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ABSTRACT
A fundamental assumption often made in supervised clas-
sification is that the problem is static, i.e. the description
of the classes does not change with time. However many
practical classification tasks involve changing environ-
ments. Thus designing and testing classifiers for changing
environments are of increasing interest and importance. A
number of benchmark data sets are available for static clas-
sification tasks. For example, the UCI machine learning
repository is extensively used by researchers to compare
algorithms across various domains. No such benchmark
datasets are available for changing environments. Also,
while generating data for static environments is relatively
straightforward, this is not so for changing environments.
The reason is that an infinite amount of changes can be
simulated, and it is difficult to define which ones will
be realistic and hence useful. In this paper we propose
a general framework for generating data to simulate
changing environments. The paper gives illustrations of
how the framework encompasses various types of changes
observed in real data and also how the two most popular
simulation models (STAGGER and moving hyperplane)
are represented within.
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1 Introduction

Online learning is increasingly occupying centre stage in
data mining as more and more applications generate mas-
sive streams of data [5, 6, 29]. In these cases it is often
impractical to apply conventional classification methodolo-
gies since these typically arebatchalgorithms often requir-
ing more than one pass through the entire data. Many on-
line versions of conventional classification methods have
been developed [23–25].

A fundamental assumption in supervised classifica-
tion, including many of the online classification methods, is
that the problem is static, i.e. the description of the classes
does not change with time. In many practical problems this
is most likely to be false. An example is detecting and fil-
tering out spam-email. The descriptions of the two classes

“spam” and “non-spam” evolve with time. They are user-
specific, and users’ preferences change with time. Also
spammers are active opponents who devise newer meth-
ods to evade detection thereby altering the definition of
class “spam” within the current feature space. A change
in the environment is referred to asconcept driftin ma-
chine learning. The changes could include minor fluctu-
ations of the underlying probability distributions, steady
trends, rapid substitution of one classification task with an-
other and so on [12,33]. These categories are by no means
mutually exclusive and various combinations are possible.
Bespoke online classification models [5, 6, 32], as well as
classifier ensembles [21,29] have been proposed for chang-
ing environments [22].

In the light of the growing importance of classifica-
tion in changing environments, it is striking how little at-
tention has been paid to putting together a collection of
benchmark data sets or formulating generic procedures for
simulating data. As a result researchers use their own
simulated datasets or specific real data domains such as
finance [8, 12, 32], text categorisation [17–19], spam fil-
tering [4] and web searches [11]. In spite of some cri-
tiques [27], the creation of the UCI Machine Learning
Repository [3] in 1987 has had a significant positive im-
pact on Machine Learning and Pattern Recognition Com-
munities [1]. A KDD (Knowledge Discovery in Databases)
archive was subsequently developed in 1999 [1] contain-
ing large data sets of diverse types and domains (http:
//kdd.ics.uci.edu ). Data with a variety of known
changes are needed for evaluating classification methods
in changing environments. In this study we propose a gen-
eral framework for generating artificial data which simulate
changing environments. The data may contain one or more
types of drift as desired by the user.

The rest of the paper is organised as follows. In Sec-
tion 2 we review the terminology used in the literature on
changing environments. The proposed framework is de-
scribed in Section 3. Illustrations of how the proposed
framework accommodates the defined types of environ-
mental changes are given in Section 4. An implementation
algorithm is given in Section 5. Section 6 concludes the
study.
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2 Terminology

The most used term in the ML literature on the subject is
‘concept drift’. However, there is a variety of other terms,
some of them not precisely defined, taken to mean the same
thing. This lack of uniformity of terminology prompted
us to try to summarise and explain the terms found in the
literature before proceeding with the general framework.

The term ’concept’ is used to mean slightly different
things. It is sometimes used to refer to the class of interest.
A concept change in this case would mean a deviation of
the description of the class from the original description.
Consider for example the STAGGER dataset described by
Widmer and Kubat [33] (this is discussed further in section
4.2). In this dataset the feature space of a simple blocks
world is described by three features (attributes) namely,
size, color and shape. Examples are labelled according to a
target concept (this is not given to the classifier explicitly)
which changes over time. For example the target concept
for the first set of instances is ”size = small AND color =
red”, the target concept for a subsequent set of instances is
”color = green OR shape = circular”. An analogous ’target
concept’ or a ’concept of interest’ in a real world domain
such as information filtering, may be the class ‘relevant ar-
ticles’ from a set of documents (e.g. Klinkenberg [14,18]).

In other articles, the authors use ‘concept’ to refer to
the whole distribution of the problem at time moment

�
, in-

cluding all classes. Then concept drift is the substitution of
one concept at time

�
with another at time

� � �
. To avoid

confusion, in this study we will try to avoid the term alto-
gether. Another frequently used term ispopulation drift,
this refers to the changes in the underlying distributions.
Kelly et al. [12] use the termpopulation drift to mean a
changes either in the priors or in the probabilities probabil-
ities of class membership, conditional on feature vectors.
They point out that the termconcept drifthas been used
in the machine learning literature both for this (population
drift) as well as other changes.

While in a natural system we can expect gradual drifts
(e.g., seasonal, demographic, habitual, etc.), sometimes the
class description may change rapidly due to so calledhid-
den contexts. Such contexts may be, for example, illumi-
nation in image recognition and accents in speech recogni-
tion [34]. The context might instantly become highly rel-
evant. Consider a system trained on images with similar
illumination. If images with the same type of content but
a different illumination are fed to the system, the class de-
scriptions might change so as to make the system worse
than a random guess.

The type of changes can be roughly summarised as
follows. They are briefly discussed in subsequent sections.
These categories are by no means mutually exclusive and
various combinations are possible. For example, recurring
trends and population drift are both subsumed by the other
categories, namely gradual changes and concept substitu-
tion. These are listed separately however, since they are
changes which occur in real world applications and also

because authors make distinctions.
� Gradual changes (gradual drift, evolutionary changes,

concept drift) [2,10,13,16,30]

� Substitutions (abrupt changes, revolutionary changes,
concept substitution, concept shift) [10,16,33]

� Recurring trends (recurring contexts) [31,33]

� Population drift [12]

3 A general framework for simulating
changing environments

Every classification problem, however complex it might
be, may be described completely by the following. Let� � �� be an object in the�-dimensional feature space
of the problem and	 
 �� 
 � � � � � � � � be the set of class
labels. The knowledge of the prior probabilities for the
classes,� �� �� and the class-conditional probability den-
sity functions (pdf)� �� �� � �, � 
 �� � � � � �, determine com-
pletely the problem and the optimal (minimum error) clas-
sifier for it. Viewed in this probabilistic sense, a classifica-
tion problem may change due to the changes in the� �� � �
and/or� �� �� � �. Posterior probabilities� �� � �� � and the un-
conditional pdf� �� � may also change but these changes
can be re-expressed in terms of� �� �� and� �� �� � �.

Without loss of generality assume that all data live in
the�-dimensional real space,� � �� . Consider a set of�
data sources with known distributions. The distribution for
source� is characterised by the class-conditional probabil-
ity density functions� � �� ��� �, and the prior probabilities
�� ��� �, � 
 �� � � � � �, for this source,� 
 �� � � � � � . At
any time we have one or more “active” data sources. Let�� ��� � �� � � 

specify the extent of the influence of data
source� at time

�
. We shall treat the influences as mixing

proportions and the resultant distribution as a mixture, i.e.!
� �� ��� 
 �

for any
�
. At time

�
the data distribution" #$%

is characterised by prior probabilities

� ��� � �� 

&'

�( 

�� ���� � ��� �

and class-conditional pdfs

� �� ��� � �� 

&'

�( 

�� ���� � �� ��� � �

As the distributions at the sources are fixed, the data distri-
bution at moment

�
, " #$% is specified through�� ���. Thus

we can equivalently define" #$% as

" #$% 
 ��
 ��� � � � � � �& ���� �
To be able to cater for all possible scenarios of changes we
will allow the set of sources to be as large as necessary. For
example, if 1000 time instances are needed in a population
drift data, the set of sources might need to be of cardinality
1000, one source for each time instance.
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Figure 1. Mixing proportions� 
 ��� and�� ��� for a linear
gradual change between two data sources

4 Illustration of the types of changes within
the proposed framework

4.1 Gradual drift

Two examples of gradual drift are given below. The first
example represents only two sources with gradual changes
from one source to the other, as proposed by Widmer and
Kubat [33] and Black and Hickey [2]. This is a scenario
where one concept fades gradually while the other takes
over. The real-world example given by Widmer and Kubat
is that of a device which begins to malfunction. At first
only small number of data points will come from the stable
failure state. Finally the failure will take over completely.
Figure 1 shows� 
 ��� and �� ��� as functions of

�
for this

case.
Figure 2 (a) represents the starting data where the dis-

tribution is equivalent to that of source 1, i.e.,� �� 
� 

� �� � � 
 � ��,
� �� �� 
� 


� 
� � if � � � � 
 � � � � � � �� � �
� � otherwise

� �� �� � � 

� 
� � if

� � � 
 � �� � � � �� � �
� � otherwise

The end distribution is that of source 2, shown in Fig-
ure 2 (d). Subplots (b) and (c) plot the transition of the
data distribution for�� 
 ��� � �� ���� equal to (0.67,0.33) and
(0.33,0.67), respectively.

The second example of gradual change is when there
are more sources so the mixture components at any time
of the transition are not just the start and the end ones.
This example mimics population drift whereby the pa-
rameters of the distributions change gradually with time.
An example from real-life would be the change of cat-
egory “high risk” in loan approval. The criteria for a
money lender to approve a loan evolve with time to re-
spond to new socio-economic circumstances; the gross an-
nual salaries increase; the market is getting saturated with
loan providers. All this will alter the class distributions,
so class “high risk” from a few years ago will have a new
profile now. To model gradual changes in the parameters
of the distributions, we assume that there are as many data
sources as there are time instances to be recorded in the

transition. At time instance
�
, " #$% will be a set of binary

mixing proportions, with�� ��� 
 �
for the data source cor-

responding to
�
, and all other�� ��� 
 � � � �
 �. To make

the model plausible, the consecutive data sources should be
closely related. For example, data source for time

� � �
can

be obtained from data source for time
�

by tweaking a pa-
rameter. In this example, the starting and the final distribu-
tions are the same as in the first example. However, at each
time

�
, only one source is sampled, so the two classes in the

example remain separable at any transition time moment
�
.

Figure 3 shows the scatterplot of the data. Note that this
time there are four data sources with their corresponding�� ���.

This second example of gradual change illustrates a
popular artificial data type used by many authors to test
their classification methods for changing environments.
This data simulation idea is often calledthe moving hyper-
plane[7,11,21].

The proposed framework is meant to be a versatile
tool to combine the scenarios of the two examples by letting
many data sources to be sampled at a time with mixing
proportions evolving with time. It is hoped that in this way
the generated data will represent a more realistic model of
real-life changing environments.

4.2 Substitutions

This is the type of change most often simulated in order to
assess the performance of a classifier in changing environ-
ment. The classical example is the STAGGER concept first
proposed by Schlimmer and Granger [28]. It has received
the status of a benchmark artificial data by being used by
many authors since then [4,7,20–22,33].

The feature space is described by three features (at-
tributes): size� �small (1), medium (2), large (3)�, color� �red (a), green (b), blue (c)� and shape� �square (A),
circular (B), triangular (C)�. There are three data sources
(called ‘target concepts’)

� Target Concept 1 : size = small AND color = red

� Target Concept 2 : color = green OR shape = circular

� Target Concept 3 : size = medium OR size = large

In their experiment, Widmer and Kubat [33] generate
randomly (from a uniform distribution across the feature
space) 120 training instances and label each instance ac-
cording to the current target concept. After processing each
instance, the predictive accuracy is tested on an indepen-
dent test set of 100 instances, also generated randomly. One
target concept is active at a time. Concept 1 is active from
instance 1 to instance 40, Concept 2 is active from instance
41 to 80 and Concept 3 from instance 81 to 120.

This example is modelled as follows. Consider three
data sources each related to one of the target concepts. The
distributions at the three data sources are
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Figure 2. Scatterplots of the data illustrating a gradual (linear) change from distribution of source 1 (a) to that of source 2 (e).
Class� 
 is depicted with grey dots, and class� � with black dots.
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Figure 3. Scatterplots of the data illustrating a gradual (linear) change using 4 data sources. Class� 
 is depicted with grey dots,
and class� � with black dots.

� Data source 1.� 
 �� 
� 
 ����, � 
 �� � � 
 �����,
� 
 �� �� 
� 
 ��� for instances 1aA, 1aB and 1aC and
0 for all other instances.� 
 �� �� � � 
 �

for instances
1aA, 1aB and 1aC and 1/24 for all other instances.

� Data source 2.� � �� 
� 
 �����, � � �� � � 
 �����,
� � �� �� 
� 
 ����

for instances xby and xzB, where x
is any of 1,2,3 y is any of A,B,C and z is any of a,b,c.
for all other instances.� � �� �� 
 � 
 �

for all other
instances.� � ��� � � 
 �

for xby and xzB and 1/12 for
all remaining instances.

� Data source 3.� � �� 
� 
 �����, � � �� � � 
 ����,
� � �� �� 
� 
 ����

for instances for 2zy and 3zy and 0
for all remaining instances.� � �� �� � � 
 �

for 2zy and
3zy and 1/9 for all remaining instances.

For the STAGGER data,
� 
 ��� 
 �� for

� � � � ��
and 0 for any other

�
�� ��� 
 �� for � � � � � ��

and 0 for any other
�

�� ��� 
 �� for
� � � � � ���

and 0 for any other
�

In the substitution scenario, usually one data source is
instantly replaced by another, so" #$% contain again binary
mixing proportions as in the second example above. How-
ever, this time the subsequent data sources are assumed to
be significantly different from one another.

4.3 Recurring trends

In many applications contexts tend to recur either cyclically
or in an unordered fashion. Biological and economic sys-
tems tend to go through cycles of development with recur-
ring patterns [33]. Recurring contexts may be due to irreg-
ular phenomena such as inflation rates or market mood [9]
or due to cyclic phenomena such as seasonal changes. For
example, Tsymbal [31] deal with antibiotic resistance data
for nosocomial infections. They discovered seasonal con-
text recurring with winter and spring models, these corre-
sponded to yearly spring and winter infection outbreaks.

With respect to our framework, the phenomenon of a
periodically recurring context can be expressed as

" #$% 
 " #$�� %
where� is the period of repetition.

5 Implementation algorithm

Figure 4 gives an algorithm which implements the pro-
posed framework.1

1MATLAB code is available at the following url. http:
//www.informatics.bangor.ac.uk/˜kuncheva/
activities/epsrc2006/changing_environments.html
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Input:�
number of time instances required
( = number of data points)�
number of data sources� ��� a user-defined function which
samples once from data source �

�
an

� � �
array with the mixing

proportions (column � contains� � �� � 
 � � �
 � � � 
�
)

Data generation:
Initialise the data set � � �
For 	 � � � � � 
�
(1) 
 = Sample once from ��
 � 
 � � � 
� 


with
distribution defined by� �� � � � �	 
 �� 
 � � � 
 � �	 
� �

(2) Sample a new data point
from source 
 , � � � �
 �,
and add it to the current set � � � � ��

(the class label is also added)

End 	
Return the data set �

Figure 4. Algorithm: Generating data to simulate changing
environments

6 Conclusion

We propose a general framework to generate data simulat-
ing changing environments. The framework is meant to
channel the effort in developing a test-bed of artificial data
to train and test classifiers under various modes of chang-
ing environments. The framework accommodates the cur-
rently favourite STAGGER and Moving Hyperplane gen-
eration strategies and offers a versatile approach towards
devising new strategies. We show that the framework cov-
ers the three main types of changes as formulated in the
literature: gradual changes, substitution and systematic (re-
current) trends. These all can be simulated individually or
in combination. An implementation algorithm is detailed
as well.

Our future work includes simulating changes on real
data. Current state-of-the-art is relatively poor in this re-
spect, revolving around dropping classes and adding data
from new classes [15, 26] or tweaking the class labels [2].
One possible way to go is to use one of the features as hid-
den context and sort the data set by that feature to simulate
a trend.

For now we have looked into generating artificial data
but the main focus must be maintained on the possibility of
finding real data sets which exhibit a clear case of chang-
ing environments. Many such datasets, e.g. in finance,
are not freely available as benchmark due to privacy lim-
itations. Given the pressing need for new tools and meth-

ods for problems with changing environments, it will not
be long before a valuable benchmark of such data will be-
come publicly available, following in the footsteps of UCI
ML repository [3] and UCI KDD Database [1].
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