based on the Hoeffding

bound. However in practice, the authors suggest a threshold based on the

observation that the difference of the window averages will tend towards a

normal distribution for large windows.

2Whilst we discuss this framework here using the notion of "distance", in practice this may
also be a "divergence", i.e. a measure which may not be symmetric nor need to satisfy the
triangle inequality.
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Figure 2.19: Flowcharts for CUSUM, PH and ADWIN detectors. Steps are coloured
according to the same scheme as in Figure 2.10.

The SEQ1 algorithm [146] is an evolution of the ADWIN approach with a lower

computational complexity. Cut-points are computed differently – where ADWIN

makes multiple passes through the window to compute candidate cut-points,

SEQ1 only examines the boundary between the latest and previous batch of

elements. Secondly, the means of data segments are estimated through ran-

dom sampling instead of exponential histograms. Finally, the authors employ

a threshold based on the Bernstein bound instead of the Hoeffding bound to
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establish whether two sub-windows are drawn from the same population. The

Hoeffding bound was deemed to be overly conservative. In the SEED algorithm

by Huang et al. [72], the data comes in blocks of a fixed size, so the candidate

change points are the block’s starting and ending points. Adjacent blocks

are examined and grouped together if they are deemed sufficiently similar.

This operation, termed ‘block compression’, removes candidate change points

which have a lower probability of being true change points. Pooling blocks

together amounts to obtaining larger windows, which in turn, ensures more

stable estimates of the probabilities of interest compared to estimates from

the original blocks. Change detection is subsequently carried out by analysing

possible splits between the newly-formed blocks.

Figure 2.19 illustrates the pipelines of CUSUM, Page Hinkley and ADWIN

detectors, using the colouring from the flowchart in Figure 2.10.

2.6.3 Multivariate Approaches

Modern methods for multivariate change detection usually require two com-

ponents: a means to estimate the distribution of the incoming data, and a test

to evaluate whether new data points fit that model. Estimation of the streaming

data distribution is commonly done by either clustering, or multivariate distri-

bution modelling. Gaussian Mixture Models (GMM) are a popular parametric

means to model a multivariate process for novelty detection, as in Zorriassat-

ine et al. [187]. Tarassenko et al. [162] and Song et al. [155] use nonparametric

Parzen windows (kernel density estimation) to approximate a model against

which new data is compared. Dasu et al. [33] construct kdq trees to a similar

effect. Krempl et al [90] track the trajectories of online clustering, while Gaber

and Yu [50] use the deviation in the clustering results to identify evolution of

the data stream. Kuncheva [102] applies k means clustering to the input data

and uses the cluster populations to approximate the distribution of the data.
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Multivariate statistical tests for comparing distributions such, as Hotelling’s

T 2 test [70] need to be adapted into the sequential form over time windows

of the data [102]. Bespoke statistics continue to be developed for this pur-

pose [2, 135]. Kuncheva [102] introduces two multivariate detectors based

on the likelihood that data from a pair of windows was drawn from the same

distribution. The detectors are compared with Hotelling’s T 2 test [70], where

the two test samples are given by adjacent windows maintained on the data

stream. Together these three methods take a parametric, semiparametric

and nonparametric approach respectively. These three methods are used

extensively in the remaining chapters as a baseline for multivariate change

detection performance.

Consider a random vector ~x. We assume that ~x are drawn from a probability

distribution P (~x) up to a certain point c in the stream, and from a different

distribution thereafter. The objective is to find the change point c. We can

estimate P from the incoming examples and compute the likelihood L(~x|P ) for

subsequent examples. A successful detection algorithm will be able to identify

c by a decrease of the likelihood of the examples arriving after c. To estimate

and compare the likelihoods before and after a candidate point, the data is par-

titioned into a pair of adjacent sliding time-windows of examples,W1 andW2.

The semi parametric detector – called the semi-parametric log-likelihood

criterion (SPLL) comes as a special case of the log-likelihood framework, and is

modified to ensure computational simplicity. Suppose that the data before the

change comes from a Gaussian mixture P (~x) with c components each with the

same covariance matrix. The parameters of the mixture are estimated from

the first window of data W1. The change detection criterion is derived using

an upper bound of the log-likelihood of the data in the second window,W2. The

criterion is calculated as

SPLL=max{SPLL(W1,W2),SPLL(W2,W1)}. (2.19)
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where

SPLL(W1,W2)=
1

M2

∑
~x∈W2

(~x−~µi∗)
TΣ−1(~x−~µi∗). (2.20)

whereM2 is the number of objects inW2, Σ is the common covariance matrix

and

i∗=arg
c

min
i=1

{
(~x−~µi)

TΣ−1(~x−~µi)
}

(2.21)

is the index of the component with the smallest squared Mahalanobis distance

between ~x and its centre.

If the assumptions for P are met, and ifW2 comes from P , the squared Ma-

halanobis distances have a chi-square distribution with p degrees of freedom.

The expected value is p and the standard deviation is
√

2p. IfW2 does not come

from the same distribution, then the mean of the distances will deviate from

p. Subsequently, we swap the two windows and calculate the criterion again,

this time SPLL(W2,W1). By taking the maximum of the two, SPLL becomes a

monotonic statistic.

Small values will indicate identical distributions inW1 andW2, while large

values will indicate potential change. While SPLL has been found to produce

a robust statistic [102] which can sense changes in the variance of the data, its

assumptions are rarely met in real-life data streams. This makes it difficult to

set up a theoretical threshold or determine a confidence interval. This difficulty

is not uncommon for change detection criteria, especially the semi-parametric

and the non-parametric ones.

It should be noted that the SPLL and Hotelling detectors are closely related

to χ2 and T 2 multivariate control charts respectively. From MacGregor and

Kourti [118], the statistic for the χ2 chart is calculated as

χ2 =(~x−τ)TΣ−1(~x−τ) (2.22)
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where τ is the target value of the mean. Revisiting Equation 2.5, this is the

squared Mahalanobis distance. They suggest an upper control limit on this stat-

istic given by a Chi-squared distribution with degrees of freedom equal to data

dimensionality. SPLL computes this statistic from two independent samples

(and from the clustering ofW1), whereas the chart computes it point-to-point.

Input
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Window pair

Cluster
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modelling

criterion

decision

Input

(b) KL

Window pair

Cluster
windows

Distribution
of clusters

KL
divergence

LLR

modelling

modelling

criterion

decision

Input

(c) Hotelling

Window pair
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M1+M2−p+1
Fp,m(∆) 95%

criterion
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Figure 2.20: Flowcharts for each of the three multivariate detectors. Steps are
coloured according to the same scheme as in Figure 2.10.

In the nonparametric approach, the KL divergence between discrete em-

pirical distributions is used to compute a likelihood. The data distribution in
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window W1 is represented as a collection of K bins (regions in <p), with a

probability mass value assigned to each bin. Call this empirical distribution

P̂ . The data inW2 is distributed in the bins according to the points’ locations,

giving empirical distribution Q̂. Like SPLL, this is achieved by k-means cluster-

ingW1 and then observing the nearest neighbour cluster membership of the

points inW2, although any approach that estimates a discrete probability mass

function could be substituted. The criterion function is the Kullback-Leibler

divergence [95] as in Equation 2.8, of the empirical distributions.

Note that we have only approximations of P andQ. The usefulness of the

DKL criterion depends on the quality of the approximations and on finding a

threshold λ such that change is declared ifDKL>λ.

This construction is very similar to the change detector of Dasu et al [33].

They expandW1 until change is detected, giving a good basis for approximating

P . On the other hand,Q has to be estimated from a short recent window, hence

the estimate may be noisy. Dasu et al. approximate the P probability mass

function by building kdq trees which can be updated with the streaming data.

Figure 2.20 shows the pipelines of the three multivariate detectors coloured

in the same manner as the flowchart in Figure 2.10.

2.7 Evaluating Change Detection Methods

Change detection methods are often evaluated indirectly in a domain-

specific manner because of the diversity of related fields and applications. For

example, when evaluating classifiers, error rate is one of the most important

performance metrics [53]. When evaluating change detection methods for

adaptive learning, we can ultimately judge the effectiveness of our approach

by its performance in reducing the error rate of the classifier – its effectiveness
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in achieving a domain-specific goal. Many adaptive learning papers evaluate

their methods in this manner [176, 84, 54, 41]. For a reader wishing to evaluate

and compare change detectors themselves, such metrics provide little insight

about the characteristics of the change detector. The aim of this section is to

establish how change detection methods can be evaluated, what measures

should be recorded and what interpretations can be taken.

2.7.1 Metrics of Change Detector Performance

Not all change detection approaches offer magnitude estimation. Also,

accuracy of the change time is directly related to the delay to detection. This

leaves us with four quantities to measure. These quantities and their ideal

values are summarized in Table 2.4.

An ideal change detector should detect all changes immediately and signal

no false alarms [101]. Change is often only detectable after consuming more

observations and the incurred delay is the Time To Detection (TTD), a measure

of responsiveness.

Table 2.4: Metrics for evaluating change detectors and their ideal values

Metric Ideal Value Semantic Meaning
Time To Detection TTD→0 How many observa-

tions passed on average
between a change and the
detector signalling.

False Alarm Rate FAR→0 The proportion of false
alarms that were signalled.

Missed Detection Rate MDR→0 The proportion of changes
that were not detected.

Average Run Length ARL→ARLI How long on average
the detector ran without
signalling.

The ideal value for the ARL depends on the data. Consider that we wish to

compare the ARL of detectors. A detector which never signals will have the

highest possible ARL, even though it was not desirable. In this situation we may
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calculate an ideal ARL by observing the ARL of a perfect ’cheating’ detector

which uses the ground truth to signal immediately for every change (TTD=0).

Then detectors can be ranked by the closeness of their ARL to that figure. The

rates of false alarm and missed detection as a proportion of total observations

can be monitored as the False Alarm Rate (FAR) and Missed Detection Rate

(MDR) respectively [52].

The evaluation of change detection techniques varies greatly across the

literature, in part due to the variation of the application subfields. Basseville

and Nikiforov [9] list five intuitive performance indexes for change detection

algorithms.

• Mean time between false alarms (related to ARL).

• Probability of false detection (FAR).

• Mean delay to detection (TTD).

• Probability of non detection (MDR).

• Accuracy of the change time and magnitude estimates (only applicable

if we measure these).

However, Table 2.5 summarises the evaluation techniques of a small cross-

disciplinary sample of change detection literature. Adaptive learning literature

usually focuses on the implicit measure; the error of the attached learner. The

table serves to demonstrate the divergence of explicit metrics for change

detector performance – which makes it difficult to perform a direct comparison

of methods from the literature alone.

2.7.2 Datasets

There are a multitude of benchmark datasets available for the purposes of

static classification, with both real and artificial data, for example from the UCI

machine learning repository [112]. Datasets specifically for the problem of
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Table 2.5: How change detectors are evaluated across a sample of the literature.

Evaluation Literature
Classification Error (Attached Learner) [176, 84, 54, 34, 97, 41, 8, 144]
Classification Error (Change Detector) [97]
TTD and FAR [96]
FAR only [94, 155]
ROC Curve [102, 163]
Detect single event [164]
Precision-Recall curve [37]
FAR-Accuracy curve [80]
ARL only [183]
Detected/Late/False Alarm/Missed [33]

Figure 2.21: A rotating hyperplane problem changes the optimal classification
boundary over successive time increments.

unsupervised change detection are far less common, especially those collected

from genuine applications rather than toy data.

Whether a concept drift dataset has any value in our unsupervised situation

depends on whether the dataset exhibits real or virtual concept drift. Recall

Section 2.2.3. Unsupervised methods only have the opportunity to detect

changes in p(~x). If the changes only affect p(~x|y), then the data is not applic-

able to our problem. An example of this is the well known rotating hyperplane

dataset [43]. A hyperplane representing the optimal classification boundary is

rotated over time so that the nature of the classification problem is constantly

evolving. The problem is illustrated in two dimensions in Figure 2.21, where

we can see that the gradual change only affects p(~x|y).

STAGGER by Schlimmer and Granger [148] is a well known adaptive learning

system, and the accompanying concept generator has been used by many

authors as a benchmark for evaluating such systems [34, 99, 176, 86, 20]. It
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is used to generate very simple three-dimensional categorical data, with three

distinct concepts.

Another popular dataset in the adaptive learning community is the SEA

(Streaming Ensemble Algorithm) concepts [160]. SEA is an adaptive classifier

ensemble which the authors evaluate in the presence of artificial concept drift.

Like STAGGER, this dataset has been used as a benchmark in many subsequent

works [86, 87, 127, 18, 41] and is commonly cited as an example of a concept

drift dataset [20].

The KDD Cup 1999 dataset [81] is often used in anomaly detection literature,

as it is one of the only fully labeled network intrusion datasets. It has 4,900,000

examples and 42 features extracted from seven weeks of network capture

on a U.S. Air Force LAN [165]. Over this time period, the network was peri-

odically subjected to 24 distinct categories of network attack, which produce

anomalous patterns in the packet capture data.

2.7.3 Simulating Non-stationary Environments

Real world, labelled change detection and concept drift datasets are rel-

atively sparse [20]. The limitation of simulated change datasets is that they

do not reflect the complex causal relationships or statistical imperfection of

changes that may occur in practice. It is therefore very difficult to simulate a

wide enough variety of change to be representative of what a detector may

encounter once deployed.

In the interest of being able to produce quantitative studies there has been

research into the simulation of concept drift [134, 20], both from scratch and

through interpretation of existing classification datasets. One way to simluate

change is to take a labelled dataset, sample from one class before the change

point and a different class after the change point. Being able to take advantage
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of the separability challenges in the huge numbers of such publicly available

datasets could result in much more robust evaluation of change detectors.

Narasimhamurthy and Kuncheva [134] suggest a framework for generating

data to simulate changing environments, which was discussed in Section 2.2

in the context of describing change. This framework is extended by Bifet et

al. [20] and presented as a means of generating concept drift. Given a labeled

dataset with k classes y1,...,yk, we can sample the data points from each class

as a data source within the framework. Let υi(t) be a mixing function for data

source i at time t. Then the distributionD(t) at time t is described by:

D(t)={υ1(t),υ2(t),...,υk(t)} (2.23)∑
i

υi(t)=1 (2.24)

Assume that we have two data sources, S1 and S2, where their data points

are sampled from y1 and y2 respectively. if we set the mixing functions at time

t to be [υ1(t),υ2(t)]=[0,1] and [υ1(t),υ2(t)]=[1,0] at t+1, this is an abrupt change

from y1 to y2.

Under the same assumptions, we can generate gradual change with consid-

erable flexibility through careful choice of the mixing functions. For example,

change could be a simple linear function between sources or a sigmoid function

as Bifet et al. [20] suggest.3

3Change generation libraries using this framework are available in both MATLAB and Java

• https://github.com/LucyKuncheva/SDCD-Simulated-Data-for-Concept-Drift

• https://github.com/wfaithfull/meander
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2.8 Summary

This chapter has presented an overview of streaming change detection

and its related fields, with discussion of the literature, common configurations,

applications and terminology. It has been demonstrated that what constitutes

change varies depending on the context. There has been a discussion of how

change detectors can be broken down into modules, and how these modules

can be taxonomised using existing categories from the literature. The change

detection methods and building blocks used in subsequent chapters have been

detailed in Section 2.6. An overview of how to evaluate change detection prob-

lems has been presented, along with a discussion of datasets and a framework

for generating artificial change.
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Chapter 3

PCA Feature Extraction for

Multivariate Change Detection
1

Much like classification, the detection of change relies upon there being a

separable representation of each data source within the feature space. In a

multivariate feature space, features which are stable in response to a change

in the underlying data source are irrelevant in the context of change detection.

If those features can be identified and discarded, we are left with a better

representation of the change we are looking for. Principal Component Analysis

(PCA) is a widely used statistical procedure for dimensionality reduction, fea-

ture extraction and feature selection across many disciplines. This chapter

investigates the use of a PCA step for feature extraction and selection in the

change detection pipeline. In the context of a detector pipeline from Section 7,

this would constitute a preprocessing step as depicted in Figure 3.1.

3.1 Introduction

There are at least three caveats in choosing or designing a criterion for

change detection from multidimensional unlabelled data. First, change detec-

1Most of this chapter was published as Kuncheva, L.I. and Faithfull, W.J., 2014. PCA feature
extraction for change detection in multidimensional unlabeled data. IEEE transactions on
neural networks and learning systems, 25(1), pp.69-80. It is an extension of work originally
published as Kuncheva, L.I. and Faithfull, W.J., 2012, November. Pca feature extraction for
change detection in multidimensional unlabelled streaming data. In Pattern Recognition
(ICPR), 2012 21st International Conference on (pp. 1140-1143). IEEE.
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Figure 3.1: The contribution of this chapter can be used to map examples into a
lower-dimensional representation as a useful preprocessing step for multivariate
change detection.

tion is an ill-posed problem, especially in high-dimensional spaces. The concept

of change is highly context-dependent. How much of a difference and in what

feature space constitutes a change? For example, in comparing X-ray images,

a hair-line discrepancy in a relevant segment of the image may be a sign of an

important change. At the same time, if colour distribution is monitored, such a

change will be left unregistered. The second caveat is that in the context of ad-

aptive learning not all substantial changes of the distribution of the unlabelled

data will manifest themselves as an increase of the error rate of the classifier.

In some cases the same classifier may still be optimal for the new distributions.
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Figure 3.2 shows three examples of substantial distribution changes which do

not affect the error rate of the classifier built on the original data. Conversely,

classification error may decline with an adverse change in the class labels,

without any manifestation of this change in the distribution of the unlabelled

data. An example scenario is change of user interest preferences on a volume

of articles. Figure 3.3 illustrates a label change which will corrupt the classifier

but will not be picked up by a detector operating on the unlabelled data.

Finally, change detection depends on the window size. Small windows would

be more sensitive to change compared to large windows.

(a) Original (b) Change 1 (c) Change 2 (d) Change 3

Figure 3.2: Example of 3 changes (plotted with black) which lead to the same
optimal classification boundary as the original data (dashed line).

(a) Before change (b) After change

Figure 3.3: Example of a change in classification accuracy with no change in the
unlabelled pdf.

To account for the uncertainties and lack of a clear-cut definition, we make

the following starting assumptions: (1) changes that are likely to affect ad-

versely the performance of the classifier are detectable from the unlabelled

data, (2) changes of the distribution of the unlabelled data are reasonably

correlated with the classification error, and (3) the window sizes for the old and

the new distributions are specified.
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Given the context-dependent nature of concept change, feature extrac-

tion can be beneficial for detecting changes. For example, extracting edge

information from frames in a video stream can improve the detection of scene

change [109]. A more general approach to change detection in multivariate

time series is identifying and removing stationary subspaces [23].

In the absence of a bespoke heuristic, here it is proposed that principal

component analysis (PCA) can be used as a general preprocessing step for fea-

ture extraction to improve change detection from multidimensional unlabelled

incoming data. The theoretical grounds of the approach are detailed in Section

3.1.2. Section 3.2 describes the criterion for the change detection. Section 3.3

contains the experiment with 35 data sets, and Section 3.4 gives an illustration

of change detection with feature extraction for a simple video segmentation

task.

3.1.1 Rationale

Distribution modelling of multidimensional raw data is often difficult. In-

tuitively, extracting features which are meant to capture and represent the

distribution in a lower dimensional space may simplify this task.

PCA is routinely used for preprocessing of multi-spectral remote sensing

images for the purposes of change detection [153]. The concept of change,

however, is different from the interpretation we use here. In remote sensing,

‘change’ is understood as the process of identifying differences in the state of

an object in space by observing it at different times, for example a vegetable

canopy. It is also well known in the context of anomaly detection in network

traffic [26, 142, 73, 179], fault detection [173, 57, 61] and event detection [140,

62]. Recalling Figure 2.8, these can be related to our change detection problem

here.
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If there is no knowledge of what the change may be, it is not clear whether

the representation in a lower-dimensional space will help. Our hypothesis

is that, if the change is “blind” to the data distribution and class labels, the

principal components with a smaller variance will be more indicative compared

to the components with larger variance. This means that, contrary to stand-

ard practice [140, 62, 26, 142, 73, 57, 61], the components which should be

retained and used for change detection are not the most important ones but

the least important ones. Such blind change could be, for example, equipment

failure, where the signal is replaced by random noise or signals bleeding into

one another.

By leaving the most important principal components aside, we are not ne-

cessarily neglecting important classification information. PCA does not take

into account class labels, therefore less relevant components may still have

high discriminatory value.

Therefore we propose to use the components of lowest variance for detect-

ing a change between data windowsW1 andW2.

3.1.2 An Empirical Example

Figure 3.4: An illustration of the PCA process. Left: original Gaussian with µ= [23]
Σ=[ 1 1.5

1.5 3 ]. Centre: data translated to the origin and principal component axes superim-
posed. Right: transformation of the original data into the principal component space.

PCA Feature Extraction for Multivariate Change Detection 56



The objective of PCA is to isolate the important characteristics of a set of

data, transforming the variables into linearly uncorrelated principal compon-

ents which best explain the variance in the data. The process is illustrated

in Figure 3.4. An orthogonal linear transformation is applied to the data such

that the first principal component lies along the axis of greatest variance. For

anm examples by n features matrix X, the principal component axes are the

eigenvectors of the covariance matrix Σ = cov(X). The relative magnitudes

of the corresponding eigenvalues are proportional to the amount of variance

explained by that principal component. The n eigenvectors of Σ are placed

in descending eigenvalue order in the columns of a matrix, W. Then T=XW

will transform the original data in <n. Inspecting the cumulative sum of the

eigenvalues we find the proportion of the total variance explained by each

principal component. W can be used to transform new data into the same

principal component space defined by the decomposition of X. We use this

process to inspect the change in newer data.

We will demonstrate empirically how the second component is likely to be

more sensitive to changes than the first2. Suppose that we have two adjacent

time windows of data,W1 andW2 of size swhere

W1 =[~xt−s,...,~xt−1]
T

W2 =[~xt,...,~xt+s−1]
T

|W1|= |W2|=s

The examples are drawn from a bivariate Gaussian. A PCA transformation of

W1 is computed, and used to transform W1 and W2 into the same principal

component space.

We induce artificial change at t+ 1. Firstly, W2 contains the data in W1

translated to another point. The detectability of this change can be estimated

2Please refer to Kuncheva and Faithfull [104] for a proof.
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from the Bhattacharyya distance between the distributions in W1 and W2. A

larger Bhattacharyya distance implies that the change will be easier to detect

because it is more distinct from the original distribution.

Algorithm 1: Process to generate Figure 3.6

µ=[23] Σ=[ 2 1.5
1.5 3 ]

• SampleW1∼N (µ,Σ).
• Perform PCA onW1.
• Store transformed data asW1PCA and transformation coefficients as W.
for (x,y)∈R2 do

• LetW2 beW1 translated to (x,y)
• LetW2PCA =W2 ·W
for each principal component i do

Ix,y,i =DB(W1PCA∗,i,W2PCA∗,i)
end

end

Figure 3.5 illustrates the process we will use to assess the component sens-

itivity, which is described in Algorithm 1.

Using this process we arrive at Figure 3.6 which contains the images for the

first and second principal components Ix,y,1 and Ix,y,2. This is the component

sensitivity for an initial Gaussian with µ= [23] Σ = [ 2 1.5
1.5 3 ] transformed into the

principal component space. It is clear that if the data in W2 were translated

randomly, it is more likely to fall in an area of the space in which component 2

is more sensitive. Figure 3.7 shows in blue the regions where component 1 is

more sensitive, and in yellow where component 2 is more sensitive. Intuitively,

this effect is relative to the variance in each principal component. A component

which exhibits less variance would require less movement in it’s axis to produce

a higher Bhattacharyya distance.

3.2 Choosing the change detection criterion

We use the semi-parametric log likelihood (SPLL) criterion detailed in Sec-

tion 2.6. We argue our choice of SPLL by comparing it with three criteria used
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(a) (b) (c)

Figure 3.5: This shows how one pixel (2,2) in the sensitivity image is generated.
(a) Data transformed into the principal component space. (b) W2 (green) is
translated to (2,2). (c) Z(2,2) is the Bhattacharyya distance along each component
DB(W1PCA∗,i,W2PCA∗,i), which sets the pixel intensity.

Figure 3.6: Left: Component 1 translation sensitivity in the PCA space. Right:
Component 2 translation sensitivity in the PCA space.

Figure 3.7: Regions where component 1 and component 2 are respectively more
sensitive to translation change.

PCA Feature Extraction for Multivariate Change Detection 59



in multidimensional change detection: Hotelling’s T 2, Multirank [117] and

Kulback-Leibler (KL) distance [33].

3.2.1 Comparison with Hotelling, Multirank and KL

We have found that SPLL statistic compares favourably for detecting changes

to its main competitor, the Hotelling T 2 test [102]. The reason behind this

finding is that a Gaussian mixture is usually a more reasonable model than the

single Gaussian assumed for the Hotelling test. The Hotelling criterion will not

be able to detect change in the variance of the data, while the SPLL criterion

is equipped to do so. The same holds for the nonparametric version of this

test based on multi-dimensional ranking. The Multirank test [117] compares

the medians of the distributions in the two windows but again leaves aside

changes in the variance.

To support our criterion choice, we include here a simulation example. The

experiment is detailed in Algorithm 2. We used three types of artificial change

defined as follows.

Translation A new mean was sampled from 2z, where z ∼N (0,1). W2 was

sampled anew from P and the new mean was added (Figure 3.8 (b)).

Random linear transformation A random matrixR of size 5×5 was gener-

ated, where each element was sampled from N (0,1). Window W2 was

sampled from P and all objects were multiplied byR (Figure 3.8 (c)).

Change of variance W2 was sampled from a normal distribution with mean 0

and covariance matrix Σ×D, whereD is a diagonal matrix with diagonal

elements sampled from 3|z|, where z∼N (0,1) (Figure 3.8 (d)).
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Figure 3.8 shows scatterplots of the two windows in the space of the first

two features.

Algorithm 2: Comparison experiment for Hotelling, Multirank, KL and
SPLL.
for 1 to 100 do

• Sample 100 points as window W1 from a 5-dimensional normal
distribution with mean 0 and a diagonal covariance matrix Σ. The
variances of the features are sampled from the positive half of the
standard normal distribution.

• Denote this distribution by P . Sample Window W2 from P (with the
same covariance matrix).

• Apply translation change toW2 asW2,T .

• Apply random linear translation change toW2 asW2,RLT .

• Apply change of variance toW2 asW2,CV .

for each criterion ∈{ SPLL, Hotelling, KL, Multirank } do
• Produce ROC curve for criterion(W1,W2,T )

• Produce ROC curve for criterion(W1,W2,RLT )

• Produce ROC curve for criterion(W1,W2,CV )
end

end

The procedure of generating W1 and 4 versions of W2 was repeated 100

times. Four change detection criteria were calculated: Kullback-Leibler (KL) di-

vergence, the Hotelling’s T 2 , Multirank [117] and SPLL. Both KL and SPLL were

used with 3 clusters. Note that no thresholds were applied as we are evaluating

the raw criteria values. The Receiver Operating Characteristic (ROC) curves

were constructed for each criterion and each change type. Figure 3.9 shows the

curves for the three changes. The graphs illustrate the behaviour of the four cri-

teria. While for the mean change the two bespoke criteria (Hotelling and Multir-

ank) are superior to KL and SPLL, the two latter changes favour SPLL. This is why

we take SPLL for the experiment reported in the next section. We note that the

choice of the criterion is not crucial for supporting our hypothesis that change

detection will be aided by preserving the low-variance principal components.
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(a) same distribution (b) translation

(c) random linear transformation (d) change of variance

Figure 3.8: Example of windows W1 (black) and W2 (green) for comparing the
change detection criteria.

3.3 Experiment

3.3.1 Preliminaries

Our aim is to compare SPLL with and without PCA in order to demonstrate

the benefit from the feature extraction.

Acid test It is difficult to find an acid test for change detection in unlabelled

multidimensional data. Here we chose two change heuristics which could be

regarded as instances of equipment failure.

Shuffle Values. A random integer k, 1≤k≤n, was generated to determine how

many features out of nwill be affected. k random features were chosen, and

the values of each feature were randomly permuted within windowW2.
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(c) change of variance

Figure 3.9: ROC curves for the 4 criteria and the three types of change.

Shuffle Features. Again, a random integer k, 1 ≤ k ≤ n, was generated to

determine how many features will be affected. k random features were chosen,

and their columns were randomly permuted within windowW2.

The Shuffle Values change resembles a case where a group of sensors

stop working due to a technical fault and produce random readings within the

sensor ranges. The Shuffle Features change can be likened to “bleeding” of

signals into one another. We previously experimented with setting a number of

features to zero or infinity but that seemed to be too easy a change to detect.

Change detection is context-specific We should also bear in mind that

identifying changes is the first step in a process. The concept of “change”
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depends on what we will be using the result for. There could be, for example,

a scenario where a change in the mean of the distribution is irrelevant, and

only a change in the variance should be flagged. The magnitude of change is

also context dependent. How big a change should be accepted as worthy of

triggering an alarm?

Therefore, here we do not offer a change detector as such. We investigate

the ability of a criterion (SPLL and PCA+SPLL) to respond to changes. Setting

up a threshold for this criterion is a separate problem. Such a threshold may

be data-specific, and can be tuned to the desired level of false positives versus

true positives.

Indirect detection for classification In the context of classification, there

may be a problem-specific threshold on the classification error that should not

be exceeded. Any changes of the distributions of the classes that do not lead

to increased error can be perceived as insignificant.

As we argued in the Introduction, not all changes in the unconditional pdf

will lead to change in the classification error. Thus a genuine change detected

through the criterion may fail to correlate with the classification error. On the

other hand, classification error may suffer with no change in the distribution of

the unlabelled data. Even though such a correlation is an indirect quality meas-

ure, we include it here because of the importance of classification performance

measure.

3.3.2 Experimental protocol

The experiment was run on 35 data sets listed alphabetically in Table 3.1,

with differing numbers of instances, features and classes. The sets were
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sourced from UCI [112] and a private collection. All data sets were standard-

ised prior to the experiments.

Algorithm 3: Method for Experiment 1.

K={ 0%, 50%, 80%, 85%, 90%, 95% }
M=50
for 1 to 50 do

• Take a stratified random sample of sizeM as windowW1.

• Run PCA on W1 and keep the components beyond the K% of
dismissed variance. Denote the PCA-transformed and clipped data
set asW1,PCA.

for i= 1 to 100 do
• Take a random sample ofM instances from the remaining data
as the i.i.d. windowW2. Calculate SPLL for windowsW1 andW2 as
in (2.19) and store the criterion value in b(i).

• Transform W2 in the PC space using the eigenvectors of the
retained components. Call this set W2,PCA. Calculate SPLL for
windowsW1,PCA andW2,PCA as in (2.19) and store the result in c(i).

• Apply a change (value shuffle or feature shuffle) toW2 to obtain
a new set calledW ′

2. Calculate SPLL for windowsW1 andW ′
2 as in

(2.19) and store the result in b′(i).

• Transform W ′
2 in the PC space using the eigenvectors of the

retained components. Call this set W ′
2,PCA. Calculate SPLL for

windowsW1,PCA andW ′
2,PCA as in (2.19) and store the result in c′(i).

• Concatenate the values SPLL for the cases with and without a
change, to obtainB=[b,b′] and C=[c,c′]. Calculate the ROC curves
from B and C and the areas under the curves (AUC). If our hypo-
thesis is correct, the AUC forB will be smaller than the AUC for C.

end
end

In the first experiment we examined the difference between change detec-

tion on raw data and PCA data. For the PCA feature extraction, we varied the

proportion of dismissed variance as: K = { 0%(keep all components), 50%,

80%, 85%, 90% and 95% }. For example, considerK=90% and a 4-dimensional

data set, whose eigenvalues are {12,8,5,2}. Taking the cumulative sum and

dividing by the sum of the eigenvalues, the cumulative explained variance

(in %) is {44,74,93,100}. The first three components explain 93% of the variance

in the data. We dismiss these components and keep only the last component
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which explains the remaining 7% of the variability of the data. The process for

the experiment is described in Algorithm 3.

The purpose of the second experiment was to find out how the SPLL change

statistic correlates with the classification accuracy with and without PCA.3

Larger values of SPLL signify a change in the distribution, which is likely to

result in lower classification accuracy. Therefore we hypothesise that SPLL in

the selected PCA space results in a stronger negative correlation compared

to SPLL calculated from the raw data. By carrying out 50 runs of this procedure

for each data set, 50 correlation coefficients are obtained. The process for the

experiment is described in Algorithm 4.

3.3.3 Results

Experiment 1. Figure 3.10 shows the mean difference AUC(PCA)−AUC(raw)

across the 35 data sets as a function of the percentage of dismissed varianceK.

The differences are positive if the low-variance components are retained. Using

the 35 data sets, we carried out a paired two-tailed t-test between AUC(raw)

and AUC(PCA,K), for the 6 values ofK. The test was applied only for values of

K for which the Jarque-Bera hypothesis test indicated normality of the pairwise

differences of the AUC. For the remaining values of K we used the Wilcoxon

signed rank test for zero median of the differences. The circled points corres-

pond to statistically significant differences. ThresholdsK=90% andK=95%

lead to significantly better change detection than raw data. Interestingly, using

all principal components (K=0%) leads to significantly worse AUC compared

to detection from raw data. One possible explanation for this finding is that

PCA “fools” the clustering algorithm so that the (rough) approximation of the

pdf as a mixture of Gaussians becomes inadequate.

3We used the SVM classifier from the MATLAB bioinformatics toolbox.
4For multiple classes, we applied SVM to all pairs of classes and labelled the data point to

the class with the most votes.
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Algorithm 4: Method for Experiment 2.

K={ 0%, 50%, 80%, 85%, 90%, 95% }
M=50
for 1 to 50 do

• Take a stratified random sample of size M as the window with
the training data,W1, and train an SVM classifier on it.4

• Run PCA onW1 and keep the components beyond theK=95%
of explained variance. Denote the PCA-transformed and clipped
data set asW1,PCA.

for i= 1 to 100 do
• Take a random sample ofM instances from the remaining data
as the i.i.d. window W2. Calculate the classification accuracy of
the SVM trained on W1, say a(i). Calculate SPLL for windows W1

andW2 as in (2.19) and store the result in b(i).

• Transform W2 in the PC space using the eigenvectors of the
retained components. Call this set W2,PCA. Calculate SPLL for
windowsW1,PCA andW2,PCA as in (2.19) and store the result in c(i).

• Apply a change (described above) to W2 to obtain a new set
calledW ′

2. Calculate the classification accuracy of the SVM trained
onW1 and store in a′(i). Calculate SPLL for windowsW1 andW ′

2 as
in (2.19) and store the result in b′(i).

• Transform W ′
2 in the PC space using the eigenvectors of the

retained components. Call this set W ′
2,PCA. Calculate SPLL for

windowsW1,PCA andW ′
2,PCA as in (2.19) and store the result in c′(i).

• Concatenate the accuracies and the SPLL for the cases with
and without a change, to obtain A= [a,a′], B= [b,b′] and C = [c,c′].
Calculate and store the correlation between A and B, and A and
C. If our hypothesis is correct, A (accuracy) and C (SPLL from
PCA-transformed data) will have a stronger negative correlation
thanA andB (SPLL from raw data).

end
end

The points where the AUC for the raw data is significantly better than the

one with PCA are enclosed in grey squares.

Figure 3.11 shows a scatterplot of the 35 data sets in the space of AUC(raw)

and AUC(PCA,K=95%) for the two types of changes. The reference diagonal

for which the PCA extraction does not make any difference is also plotted. It can

be seen that most points are above the diagonal, demonstrating the improved

change detection capability of the PCA features.
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Table 3.1: Results from the experiments with two types of change.

Shuffle Values Shuffle Features
Name N n c Pmax Pmin #PCA ρraw ρPCA ρraw ρPCA

breast 277 9 2 0.708 0.292 2.28 -0.2983 -0.3451• -0.1696 -0.2841•
contrac 1473 9 3 0.427 0.226 2.18 -0.2544 -0.3320• -0.1844 -0.2983•

contractions 98 27 2 0.500 0.500 16.38 -0.8262 -0.8169◦ -0.6719 -0.6811•
ecoli 336 7 8 0.426 0.006 2.94 -0.5667 -0.7546• -0.6066 -0.6161–

german 1000 24 2 0.700 0.300 8.20 -0.1395 -0.3500• -0.0918 -0.3330•
glass 214 9 6 0.355 0.042 4.32 -0.4585 -0.6713• -0.3134 -0.5876•

image 2310 19 7 0.143 0.143 12.58 -0.6516 -0.8294• -0.3206 -0.6878•
intubation 302 17 2 0.500 0.500 6.00 -0.5045 -0.6702• -0.3571 -0.6016•

ionosphere 351 34 2 0.641 0.359 21.64 -0.6755 -0.7811• -0.3253 -0.5368•
laryngeal1 213 16 2 0.620 0.380 9.02 -0.6387 -0.6791• -0.4225 -0.5262•
laryngeal2 692 16 2 0.923 0.077 9.02 -0.4272 -0.5304• -0.2845 -0.4525•
laryngeal3 353 16 3 0.618 0.150 9.38 -0.5976 -0.6728• -0.3683 -0.5140•

lenses 24 4 3 0.625 0.167 1.00 0.2319 0.2586– 0.2524 0.1843•
letters 20000 16 26 0.041 0.037 6.22 -0.7074 -0.8155• -0.5456 -0.7715•

liver 345 6 2 0.580 0.420 1.98 -0.3360 -0.3856• -0.1154 -0.2779•
lymph 148 18 4 0.453 0.014 5.48 -0.2127 -0.2466• -0.0597 -0.2015•

pendigits 10992 16 10 0.104 0.096 8.12 -0.9156 -0.9436• -0.8133 -0.8996•
phoneme 5404 5 2 0.707 0.293 1.02 -0.3219 -0.3285– -0.1969 -0.1443◦

pima 768 8 2 0.651 0.349 2.02 -0.3230 -0.4637• -0.0855 -0.2192•
rds 85 17 2 0.529 0.471 6.06 -0.8013 -0.8302• -0.6035 -0.6954•

satimage 6435 36 6 0.238 0.097 31.98 -0.9285 -0.9012◦ -0.5080 -0.6296•
scrapie 3113 14 2 0.829 0.171 4.10 -0.0832 -0.0999– -0.0438 -0.3151•
shuttle 58000 9 7 0.786 0.000 6.94 0.0709 -0.4929• 0.2515 -0.4491•

sonar 208 60 2 0.534 0.466 40.42 -0.6630 -0.7119• -0.4413 -0.5570•
soybean_large 266 35 15 0.150 0.038 17.64 -0.7492 -0.9187• -0.5760 -0.8726•

spam 4601 57 2 0.606 0.394 37.34 -0.0492 -0.1566• -0.0074 -0.1130•
spect_continuous 349 44 2 0.728 0.272 28.14 -0.3655 -0.4721• 0.0682 -0.2115•

thyroid 215 5 3 0.698 0.140 1.98 -0.6682 -0.6517– -0.4921 -0.6281•
vehicle 846 18 4 0.258 0.235 12.94 -0.7721 -0.8396• -0.4387 -0.7444•
voice_3 238 10 3 0.706 0.076 4.20 -0.6433 -0.6895• -0.4300 -0.5481•
voice_9 428 10 9 0.269 0.016 4.00 -0.5985 -0.6552• -0.4132 -0.5356•

votes 232 16 2 0.534 0.466 6.06 -0.8193 -0.7874◦ -0.6825 -0.6254◦
vowel 990 11 10 0.091 0.091 3.54 -0.7907 -0.8654• -0.6813 -0.7560•

wbc 569 30 2 0.627 0.373 22.84 -0.7728 -0.7707– -0.1849 -0.4653•
wine 178 13 3 0.399 0.270 4.98 -0.8970 -0.8933– -0.7403 -0.8029•

These comparisons of AUC are presented with the caveat that there is dis-

cussion over the coherency of AUC when used as an aggregated classification

performance metric. Hand [65] states that using AUC is equivalent to using

different metrics to evaluate different classification rules – in other words, the

value of AUC depends to some extent on the model being evaluated. Ferri et

al. [46] counter-argue that this model-dependent interpretation depends on

the assumption that thresholds are chosen optimally.

Whilst we use AUC as a measure of performance in Experiment 1, Experiment

2 uses the correlation with the classification accuracy. The conclusions from

Experiment 1 should be considered in the scope of the weaknesses of AUC as

discussed above.

PCA Feature Extraction for Multivariate Change Detection 68



0 20 40 60 80 100
−0.3

−0.2

−0.1

0

0.1

0.2

Percentage variance dismissed

M
e

a
n

 (
A

U
C

(P
C

A
) 

− 
A

U
C

(r
a

w
))

0 20 40 60 80 100
−0.3

−0.2

−0.1

0

0.1

0.2

Percentage variance dismissed

M
e

a
n

 (
A

U
C

(P
C

A
) 

− 
A

U
C

(r
a

w
))

(a) Change: Value Shuffle (b) Change: Feature Shuffle

Figure 3.10: Average difference AUC(PCA)−AUC(raw).
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Figure 3.11: Scatterplot of the 35 data sets in the space of AUC(raw) and
AUC(PCA,K=95%).

Experiment 2. Table 3.1 shows the correlation coefficients averaged across

50 runs for each data set. The correlation coefficient between the classification

accuracy and SPLL calculated from the raw data is denoted by ρraw, and the

one for the features extracted through PCA, by ρPCA. Using the 50 replicas of

the experiment, we carried out a paired two-tailed t-test for the data sets

for which the Jarque-Bera hypothesis test indicated normality of the pairwise

differences of the correlation coefficients. For the remaining data sets we used

the Wilcoxon signed rank test for zero median of the differences. Statistically

significant differences (α = 0.05) are marked in the table with •, if PCA was

better, and with ◦ if the raw data detection was better. Shown in the table

are also the prevalences of the largest and the smallest classes in the data
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(Pmax and Pmin) estimated from the whole data set. The column labelled ‘# PCA’

contains the percentage of retained principal components.

Figures 3.12 and 3.13 show scatterplots of the 35 data sets in the space

(ρraw,ρPCA) for the 6 values ofK. The differences that were found to be statist-

ically significant are marked with circles if favourable to PCA and with grey

squares if favourable to the raw data.
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Figure 3.12: Shuffle Values: Scatterplot of the 35 data sets in the space (ρraw,ρPCA).
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Figure 3.13: Shuffle Features: Scatterplot of the 35 data sets in the space (ρraw,ρPCA).
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The results demonstrate that feature extraction through PCA leads to

markedly better change detection and therefore stronger correlation with

the classification accuracy than using the raw unlabelled data. As discussed in

Section 2.2.3, these results should be interpreted within the scope of changes

that affect the classification accuracy.

3.3.4 Further analyses

We carried out further analyses to establish which characteristics of the

data sets may be related to the feature extraction success. Figure 3.14 shows

a scatter plot where each point corresponds to a data set. The x-axis is the

prior probability of the largest class and the y-axis is the prior probability of

the smallest class. The feasible space is within a triangle, as shown in the

figure. The right edge corresponds to 2-class problems, because the smallest

and the largest priors sum up to 1. The number of classes increases from this

edge towards the origin (0,0). The left edge of the triangle corresponds to

equiprobable classes. The largest prior on this edge is equal to the smallest

prior, which means that all classes have the same prior probabilities. This edge

can be thought of as the edge of balanced problems. The balance disappears

towards the bottom right corner. The pinnacle of the triangle corresponds to

two equiprobable classes. The size of the marker signifies the strength of the

correlation between SPLL with PCA and the classification accuracy.

The figure suggests that the PCA has a stable and consistent behaviour

for multi-class, fairly balanced data sets (bottom left of the scatterplot). For

smaller number of imbalanced classes (bottom right), the correlation ρPCA is

not very strong. Our further analyses did not find interesting relationship

patterns between the data characteristics and the correlations, except for the

pronounced dip for both correlations ρPCA and ρRaw with respect to the number

of retained principal components.
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Figure 3.14: Scatterplot of the 35 data sets in the space of the largest and smallest
prior probabilities. The size of the marker signifies the strength of the correlation
between SPLL with PCA and the classification accuracy.

0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

Proportion PC retained

C
o

rr
e

la
ti

o
n

 w
it

h
 c

la
ss

if
ic

a
ti

o
n

 a
cc

u
ra

cy

 

 

Raw

PCA

0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

Proportion PC retained

C
o

rr
e

la
ti

o
n

 w
it

h
 c

la
ss

if
ic

a
ti

o
n

 a
cc

u
ra

cy

 

 

Raw

PCA

(a) Change: Value Shuffle (b) Change: Feature Shuffle

Figure 3.15: Correlation with classification accuracy as a function of the proportion
of principal components retained.

Figure 3.15 shows the two correlations as functions of the proportion of

retained principal components. The fit with the parabolas is not particularly

tight but shows a tendency. For both heuristics, change detection is most

related to the classification accuracy if about half of the principal components

explain 95% of the variance, hence we retain the remaining half. The tendency

on the left suggests that change detection is least related to classification

accuracy where approximately two thirds or more of the principal components

explain 95% of the variance, or as the diagonal covariance matrix approaches

equal proportions. As was discussed in Section 3.1.2, the relative sensitivity of

each component is proportional to the variance explained by each component.

If the principal components were all of equal variance then they are all of equal

sensitivity under our assumptions, eroding the benefit of feature extraction. An
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intuition for the weak upward tendency on the right may be derived from the

"peak effect" [79, 100] from feature selection, where a subset of features works

better than the entire set. As can be expected, the PCA curve lies beneath

the curve for the raw data, demonstrating the advantage of feature extraction

for change detection. The pattern, however is similar for both correlation

coefficients. It may be related to the type of changes and the way we induced

them but may also benefit from a data-related interpretation. Since we are

interested in comparing feature extraction to raw data change detection, we

relegate the further analysis of this pattern to future studies.

3.4 A simple video segmentation

We applied the change detection with and without PCA to a simple video seg-

mentation problem. A short video clip of an office environment was produced,

with small movements of the chairs and the posture of one of the assistants

in the office. The change was introduced in the middle part of the video by

blocking the camera with the palm of a hand. The hand was made into a fist and

opened again before removing it from view. Sample frames from the beginning,

middle and end part of the video are shown in Figure 3.16.

(a) Beginning (b) Middle (c) End

Figure 3.16: Frames from the three parts of the video being segmented.

For the purposes of showcasing the feature extraction, we were only in-

terested in the admittedly easy detection of the change in the middle. The

features which formed the on-line multi-dimensional stream were the read,

green and blue averages of each frame. We set W1 to be the sequence of
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the first 50 frames, and took a sliding window of 25 frames as W2. The PCA

was applied toW1 only. Figure 3.17 plots the SPLL value with and without PCA

across the frame sequence. Both criteria identify correctly the middle part with

the change, but the values obtained through PCA are much larger. Figure 3.18

depicts the difference between SPLL with PCA and without PCA. Again, the

results favour the feature extraction approach to change detection.
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Figure 3.17: SPLL criteria values for the video frames
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Figure 3.18: Difference between the two SPLL criteria

3.5 Conclusions

The lack of a rigorous methodology for feature extraction for the purposes

of change detection in multidimensional unlabelled data has been noted in the

literature. This chapter offers a step in this direction. Assuming change that is

random with respect to the observed covariance, we argue that after applying

PCA, the components with the smaller variance should be kept because they

are likely to be more sensitive.
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With regard to hypothesis (3) and scoped by the assumptions of hypothesis

(1), the results certainly show a situation in which PCA is beneficial to change

detection. In terms of PCA being context-free, the main two experiments

within this chapter measure AUC and correlation with classification accuracy,

respectively. These metrics belong within the same problem context, so further

analysis is needed under a different context.
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Chapter 4

Chaining Detectors
1

Most change detection algorithms for multi-dimensional data reduce the

input space to a single statistic and compare it with a threshold to signal

change. Arrival at this threshold is typically tightly integrated with the change

detection approach such as a confidence bound on the expected distribution

of a computed statistic, or similar. Here it is proposed to ’chain’ a multivariate

and a univariate detector together, such that the univariate detector acts as

a threshold. Figure 4.1 illustrates that the concept amounts to replacing the

decision pipeline step for a compatible detector. This chapter investigates

the performance of two generic methods for thresholding: bootstrapping and

control charts. The methods are tested on a challenging dataset of emotional

facial expressions, recorded in real-time using Kinect for Windows. Our results

favoured the control chart threshold and suggested a possible benefit from

using multiple detectors.

4.1 Introduction

We have seen that there are a variety of multivariate change detectors

[115, 33, 102, 96], each with considerably different approaches. Many of these

reduce the multidimensional data to a single statistic which should ideally

1Most of this chapter was published as Faithfull, W.J. and Kuncheva, L.I., 2014, August.
On Optimum Thresholding of Multivariate Change Detectors. In Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR) (pp. 364-373). Springer, Berlin, Heidelberg.
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Figure 4.1: Where a poorly performing multivariate detector uses a static threshold,
it may be improved by employing a univariate detector to monitor its statistic. The
contribution of this chapter represents a replacement of the decision module within
the pipeline.

correlate with the appearance of change, despite arriving at this statistic in

very different ways. One of the main issues with such detectors is identifying

a threshold on the statistic for flagging a change. We can take advantage of

this homogeneity of approaches to swap out the mechanisms which threshold

such statistics in order to signal change. Here we examine the suitability of two

general approaches to setting a threshold: bootstrapping and control charts.

Figure 4.2 illustrates the multivariate change detection process.
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Figure 4.2: Illustration of the process of change detection in streaming multidimen-
sional data and the role of the threshold. The data was obtained from Kinect while
a participant was acting a sequence of emotional states: i. Happiness, ii. Sadness,
iii. Anger, iv. Indifference, v. Surprise.

The rest of the chapter is organised as follows. Section 4.2 details some

related work. Section 4.3 lays out our motivation. Section 4.4 describes the

threshold setting approaches and our experimental study. The results are

discussed in Section 4.5.

4.2 Related Work

There are differing approaches to the problem of detecting change in mul-

tivariate data. Lowry and Montgomery [114] reviewed multivariate control

charts for quality control. Consider n p-dimensional vectors of observations

~x1,~x2,...,~xn. It is possible to simply create p individual charts, one for each

feature, not reducing the dimensionality of the data. However, this approach

does not account for correlation between the features. Even truly multivariate

control chart approaches such as the T 2 chart [71] can be equated to dimen-

sionality reduction and thresholding, as it reduces the p dimensions of the

data to a single T 2 statistic. The list below demonstrates the inconsistency of

approaches to setting such a threshold.
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Work: Decision method

Zamba & Hawkins [180]: λ set according to a desired false alarm rate.

Song et al. [155]: Original statistical test.

Dasu et al. [33]: Monte Carlo Bootstrapping.

Kuncheva [104]: Signficance of log-likelihood ratio.

The scope of this work is concerned with establishing a method for threshold

setting that is applicable to multiple approaches to change detection.

4.3 Motivation

In this work, we utilise the three multivariate change detectors due to

Kuncheva [102] discussed in Section 2.6 – the parametric Hotelling detector,

semi parametric log likelihood (SPLL) detector and the nonparametric Kullback-

Leibler (KL) detector.

There are at least two reasons to consider alternative thresholding ap-

proaches. Firstly, some criteria such asKL are not related to a straightforward

statistical test that will give us a fixed threshold λ. Secondly, this chained

approach may improve upon such statistical tests under certain conditions.

To demonstrate, we will investigate the thresholding behaviour of the SPLL

detector. The change statistic generated by SPLL is the mean squared Mahalan-

obis distance of each element ofW2 to the distribution approximated fromW1.

Because this statistic is chi-squared distributed, the threshold to signal change

is computed as χ2
p(∆)<0.05 for the statistic in an p-dimensional chi-squared

cumulative distribution function, the 95th percentile.

In practice, the SPLL assumptions are rarely met, which makes it difficult

to set up a threshold or determine a confidence interval. This difficulty is not

uncommon for change detection criteria in general. Bootstrap Monte Carlo
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sampling and permutation tests have been suggested for estimating a suitable

threshold [33, 83, 155]. We propose here to chain SPLL to a univariate change

detector, which provides an adaptive threshold on the statistic.

Leaving aside whether the assumptions of SPLL are violated, why else might

this be an improvement? Suppose that the statistic generated by SPLL has a

very consistent, useful behaviour for detecting change in the context at hand,

but it is not well represented in the p values with regard to the 95th percentile.

Algorithm 5: Pseudocode for pilot experiment.
1. Take a 2000x10 matrix of gaussian random noise.
2. Multiply rows 501–1000 by a 10x10 matrix of gaussian random noise.
3. Slide a pair of 25-element windows over the rows,W1 andW2.
4. Run SPLL(W1,W2) and store the change, p value and statistic.

The psuedocode for a pilot experiment is shown in Algorithm 5. We induce

some detectable change in a 2000 element dataset, and iterate over this data-

set with two 25-element windows. It is clear when we see the results in Figure

4.3 that the p < 0.05 threshold has delivered a very poor performance, with

many false positives, despite an excellent representation of the true change in

the generated statistic. This demonstrates the inherent danger in choosing a

fixed threshold, even if that threshold is a confidence interval of a distribution.

Figure 4.3: For T =25; Left: the p values and subsequent activations where p<0.05.
Right: the change statistic generated by SPLL. The true index of change is plotted
vertically in red. Green indicates where the first observation from the new concept
enters the leading window.

The reason for this performance is a poor choice of window size, T =25. The

data is noisy enough and the sample small enough that the estimation of the
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Figure 4.4: For T =100; Left: the p values and subsequent activations where p<0.05.
Right: the change statistic generated by SPLL. The true index of change is plotted
vertically in red. Green indicates where the first observation from the new concept
enters the leading window.

distribution fromW1 is often sufficiently different fromW2 to signal change. If

we increase the window size to T = 100, we achieve the results in Figure 4.4.

However, the pattern in the average Mahalanobis distance of the clusters is

remarkably similar as it directly relates to the scale of the change in the context

of previous observations. This suggests that an adaptive threshold may be able

to perform better with a wider range of window sizes in practice, or perform

equally well with fewer observations.

Recall SPLL’s pipeline from Figure 2.20. Empirical observation suggests that

the threshold can be improved. Therefore the proposition we investigate in

this work is to replace the χ2 threshold with a bootstrapping procedure, or a

univariate change detector.

4.4 Experiment: Bootstrapped Versus Control

Chart Threshold

Here we examine two threshold setting approaches for the SPLL and KL stat-

istics. These are compared with the baseline performance of the T 2 detector.
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4.4.1 Bootstrapping

Let |W1|=M1. To determine a threshold, a bootstrap sample ofM1 objects

is drawn fromW1. A discrete probability distribution P̂ is approximated from

this sample. Subsequently, another sample of the same size is drawn fromW1

and its distribution Q̂ is evaluated. For example, if P̂ is a set of bins, Q̂ is cal-

culated as the proportion of the data from the second bootstrap sample in the

respective bins. The match between P̂ and Q̂ is estimated using, for example,

KL distance (2.8), which gives the change statistic. Running a large number of

such Monte Carlo simulations, a distribution of the change statistic is estimated,

corresponding to the null hypothesis that there is no change (all samples were

drawn from the same window, W1). We can take the Kth percentile of this

distribution as the desired threshold. This approach was adopted by Dasu et

al. [33] where the probability mass functions were approximated by a novel

combination of kd-trees and quad trees, called kdq-trees. One drawback of this

approach is the excessive computation load when a new threshold is needed.

4.4.2 Control Chart

A less computationally demanding alternative to bootstrapping is a She-

whart individuals control chart to monitor the change statistic. Inspired by this,

our hypothesis is that the process underlying an appropriate change statistic

will exhibit an out-of-control state when change occurs. Using a window of T

observations, we calculate the centre line x̄ as the mean of the values of the

statistic returned from the change detector, and its standard deviation σ̂. The

upper and lower control limits are calculated as

x̄±1.96
σ̂√
T
. (4.1)
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If either of the control limits are exceeded, change is signalled. This (rather

naive) threshold estimation assumes that the change statistic has normal

distribution, and that we have a sufficiently large window so as to get reliable

estimates. The above value is for significance level α= 0.05. The bootstrap

threshold does not rely on any such assumption but is more cumbersome.

4.4.3 Experimental investigation

All thresholds considered here, including the threshold of the Hotelling

method, are meant to control the type I error (“convict the innocent”, or accept-

ing that there is a change when there is none). If we set all these thresholds

to 0.05, we should expect to have false positive rate less than that. Nothing is

guaranteed about the type II error (“free the guilty”, or missing a change when

there is one). Thus we are interested to find out how the three chosen change

detectors behave for the two type of thresholds, in terms of both error types.

4.4.4 Facial Expression Data

We chose a challenging real-life problem to test the change detectors. Sus-

tained facial expressions of five emotions were taken to be the stable states,

and the transition from one emotion to another was the change.

While a number of facial expression databases exist, we opted to use the

Face Tracking toolkit distributed with the Kinect SDK. The Kinect software per-

forms the necessary computer vision tasks to directly track facial geometry

in real time.

This requires only a minimal experimental setup where a participant sits

at a computer with a Kinect facing them, capturing real-time data about their

posture and facial expression whilst they interact with the computer.
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Table 4.1: Features extracted by the Kinect software.

Feature Description Used
Face Points 123 3D points on the face

Skeleton Points 10 3D points on the joints of the upper body
Animation Units 6 Animation Units [−1,1] X

Table 4.2: The six Kinect animation units and their equivalents in the Candide3 model.

Animation Unit Candide3 [3] Description
AU0 AU10 Upper Lip Raiser
AU1 AU26/27 Jaw Lowerer
AU2 AU20 Lip Stretcher
AU3 AU4 Brow Lowerer
AU4 AU13/15 Lip Corner Depressor
AU5 AU2 Outer Brow Raiser

The Kinect Face Tracking SDK utilises the Active Appearance Model (AAM) [40],

taking into account the data from the depth sensor to allow head and face

tracking in 3D. The features extracted by the Kinect are listed in Table 4.1.

Those used in this experiment are checked. The "Animation Units" (AUs) refer

to specific movements on the face defined in the Candide3 model [3]. The

mapping between the Kinect AUs and the Candide3 equivalents is in Table 4.2

4.4.5 Data Capture

Each participant sat with their eyes trained on a computer screen, with a Kin-

ect observing them. Emotional transitions are triggered by visual instructions.

The participants were asked to hold their facial expression until instructed to

change it. The duration of a facial expression is 3 seconds. The timestamps

of these instructions are logged to provide the true positive values for the

experiment. Thus each experimental run produces about 5 expressions × 3

seconds× 30 FPS =540 frames. Figure 4.5 shows an example of one of the an-

imation units throughout one run. The periods of sustained facial expressions

are labelled. The initial warm-up period, as well as the transition periods of 7

frames are also indicated.
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Figure 4.5: An example of an animation unit along one experimental run for
collecting data. The dashed vertical lines are the time points where the participant is
prompted to change their facial expression. The shaded regions are transition stages.

The process is facilitated by a bespoke application2 written in the C# lan-

guage, which utilises the Kinect SDK to retrieve frames from the sensor and

extract the features. The application acts as a TCP client which connects to a

server running in MATLAB, where the extracted features and timestamps are

streamed in real-time, ready for analysis.

4.4.6 Methodology

The experiment was conducted using the AUs from six participants, each

of whom recorded ten runs using the apparatus. Human reaction time to visual

stimuli is 180-200 ms. In a recording at approximately 30 frames per second,

a true positive detection should appear no earlier than 180/30=6 frames after

the labelled change (prompt to change the facial expression). For each run,

we test Hotelling, KL Distance with Bootstrapping, KL Distance with Control

Charts, SPLL with Bootstrapping and SPLL with Control Charts. The protocol

in Algorithm 6 was followed for each run and for each participant.

Five hundred runs were carried out for determining the bootstrapping

threshold.

2https://github.com/wfaithfull/KinectConnect
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Algorithm 6: Experimental procedure.
1. Split the data into segments by label.
2. Sample a windowW1 ofT contiguous frames from a random segmentS,

with cardinality |S|=M and random starting frame F , 7≤F ≤(M−T ).
3. SampleW2 from a random segment. If drawn from the

same label asW1, test for false positives, else test for true positives.
4. Calculate the threshold fromW1 using the chosen method.
5. Calculate change statistic fromW1 andW2 and compare with the

threshold. Store ‘change’ or ‘no change’, as well as the time taken to
execute the iteration steps.

6. Repeat 1–5K times samplingW1 andW2 from the same label,
K times samplingW1 andW2 from different random labels.
Calculate and return the true positive and false positive rates
for the chosen detector and threshold.

To simulate a window of running change statistic only from data window

W1, we adopted the following procedure. A sliding split pointm was generated,

which was varied from 3 to T−3. This point was used to create windows W ′
1,

with data from 1 to m, and W ′′
1 , with data from m+ 1 to T . The statistic of

interest was calculated from these sub windows, which were assumed to come

from the same distribution.

Recalling Section 4.4.5, the data cycles through a warmup and 5 expressions

in approximately 540 frames. Discounting the warmup period, each expression

can be expected to last about 490/5=98 frames. T =50 was chosen in order

that the window size be above 50% of an expression duration. While there is

a great deal of literature on the subject of adaptive windowing [17, 54, 176],

this is beyond the scope of this experiment. Such a technique could be used

to set T . We set K= 30. The experiment was performed on a Core i7-3770K

4.6GHz Windows machine with 16GB RAM.

4.4.7 Results

We can examine the relative merit of the detectors and thresholds by plot-

ting them on a Receiving Operating Characteristic (ROC) curve. The x-axis is
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‘1− Specificity’ of the test, which is the false positive rate, and the y-axis is

the ‘Sensitivity’ of the test, which is the true positive rate. Each run for each

participant can be plotted as a point in this space. An ideal detector will reside

in the top left corner (point (0,1)), for which true positive rate is 1 and false

positive rate is 0. The closer a point is to this corner, the better the detector is.

Figure 4.6 shows 30 points (6 participants× 5 detector-threshold combin-

ations).
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Figure 4.6: Results for the 5 detector-threshold combinations. Each point is the
average (FP,TP) for one participant, across theK=30 iterations and 10 runs.

Each point corresponds to a participant. The marker and the colour indicate

the detector-threshold combination. The figure shows that, although the de-

tectors are not perfect individually, the points collectively form a high-quality

ROC curve.

All thresholds were calculated for level of significance 0.05. Applying this

threshold is supposed to restrict the false positives to that value. This happened

only for the SPLL detector. The price for the zero FP-rate is a low sensitivity,

making SPLL the most conservative of three detectors. The Hotelling detector

does not live up to the expectation of FP< 0.05. It is not guaranteed to have
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that FP rate if the assumptions of the test are not met - clearly the situation

here. Between this test and KL with bootstrap threshold, Hotelling is both faster

and more accurate (lower FP for the same TP). The best combination for our

type of data appeared to be the KL detector with the control chart threshold. It

exhibits an excellent compromise between FP and TP, and is faster to calculate.

Interestingly, the threshold-setting approach did not affect SPLL but did

affect the KL-detector. The control chart approach improved on the original

bootstrap approach by reducing dramatically the false positive rate without

degrading substantially the true positive rate.

We note that the way we sampled W1 and W2 may have induced some

optimistic bias because the samples from the same label could be overlapping.

This makes it easier for the detectors to achieve low FP rates than it would

be in true streaming data. Nevertheless, this set-up did not favour any of the

detectors or threshold-calculating methods, so the comparison is fair.

The execution time analyses favoured unequivocally the control-chart ap-

proach to finding a threshold. Also SPLL is the slowest of the detectors, followed

by KL and Hotelling. Therefore we recommend the KL-detector with a control-

chart threshold.

4.5 Conclusions

This chapter examined the use of control charts as an alternative to the

more traditional bootstrap approach for determining a generalised threshold

for change detectors. Our experimental study with a real-life dataset of facial

expressions taken in real time favoured the KL-detector with a control chart

threshold.
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We also observed that the statistical significance of the thresholds (type I

error) is not matched in the experiments, except for the SPLL detector. The non-

parametric bootstrap approach, was expected to give a more robust threshold,

not affected by a false assumption about the distribution of the change statistic.

The opposite was observed in our experiments for the KL-detector. The reason

for this could be that the window was too small to account for the variability

of the data sampled from the same label.

Reflecting on hypothesis (4), the success of the control chart threshold with

the KL detector establishes the concept of chained detectors. The experiment

demonstrates viability relative to the Hotelling’s T 2 detector. What is still

needed is a before and after comparison of multivariate detectors – first with

their suggested thresholds, and then with a range of univariate detectors.

The work here raises an interesting point in relation to hypothesis (1), where

it may lead to a weakening of assumptions for certain detectors. For example,

the assumptions that the SPLL detector makes are related to the fact that it

expects a certain distribution on its statistic – which is its thresholding mechan-

ism. If we replace its threshold with a control chart, then the whole detector is

making only the weaker assumption that it expects the average of the squared

Mahalanobis distances to increase at the advent of change.

In terms of applicability along the continuum in Figure 2.8, the KL and SPLL

detectors tested here take window size as a parameter. The concept of chaining

detectors is independent of any temporal perspective on the data, which would

be the responsibility of whatever approach is generating the statistic under

observation.
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Chapter 5

Ensemble Combination of Univariate

Change Detectors for Multivariate

Data
1

Is it better to consider multivariate data "purely" i.e. as examples of a

multivariate process, or should we inspect each feature individually? There

is a large body of research on univariate change detection, notably in control

charts developed originally for engineering applications. This chapter is an

evaluation of 12 univariate detectors built into ensembles where each member

observes a feature in the input space. A comparison is presented between the

ensemble combinations and three established ’pure’ multivariate approaches

over 96 data sets, and a case study on the KDD Cup 1999 network intrusion

detection dataset. It was found that ensemble combination of univariate meth-

ods consistently outperformed multivariate methods on the four experimental

metrics. Figure 5.1 illustrates that the work constitutes a new self-contained

multivariate change detector.

1Most of this chapter was published as Faithfull, W.J., Rodríguez, J.J. and Kuncheva, L.I.,
2019. Combining univariate approaches for ensemble change detection in multivariate data.
Information Fusion, 45, pp.202-214.
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Figure 5.1: A multivariate detector can be created as an ensemble of univariate
detectors, where each detector monitors a single feature of the input space. The
contribution of this chapter is a fully fledged multivariate change detector.

5.1 Introduction

There are many approaches from the classification literature intended to

monitor the error-rate of the incoming data and adapt a deployed classifier

accordingly. The MOA (Massive Online Analysis) framework [19, 21] is a popular

open source tool for data stream mining, providing a number of approaches

for univariate change detection, all of which we evaluate in this work.
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Inspiration is taken from a previous study [96] where Kuncheva uses clas-

sifier ensembles to detect concept change in unlabelled multivariate data. It

is proposed here to build an ensemble of univariate detectors (which could be

called a ‘subspace ensemble’) as a means of adapting established univariate

change detection methods to multivariate problems. Our hypothesis is that

such an ensemble should be competitive or better than ’pure’ unsupervised

multivariate approaches. We contribute the following:

1. An evaluation of which established univariate change detection methods

are well suited to subspace ensemble combination over 96 common

datasets.

2. Whether subspace ensembles outperform three established multivariate

change detection methods, especially in high dimensions.

3. A reproducible reinterpretation of the widely used KDD Cup 1999 [112]

network intrusion detection dataset as a change detection problem.

When generalising unsupervised change detection to multiple dimensions,

the challenges proliferate – in how many features should we expect to see

change before signalling? Can we reasonably assume that all features and

examples are independent? Multivariate approaches often assume that each

example is drawn from a multivariate process [102, 187, 2, 135]. Thus, we

need not assume that the features are independent. Multivariate change

detection attempts to model a multivariate process by means of a function to

evaluate the fit of new data (an example or a batch) to that model. Some works

monitor components independently (Tartatovsky et al. [164] and Evangelista

et al. [42]), meaning that the approach is unable to respond to changes in the

correlation of the components. Whether or not this is a disadvantage, depends

upon the context of the change.
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Change may have a different definition for different problems. For example,

if we wish to be alerted when the value of a stock is falling, a sudden rise

might be irrelevant. If using a control chart with upper and lower limits, only

monitoring the lower limit might considerably lower the false alarm rate. If the

problem is well known then a heuristic can be applied, but if that is the case,

there is most likely training data available for a supervised approach. Unsuper-

vised approaches must be robust in the face of unknown context. The change

we wish to detect could be abrupt or gradual. It could be a single change or

repeating concepts. When we move into multiple dimensions, there is even

more scope for contextual properties to stretch our assumptions. Change

could manifest itself in a single feature, all features, or any number of fea-

tures in-between. From the novelty detection literature, Evangelista et al. [42]

conclude that unsupervised learning in subspaces of the data will typically

outperform unsupervised learning that considers the data as a whole. In the

course of this work, we investigate whether this assertion is reproducible.

The dimensionality of the input data presents a potential challenge. Allipi

et. al [4] analyse the effect of an increasing data dimension d on change

detectability for log-likelihood based multivariate change detection methods.

They demonstrate that in the case of Gaussian random variables, change

detectability is upper-bounded by a function that decays as 1
d
. Importantly, the

loss in detectability arises from a linear relationship between the variance of the

log-likelihood ratio and the data dimension. Evangelista et al. [42] propose that

subspace ensembles are also a means to address the curse of dimensionality.

Multivariate detectors treat features as components of an underlying mul-

tivariate distribution [102]. We will term such detectors ‘pure’ multivariate

detectors. For pure detectors to work well, the data dimensionality d should

not be high, as Allipi et al. argued, and the data coming from the same concept

should be available in an i.i.d sequence. This is rarely the case in practice.
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For example, Tartatovsky et al. [164] observe that the assumption that all ex-

amples are i.i.d is very restrictive in the domain of network intrusion detection.

The remainder of the chapter is organised as follows. Section 5.2 covers the

background and related work for this problem. Section 5.3 details the methods

used, explains our combination mechanism, and overviews the experimental

protocol. Our results are presented in Section 5.5, and our conclusions follow

in Section 5.6.

5.2 Related Work

Ensemble methods for monitoring evolving data streams is a growing area of

interest within the change detection literature. There are recent surveys on the

subject by Krawczyk et al. [89] and Gomes et al. [60]. The former observe that

there has been relatively little research on the combination of drift detection

methods. The publications that they review in this area [119, 177] deal with

the combination of detectors over univariate input data, in contrast to our own

formulation. The latter work introduces a taxonomy for data stream ensemble

learning methods, and demonstrates the diversity of available methods for

ensemble combination. Du et al. [38] utilise an ensemble of change detectors in

a supervised approach for a univariate error stream. Alippi et al. [5] introduce

hierarchical change detection tests (HCDTs) combining a fast, sequential

change detector with a slower, optionally-invoked offline change detector.

In the classification literature, ensemble change detection commonly refers

to using these techniques to monitor the accuracy of classifiers in an ensemble,

in order to decide when to retrain or replace a classifier [20, 16, 15, 48]. Many

of these established univariate methods for change detection are geared to-

wards the supervised scenario which offers a discrete error stream [54, 8].

The Streaming Ensemble Algorithm (SEA) [160] was one of the first of many
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Table 5.1: Methods for change detection in univariate data

Method References Category
SEED [72] Monitoring Distributions
ADWIN [17, 21] Monitoring Distributions
SEQ1 [146] Monitoring Distributions
Page-Hinkley [137, 21] Sequential Analysis
CUSUM1 [137] Sequential Analysis
CUSUM2 [21] Sequential Analysis
GEOMA [144, 143] Control Chart
HDDMA [48] Control Chart
EDDM [8, 21] Control Chart
DDM [54, 21] Control Chart
EWMA [144, 21, 143] Control Chart
HDDMW [48] Control Chart

Table 5.2: Methods for change detection in multivariate data

Method References Category
SPLL [102] Monitoring Distributions

Log-likelihood KL [102] Monitoring Distributions
Log-likelihood Hotelling [102] Monitoring Distributions

ensemble approaches for streaming supervised learning problems. However,

instead of relying on a change detection, SEA creates an adaptive classifier

which is robust to concept drift. Evangelista et al. [42] use a subspace en-

semble of one-class Support Vector Machine classifiers in the context of novelty

detection. The input space is divided into 3 random subspaces, each monitored

by a single ensemble member. Kuncheva [96] uses classifier ensembles to

directly detect concept change in unlabeled data, sharing the same problem

formulation as this work.

5.3 Change detection methods

The methods we evaluated are detailed in Tables 5.1 and 5.2. The reader

is referred to Section 2.6 for a thorough explanation of each. We chose to

evaluate all the univariate detectors offered by MOA [19, 21], an open source

project for data stream analysis. Our experiment performs an unsupervised
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evaluation of all reference implementations of the ChangeDetector interface

in the MOA package

moa.classifiers.core.driftdetection 2

The interface contract implies the following basic methods to provide an input

and subsequently check if change was detected:

public void input(double inputValue);

public boolean getChange();

All the univariate detectors are provided by MOA except CUSUM1, which is

a CUSUM chart with upper and lower limits which was implemented in Java,

and integrated into the experiment to serve as a baseline. We arrive at a final

figure of 88 detectors, 3 of which are the multivariate approaches listed in

Table 5.2, and the remaining 85 are ensembles of the univariate approaches

with varying thresholds. The experimental details will be given in subsection

5.4. A full list of the 96 datasets and their characteristics can be found in Table

5.5. Our metrics for evaluation and our experimental protocol are addressed

in subsection 5.4.1. Finally, we discuss the case study in subsection 5.4.2.

5.4 Ensemble combination of univariate detect-

ors

In order to evaluate univariate approaches on multivariate data, we adopted

an ensemble combination strategy whereby each member monitors a single

feature of the input space. This approach is analogous to using a subspace

ensemble with a subspace size of 1, with as many subspaces and detectors

2 https://github.com/Waikato/moa/tree/master/moa/src/main/java/moa/
classifiers/core/driftdetection
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Figure 5.2: An illustration of the ensemble combination scheme. All change
detectors are of the same type, but each monitors a different feature.

as the dimensionality of the input space. Using subspaces with a size greater

than 1, as in Evangelista et al. [42], would require combination of multivariate

approaches. Figure 5.2 shows an illustration of the ensemble combination

scheme. In this set of experiments, the decisions are combined by a simple

voting scheme with a variable threshold. Our naming convention for a single

ensemble is as follows:

DETECTOR - AGREEMENT THRESHOLD (5.1)

For example, ADWIN-30 refers to an ensemble of univariate ADWIN detect-

ors, which requires 30% agreement at any given point to signal change. The

multivariate detectors will simply be referred to as, KL, SPLL and Hotelling, as

they are not ensembles.3

Diversity is an important consideration when building an ensemble, because

it implies that the members will make different mistakes [98, 103] and there

have been several analyses of ensemble diversity in evolving data streams [27,

60]. However, unlike in these works, our ensembles consist of identical de-

tectors. Diversity is introduced through the differing input to each detector.

On a related note, there will be redundant features in the datasets, which

3The ensemble of multivariate detectors is a special case, because, unlike the ensembles of
univariate detectors, it consists of only three detectors. In this case, the number of members
does not scale with the number of features. As such, there is no benefit in having a scale of
agreement thresholds when there are only ever 3 ensemble members. We chose 50% as a
simple majority out of 3.
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will effect ensemble performance. Ideally this would be addressed through

a feature extraction step, but such a measure is both difficult to generalise

across datasets and outside the scope of this chapter. As our ensembles are

created with identical members, no one type of detector can gain an advantage

in the results due to drawing many redundant features by chance.

5.4.1 Experimental protocol

The main experiment of this chapter evaluates our multivariate change

detection methods across the 96 datasets in Table 5.5. We evaluate the 3 mul-

tivariate detectors – SPLL, KL and Hotelling, an ensemble of these multivariate

detectors, and 84 feature-wise ensembles of the univariate detectors with

varying agreement thresholds, making a total of 88 detectors. A breakdown

of the methods is presented in Table 5.3.

We note that when the thresholds in Table 5.3, are utilised on particularly

small ensembles, the lower thresholds will become logically equivalent. For

example, in ensembles with fewer than 20 members, the 5% and 1% thresholds

will make the same decisions (20×0.5=1). Since 43.33% of the datasets have

more than 20 features, the difference in results between these lower thresholds

will depend upon the larger datasets.

All the methods were evaluated against three rates of change: Abrupt,

Gradual 100 and Gradual 300, for which we recorded separate sets of results.

Algorithm 7 is a simplified pseudocode representation of the experiment. For

each leg of the experiment, each detector is evaluated 100 times for each

dataset. On each of these runs, we choose a random subset of the classes,

and take this subset to represent distribution P (before the change). The

subset with the remaining classes is taken to represent distribution Q (after

the change). Points are then sampled randomly, with replacement, from the
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Table 5.3: The ensembles and detectors evaluated in the experiment

Ensemble Agreement Thresholds Count
SEED 1, 5, 10, 20, 30, 40, 50 7

ADWIN 1, 5, 10, 20, 30, 40, 50 7
SEQ1 1, 5, 10, 20, 30, 40, 50 7

PH 1, 5, 10, 20, 30, 40, 50 7
CUSUM1 1, 5, 10, 20, 30, 40, 50 7
CUSUM2 1, 5, 10, 20, 30, 40, 50 7
GEOMMA 1, 5, 10, 20, 30, 40, 50 7

HDDMA 1, 5, 10, 20, 30, 40, 50 7
EDDM 1, 5, 10, 20, 30, 40, 50 7
DDM 1, 5, 10, 20, 30, 40, 50 7

EWMA 1, 5, 10, 20, 30, 40, 50 7
HDDMW 1, 5, 10, 20, 30, 40, 50 7

MV 50 1

Total
85

Multivariate Detector Count
SPLL 1
KL 1

Hotelling 1

Total
3

P andQ sets – 500 examples in the abrupt case, 600 and 800 respectively in

the gradual cases. Denote these samples by S1 and S2, respectively. We add

a small random value to each example, scaled by the standard deviation of the

data, to avoid examples that are exact replicas. In the abrupt case, S1 and S2

are concatenated to create a 1000-example test sample with i.i.d stream from

index 1 to 500, coming from P , followed by an abrupt change at index 500 to

another i.i.d. stream of examples coming fromQ. To emulate gradual change

over 100 examples, we take S1 and S2 as before, but do not concatenate them.

At index 500, we sample with increasing frequency from S2. The chance of an

example coming from S1 increases linearly from 1% at index 501 to 100% at

index 600. Note that the class subsets for sampling S1 and S2 were chosen

randomly for each of the 100 runs of the experiment.
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Table 5.4: The first 48 datasets used in the main experiment.

N is examples, n is features and c is classes.

dataset N n c
abalone 4177 8 3

acute-inflammation 120 6 2
acute-nephritis 120 6 2

adult 48842 14 2
annealing 850 31 3

arrhythmia 295 262 2
balance-scale 576 4 2

bank 4521 16 2
blood 748 4 2

breast-cancer 286 9 2
breast-cancer-wisc 699 9 2

breast-cancer-wisc-diag 569 30 2
car 1728 6 4

cardiotocography-10clases 2126 21 10
cardiotocography-3clases 2126 21 3

chess-krvk 28029 6 17
chess-krvkp 3196 36 2

congressional-voting 435 16 2
conn-bench-sonar-mines-rocks 208 60 2

conn-bench-vowel-deterding 990 11 11
connect-4 67557 42 2

contrac 1473 9 3
credit-approval 690 15 2
cylinder-bands 512 35 2

dermatology 297 34 4
ecoli 272 7 3

energy-y1 768 8 3
energy-y2 768 8 3

glass 146 9 2
haberman-survival 306 3 2

hayes-roth 129 3 2
heart-cleveland 219 13 2
heart-hungarian 294 12 2

heart-va 107 12 2
hill-valley 1212 100 2

horse-colic 368 25 2
ilpd-indian-liver 583 9 2

image-segmentation 2310 18 7
ionosphere 351 33 2

iris 150 4 3
led-display 1000 7 10

letter 20000 16 26
low-res-spect 469 100 3

lymphography 142 18 2
magic 19020 10 2

mammographic 961 5 2
miniboone 130064 50 2

molec-biol-promoter 106 57 2
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Table 5.5: The second 48 datasets used in the main experiment.

N is examples, n is features and c is classes.

dataset N n c
molec-biol-splice 3190 60 3

monks-1 556 6 2
monks-2 601 6 2
monks-3 554 6 2

mushroom 8124 21 2
musk-1 476 166 2
musk-2 6598 166 2
nursery 12958 8 4

oocytes_merluccius_nucleus_4d 1022 41 2
oocytes_merluccius_states_2f 1022 25 3

oocytes_trisopterus_nucleus_2f 912 25 2
oocytes_trisopterus_states_5b 898 32 2

optical 5620 62 10
ozone 2536 72 2

page-blocks 5445 10 4
pendigits 10992 16 10

pima 768 8 2
planning 182 12 2
ringnorm 7400 20 2

seeds 210 7 3
semeion 1593 256 10
soybean 362 35 4

spambase 4601 57 2
spect 265 22 2

spectf 267 44 2
statlog-australian-credit 690 14 2

statlog-german-credit 1000 24 2
statlog-heart 270 13 2

statlog-image 2310 18 7
statlog-landsat 6435 36 6
statlog-shuttle 57977 9 5
statlog-vehicle 846 18 4

steel-plates 1941 27 7
synthetic-control 600 60 6

teaching 102 5 2
thyroid 7200 21 3

tic-tac-toe 958 9 2
titanic 2201 3 2

twonorm 7400 20 2
vertebral-column-2clases 310 6 2
vertebral-column-3clases 310 6 3

wall-following 5456 24 4
waveform 5000 21 3

waveform-noise 5000 40 3
wine 130 13 2

wine-quality-red 1571 11 4
wine-quality-white 4873 11 5

yeast 1350 8 5
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As the chosen datasets are not originally intended as streaming data, our

experiment uses the concept that the separable characteristics of each class

are woven throughout the features. Therefore some changes will be easier to

detect than others, introducing variety in our test data. Even if the sample size

is insufficient to detect changes in a given dataset, this does not compromise

experimental integrity because every detector faces the same challenge. A

detector which performs well on average has negotiated a diverse range of

class separabilities.

Datasets with fewer than 1000 examples will be oversampled in this experi-

ment, but we found no relationship between the oversampling percentage of a

dataset and our results. Even if this were to hinder or benefit the task at hand,

the challenge is the same for every detector.

Algorithm 7: Experimental procedure

for dataset in datasets do
for i=1,...,100 do

Choose a random subset of the classes as P ;
if abrupt then

Sample 500 examples as S1 from P ;
else if gradual 100 then

Sample 600 examples as S1 from P ;
else

Sample 800 examples as S1 from P ;
end
Sample 500 examples as S2 from the remaining classes;
Concatenate subsets into ’abrupt’ and ’gradual’ test data;
for detector in detectors do

Evaluate abrupt;
Evaluate gradual 100;
Evaluate gradual 300;

end
end
Store average abrupt metrics;
Store average gradual 100 metrics;
Store average gradual 300 metrics;

end

We measure the following characteristics for each method, averaged over

the 100 runs each, for abrupt and gradual change on each dataset:
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Figure 5.3: Scatterplot of the 88 detector methods in the space (ARL, TTD) for the
Abrupt-change part of the experiment. The three individual detectors are highlighted.

ARL Average Running Length: The average number of contiguous observa-

tions for which the detector did not signal change.

TTD Time To Detection: The average number of observations between a

change occurring and the detector signalling.

NFA The percentage of runs for which the detector did not issue a false alarm.

MDR The percentage of runs for which the detector did not signal after a true

change.

Based on these characteristics, a good method should maximiseARL and

NFA, and minimise TTD andMDR.

Figure 5.3 is the archetype of our result figures. It plots TTD versusARL for

the detection methods. The grey dots correspond to ensemble methods, and

the highlighted black dots correspond to the individual detectors (Hotelling, KL,

and SPLL). The ideal detector will haveARL=∞ (500 in our experiment, mean-
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ing that no false detection has been made before the true change happened),

and TTD=0. This detector occupies the bottom right corner of the plot. Dots

which are close to this corner are indicative of good detectors.

The two trivial detectors lie at the two ends of the diagonal plotted in the

figure. A detector which always signals change has ARL= 0 and TTD = 0,

while detector which never signals change has ARL=500 and TTD=500. A

detector which signals change at random will have its corresponding point

on the same diagonal. The exact position on the diagonal will depend on the

probability of signalling a change (unrelated to actual change). Denote this

probability by p. Then ARL is the expectation of a random variable X with

a geometric distribution (X is the number of Bernoulli trials needed to get

one success, with probability of success p), that is ARL = 1−p
p

. The time to

detection, TTD, amounts to the same quantity because it is also the expected

number of trials to the first success, with the same probability of success p.

Thus the diagonalARL=TTD is a baseline for comparing change detectors. A

detector whose point lies above the diagonal is inadequate; it detects change

when there is none, and fails to detect an existing change. We follow the

same archetype for visualisation of the MDR/NFA space. We plot MDR against

1-NFA for these figures in order to maintain the same visual orientation for

performance. Therefore the ideal detector in this space is also at point (1,0),

i.e., all changes were detected, and there were no false alarms.

5.4.2 A Case Study

In addition to the main experiment, we conducted a practical case study on

a network intrusion detection dataset. We chose the popular KDD Cup 1999

intrusion detection dataset, which is available from the UCI Machine Learning

Repository [112]. With a network intrusion dataset, the change context is more

likely to be longer-lived change from one concept to another, which could be
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either abrupt or gradual. The dataset consists of 4,900,000 examples and 42

features extracted from seven-weeks of TCP dump data from network traffic

on a U.S. Air Force LAN. During the seven weeks, the network was deliberately

peppered with attacks which fall into four main categories.

• Denial of Service (DOS): An attacker overwhelms computing resources

in order to deny access to them.

• Remote to Login (R2L): Attempts at unauthorised access from a remote

machine, such as guessing passwords.

• Unauthorized to Root (U2R): Unauthorised access to local superuser

privileges, through a buffer overflow attack, for example.

• Probing: Surveillance and investigation of weaknesses, such as port

scanning.

Of these categories, there are 24 specific attack concepts, or 24 classes.

This dataset is most commonly interpreted as a classification task. Viewed

as such, it offers some interesting challenges in its deficiencies. For example,

there is 75% and 78% redundancy in duplicated records across the training and

testing set respectively [165]. This can serve to bias learning algorithms toward

frequent records. It also has very imbalanced classes, with the smurf and nep-

tune DoS attacks constituting 71% of the data points; more than the ’normal’

class. We offer an interpretation of this data as a change detection task.

We evaluated the methods on the testing dataset. Since the data is sequen-

tial, we pass observations in order, one-by-one to each of the detectors. The

objective in our experiment was for the detectors to identify the concept bound-

aries. When the concept changes from one class to another, we record whether

this change point was detected. With this scheme, if we are experiencing a long-

lived concept such as a denial of service attack then after a sufficient number of

examples of the same concept, we would expect the change detection methods

to also detect the changepoint back to the normal class, or to another attack.
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One challenge for the change detectors in this interpretation is that some

concepts may be very short-lived, that is, the change in the distribution is a

‘blip’, involving only a few observations, after which the distribution reverts

back to the original one. Such blips may be too short to allow for detection by

any method which is not looking for isolated outliers.

5.5 Results and Discussion

Figure 5.4 visualises the ARL/TTD space for abrupt and gradual change type

by the categories in the taxonomy by Gama et al. [55]. Each plot contains all

96 points (one for each data set) of the 88 change detection methods. Em-

pirically, there is a clear and visible distinction between the methods in the

Control Chart category, which performed, on average, worse than chance, and

those in the other two categories. Table 5.6 confirms that Sequential Analysis

and Monitoring distribution methods were much more likely to exhibit a high

ARL. Furthermore, distribution monitoring methods exhibited considerably

lower TTD whilst being competitive on ARL with Sequential Analysis methods.

Observe the two distinct clusters in the ARL/TTD space for this category (the

triangle marker), and the relative sparsity in-between. We suspect that this

is the effect of gradual change on the TTD statistic. This is visible between

the figures, where we observe that, in the gradual change experiment, those

methods with a high ARL and low TTD struggle to better a TTD of 50, which is

the halfway point of introducing the gradual change. Those methods with an

already low ARL do not move significantly in the TTD axis between experiments.

We suspect that this is because a low ARL implies an over-eager detector, which

in turn increases the probability that a valid detection is due to random chance

rather than a response to observation of the data.

The bottom two charts in Figure 5.4 visualise the NFA/MDR space for the

aforementioned categories. Interestingly, we see a very similar effect for
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Figure 5.4: The three categories of detector, visualised in the ARL/TTD space for
the abrupt, gradual 100 and gradual 300 change experiments, respectively. Data
points for methods whose assumptions were violated are greyed out, but retain their
category marker.
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Table 5.6: The mean and standard deviation of the metrics for each category.

Method ARL TTD NFA MDR
µ σ µ σ µ σ µ σ

Sequential analysis 433.49 134.28 323.02 187.07 80.21 34.26 59.14 42.26
Control charts 499.93 0.68 486.67 46.14 99.97 0.28 96.46 12.02

Monitoring distributions 435.16 145.36 219.77 176.18 81.07 34.73 29.75 38.82

Table 5.7: The top 20 performers in the main experiment and the case study. The
methods are ranked in the listed 2D spaces by minimum Euclidean distance to
their respective ideal points, (500,0), (1,0), (7684.09,0) and (0,0). The ranks of the
multivariate detectors and multivariate ensemble are also shown if they were not
represented in the top 20.

Main Experiment Averages Case Study – KDD Cup 1999
# Detector ARL TTD Detector NFA MDR Detector ARL TTD Detector FPR MDR
1 SEED-1 484.18 113.07 SEED-5 0.96 0.05 ADWIN-20 10578.05 327.71 HDDMA-1 0.14 0.07
2 SEED-5 494.00 130.66 ADWIN-1 1.00 0.06 SEED-20 10900.19 648.86 CUSUM1-1 0.03 0.26
3 ADWIN-1 499.67 148.46 ADWIN-5 1.00 0.08 SEQ1-5 10930.04 578.64 CUSUM1-5 0.01 0.31
4 CUSUM2-1 462.10 160.48 SEED-1 0.91 0.03 CUSUM1-30 11153.81 1179.54 HDDMA-5 0.03 0.31
5 ADWIN-5 499.91 165.00 SEED-10 0.98 0.14 SEQ1-1 4291.67 180.79 PH-1 0.01 0.32
6 SEED-10 497.54 172.90 ADWIN-10 1.00 0.15 CUSUM2-5 3462.90 1281.90 CUSUM2-1 0.01 0.32
7 PH-1 477.96 187.96 SEQ1-20 0.94 0.18 ADWIN-10 3094.09 85.84 HDDMW-1 0.32 0.08
8 ADWIN-10 499.94 197.93 PH-1 0.86 0.13 SEED-10 2828.08 74.83 GEOMA-1 0.01 0.33
9 SEQ1-5 463.90 242.38 SEQ1-10 0.79 0.06 DDM-5 13724.94 1974.68 MV-50 0.02 0.36
10 SEQ1-10 478.91 247.84 CUSUM2-1 0.75 0.10 HDDMA-10 2605.21 3357.99 Hotelling 0.02 0.36
11 SEQ1-1 453.59 248.14 ADWIN-20 1.00 0.33 CUSUM1-20 2646.27 3734.60 EDDM-1 0.00 0.37
12 CUSUM1-20 374.97 228.50 SEQ1-5 0.64 0.03 ADWIN-5 741.15 48.96 CUSUM1-10 0.00 0.37
13 CUSUM2-5 484.61 264.66 SEQ1-30 0.98 0.37 SEED-5 682.78 48.51 KL 0.01 0.37
14 ADWIN-20 499.99 268.90 CUSUM2-5 0.89 0.37 EDDM-1 563.22 39.67 SPLL 0.02 0.37
15 SEED-20 499.52 274.41 SEED-20 1.00 0.41 DDM-1 441.54 1494.63 EWMA-1 0.00 0.39
16 PH-5 491.43 293.04 PH-5 0.94 0.41 EWMA-1 541.86 2015.76 DDM-1 0.00 0.39
17 SEQ1-20 494.19 294.23 SEQ1-1 0.54 0.03 SEED-1 229.07 32.73 ADWIN-1 0.01 0.40
18 CUSUM1-10 219.09 114.13 ADWIN-30 1.00 0.50 ADWIN-1 187.46 24.95 SEED-1 0.00 0.41
19 CUSUM1-30 439.02 308.69 CUSUM1-20 0.59 0.34 PH-1 113.59 15.71 SEED-5 0.00 0.43
20 ADWIN-30 499.99 328.74 CUSUM1-30 0.80 0.52 GEOMA-1 108.70 19.54 ADWIN-5 0.00 0.44

...
...

...
...

...
...

# Detector ARL TTD # Detector NFA MDR # Detector ARL TTD
21 Hotelling 499.95 432.97 30 Hotelling 0.01 0.01 23 KL ∞ ∞
34 SPLL 484.61 264.66 47 SPLL 0.04 0.04 25 SPLL ∞ ∞
39 MV-50 499.88 497.29 54 MV-50 1.00 1.00 26 MV-50 541.86 2015.76
47 KL 57.02 56.73 68 KL 0.86 0.13 27 Hotelling 9137.79 8020.57
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control chart methods. To understand why the performance of this category is

so poor, we must consider the assumptions of the detectors. This experiment

presented the data points directly to the change detection methods in the

ensemble. Specifically, this category contains EDDM, HDDMA and HDDMW , all

of which share a common ancestor in DDM. Whilst the MOA interface for change

detectors accepts 64 bit floating point numbers, these methods were not in-

tended for continuous-valued data. DDM assumes the Binomial distribution.

It also assumes that the monitored value (e.g., error rate of a classifier) will

decrease while the underlying distribution is stationary. The derived methods

also share this assumption, which is fundamentally violated by the nature of

the data presented to them in this experiment.

The top 20 performers averaged over abrupt and gradual change are sum-

marised in the left half of Table 5.7. The performers were ranked by minimum

Euclidean distance to the ideal points in the ARL/TTD and NFA/MDR spaces,

(500,0) and (1,0).

The results for each individual method are summarised in the ARL/TTD space

in Figure 5.5, and in the NFA/MDR space in Figure 5.6. In the ARL/TTD space,

the SEED and ADWIN detectors were the best performers, with Page Hinkley,

CUSUM2 and SEQ1 showing competitive patterns. The multivariate detectors

exhibited a large standard deviation, suggesting that their performance is

related to the suitability of the data – an observation which would appear to

lend further credence to the conclusions of Allipi et al. [4], as well as our own hy-

pothesis. In the NFA/MDR space, the winners are the low quorum ensembles of

the SEED and ADWIN detectors. In fact, all the ensembles outside of the control

chart category performed favourably compared to the multivariate detectors.

Observing the curves of the SEED, ADWIN, Page Hinkley, CUSUM1, CUSUM2 and

SEQ1 detectors across both sets of metrics, we see that the ideal agreement

threshold is a case-by-case problem. The ADWIN ensemble improves almost

linearly as we reduce the agreement threshold, suggesting that the optimum
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scheme is one whereby any member of the ensemble has absolute authority

to signal a change. With other ensembles such as SEED and SEQ1, the 1%

threshold is beyond the optimal, with the best ensembles having thresholds

of 5% and 10%, respectively in the NFA/MDR space. It appears that the optimal

choice of threshold differs slightly between the ARL/TTD space and the NFA/MDR

space. There is a clear and expected effect between abrupt and gradual change

on the ARL/TTD space mostly in the TTD axis, with TTD being marginally lower

for abrupt changes in those detectors whose assumptions are not violated.

We note that the ideal agreement threshold varies between detectors. The

curves in Figures 5.5 and 5.6 can be used to pick a suitable threshold for each

of the successful detectors. Taking ADWIN for example, the lack of movement

on the false alarm rate relative to the threshold changes suggests that an

ensemble might be close to optimal if any member is given absolute authority

for signalling. As a counter example, the SEQ1 ensembles seem to have an

optimal agreement threshold of between 10% and 20%.

Bearing in mind the works of Allipi et al. [4] and Evangelista et al. [42], we

were interested in observing the effects of data dimensionality on the missed

detection rate. Scatterplots of average missed detection rate against dataset

dimensionality, for each category of ensemble and for the multivariate detect-

ors, are presented in Figure 5.7. The scatter patterns suggest that changes in

higher-dimensional spaces are more likely to be missed.

5.5.1 The Case Study

The right half of Table 5.7 summarises the top 20 performers on the case

study data. As this experiment was a single run, we present the false positive

rate as FPR, instead of the NFA measure. The methods were ranked by the min-

imum Euclidean distance to the ideal points (7864.09,0) and (0,0) for the ARL/TTD
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and FPR/MDR spaces respectively. The ideal ARL of 7864.09 was calculated by ob-

serving the ARL of a perfect, ’cheating’ detector, which signalled immediately

for all changepoints and recorded no false positives. We see a familiar pattern

in the ARL/TTD space, with the SEED, ADWIN and CUSUM-based methods well

represented within the top 20. In the FPR/MDR space, the winners are primar-

ily low-threshold ensembles. We note that 8 methods; ADWIN-1, ADWIN-5,

SEED-1, SEED-5, EDDM-1, PH-1, GEOMA-1 and EWMA-1 are represented in the

top 20 in both spaces. We also observe that the top ranked ensembles across

the two spaces here differed modestly from the top performers in the main

experiment with the simulated abrupt and gradual changes. The improvement

in performance of control chart-based methods may be due to the incidence

of a number of contextually important binary features in this dataset. The best

performing multivariate detectors were ranked 23rd and 9th in the two spaces

respectively. Apart from the high false positive rates of HDDMW –1 and HDDMA–

1, the ensembles were competitive or better than the multivariate detectors on

TTD and MDR, and generally exhibited less false positives. The dominance of

the low-threshold ensembles mirrors their success in the previous experiment,

and suggests that between 1% and 5% agreement is a sensible starting point

when employing this scheme, across a range of different detectors.

5.6 Conclusions

The results of the experiment and the case study demonstrate the viability of

ensemble combination of univariate change detectors over multivariate data.

Over 96 datasets, ensemble methods frequently outperformed multivariate

detectors in all metrics, especially at low agreement thresholds. The multivari-

ate detectors did not even feature in the top 20 overall performers in either

space, as seen in Table 5.7. This would appear to tally with the conclusions

of Evangelista et al. [42] and lends support to hypothesis (5). The SEED and
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ADWIN detectors appear to be the best suited to ensemble combination in

this manner. Given that the SEQ1 algorithm is an ADWIN-derivative, we would

expect it to exhibit a similar performance. We see that it does exhibit very

similar performance to the ADWIN ensembles in terms of missed detections,

but it signals far more eagerly for a higher rate of false alarms. This may be

a reflection, as noted in Section 2.6.2, of the authors’ choice of the Bernstein

bound over the more conservative Hoeffding bound to set the threshold.

The main experiment described in Section 5.4.1 is sample based, so the

results are consistent with hypothesis (1). However, it is not safe to assume

that data within the case study are i.i.d, as Tartatovsky et al. make clear [164].

Therefore the case study acts as a foil to the main experiment, and the strong

performance of the ensembles in the case study suggests an encouraging

versatility.

Those detectors which make strong assumptions on the basis that they

are monitoring the error stream of an attached learner were unsurprisingly

poor when applied to raw data in this scheme. This accounts for the worse-

than-chance performances of the HDDMA, HDDMW , EDDM, DDM and EWMA

methods.

We observed empirically that all categories of detectors exhibited a positive

relationship between missed detections and dataset dimensionality, as Allipi

et al. [4] suggest, albeit to varying degrees. Evangelista et al. [42] also state

that unsupervised learning in subspaces of the data is a means to address the

curse of dimensionality. This is not strongly reflected in Figure 5.7, with the

multivariate detectors appearing to exhibit the weakest relationship of missed

detections with dimensionality. However, the ensembles had a much wider

spread of results, and the better ensembles considerably outperformed the

multivariate detectors.
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Figure 5.7: Scatter plots of dataset dimensionality against average missed detection
rate for the 96 datasets. The plots are arranged by the category of the detectors. Data
points from detectors with violated assumptions are greyed out.

The effect of differing persistence of change (abrupt, gradual 100, gradual

300) was investigated to some extent, with the effect visible in Figure 5.4.

The tunability of these ensembles with regard to outlier, novelty and change

detection is governed by the forgetting mechanisms of the univariate detectors

which comprise them.
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Chapter 6

Unsupervised Endogenous Blink

Detection from Streaming Video

6.1 Introduction

Eye blink detection from video is a small but active cross-disciplinary field

of study contributing to a range of applications such as Human-Computer

Interaction (HCI) [29, 131, 93, 92], drowsy driver identification [75, 106, 69],

liveness detection for spoof protection [138, 182], deception detection [49]

and epileptic seizure detection [152].

This problem is a good fit for unsupervised multivariate change detection

for the following reasons. Firstly, it involves identifying change points in high-

dimensional streaming data, where ground truth is not available. Secondly,

the process of feature extraction from video may be very complex and many

works include bespoke static thresholds rather than adaptive thresholds.

In this chapter, a relatively simple feature extraction process is applied to

streaming video of six people’s faces. This results in a fixed-size multivariate

feature space in which changes can be observed over time. The video data

used is an original dataset curated for this chapter. The objectives of these

experiments are twofold. Firstly, to test the applicability of contributions from

previous chapters. The multivariate detectors are assessed first on this dataset
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as a baseline. The techniques presented in Chapters 3 and 4 are designed

to improve the performance of multivariate change detection, while the tech-

nique in Chapter 5 offers an alternative to multivariate detectors. Secondly,

blink detection systems involve large and complex pipelines of operations for

feature extraction. The decision of what is or is not a blink is usually taken by

a bespoke threshold on some aspect of these extracted features. Established

change detection methods may be an alternative in lieu of bespoke thresholds.

The chapter is organised as follows. Section 6.2 reviews related work on the

problem of blink detection. Section 6.3 presents an overview of the dataset,

how it was collected, how it was labelled and its statistics. Section 6.4 details

the feature extraction process used. The baseline experiment is presented in

Section 6.5, and the experiments for the techniques in chapters 3, 4 and 5

are in Sections 6.8, 6.6 and 6.7 respectively.

6.2 Related Work

There are two kinds of data used for blink detection – signals from a brain-

computer interface like an electroencephalogram (EEG), and facial video pro-

cessed with computer vision techniques. This chapter is concerned with

vision-based approaches. Two types1 of blinks are usually discussed in blink

detection literature; voluntary and endogenous (involuntary) [93]. Work on

the former places a high degree of importance on blink length, this typically

being some form of control mechanism for HCI. This chapter is concerned only

with detection of endogenous blinks from video footage.

Vision-based techniques for blink detection are divided between active and

passive [93]. The former uses special equipment to illuminate the eye in a

1Psychology literature on the subject such as Stern et al. [159] also discuss reflex blinks
and non-blink closures as examples of eye closures outside these two categories.
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Figure 6.1: Blink detection is a multi-phase process, drawing on many computer
vision techniques.

particular way to facilitate tracking, for example with infra-red [167]. Passive

approaches use any sequence of images in normal visible light. The reviewed

works in this section will be mostly from this category. However, even within this

category, not all data is equal. Some approaches are tested on datasets cap-

tured from head-mounted cameras [111], which provide a reliable image of the

eye with varying degrees of need for face and eye detection. However, most as-

sume images contain a whole head [29, 106, 131, 93, 7, 35, 31], from which the

face and then the eyes must first be isolated from the rest of the image. Video

from a static camera such as a webcam is more difficult than a head-mounted

camera, because head movements relative to the camera need to be accounted

for. The advantage of static camera data and the reason for its popularity within

the field is that no specialist equipment is required beyond a video camera.

As depicted in Figure 6.1, blink detection comes after an initial process of face

or eye detection, or both. Once eyes have been detected, it may be less com-

putationally expensive to track the eyes than to re-detect them in subsequent

frames. Two popular algorithms for motion tracking among blink detection

systems are Lukas-Kanade [116] (LK) and Starburst [111]. Blink detection sys-

tems are often very tightly related to approaches for eye detection or tracking.

Common eye detection methods include Haar-feature classification [169, 25,

32, 110], template matching [69, 93, 7] and colour models [91, 30, 31].
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Many systems compute a difference image between subsequent video

frames to detect areas of motion, isolating the motion of the eyelids. These

could be called motion based methods, in contrast to methods which test the

openness of the eye. This motion based approach is the same frequently ap-

plied for detecting changes in satellite imagery, such as the LANDSAT data [153,

154]. Chau and Betke [29] is an example of such a system. They use streaming

video from a USB webcam along with a sophisticated feature extraction process

which involves frame-to-frame image differencing, thresholding and opening,

eventually creating an eye template which is tracked throughout the video.

Crowley and Berard [31] use a frame-to-frame difference image to identify

blinks, while also using histogram normalisation to attempt to identify skin

within the image. Morris et al. [131] also use a frame-to-frame motion based

approach for face detection, identifying the eyes and tracking them using the

LK algorithm. They detect blinks by thresholding a variance map of the eye

image, signalling a blink if there is a high proportion of remaining pixels relative

to the size of the eye bounding box. Lalonde et al. [106] use profile analysis

to detect the eyes, and then use the GPU to compute the Scale-Invariant fea-

ture transform (SIFT) features of the eyes for tracking. To detect blinks, they

compute the optical flow direction from a filtered frame-to-frame difference

image and declare a blink if the optical flow direction is downwards. Bhaksar et

al. [13] also use frame differencing to compute optical flow, tracking the eyes

using LK and thresholding the direction and magnitude of the flow to signal

blinks. Fogelton and Benesova [47] compute motion vectors for the eyes and

observe downward motion relative to a threshold based on standard devation.

Although less common, there are a number of systems which use an eye

openness test. Królak and Strumiłło [91] use a model based on skin colour for

eye detection and blink detection. Suzuki et al. [161] use a neural network to

detect the face and perform eyelid detection based on analysis of the shadows.

The gap between the eyelids is monitored for blink detection. Chen et al. [30]

use the Starburst algorithm [111] for eye detection and tracking. They perform
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an image segmentation process designed to isolate the iris, resulting in a binary

mask. The aspect ratio of the resultant iris mask is used to identify whether

the eye is open or closed. Lee et al. [110] exploit a difference in the ratio of

black pixels between successive closed and open eye images. The cumulative

sum of the difference over successive frames is fed into a pre-trained SVM to

classify the eye as open or closed.

Another approach attempts to fit active appearance models (AAM) to the

eye, the same technique used by the Kinect face tracking SDK as discussed in

Chapter 4. Bacivarov et al. [7] build a point-based appearance model for open

and closed eyes, map it to the face and assess the point positions.

Danisman et al. [32] use a Haar cascade classifier and a neural network to loc-

ate the face and the pupils. Taking into account the angle of rotation of the head,

they analyse the horizontal symmetry of the eye region to establish openness.

This chapter aims to establish a consistent multivariate lower-dimensional

representation of the video in which to apply change detection techniques to

this problem. Blinks in motion-based systems are characterised by a pair of

’blip’ changes, for the downward and upward motion of the eyelid. This places

such data closer to the domain of anomaly detection than change detection.

Instead, a ’recurring concepts’ problem is preferred, which is provided by an

eye-openness model. The system described in this chapter uses an a Haar

cascade classifier for eye detection and an eye openness model based on

colour for feature extraction. The features from the eye openness model are

monitored with change detectors for blink detection.
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Figure 6.2: Sample eye bounding box crops from the three label states.

6.3 Data Collection

The dataset used in this chapter consists of video footage of the faces of 6

people as they watch a nature documentary whilst sat at a computer. The data

is organised around 6 volunteer subjects, each providing 5 minutes of footage,

recorded at 1280x720 and at approximately 30 frames per second from a

standard commercial HD webcam. The subjects were asked to sit approxim-

ately 70cm from the webcam, and watch a nature documentary. The resulting

footage was trimmed down to exactly 5 minutes per subject, removing the

beginning of the video so that the subject is in a comfortable position when the

labelled data starts. The dataset consists of 53595 frames of video, of which

50116 were labelled ’Open’, 2059 were ’Transition’ and 1419 were ’Closed’.

Taking the definition of a blink event to be a contiguous sequence of frames

in a state other than ’Open’, there were 432 blink events. The dataset is made

publically available2.
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Table 6.1: Labels, their implied states and meanings.

State Label Description
OPEN 0 The eyes are open such that the entire pupil

is visible
TRANSITION 1 In at least one eye, the pupil is partially or

totally occluded by the eyelid, but part of
the iris or white of the eye remains visible.

CLOSED 2 In at least one eye, no iris, pupil or white of
the eye is visible.

Table 6.2: The ideal average run length (ARL) in frames, total blinks and blinks per
minute calculated for each subject.

Subject ARLI Blinks Blink Rate Blink Duration
1 80.76 55 11.00 329.09
2 62.63 71 14.20 268.54
3 95.08 46 9.20 287.68
4 275.03 15 3.00 244.44
5 44.96 99 19.80 216.50
6 30.57 146 29.20 276.94
µ 98.17 72.00 14.40 270.53
σ 89.73 45.65 9.1302 38.39

6.3.1 Labelling

Every frame of each 5 minute segment was labelled by eye using a custom

labelling tool developed for the project in Java, and using OpenCV to perform

video I/O. This tool is open source and available online3. There are three pos-

sible states into which the frames are divided, described in detail in Table 6.1.

This approach was preferred over binary labelling because there are often

ambiguous frames for which even a human would have difficulty classifying

as ’Open’ or ’Closed’, as demonstrated in Figure 6.2. If a binary classification is

desired, the data may be interpreted optimistically (all transition states count

as closed) or pessimistically (all transition states count as open).
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Figure 6.3: Mean blink rate and mean blink duration for each of the six subjects,
compared to expectations from two review publications from psychology literature.

6.3.2 Data Discussion

In Figure 6.3 we see for all videos the mean blink rate (in blinks per minute)

and mean blink duration (in milliseconds). The body of psychological literature

concerned with the analysis of human blink rate and duration is helpful when

considering the problem domain. Stern and Skelly [159] note that a typical en-

dogenous, or involuntary eye blink lasts for between 100 and 400 milliseconds.

Stern et al. [158] reported an average blink rate of between 3-7 blinks per

minute while reading, and 15-30 blinks per minute while not reading. These

findings correspond to the shaded areas in Figure 6.3. The distribution of the

videos demonstrates at least anecdotally that the data lie within the reasonably

2https://faithfull.me/blinks-dataset/
3https://github.com/wfaithfull/videotag
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expected range for this problem. However, Benedetto et al. [11] demonstrate

that blink rate and blink duration may fluctuate due to a number of external

factors, such as task difficulty and time on task. Table 6.2 lists the ideal Average

Run Length (ARL), number of blinks, blink rate and blink duration.The ideal

ARL is the average number of frames between blinks when the video is run in

sequence, and it represents how often a perfect detector should signal.

The statistics highlight the scale of the problem. A significant diversity in

ideal ARL, number of blinks and blink rate is clearly visible in both Figure 6.3 and

Table 6.2. The same change detector needs to work for subject 4, who blinked

only 15 times in 5 minutes and with subject 6, who blinked 146 times in the same

5 minutes. This suggests that the problem is not well suited to change detectors

which are tuned to a desired ARL such as the EWMA charts of Ross et al. [144].

The subjects are anecdotally numbered in order of perceived difficulty. We

expect that subjects 1 and 2 are the easiest prospects. Their eyes were well

illuminated, and they made few extraneous movements throughout the video.

Subjects 3 and 4 are slightly more challenging, exhibiting some head move-

ments and a very low blink rate, respectively. Subject 5 has a considerably

higher blink rate, along with less ideal illumination of the eyes and minor head

movements. Finally, subject 6 is the most challenging. Problems that must

be overcome include poor illumination of the eyes, high blink rate, squinting,

clusters of blinks, blinking with only one eye fully closed, head movements and

accidentally knocking the camera at one point in the video.

6.4 Feature Extraction

Video data as described in the previous section could be interpreted ver-

batim as a change detection problem by investigating the difference between

subsequent frames – a motion based blink detection system. This is undesirable
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for a number of reasons. There may be considerable unrelated movement in

the video such as head or mouth movements which would appear prominently

in a frame-to-frame difference image. We also know that there is a relatively

small ROI (region of interest) and that this ROI is not static over time. While

a sufficiently advanced feature extraction process solves these problems, the

focus of this chapter is on change detection rather than feature extraction. The

basic feature extraction objectives for this problem are:

1. Identify the ROI within any given frame.

2. Extract a consistently-sized set of features from the ROI which represents

the change we wish to detect.

In this work, a model of eye openness based on colour histograms was

chosen. This is similar to the approaches taken by Królak and Strumiłło [91] and

Lee et al. [110], although the latter uses a difference image between frames.

6.4.1 ROI Identification

The identification of facial features within images is a well studied problem.

A common approach is to employ a boosted cascade of Haar feature classifiers,

also known as the Viola-Jones algorithm [169]. Haar features are filters which

are convolved over an image and produce a numerical score for a given region

within the image. Figure 6.4 shows a common set of Haar features used for

object detection, from Lienhart and Maydt [113]. The score for the feature

is calculated as the sum of the pixel intensities within the black area as a

proportion of the sum for the whole filter. This results in a very large number

of candidate features, so a weak classifier set is created, each consisting of

a feature, a threshold and a direction. Boosting is then applied to the set to

produce a strong classifier, acting as a feature selection process. Figure 6.5,

from Viola and Jones [170] shows Haar features selected by AdaBoost, which
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exploit the relative darkness of the brow compared to the cheeks, and the

difference in intensity of the eye wells against the nose.

Figure 6.4: A example set of Haar features, from Lienhart and Maydt [113].

In order to make the above process fast enough to perform in real time,

strong classifiers are combined into a special decision tree, called a cascade.

Generally, a classifier which considers more features will have a higher accur-

acy and lower false positive rate, at the cost of more computation. As usually

the vast majority of sub-windows within an image will not contain a face, it is

highly inefficient to apply the best classifiers in the first instance. Therefore,

the cascade is arranged such that simpler classifiers are used first to identify

sub-regions of interest at which point progressively more expensive classifiers

are used. The cascade described in Viola and Jones [170] is composed of 38

stages and up to 6000 features, for example.

The experiments in this chapter use the pre-trained ’EyePair’ cascade clas-

sifier provided in the MATLAB Computer Vision System Toolbox [125]. For each

video frame, a number of candidate eye pair bounding boxes are predicted,

sorted by confidence. For some frames, no bounding boxes are returned, or

the most confident bounding box is wrong. To guard against this, a number of

measures are employed to ensure a good quality ROI extraction. Algorithm 8

illustrates this process in pseudocode.
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Figure 6.5: Haar features selected by AdaBoost, from Viola and Jones [170].

Algorithm 8: Feature extraction from video

video← load_video();
boxes← [];
features← [];
n←0
while has_frame(video) do

frame=read_frame(video);
bbox=haar_cascade(frame);
boxes=boxes ∪ bbox;
if size(boxes)≥30 then

boxes=boxes \ boxes[0];
end

chosen_bbox=median(boxes);
roi=extract_roi(frame,chosen_bbox);

hist_red=histogram(get_channel(roi,0),20);
hist_green=histogram(get_channel(roi,1),20);
hist_blue=histogram(get_channel(roi,2),20);
features[n]=[hist_red,hist_green,hist_blue]

n=n+1;
end

The most confident prediction is taken (if there is one) at each frame and

added to an array of bounding boxes with a maximum size of 30. 30 frames was

chosen as it represents a period of approximately one second in the video. A

bounding box takes the form of a 4-element vector [x,y,w,h]T of position, width

and height. Combining the bounding boxes into a 30 by 4 matrix, the bounding

box for the ROI is taken as the columnwise median of this matrix. This combin-
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ation of steps was found to provide the best balance of responsiveness to head

movement and robustness against poor and non-existent bounding boxes.

(a) ROI Identification (b) Feature Extraction

(c) Features over 5 minute video

Figure 6.6: (a) A haar-cascade computed eye bounding box. (b) Histogram of the
bounding box in (a). (c) Progression of the 60 features over the whole video.

6.4.2 Histogram Calculation

The size of the extracted ROI is variable per frame, and this inconsistent

number of features is problematic for most change detection algorithms. There-

fore, a consistently-sized histogram was calculated and used to provide the

features. The hypothesis is as follows. There is a considerable colour difference

between an image of an open and closed eye. If a histogram is generated from

the image pixel values, over several frames, there should be a detectably large
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difference in the counts of skin colour and eye colour. Furthermore, this should

generate a detectable difference in subsequent frames invariant of skin colour,

eye colour or lighting conditions.

Separating the red, green and blue channels of the ROI, the pixel values of

each are grouped into 20 equally sized buckets. The combination of these three

histograms form a consistent 60-dimensional space in which change should

be detectable. Figure 6.6 (a) depicts the ROI identification, (b) an example

histogram for a single frame, and (c) the progression of the 60 features over

the course of the 5 minute video. Note that the blinks are visible to the naked

eye, and also that there are a considerable amount of noisy features which

suggest further feature extraction would be beneficial. These noisy features

are an expected byproduct of this approach. Beginning with the assumption

that we will observe the difference between the colour of an open and closed

eye, it stands to reason that a histogram of a static (relative to the face) ROI will

have a mostly static distribution of colours over time under stable illumination.

It is expected that the histogram buckets which vary significantly over time

belong to the colours of the eyes. This is assumed due to the proportion of

the ROI which is taken up by the eyes, and the lack of other possible facial

movements within the ROI which could cause colour changes.

6.5 Experiment 1: Baseline

6.5.1 Method

The objective of the first experiment was to establish the baseline perform-

ance of the pure multivariate change detectors on the problem. The detectors

were evaluated individually for each subject. Since the multivariate detectors

all require sliding windows of data, a range of window sizes were evaluated to
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account for the parameter choice. The process is illustrated in pseudocode in

Algorithm 9.

Algorithm 9: Evaluation process for multivariate detectors. Each run
stores the subject, detector name and window size, along with the
four performance metrics; average run length (ARL), time to detection
(TTD), false alarm rate (FAR) and missed detection rate (MDR).
subjects←{1..6}
detectors←{ Hotelling, SPLL, KL }
window_sizes←{5,10,15,20,25,30,35,40,45,50}
for subject∈subjects do

features= load_features(subject);
for d_name∈detectors do

for wsz∈window_sizes do
detector=build_detector(d_name,wsz);
ARL,TTD,FAR,MDR=evaluate(detector,features);
store(subject,d_name,wsz,ARL,TTD,FAR,MDR);

end
end

end

The four performance metrics discussed in Section 2.7 are recorded for each

experiment – average run length (ARL), time to detection (TTD), false alarm

rate (FAR) and missed detection rate (MDR).

Eye blink data presents a unique challenge when assigning true labels.

The state of a frame is unavoidably subjective, open to difference of opinion

through human interpretation. Whilst open and closed states are trivial to

differentiate, there is a transition period between the states which is uncertain.

In Section 6.3.1 two interpretations of the data were proposed; optimistic and

pessimistic. In the former, transition states are interpreted as part of the blink,

while in the latter they are interpreted as open eyes. An optimistic interpret-

ation of the data is a better approximation of the underlying ground truth in

which we are interested, and so was used for the experiment.

Despite applying an optimistic interpretation, some legitimate detections

are marked as false positives due to eye movements that often occur imme-

diately prior to a blink, but do not pass the thresholds described in Table 6.1
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for marking a frame as transition or closed. As such, we provide a small am-

nesty for early detections that occur α frames before a true positive. For this

experiment, α= 5 was chosen, or approximately one sixth of a second at 30

frames per second. A knock on effect of this is that it becomes possible for a

detector to achieve a negative TTD value. For the purposes of results figures,

any negative TTD values are plotted as zero.

These experiments were run using the meander4 streaming change detection

framework. A number of the univariate detectors used are the implementations

from MOA5 adapted into this framework.

It was decided that the detectors would not be reset when a change is

detected, which will almost certainly contribute to an inflated false alarm rate

and would not be done in practice. This was done for the following reason.

In the particular case of blink detection, the true changes are likely to occur

periodically roughly according to the blink rate of the subject. Let us consider

subject 5, with an ideal ARL of 44.96. Suppose that we apply a useless detector,

which signals change all the time, but uses a fixed-size window of observations.

Suppose further that we evaluate this detector with a window size of 45. If the

detector does not signal until its window is full, it would signal every 45 frames

and achieve a very favourable result, despite its performance being entirely

related to the window size. Such a detector merely arrives by accident at the

ideal ARL. By not resetting the detectors, we record many more legitimate

detections as false alarms after the blink has been detected, but over-eager

detectors have nowhere to hide. We can be confident that rerunning the exper-

iment with resetting of the detectors will likely significantly improve the false

alarm rates. The same improvement applies to simple statistical detectors like

CUSUM, which maintain rolling averages.

4https://github.com/wfaithfull/meander
5https://github.com/Waikato/moa
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6.5.2 Results Format

(a) (b)

Figure 6.7: Results figure archetype and sample glyphs.

Figure 6.8: Progression of parameter values over subsequent runs. Low values of
the parameter are in black, high values in green.

Figure 6.7 (a) demonstrates the archetypal results figure. From each indi-

vidual run, the ARL, TTD, FAR and MDR are used to plot a glyph on the radar

chart. FAR and MDR already reside in the [0..1] interval with 0 being ideal,

but the ARL and TTD values need to be adjusted. To visually accentuate the

difference in ARL and TTD at lower values, log-scales were used. To map the

recorded ARL (ARLR) into this space, the ideal ARL (ARLI) is calculated from

the data, and then the scaled distance to the ideal ARL computed.

ARLplot =
ln(|ARLR−ARLI |)

ln(N−ARLI)
(6.1)
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max(|ARLR−ARLI |)=N−ARLI (6.2)

SinceN=max(TTD), the TTD is plotted as

TTDplot =
ln(TTD)

ln(N)
(6.3)

Figure 6.7 (b) demonstrates some common ’glyphs’ which provide a simple

intuition about the performance of the detector. A detector which never signals

will have TTD=N,ARL=N,MDR=1,FAR=0.

Figure 6.8 is how parameter progression is visualised. Regardless of which

parameter is being tuned, black indicates a low value and green a high value,

so that the effect of the parameter on the results is apparent. Lines are plotted

at 50% opacity to visually accentuate overlaps for very small increments. As-

suming the parameter value influences results, a progression should be visible

in the results figures.

Each experiment will also present a ranked table of the top 20 methods

in the ARL/TTD space and FAR/MDR space. This ranking will be calculated by

first taking the average over all subjects and all parameter values. Then the

rank is calculated as the sum of the two averages. As the ideal sum of the

scaled values is 0, the methods can then be ranked in ascending order of this

sum. There is no perfect ranking of these results as the importance of each

metric is contextual, but the best methods should appear in the top 20 overall

performers in both spaces.
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(a) Hotelling (b) SPLL (c) KL

Figure 6.9: Radar glpyhs for the multivariate detectors averaged across all subjects
and window size parameter choices.

Table 6.3: The top 20 performers on average in the ARL/TTD and FAR/MDR spaces.

Detector ARL TTD Detector FAR MDR
SPLL-W50 0.90 -3.86 SPLL-W50 0.77 0.00
SPLL-W40 0.90 -3.90 SPLL-W40 0.77 0.00
SPLL-W45 0.90 -3.89 SPLL-W45 0.77 0.00
SPLL-W35 0.89 -3.95 SPLL-W35 0.77 0.00
SPLL-W30 0.89 -3.99 SPLL-W30 0.78 0.00
SPLL-W25 0.89 -4.04 SPLL-W25 0.78 0.00
SPLL-W20 0.88 -4.08 SPLL-W20 0.78 0.00
SPLL-W15 0.88 -4.07 SPLL-W15 0.79 0.00
SPLL-W10 0.87 -4.13 SPLL-W10 0.79 0.00
SPLL-W5 0.86 -4.15 SPLL-W5 0.80 0.00

HOTELLING-W10 7443.17 7443.17 HOTELLING-W10 0.00 0.83
HOTELLING-W15 7443.17 7443.17 HOTELLING-W15 0.00 0.83
HOTELLING-W20 7443.17 7443.17 HOTELLING-W20 0.00 0.83
HOTELLING-W25 7443.17 7443.17 HOTELLING-W25 0.00 0.83
HOTELLING-W30 7443.17 7443.17 HOTELLING-W30 0.00 0.83
HOTELLING-W35 7443.17 7443.17 HOTELLING-W35 0.00 0.83
HOTELLING-W40 7443.17 7443.17 HOTELLING-W40 0.00 0.83
HOTELLING-W45 7443.17 7443.17 HOTELLING-W45 0.00 0.83
HOTELLING-W50 7443.17 7443.17 HOTELLING-W50 0.00 0.83
HOTELLING-W5 7443.17 7443.17 HOTELLING-W5 0.00 0.83

KL-W5 7443.17 7443.17 KL-W5 0.00 0.83

6.5.3 Results

We can see from Figure 6.9 that the multivariate detectors fare extremely

poorly at this problem across the board. Both the Hotelling and KL detectors

resemble the ’Never Signals’ glyph from Figure 6.7. The SPLL plots closely

resemble the ’Always Signals’ glyph. There is little to no variation in the results

between subjects and across parameter values. These intuitions are reflected

in the global average matrices in Table 6.4. In Table 6.3 we can see that minor
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Table 6.4: Global average performance values for each detector.(
ARL TTD
FAR MDR

)
(

7443.17 7443.17
0.00 0.83

) (
0.89 −4.01
0.78 0.00

) (
7443.17 7443.17

0.00 0.83

)
(a) Hotelling (b) SPLL (c) KL

variations aside, the SPLL detector signalled change more often than it did not,

and the other two detectors almost never signalled, having an ARL close to the

number of frames and missing most changes.

6.6 Experiment 2: Chaining Detectors

Following on from the poor results of the baseline experiment, here the hy-

pothesis from Chapter 4 is examined. It is proposed that by using univariate de-

tectors to monitor the statistics produced by the multivariate detectors, we can

achieve better results compared to the statistically justified fixed thresholds.

6.6.1 Motivation

The three multivariate detectors all reduce the input space to a continuous

statistic. Recall their respective flowcharts from Figure 2.20. We will refer to

a statistic generated by each detector as SSPLL, SKL and SH for the SPLL, KL

and Hotelling detectors respectively.

Continuing from the discussion in Chapter 4, we should first consider what is

the expected behaviour of each statistic in response to change. The thresholds

that are normally applied to SSPLL and SH are straightforward 95% confidence

intervals on the expected distribution of the statistic. That is, SSPLL∼χ2
p and

SH∼T 2
p,m. For KL, a log-likelihood ratio can be calculated to infer a threshold.

Unsupervised Endogenous Blink Detection from Streaming Video 136



Input
Window

pair
Cluster

windows
Mahalanobis

distance
χ2
p(∆) 95%

CUSUM

modelling criterion

decision

decision

Figure 6.10: The normal chi squared confidence interval threshold for SPLL is
replaced with a univariate change detector, such as CUSUM.

In considering whether to replace these thresholds, we will investigate what

the behaviour of each statistic is likely to be at the advent of change.

SPLL calculates SSPLL as the average Mahalanobis distance from each lead-

ing window example to its nearest cluster. As change occurs, we expect a

change in the clustering between the leading and trailing window. Whilst

this statistic may reduce if the clusters become more compact over time in

response to the change, there are considerably more possible movements

which will result in a maximisation of the statistic with change. This is a similar

argument to that expressed in Chapter 3, Figure 3.4.

If the Kullback-Leibler distance between two samples is zero, the hypothesis

is that the two samples are drawn from identical distributions. As we slide

windows over a change, the leading window fills with examples of the new

concept. Therefore it follows that SKL should display a short-lived peak in

response to change.

The Hotelling detector applies a multivariate T 2 test between the two

samples represented by the pair of windows. SH is simply the T 2 statistic.

Since the T 2 statistic is equivalent to the Mahalanobis distance between the

samples multiplied by a constant [102], a detectable change would be expected

to manifest as an increase in SH .
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Revisiting the common types of change Figure 2.2, we can hypothesise that

it is likely to be short-lived reoccurring concepts. As discussed in Section 6.3.2,

an endogenous blink is expected to last 100–400ms, or between 3–12 frames at

30FPS. An appropriately sized window will capture examples of both concepts.

Therefore it can be argued that all three change detector statistics can be

reasonably expected to produce localised maxima in response to change. The

motivation for chaining detectors is to exploit this property. The basic idea is

illustrated in Figure 6.10.

6.6.2 Method

Attempting to improve upon the performance of the fixed thresholds of the

multivariate detectors, a selection of univariate change detectors were used

to monitor the statistics and signal change. The choice of detectors are listed

in Tables 6.5 and 6.6. In particular, univariate detectors were chosen that did

not make strong assumptions about the distribution of the input data, and

this choice was further informed by their relative performance in the main

experiment of Chapter 5.

The experimental process is detailed in pseudocode in Algorithm 10. The

three multivariate detectors in Table 6.6 were evaluated at a range of window

sizes from [5,50], as before. However, each detector was tested with its own

thresholding mechanism removed and replaced with each of the six univariate

detectors in Table 6.5.

6.6.3 Results

The glyphs in Figure 6.11 show that this approach bears fruit in particular for

the SPLL statistic. Although there were minor improvements with H-ADWIN and
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Algorithm 10: Evaluate multivariate detectors chained with univariate
detectors
subjects←{1..6}
mv_detectors←{ H, SPLL, KL }
uv_detectors←{ADWIN, CUSUM, PH, GMA, MR, SEED}
window_sizes←{5,10,15,20,25,30,35,40,45,50}
for subject∈subjects do

features= load_features(subject);
formv_name∈mv_detectors do

for wsz∈window_sizes do
for uv_name∈uv_detectors do

mv_detector=build_detector(mv_name,wsz);
uv_detector=build_detector(uv_name);

detector=chain(mv_detector,uv_detector);
ARL,TTD,FAR,MDR=evaluate(detector,features);
d_name=”%s−%s”.format(mv_name,uv_name);

store(subject,d_name,wsz,ARL,TTD,FAR,MDR);
end

end
end

end

Table 6.5: Univariate change detectors chosen to be used as thresholds.

Univariate methods Acronym
ADWIN ADWIN
CUSUM CUSUM

Page-Hinkley PH
Geometric Moving Average Chart GMA

Moving Range Chart MR
SEED SEED

Table 6.6: Multivariate change detectors to be rethresholded.

Multivariate Methods Acronym
SPLL SPLL
KL KL

Hotelling H

H-SEED, the change context does not appear to be particularly well represented

in the T 2 or KL statistics, as both detectors tend towards a ’Never Signals’ glyph.

This apes the findings in the baseline experiment where these detectors also

failed to signal. In the baseline, the SPLL detector tended towards an ’Always

Signals’ glyph, and in this instance the chosen univariate detectors appear to

be better at taming the SPLL statistic into a more conservative performance.
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Hotelling SPLL KL

ADWIN

CUSUM

GMA

PH

SEED

MR

Figure 6.11: Radar glpyhs for Hotelling, SPLL and KL using the specified univariate
detectors for thresholding. The glyphs are averages over all subjects.
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Table 6.7: The top 20 performers in the ARL/TTD and FAR/MDR spaces.

Detector ARL TTD Detector FAR MDR
SPLL-ADWIN-W30 0.92 -3.94 SPLL-MR-W10 0.02 0.06
SPLL-ADWIN-W10 0.86 -3.86 SPLL-MR-W5 0.02 0.06
SPLL-ADWIN-W20 0.86 -3.96 SPLL-CUSUM-W25 0.02 0.08
SPLL-ADWIN-W25 0.85 -3.58 SPLL-CUSUM-W10 0.01 0.08
SPLL-ADWIN-W5 0.84 -3.94 SPLL-CUSUM-W30 0.02 0.08
SPLL-ADWIN-W15 0.84 -3.94 SPLL-MR-W15 0.02 0.08
SPLL-ADWIN-W50 0.84 -3.62 SPLL-MR-W20 0.02 0.08
SPLL-ADWIN-W40 0.84 -3.72 SPLL-CUSUM-W20 0.02 0.09
SPLL-ADWIN-W45 0.84 -3.72 SPLL-CUSUM-W5 0.01 0.10
SPLL-ADWIN-W35 0.84 -3.82 SPLL-MR-W25 0.02 0.10

SPLL-MR-W5 28.08 9.52 SPLL-MR-W35 0.02 0.10
SPLL-MR-W15 28.11 10.01 SPLL-MR-W30 0.02 0.11

SPLL-CUSUM-W5 39.56 16.54 SPLL-CUSUM-W15 0.02 0.12
SPLL-MR-W10 27.06 11.91 SPLL-CUSUM-W35 0.02 0.11

SPLL-CUSUM-W10 38.11 17.27 SPLL-CUSUM-W50 0.02 0.12
SPLL-MR-W20 28.01 13.05 SPLL-CUSUM-W40 0.02 0.12
SPLL-MR-W25 29.41 14.10 SPLL-MR-W45 0.02 0.12

SPLL-CUSUM-W20 35.66 17.99 SPLL-CUSUM-W45 0.02 0.13
SPLL-CUSUM-W15 35.92 18.34 SPLL-MR-W40 0.02 0.13
SPLL-CUSUM-W30 34.37 17.28 SPLL-MR-W50 0.02 0.13

The SPLL plots show a small but clear effect from tuning the window size. For

MR, CUSUM, PH and SEED, darker values tend to be associated with a lower TTD

and lower MDR. This implies as expected, that a smaller window size makes

the detectors less conservative. For GMA, the smaller window sizes are clearly

related to a greater deviation from the ideal ARL, although this appears to be

the opposite case for PH.

In Table 6.7 we see that SPLL based methods dominate the top 20 in the two

categories. Of particular note are SPLL-MR and SPLL-CUSUM with low window

sizes, which are well represented in the top 20 of both spaces. The global

averages in Table 6.8 also reflect this, although GMA was closest on average

to the ideal ARL, despite being unrepresented in the top 20. The top 20 in the

ARL/TTD space is dominated by the SPLL-ADWIN detectors, due to equal weight

given to ARL difference and TTD. Since the ADWIN detectors were extremely

eager, signalling change almost all the time, they achieved a zero TTD. Despite

this being a useless outcome, it led to a favourable rank due to very low ARL
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Table 6.8: Global averages across the chained detectors.

Hotelling SPLL KL

MR

7443.1667 7443.1667

0.0000 0.8333

 28.4774 15.5520

0.0210 0.0984

 7443.1667 7443.1667

0.0000 0.8333



ADWIN

5061.7862 5061.3446

0.2223 0.6054

 0.8533 −3.8117

0.8115 0.0103

 7443.1667 7443.1667

0.0000 0.8333



CUSUM

7443.1667 7443.1667

0.0000 0.8333

 35.1398 17.9865

0.0156 0.1041

 7443.1667 7443.1667

0.0000 0.8333



GMA

7443.1667 7443.1667

0.0000 0.8333

 127.3361 47.7455

0.0030 0.3386

 7443.1667 7443.1667

0.0000 0.8333



PH

7443.1667 7443.1667

0.0000 0.8333

 475.4375 67.4372

0.0009 0.6891

 7443.1667 7443.1667

0.0000 0.8333



SEED

7411.4500 7146.6000

0.0000 0.8328

 1075.0214 705.3320

0.0003 0.6566

 7443.1667 7443.1667

0.0000 0.8333



values and the ideal ARL being much closer to 0 than to the maximum number

of frames. The best overall performance therefore belongs to the SPLL-MR-W5

detector, which achieved an average 94% accuracy for a false alarm rate of

only 2%, whilst being the top non-ADWIN performer in the ARL/TTD space.

6.7 Experiment 3: Ensembles of Univariate De-

tectors

In parallel with the last experiment, here ensembles of univariate change

detectors are evaluated as in Chapter 5 as an alternative to the multivariate

detectors.
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6.7.1 Motivation

It is clear in Figure 6.6 that the extracted features still retain a considerable

amount of noise. Any successful approach will need to discern these noisy fea-

tures from the useful ones. The mechanism by which feature-wise ensembles

achieve this is quite straightforward. The discussion in Section 6.4.2 notes that

the noisy features are likely to be mostly static over time. As each individual

feature is monitored by a member of the ensemble, if the noisy features remain

stable, then these ensemble members will ideally not signal change. Assuming

a well-behaved change detector, the ideal agreement percentage will coincide

with the number of useful features.

6.7.2 Method

The same six univariate detectors were used as in the previous experiment;

again because they make few or no assumptions about the distribution of the

input data. The ensembles are built in the same construction as in Figure 5.2, all

identical detectors, with each detector monitoring a single feature in the input

space. The experimental procedure is detailed in psuedocode in Algorithm 11.

Algorithm 11: Evaluate ensembles of univariate detectors.

subjects←{1..6}
uv_detectors←{ADWIN, CUSUM, PH, GMA, MR, SEED}
agreements←{.01,.05,.1,.15,.2,.25}
for subject∈subjects do

features= load_features(subject);
for agreement∈agreements do

for uv_name∈uv_detectors do
detector=build_ensemble(uv_name,60);
ARL,TTD,FAR,MDR=evaluate(detector,features);
d_name=”%s−%s”.format(uv_name,agreement×100);

store(subject,d_name,agreement,ARL,TTD,FAR,MDR);
end

end
end
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The ensembles are built at a range of agreement thresholds; 1%, 5%, 10%,

15%, 20% and 25%. These were chosen from observation of the results figures

in Chapter 5, where thresholds of 1%, 5%, 10%, 20%, 30%, 40%, 50% were

used. It can be seen in Figures 5.5 and 5.6 that even 30% is generally well bey-

ond the optimal point on the curve for both metrics across all the datasets. In

this case, we have 60 features, which means that a 10% agreement threshold

requires the agreement of six detectors to signal change.

6.7.3 Results

Figure 6.12 demonstrates that ADWIN and MR ensembles are the best per-

formers on this problem. Furthermore, the progression of results in the radar

glyphs demonstrates that these approaches are highly tunable. This is visible

to a lesser extent for the CUSUM, PH and SEED ensembles. There is a clear

relationship with the decision threshold, the detectors becoming more conser-

vative as the threshold is increased. The fact that this is best represented in

the ADWIN and MR glyphs suggest that this change context is well represented

in their statistics.

(a) ADWIN (b) CUSUM (c) GMA

(d) MR (e) PH (d) SEED

Figure 6.12: Radar glpyhs for the ensembles at 1%, 5%, 10%, 15%, 20% and 25%.
Progression is visible from black (1%) to green (25%).
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Table 6.9: The top 20 performers in the ARL/TTD and FAR/MDR spaces.

Detector ARL TTD Detector FAR MDR
MR-5 8.62 -1.28 MR-15 0.02 0.02
MR-1 1.84 -3.15 MR-10 0.04 0.01

MR-15 28.70 3.10 MR-5 0.08 0.00
ADWIN-5 1.06 -2.14 MR-20 0.01 0.10

MR-10 16.01 0.49 MR-25 0.00 0.27
MR-20 58.53 21.27 SEED-1 0.01 0.33

ADWIN-10 1.16 1.53 MR-1 0.38 0.00
MR-25 160.82 13.25 SEED-5 0.00 0.74

ADWIN-20 1.53 6.62 CUSUM-1 0.00 0.77
ADWIN-1 1.00 9.61 ADWIN-20 0.47 0.30

ADWIN-15 1.29 4.99 ADWIN-25 0.36 0.42
ADWIN-25 2.23 6.33 ADWIN-15 0.54 0.25

SEED-1 82.62 43.27 ADWIN-10 0.60 0.19
CUSUM-1 1764.42 128.19 ADWIN-1 0.69 0.10
SEED-5 2397.24 1594.88 ADWIN-5 0.66 0.13

PH-1 4572.67 1557.08 PH-1 0.00 0.81
SEED-10 6640.83 4481.17 SEED-10 0.00 0.82
CUSUM-5 7443.17 7443.17 CUSUM-5 0.00 0.83

CUSUM-10 7443.17 7443.17 CUSUM-10 0.00 0.83
CUSUM-15 7443.17 7443.17 CUSUM-15 0.00 0.83

Table 6.10: Global averages for the ensembles.

(a) ADWIN (b) CUSUM (c) GMA(
2.2346 6.3252
0.3638 0.4188

) (
7443.1667 7443.1667

0.0000 0.8333

) (
7443.1667 7443.1667

0.0000 0.8333

)
(d) MR (e) PH (d) SEED(

160.8227 13.2456
0.0028 0.2720

) (
7443.1667 7443.1667

0.0000 0.8333

) (
7443.1667 7443.1667

0.0000 0.8333

)

Table 6.9 clearly shows that the MR ensembles are the best represented

across both categories, occupying 6 of the top 10 spots in both spaces. The

MR-15 ensemble is singled out for particular praise, achieving 98% accuracy

for a 2% false alarm rate, whilst on average detecting a blink one-tenth of a

second after it started. A more conservative ensemble, MR-25, signalled no

false positives while maintaining 73% accuracy, demonstrating the tunablity of

these ensembles. The performance of SEED-1 is encouraging, with an accuracy

of 67% for a 1% false alarm rate. The stark improvement in accuracy from

SEED-5 suggests that the optimal threshold for SEED is any member having

absolute authority.
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6.8 Experiment 4: PCA Feature Extraction

This experiment evaluates the effect of applying PCA feature extraction

as described in Chapter 3 to the previous three experiments. The data are

transformed into the principal component space, and features are discarded

based on their explained variance.

6.8.1 Method

In order to perform feature extraction, we first need to compute the principal

components for the stream. The number of observations necessary to do

this depends on the dimensionality of the data. For a sample of size n of p

dimensional observations, if n≤ p then there can be at most n−1 principal

components. The rule is simply illustrated with two points in three dimensions

in Figure 6.13. Since the data here has 60 dimensions, at least 60 observations

are needed to compute a meaningful PCA transformation.

A scheme was suggested in Chapter 3, Section 3.3.2 where given a pair of

adjacent sliding windows, W1 is used to compute the principal components

which are then used to transform both windows. There are a number of reasons

why this scheme is undesirable in this experiment. Firstly, the largest sliding

window size evaluated is 50. This means within the scheme we could only

compute at most 49 principal components. Secondly, if features are discarded

relative to their explained variance, then the number of features discarded may

vary throughout the stream. This can be managed for detectors which look

for differences between two windows of data but it is highly problematic for

detectors which maintain running statistics. Finally, the ensembles used here

employ many detectors which do not utilise a pair of adjacent sliding windows.
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Figure 6.13: n points in a p-dimensional space may only vary across n−1 axes if
n≤p. Here, n=2 and p=3.

The scheme used here is the same as in the video segmentation experiment

in Section 3.4. 100 observations are sampled from the start of the stream

and then used to compute principal components. These components are then

used to transform the rest of the stream, and discard features based on their

explained variance. The cutoff proportion of variance in this experiment was

K= 90%. The experiments from the previous sections were rerun twice, using

both the components explaining 90% of the variance, and the components

explaining the remaining 10%.

Figure 6.14 shows plots of the principal components accounting for 90% of

the variance in the data for each subject. This varied between 4 and 8 principal

components. It is clear from the plots that the features for subjects 4, 5 and 6

have a much weaker representation of the true change. Therefore, the compon-

ents remaining 10% of the variance constituted between 56 and 52 features.
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Algorithm 12: Feature extraction with PCA.

func 90pc,10pc= load_pca_features(subject)
K←0.9;
raw_features= load_features(subject);
transform,eigenvalues=pca(raw_features[0 :99]);
transformed_features=raw_features×transform;
explained=cumulative_sum(eigenvalues)÷sum(eigenvalues);
90pc_indices=explained[explained<K];
10pc_indices=explained[explained>=K];
90pc= transformed_features[90pc_indicies];
10pc= transformed_features[10pc_indicies];

Algorithm 12 is psuedocode defining the PCA feature extraction process.

Features are trimmed by variance by taking the cumulative sum of the eigen-

values, dividing through by the sum of the eigenvalues. For a vector ~λ of n

eigenvalues, the jth element of the variance explained vector ~E is given by

~Ej =

∑j
i=1
~λi∑n

i=1
~λi

where ~E is monotonic and increasing. Let k be the first index where ~Ej >K.

Then features 1, ..., k collectively explain the amount of variance specified

by K, and features k, ...,n explain the remaining variance. The processes

described in algorithms 9, 10 and 11 remain the same, except substituting

load_features(subject) for load_pca_features(subject).
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6.8.2 Results

Hotelling SPLL KL

90%

10%

Figure 6.15: Radar glpyhs for Hotelling, SPLL and KL detectors with PCA feature
extraction.

Figure 6.15 shows the results for the multivariate detectors with the 90% and

10% explained variance features respectively. Recalling Figure 6.9, the feature

extraction process has made a clear difference. Before both Hotelling and KL

resembled a ’Never Signals’ glyph, with no clear progression on parameter

tuning. With the 90% features, both Hotelling and KL became less conservat-

ive, while SPLL became more conservative. The reverse was true for the 10%

parameters, with all detectors becoming more eager.

Figures 6.16 and 6.17 show the results for the chained detectors for 90%

and 10% explained variance features respectively. Comparing to the previous

results in Figure 6.11, it is clear that the 90% features in particular have enabled

the Hotelling and KL statistics to be more representative of the change. This

is also reflected in the 10% features, to a much lesser degree. With the 90%

features, the T 2 statistic appears to be very competitive with the SPLL statistic,

even demonstrating a better shape on the CUSUM and GMA plots. For SPLL, the

10% features demonstrate very minor changes relative to the previous results,
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whilst the 90% features show greater fluctuation of results due to window size.

This appears to have improved the best-case and worsened the worst-case

performance.

Moving on to the ensemble results in Figure 6.18, the 10% features appear to

have made an insignificant difference. Minor changes are visible in the ADWIN,

PH, and SEED results, but they appear to be isolated runs rather than an overall

effect. The 90% features had a more pronounced effect. The ADWIN ensemble

has a more consistent performance and an improvement in MDR, in return for a

reduced tunability of the FAR. We see a clear improvement in the MR and SEED

ensembles. The MR ensemble delivered a considerably reduced FAR and MDR,

whilst the SEED ensemble appears to be more consistently tunable along with

a reduced TTD and MDR.
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Hotelling SPLL KL

ADWIN

CUSUM

GMA

PH

SEED

MR

Figure 6.16: PCA 90% radar glpyhs for Hotelling, SPLL and KL using the specified
univariate detectors for thresholding. The glyphs are averages over all subjects.
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Hotelling SPLL KL

ADWIN

CUSUM

GMA

PH

SEED

MR

Figure 6.17: PCA 10% radar glpyhs for Hotelling, SPLL and KL using the specified
univariate detectors for thresholding. The glyphs are averages over all subjects.
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ADWIN CUSUM GMA

90%

10%

MR PH SEED

90%

10%

Figure 6.18: Radar glpyhs for Hotelling, SPLL and KL detectors with PCA feature
extraction.

The global averages for the PCA experiments are in Table 6.11. The left

column contains averages for the 90% variance components, the right column

contains the averages for the 10% variance components. These can be directly

compared with the pre-PCA averages in Tables 6.4, 6.8 and 6.10. Table 6.12

summarises the difference. For example, ∆ARL is the average difference in

ARL with the PCA features, compared to the baseline. The individual values

are averages for a detector over all 6 subjects. Improvements are marked as •,
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worse performances with ◦ and no difference with -. The improvement markers

for ARL are plotted based on a reduction of the distance to the ideal ARL. The

last row of the table for each experiment is the number of improvements minus

the number of worse performances. A positive value indicates that PCA was

generally beneficial to this metric. The mean and standard deviation of the dif-

ferences, denoted as µ and σ, provide an indication of the strength of the effect.

Summing the improvement scores over all metrics and experiments, we

see that the 90% features were more beneficial overall with a total sum of

28, compared to a total sum of 0 for the 10% features. The only metric which

it was not an improvement for was false alarms. However, the higher false

alarm rates were mostly for the chained detectors and the mean and standard

deviation shows that the effect was fairly modest.

Table 6.13 shows an updated global top 20 performers across all four ex-

periments. The moving range charts are particularly well represented, both

as ensembles and chained to the multivariate detectors. We also see that a

majority of the top performers use PCA features. In particular, the moving

range ensembles appear to have benefited from PCA, improving their accuracy

considerably for a relatively small increase in false alarms.

6.9 Conclusion

All the techniques applied resulted in a considerable improvement over the

baseline experiment. From experiment 2 it is clear that the SPLL statistic is

well representative of the change, but the χ2 threshold is inadequate to extract

it. The relative success of both MR and CUSUM in this instance could have

interesting applications as a quick-fix for over-eager multivariate detectors,

where the threshold is holding back the performance, rather than the statistic.
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Table 6.12: The average difference made to each metric by applying the 90% / 10%
PCA feature extraction on the three experiments. The values are averaged over all
subjects and all parameter choices.

90% 10%
Detector ∆ARL ∆TTD ∆FAR ∆MDR ∆ARL ∆TTD ∆FAR ∆MDR

H -2321.76• -2925.28• 0.00◦ -0.04• -7442.33• -7447.09• 0.82◦ -0.83•
KL -7047.52• -5331.56• 0.00◦ -0.02• -4606.02• -2075.70• 0.00◦ -0.01•

SPLL 6452.13◦ 6407.32◦ -0.76• 0.74◦ -0.01◦ 0.13- 0.01◦ 0.00◦
µ -972.38 -616.51 -0.25 0.23 -4016.12 -3174.22 0.28 -0.28
σ 6218.08 5969.55 0.41 0.41 4049.79 4148.51 0.44 0.45
•−◦ 1 1 -1 1 1 2 -3 1

90% 10%
Detector ∆ARL ∆TTD ∆FAR ∆MDR ∆ARL ∆TTD ∆FAR ∆MDR

H-MR -7421.57• -7412.53• 0.03◦ -0.66• -7430.15• -7404.63• 0.05◦ -0.59•
H-ADWIN -5060.94• -5065.02• 0.60◦ -0.60• 2381.38◦ 2381.82◦ -0.22• 0.23◦
H-CUSUM -7394.90• -7410.51• 0.01◦ -0.65• 0.00- 0.00- 0.00- 0.00-

H-GMA -7220.40• -7355.65• 0.00◦ -0.37• 0.00- 0.00- 0.00- 0.00-
H-PH -3733.23• -4116.79• 0.00◦ -0.03• 0.00- 0.00- 0.00- 0.00-

H-SEED -7109.37• -7067.13• 0.00◦ -0.35• 31.72◦ 296.57◦ 0.00- 0.00◦
KL-MR -7348.61• -7207.01• 0.01◦ -0.12• -7283.27• -5335.17• 0.00◦ -0.02•

KL-ADWIN -5654.22• -5658.41• 0.50◦ -0.50• -5060.36• -5063.57• 0.56◦ -0.56•
KL-CUSUM -3486.22• -4281.29• 0.00◦ -0.02• -1462.53• -1033.37• 0.00◦ -0.00•

KL-GMA -1183.89• -2058.00• 0.00◦ -0.00• -436.55• -295.85• 0.00◦ -0.00•
KL-PH -672.71• -882.28• 0.00◦ -0.00• -583.80• -589.80• 0.00- -0.00•

KL-SEED -6304.75• -6624.18• 0.00◦ -0.07• -3788.52• -3250.26• 0.00◦ -0.01•
SPLL-MR -3.72◦ 19.03◦ 0.01◦ 0.13◦ -14.00◦ -7.26• 0.02◦ -0.05•

SPLL-ADWIN -0.01◦ -0.13- 0.01◦ -0.00• -0.00◦ 0.19◦ 0.00◦ -0.00•
SPLL-CUSUM 196.57◦ 31.73◦ -0.01• 0.31◦ 11.17• 7.92◦ -0.00• 0.02◦

SPLL-GMA 677.71◦ 26.48• -0.00• 0.30◦ 71.34◦ 17.74◦ -0.00• 0.11◦
SPLL-PH 3112.82◦ 1914.93◦ -0.00• 0.10◦ 201.11◦ 167.18◦ -0.00• 0.03◦

SPLL-SEED -791.66• -619.66• 0.00◦ -0.10• -384.56• -455.09• -0.00• 0.03◦
µ -3299.95 -3542.58 0.06 -0.15 -1319.28 -1142.42 0.02 -0.05
σ 4158.88 4121.59 0.22 0.36 3067.87 2922.09 0.17 0.23
•−◦ 8 11 -12 10 3 3 -3 3

90% 10%
Detector ∆ARL ∆TTD ∆FAR ∆MDR ∆ARL ∆TTD ∆FAR ∆MDR

MR -28.35◦ -4.12• -0.04• -0.06• -17.86• -1.47• -0.02• 0.01◦
ADWIN -0.30◦ -0.95◦ 0.10◦ -0.08• 497.18◦ 499.21◦ -0.12• 0.13◦
CUSUM -658.39• -2170.84• 0.00◦ -0.01• 876.96◦ 725.08◦ -0.00• 0.01◦

GMA 0.00- 0.00- 0.00- 0.00- 0.00- 0.00- 0.00- 0.00-
PH -609.23• -1724.04• 0.00- -0.01• 460.86◦ 734.40◦ 0.00- 0.00◦

SEED -4390.57• -4658.43• -0.00• -0.15• 282.18◦ 484.87◦ -0.00• 0.02◦
µ -947.81 -1426.40 0.01 -0.05 349.89 407.02 -0.02 0.03
σ 2019.63 2441.30 0.06 0.08 609.96 745.88 0.06 0.06
•−◦ 1 3 0 5 -3 -3 4 -5

Experiment 3 demonstrates that a simple and constant-time ensemble of

moving range charts performs very strongly compared to the multivariate

detectors. We also see that MR, ADWIN and SEED appear to be highly tunable

in these ensembles.

Experiment 4 extracted sets of features which were the principal compon-

ents accounting for 90% and 10% of the variance respectively. In Chapter 3
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Table 6.13: The global top 20 performers in the ARL/TTD and FAR/MDR spaces.

Detector ARL TTD Detector FAR MDR
PCA10-MR-10 15.80 0.87 PCA90-MR-20 0.03 0.00
PCA90-MR-20 20.80 -0.65 PCA90-MR-25 0.02 0.02
PCA90-MR-15 16.16 -0.81 PCA90-MR-15 0.04 0.00
PCA90-MR-1 10.50 -1.20 PCA10-MR-10 0.04 0.01
PCA90-MR-5 10.50 -1.20 PCA90-SPLL-MR-W5 0.04 0.02

PCA90-MR-10 10.50 -1.20 PCA10-SPLL-MR-W10 0.04 0.02
PCA10-MR-5 8.65 -0.73 PCA10-SPLL-MR-W5 0.04 0.02
PCA10-MR-1 2.91 -2.09 PCA90-MR-1 0.07 0.00

SPLL-ADWIN-W30 0.92 -3.94 PCA90-MR-5 0.07 0.00
SPLL-W50 0.90 -3.86 PCA90-MR-10 0.07 0.00
SPLL-W40 0.90 -3.90 PCA10-SPLL-MR-W25 0.04 0.03
SPLL-W45 0.90 -3.89 PCA10-MR-5 0.08 0.00
SPLL-W35 0.89 -3.95 PCA10-SPLL-MR-W20 0.04 0.04
SPLL-W30 0.89 -3.99 PCA10-SPLL-MR-W15 0.04 0.04

PCA10-SPLL-W50 0.89 -3.71 PCA10-HOTELLING-MR-W5 0.06 0.02
SPLL-W25 0.89 -4.04 PCA10-MR-15 0.02 0.06

PCA10-SPLL-W45 0.88 -3.81 PCA10-SPLL-MR-W45 0.04 0.05
PCA10-SPLL-W40 0.88 -3.60 PCA10-SPLL-MR-W35 0.04 0.05

SPLL-W20 0.88 -4.08 SPLL-CUSUM-W25 0.02 0.08
PCA10-SPLL-W35 0.88 -3.74 PCA90-HOTELLING-MR-W10 0.03 0.07

SPLL-W15 0.88 -4.07 PCA10-SPLL-MR-W40 0.04 0.05

it was suggested that in the case of random change, the least variant compon-

ents should be retained. In this case, the most variant components appear

to be the better choice. There are several explanations for this. Firstly, the

changes are not random noise, but stable reoccurring concepts. Secondly,

given that we hypothesise the largest changes in colour should be indicative

of blinks, this means that the most useful features are also likely to have high

variance relative to the background. Thirdly, counts in the histogram are not

independent. Assuming constant illumination and no significant changes other

than blinks in the ROI, changes in the histogram over time will be a roughly

zero-sum game. A reduction in one bucket’s colour count will be reflected with

an increase in others, creating a higher proportion of useful variant features.

This relationship is visible to a varying extent in Figure 6.14.

The 90% features were particularly successful in improving the relevance

of the Hotelling and KL statistics, as can be seen in Figures 6.11 and 6.16

respectively. The initial poor performance of Hotelling and KL, the relatively
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small number of features in this set and the above arguments regarding the

features suggest that SPLL is better at coping with noisy data. The features

were also highly successful in decreasing missed detections, especially for the

ensembles where the effect on false alarm rates was insignificant compared

with the chained detectors.

As discussed in Section 6.5.1, the reported false alarm rates for all detectors

are higher than necessary because in all these experiments the detectors were

not reset when a change was detected. However, this allowed the results to

clearly reflect which detectors were suitable.

A selection of the results compare favourably to other examples in the blink

detection literature. Chau and Betke [29] report an average accuracy of 96%.

Królak and Strumiłło [93] report an accuracy of 95.3% in good lighting condition.

Bacivarov et al. [7] report an accuracy of 91%, Bhaskar et al. [13] 97% and Chen

et al. [30] 96.88%. Of the reviwed papers, only Chau and Betke report their

false positive rate6. They report 173 false positives for 2288 blinks analysed,

better than was achieved here. For a better comparison, Table 6.14 shows a

global top 20 methods in the FAR/MDR space only considering those with less

than 1% FAR. As an example of the gap, PCA10-SPLL-CUSUM-W10, posted on

average 99 false positives per run, with 88% accuracy. However, this is likely

significantly contributed to by repeat detections as discussed earlier. A repeat

of the experiment with resetting would hopefully bring the best performers up

to a comparable rate to the other approaches in the literature.

The feature extraction process as discussed in Section 6.4.2 is clearly quite

naïve compared to alternative vision-based pipelines in the literature such

as Chen et al. [30]. It is very encouraging that several of the methods tested

here approach or exceed their reported accuracy of 96.88% despite a very

6To prevent misconception, the reader is reminded of the difference between the false
alarm rate and false positive rate. The former is false alarms as a proportion of all observations,
i.e. video frames. The latter is false alarms as a proportion of true positives, i.e. blinks.
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Table 6.14: Top 20 detectors with a less than 1% false alarm rate.

Detector FAR MDR
PCA10-SPLL-CUSUM-W10 0.0099 0.1177
PCA10-SPLL-CUSUM-W5 0.0091 0.1213
PCA90-H-CUSUM-W15 0.0091 0.1706
PCA90-H-CUSUM-W10 0.0095 0.1917
PCA90-H-CUSUM-W30 0.0092 0.1952
PCA90-H-CUSUM-W25 0.0090 0.2273

PCA10-MR-25 0.0081 0.2355
PCA90-H-GMA-W5 0.0070 0.2620

PCA90-SPLL-CUSUM-W15 0.0021 0.2823
SPLL-GMA-W35 0.0040 0.2836

PCA90-SPLL-CUSUM-W5 0.0024 0.2986
SPLL-GMA-W25 0.0030 0.3116
SPLL-GMA-W10 0.0021 0.3219
SPLL-GMA-W20 0.0028 0.3325

SEED-1 0.0057 0.3333
SPLL-GMA-W30 0.0032 0.3402
SPLL-GMA-W5 0.0015 0.3412

PCA90-H-SEED-W35 0.0026 0.3448
SPLL-GMA-W40 0.0034 0.3477
SPLL-GMA-W15 0.0025 0.3541
SPLL-GMA-W50 0.0038 0.3606

simplistic feature extraction process. It is highly likely that further work into

a more advanced feature extraction process would yield a better end result.

There is a remarkable diversity of approaches to this problem within the

reviewed literature in Section 6.2. Many of the reviewed works used bespoke

thresholding schemes for their complex feature extraction pipelines. The res-

ults here appear to lend weight to the hypothesis that change detection meth-

ods are a feasible alternative solution to these bespoke thresholding schemes.

Secondly, the poor performance of the multivariate detectors in the baseline

experiment, and the subsequent improvement seen in Sections 6.6, 6.7 and 6.8

demonstrate the feasibility of the techniques presented in Chapters 3, 4 and 5.

The experiments in this chapter were designed to fill the experimental gaps

in the hypotheses left by the previous chapters. Continuing from the conclusion

of Chapter 3, in Section 6.8 the value of PCA is demonstrated in the fully unsu-

pervised context, emphasising the context-free nature of the technique. From
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the conclusion of Chapter 4, Section 6.6 presents a comprehensive before-and-

after study of 3 multivariate detectors chained with 6 univariate detectors, and

compared to the baseline established in Section 6.5. The performance of the

ensembles in Sections 6.7 and 6.8 lend further support to hypothesis (5).

It should be noted that the assumption from hypothesis (1) that data are i.i.d

are probably not met in this chapter. The data is not sampled, and streaming

blink data is likely to exhibit a high degree of temporal dependence. However,

experiments from previous chapters where sampling was used have met this

qualification.
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Chapter 7

Meander: A Java Library for Change

Detection Pipelines and Change

Stream Generation

Recall Figure 2.10. The observation that many change detectors are com-

plex pipelines of operations along with a necessity to speed up experiments

for this thesis led to the development of a Java library. The objectives of this

library were as follows:

• Break down a number of change detection approaches into their funda-

mental components.

• Provide a type-safe framework for the combination of these components.

• Components should be thread-safe and significantly faster than the equi-

valent MATLAB implementations.

It was named ’Meander’ as a synonym for ’Changing Stream’. The library

is built on Java 8 to take advantage of the streams API. It is divided into two

modules.

meander-core Change stream generation, evaluation and interfaces.

meander-detectors Components for functional change detection.
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This was based on the recognition that generating changing data streams

and evaluation of change detection approaches may be valuable on its own

for people wishing to evaluate their own change detectors.

7.1 Motivation

Consider a change detector as a functionCD(~xt)→{0,1} (orCD(Wt)→{0,1}

if it takes a window) which maps an input to a binary space. We see this function

as a black box – examples or batches are taken from the data stream, passed

into our change detector, and it indicates whether there has been change in

the context of those examples. In fact, we can decompose this black box into a

pipeline of operations, as depicted in Figure 2.10. As a minimal example, there

must be some threshold to arrive at a binary output, so the change detection

function is at least a composition CD(~xt)=D◦C(~xt) of:

A criterion function:


C(~xt)→ψt

C(Wt)→ψt

C(W1,t,W2,t)→ψt

(7.1)

A decision function: D(ψt)→{0,1} (7.2)

whereψt represents the information required to make a decision at index t. This

state is typically a real number change detection criterion ψt∈R. Depending

on whether we have data management, forgetting, preprocessing or modelling

steps, this may be a composition of arbitrarily more functions.

To see why this perspective is important, we will consider how change de-

tectors are contributed to MOA [19, 21]. The focus of MOA is data stream mining

rather than change detection, although it offers a ChangeDetector interface

Meander: A Java Library for Change Detection Pipelines and Change Stream Generation 163



contract for use in adaptive learning. The important methods are shown in

Figure 7.1.

1 public interface ChangeDetector extends OptionHandler {
2 // Other methods redacted...
3
4 public void input(double inputValue);
5
6 public boolean getChange();
7 }

Figure 7.1: Important methods in MOA ChangeDetector interface contract from
moa.classifiers.core.driftdetection.

Users of the interface provide the next value in the stream tovoid input(double

inputValue), and find out whether change was detected by calling boolean

getChange(). This pattern presents two impediments. Firstly, it is implicitly

assumed that input will be double valued, i.e. univariate. Secondly, this in-

terface encapsulates the whole pipeline from input to boolean output. Each

implementer must wholly manage their data management, forgetting, prepro-

cessing and so on. This makes it very cumbersome to investigate the effects

of changing thresholds, adding preprocessing steps, or replacing modules. In

effect, this is the ’black box’ approach that was mentioned at the beginning

of this section.

The motivation of Meander is to encourage component-first development,

such that these components can be replaced, reordered or appended to without

having to rewrite any code. This in turn should reduce the time taken to pro-

totype ideas in unsupervised change detection.

7.2 Change Detection

The fundamental component is called a Pipe. A pipe encapsulates a function

mapping from an input type to an output type. Using Java’s generics, example

signatures for univariate and multivariate detectors respectively are:
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• Pipe<Double,Boolean>

• Pipe<Double[],Boolean>

However in principle a detector could map from any input type to a boolean.

Pipes are composable as demonstrated in Figure 7.2. A pipe that maps

Double[] to Boolean might be composed of multiple pipes, the output of each

connected to the input of the next.

1 Pipe<Double[],Double> criterion = ...
2 Pipe<Double, Boolean> decision = ...
3
4 Pipe<Double[], Boolean> detector = criterion.then(decision);
5
6 Double[] example = ...
7
8 Boolean wasChangeDetected = detector.execute(example);

Figure 7.2: Type-constrained functional composition of Pipe objects.

Each execution of a pipe is intended to map a single stream example to a de-

tection or non-detection of change. Stateful components like sliding windows

block further execution of the pipe until they have collected enough examples

to pass on.

Figures 7.3 and 7.4 demonstrate a typical use case. In Figure 7.3, we create

the canonical Hotelling detector, as described earlier in this chapter. It takes

a pair of windows, calculates the T 2 statistic between them, and takes the com-

plementary probability on an F-distribution cdf with the appropriate degrees of

freedom. If there were simply a class implementing the whole process for the

Hotelling detector, it would most likely require cumbersome modifications or

duplication of code if we wanted to investigate the effects of PCA, for example.

By breaking detectors down into pipelines of operations, we are free to insert

or replace steps as required with minimal re-engineering of existing steps.

In Figure 7.4, we insert a step which performs a PCA transformation on the

sliding windows, and we have replaced the static threshold with a moving
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1 Pipe<Double[], Boolean> tsq = new WindowPairPipe(100)
2 .then(new TSquared())
3 .then(new FWithDF().complementary())
4 .then(Threshold.lessThan(0.05));

Figure 7.3: The pipeline for the Hotelling T 2 detector.

1 Pipe<Double[], Boolean> tsqPCAMR = new WindowPairPipe(100)
2 .then(new PCAWindowPairTransform())
3 .then(new TSquared())
4 .then(new FWithDF().complementary())
5 .then(new MovingRange())
6 .then(new MovingRangeThreshold());

Figure 7.4: A pipeline with PCA for the Hotelling T 2 detector.

range control chart. We can do the latter because the second to last step in

the pipeline, the cdf, produces a Double and we need to arrive at a Boolean. An

important observation is that since any univariate detector fulfils a mapping

from Double to Boolean, we could insert it in lieu of a threshold.

7.3 Ensembles

Ensembles can be created through the combination of pipes. Three types

of ensembles are currently supported.

UnivariateEnsemble Aggregates the votes of multiple detectors matching the

signature Pipe<Double,Boolean>. Combines univariate detectors over

univariate data.

MultivariateEnsemble Aggregates the votes of multiple detectors matching

the signature Pipe<Double[],Boolean>. Combines multivariate detect-

ors over multivariate data.

SubspaceEnsemble Aggregates the votes of multiple detectors matching the

signature Pipe<Double,Boolean>, but expects multivariate data. Com-
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bines univariate detectors over multivariate data. Each detector is as-

signed a feature (or subspace) of the input data to monitor.

An ensemble in Meander satisfies the interface Pipe<T,Boolean[]>, map-

ping from an input to an array of votes. The fusion of these decisions is

delegated to the next step in the pipeline. Currently there are two fusion types

supported.

SimpleMajority Given a threshold between 0 and 1, signals true if at least

that percentage of the detectors signal. Implements Pipe<Boolean[],

Boolean>.

DecayingMajority Takes a threshold between 0 and 1. Takes a sum of the

votes at each time point, incrementally downweighting old votes ac-

cording to a decay function. Designed to account for detectors whose

votes do not exactly synchronise over time. Implements Pipe<Boolean[],

Double>.

DecayingMajority maps to a statistic, so this can subsequently be threshol-

ded to a desired agreement level, or by any univariate detector.

Figure 7.5 demonstrates the process of creating an ensemble.

1 Pipe<Double,Boolean> mr = new MovingRange()
2 .then(new MovingRangeThreshold());
3 Pipe<Double,Boolean> cusum = new CUSUM()
4 .then(Threshold.greaterThan(3));
5 Pipe<Double,Boolean> imr = new MovingRange()
6 .then(new IndividualsMovingRangeThreshold());
7
8 Pipe<Double,Boolean> ensemble =
9 new UnivariateEnsemble(mr, cusum, imr)

10 .then(new SimpleMajority(0.5))

Figure 7.5: Creating a univariate simple majority ensemble from univariate detectors.
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7.4 Change Stream Generation

The library also includes a framework for the evaluation of these detector

pipelines on data streams. WEKA-style .arff files can be streamed verbatim,

or sampled to produce arbitrary length streams with specific change points.

1 // Stream of examples verbatim from file
2 Stream<Example> verbatim = ArffStream.of("abalone.arff");
3
4 // Stream of sampled examples with artificial change
5 // between specified prior probabilities.
6 ChangeStreamBuilder builder = ChangeStreamBuilder
7 .fromArff("abalone.arff")
8 .withUniformPriors().fromStart()
9 .withPriors(1.0, 0.0, 0.0)

10 .transition(new AbruptTransition(2500))
11 .withPriors(0.0, 1.0, 0.0)
12 .transition(new LogisticTransition(5000,5100))
13 .withPriors(0.0, 0.0, 1.0)
14 .transition(new AbruptTransition(7500));
15
16 // Artificial streams sample from the dataset, so
17 // we can draw an arbitrary number of examples.
18 Stream<Example> artificial = builder.build().limit(10000);

Figure 7.6: Fluent API to provide Java 8 streams from .arff files both verbatim and
with artificial change.

Given an .arff file to sample, we can produce a stream with artificial

changes using the framework described by Narasimhamurthy and Kuncheva [134]

and Bifet et al. [20]. Three types of transition are supported.

AbruptTransition Transitions between data sources instantly.

LinearTransition Gradual transition as in Figure 2.3.

LogisticTransition Gradual transition using logistic function as suggested

by Bifet et al. [20].
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The second example of Figure 7.6 shows how transitions can be created

between defined prior probabilities. In this instance, we transition cleanly from

one class to another, but any mixture of priors is supported.

7.5 Evaluation

With a suitable data stream and a change detector, the evaluation API can

be invoked as in Figure 7.7. This invokes the detector on each example in the

change stream, and records the positions of positive detections.

1 Pipe<Double[], Boolean> detector = ...
2 Stream<Example> stream = ...
3
4 Evaluator evaluator = new SequenceEvaluator();
5 Evaluation results = evaluator.evaluate(detector, stream);
6
7 double arl,ttd,far,mdr;
8 arl = results.getArl();
9 ttd = results.getTtd();

10 far = results.getFar();
11 mdr = results.getMdr();

Figure 7.7: The evaluation API providing the four performance metrics.

Two evaluators are offered. Each choice of evaluator reflects a differing

change context.

SequenceEvaluator Interprets transition start and end points as changes that

must be detected.

ShortConceptsEvaluator Only interprets transition start points as changes.

The ShortConceptsEvaluator is geared towards very short lived changes,

where the objective is closer to anomaly detection.
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7.6 Summary

This framework allows a technical user to quickly prototype new components

and assess the impact of new pipeline steps. It was used to run the experi-

ments in Chapter 6 and an early iteration was used to run the experiments in

Chapter 5. The code is open source, hosted on GitHub1 at the time of writing.

The code is made available permissively, under the Apache License 2.0.

1https://github.com/wfaithfull/meander
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Chapter 8

Conclusion

8.1 Summary of Work

Change Detection and related fields have seen considerable advances in

the last few decades, and there exists now a suite of approaches that can be ap-

plied to the unsupervised problem, univariate and multivariate. The objective

of this thesis has been to develop general techniques that can leverage these

existing approaches to improve multivariate change detection performance.

It has been demonstrated that in the case of multivariate unsupervised

change detection, general purpose steps can be appended to the pipeline,

offering improved outcomes without any modification of the underlying ap-

proaches. In Chapter 3, we take the least variant principal components as the

features for change detection, discuss in what context this is preferable and

show that this improves performance on most of the datasets tested. Chapter 4

suggests an alternative means of thresholding the statistics generated by

multivariate change detectors, chaining the statistic to a univariate change

detector (in this case a control chart). This was tested on a challenging data-

set of facial expressions. The results demonstrate the approach relative to

bootstrapping. Chapter 5 takes existing univariate detectors and builds them

into subspace ensembles which can act as multivariate detectors. Over a se-

lection of 96 datasets, these ensembles frequently outperformed established
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multivariate change detectors. Chapter 6 performed a baseline experiment in

endogenous eye blink detection, and subsequently demonstrated the viability

of the techniques from the previous chapters.

8.2 Future Work

Chapter 3 raises several avenues of future work; What is the relationship of

window size to the benefits of PCA for change detection? Is there a “middle part”

of principal components which are both relatively important and relatively

sensitive to change? How much computational complexity is added by the fea-

ture extraction step? Chapter 3 also has relevance to Chapter 5. It can be noted

that a stated limitation of the novel subspace ensemble technique was that

it assumes independence of the features and as such cannot take into account

correlations. Firstly, it would be beneficial to establish the context and extent of

the effect of feature independence on multivariate change detection. Secondly,

assuming correlation is significant, one would expect that the ensembles are

likely to benefit from PCA transformed data. The principal components are by

necessity linearly uncorrelated. Important contextual information contained

in the covariance of the original data is partially preserved as it will affect the

parameters of the transformation. Empirically, this combination was effective

in Chapter 6.

The ensembles in Chapters 5 and 6 were fused by simple majority. Although

techniques such as bagging and boosting are not possible in the unsuper-

vised setting, there is an active area of research into unsupervised ensemble

combination techniques [185, 78]. Within this thesis ensembles were consist-

ently among the best performers, so applying more sophisticated combination

techniques is an interesting research direction.
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Finally, there is increasing interest in deep learning across a multitude of

disciplines at present. This includes a small selection of work in change de-

tection [178, 133]. Recent work on adversarial autoencoders [120] appears

promising as a means to model even very complex distributions from minimal

samples using adversarial training.

8.3 Publications Relating to the Thesis

• Kuncheva, L.I. and Faithfull, W.J., 2012, November. Pca feature extraction

for change detection in multidimensional unlabelled streaming data. In

Pattern Recognition (ICPR), 2012 21st International Conference on (pp.

1140-1143). IEEE.

• Kuncheva, L.I. and Faithfull, W.J., 2014. PCA feature extraction for change

detection in multidimensional unlabeled data. IEEE transactions on

neural networks and learning systems, 25(1), pp.69-80.

• Faithfull, W.J. and Kuncheva, L.I., 2014. On Optimum Thresholding of

Multivariate Change Detectors. In Joint IAPR International Workshops on

Statistical Techniques in Pattern Recognition (SPR) and Structural and

Syntactic Pattern Recognition (SSPR) (pp. 364-373). Springer, Berlin,

Heidelberg.

• Faithfull, W.J., Rodríguez, J.J. and Kuncheva, L.I., 2019. Combining uni-

variate approaches for ensemble change detection in multivariate data.

Information Fusion, 45, pp.202-214.
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Change detection framework for massive online analysis’, Advances in

Intelligent Data Analysis XII, pp. 92–103, 2013 (pp. 91, 95, 163).

[22] R. B. Blazek, H. Kim, B. Rozovskii and A. Tartakovsky, ‘A novel approach

to detection of “denial–of–service” attacks via adaptive sequential and

batch–sequential change–point detection methods’, in Workshop on

Information Assurance and Security, vol. 1, 2001, p. 0930 (p. 15).

[23] D. A. Blythe, P. Von Bunau, F. C. Meinecke and K.-R. Muller, ‘Feature

extraction for change-point detection using stationary subspace ana-

lysis’, IEEE Transactions on Neural Networks and Learning Systems,

vol. 23, no. 4, pp. 631–643, 2012 (p. 55).

[24] A. Bouchachia, ‘On the scarcity of labeled data’, in Computational Intel-

ligence for Modelling, Control and Automation, 2005 and International

Conference on Intelligent Agents, Web Technologies and Internet Com-

merce, International Conference on, IEEE, vol. 1, 2005, pp. 402–407

(p. 10).

[25] G. Bradski, A. Kaehler and V. Pisarevsky, ‘Learning-based computer vis-

ion with intel’s open source computer vision library.’, Intel Technology

Journal, vol. 9, no. 2, 2005 (p. 119).

[26] D. Brauckhoff, K. Salamatian and M. May, ‘Applying pca for traffic

REFERENCES 176



anomaly detection: Problems and solutions’, in INFOCOM 2009, IEEE,

IEEE, 2009, pp. 2866–2870 (pp. 55, 56).

[27] D. Brzezinski and J. Stefanowski, ‘Ensemble diversity in evolving data

streams’, in International Conference on Discovery Science, Springer,

2016, pp. 229–244 (p. 97).

[28] V. Chandola, A. Banerjee and V. Kumar, ‘Anomaly detection: A survey’,

ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009 (pp. 16, 17,

22–24).

[29] M. Chau and M. Betke, ‘Real time eye tracking and blink detection with

usb cameras’, Boston University Computer Science Department, Tech.

Rep., 2005 (pp. 117, 119, 120, 159).

[30] B.-C. Chen, P.-C. Wu and S.-Y. Chien, ‘Real-time eye localization, blink

detection, and gaze estimation system without infrared illumination’, in

Image Processing (ICIP), 2015 IEEE International Conference on, IEEE,

2015, pp. 715–719 (pp. 119, 120, 159).

[31] J. L. Crowley and F. Berard, ‘Multi-modal tracking of faces for video

communications’, in Computer Vision and Pattern Recognition, 1997.

Proceedings., 1997 IEEE Computer Society Conference on, IEEE, 1997,

pp. 640–645 (pp. 119, 120).

[32] T. Danisman, I. M. Bilasco, C. Djeraba and N. Ihaddadene, ‘Drowsy

driver detection system using eye blink patterns’, in 2010 International

Conference on Machine and Web Intelligence, Oct. 2010, pp. 230–233.

DOI: 10.1109/ICMWI.2010.5648121 (pp. 119, 121).

[33] T. Dasu, S. Krishnan, S. Venkatasubramanian and K. Yi, ‘An information-

theoretic approach to detecting changes in multi-dimensional data

streams’, in Proc. Symp. on the Interface of Statistics, Computing

Science, and Applications, Citeseer, 2006 (pp. 30, 41, 45, 48, 60, 76,

79, 80, 82).

[34] S. Delany, P. Cunningham and A. Tsymbal, ‘A case-based technique

for tracking concept drift in spam filtering’, Knowledge-based systems,

REFERENCES 177

https://doi.org/10.1109/ICMWI.2010.5648121


2005 (pp. 13, 14, 48).

[35] M. Divjak and H. Bischof, ‘Eye blink based fatigue detection for preven-

tion of computer vision syndrome.’, in IAPR Conference on Machine

Vision Applications, 2009, pp. 350–353 (p. 119).

[36] P. Domingos and G. Hulten, ‘Mining high-speed data streams’, in Pro-

ceedings of the sixth ACM SIGKDD international conference on Know-

ledge discovery and data mining, ACM, 2000, pp. 71–80 (p. 37).

[37] A. Dries and U. Rückert, ‘Adaptive Concept Drift Detection’, Statistical

Analysis and Data Mining, vol. 2, no. 5-6, pp. 311–327, 2009 (p. 48).

[38] L. Du, Q. Song, L. Zhu and X. Zhu, ‘A selective detector ensemble for

concept drift detection’, The Computer Journal, vol. 58, no. 3, pp. 457–

471, 2014 (pp. 20, 94).

[39] R. O. Duda, P. E. Hart and D. G. Stork, Pattern classification. John Wiley

& Sons, 2012 (p. 11).

[40] G. J. Edwards, T. F. Cootes and C. J. Taylor, ‘Face recognition using act-

ive appearance models’, in European conference on computer vision,

Springer, 1998, pp. 581–595 (p. 84).

[41] R. Elwell and R. Polikar, ‘Incremental learning of concept drift in non-

stationary environments’, IEEE Transactions on Neural Networks, 2011

(pp. 7, 13, 46, 48, 49).

[42] P. Evangelista and M. Embrechts, ‘Taming the curse of dimensionality

in kernels and novelty detection’, Applied soft computing, 2006 (pp. 92,

93, 95, 97, 112–114).

[43] W. Fan, ‘Systematic data selection to mine concept-drifting data streams’,

in Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, ACM, 2004, pp. 128–137 (p. 48).

[44] T. Fawcett and F. Provost, ‘Adaptive fraud detection’, Data mining and

knowledge discovery, 1997 (p. 15).

[45] M. Fernández-Delgado, E. Cernadas, S. Barro and D. Amorim, ‘Do we

need hundreds of classifiers to solve real world classification problems’,

REFERENCES 178



Journal of Machine Learning Research, vol. 15, no. 1, pp. 3133–3181,

2014 (p. 116).

[46] C. Ferri, J. Hernández-Orallo and P. A. Flach, ‘A coherent interpretation

of auc as a measure of aggregated classification performance’, in

Proceedings of the 28th International Conference on Machine Learning

(ICML-11), 2011, pp. 657–664 (p. 68).

[47] A. Fogelton and W. Benesova, ‘Eye blink detection based on motion

vectors analysis’, Computer Vision and Image Understanding, vol. 148,

pp. 23–33, 2016 (p. 120).

[48] I. Frias-Blanco, J. del Campo-Avila, G. Ramos-Jimenez, R. Morales-Bueno,

A. Ortiz-Diaz and Y. Caballero-Mota, ‘Online and non-parametric drift

detection methods based on Hoeffding’s bounds’, IEEE Transactions

on Knowledge and Data Engineering, vol. 27, no. 3, pp. 810–823, 2015

(pp. 37, 94, 95).

[49] K. Fukuda, ‘Eye blinks: New indices for the detection of deception’,

International Journal of Psychophysiology, vol. 40, no. 3, pp. 239–245,

2001 (p. 117).

[50] M. Gaber and P. Yu, ‘Classification of changes in evolving data streams

using online clustering result deviation’, 2006 (p. 41).

[51] J. Gama and P. Rodrigues, ‘Data stream processing’, Learning from Data

Streams, 2007 (p. 6).

[52] J. Gama, R. Sebastião and P. Rodrigues, ‘On evaluating stream learning

algorithms’, Machine learning, 2013 (pp. 17, 47).

[53] J. Gama, Knowledge discovery from data streams. Chapman & Hall/CRC,

2010, p. 237, ISBN: 1439826129 (pp. 1, 7, 8, 16, 19, 31, 36, 38, 45).

[54] J. Gama, P. Medas, G. Castillo and P. Rodrigues, ‘Learning with drift

detection’, Advances in Artificial Intelligence – SBIA 2004, pp. 286–295,

2004 (pp. 6, 14, 33, 36, 37, 46, 48, 86, 94, 95).
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